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In this paper, we consider bifurcation of limit cycles in near-Hamiltonian systems. A new method
is developed to study the analytical property of the Melnikov function near the origin for such
systems. Based on the new method, a computationally efficient algorithm is established to sys-
tematically compute the coefficients of Melnikov function. Moreover, we consider the case that
the Hamiltonian function of the system depends on parameters, in addition to the coefficients
involved in perturbations, which generates more limit cycles in the neighborhood of the origin.
The results are applied to a quadratic system with cubic perturbations to show that the system
can have five limit cycles in the vicinity of the origin.
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1. Introduction

There have been many studies on the Hopf bifurca-
tions of limit cycles, see [Bautin, 1952; Yu & Han,
2004]. In general, there are two types of such bifur-
cations leading to limit cycles: either by perturb-
ing a focus point or by perturbing a center. In this
paper, we study a C* system of the form

y: - $+€Q<x7y76>7 <1>

where H(z,y), p(z,v,9), q(z,y,d) are C*> func-
tions, € > 0 is small and § € D C R™ is a vector
parameter with D compact.

When € = 0, system (1) becomes

T =Hy,, y=-—H (2)

T = Hy+€p<x7y7 6)7

which is a Hamiltonian system, and thus (1) is
called a near-Hamiltonian system. Now suppose
that the Hamiltonian system (2) has an elementary
center at the origin, namely the function H satisfies
H,(0,0) = H,(0,0) =0, and

a(Hya 7H:E)
A(z,y)
Thus, without loss of generality, we may assume

that the expansion of H at the origin can be
expanded as

det (0,0) > 0.

w o
H(x,y) = §(y2+x2)+ Z hijz'y’, w>0. (3)
i+75>3
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Then, the Hamiltonian system (2) has a family of
periodic orbits, given by

Ly :H(z,y)=h, he(0,B)

such that L, approaches the origin as h — 0.

Take h = hy € (0,8) and A(hy) € Lp,. Let
[ be a cross-section of system (2) passing through
A(hg). Then, for h near hg the periodic orbit Lj
has a unique intersection point with [, denoted by
A(h), i.e. A(h) = Ly Nl. Consider the positive
orbit y(h,e,d) of system (1) starting from A(h). Let
B(h,e,0) denote the first intersection point of the
orbit with [. Then, we have

H(B) — H(A) = /AB dH

=¢e[M(h,0) + O(¢)]
=¢eF(h,¢e,0), (4)

where

M(h, 8) — fL (H,q + H,p)dt
= f (qdxz — pdy)

Ly
[ _weraizay @
H<h

The function F'(h,e,0) in (4) is called a bifurcation
function of system (1). The resulting map from A(h)
to B(h,e,9) is called a Poincaré map of system (1).
Obviously, for small € system (1) has a limit cycle
near the origin if and only if the function F'(h,e, )
has a positive zero in h near h = 0.

On the analytical property of the function M
and the number of limit cycles near the origin by
the function, we have the following theorems (see
[Han, 2000] for more details).

Theorem 1. Let (8) hold. Then M(h,d) is C™ in
0<h<1 with

M(h,6) =h ) by(8)h' (6)
>0

formally for 0 < h < 1. Moreover, if (1) is analytic,
so is M.

Theorem 2. Under the condition of Theorem 1, if
there exist k > 1,09 € D such that by(dp) # 0 and

b;j(6) =0, j=0,1,...,k—1,
Abo, ..., by_1)

det 227k 50y £ 0,

A(61,...,6n) (d0) #

where § = (81,...,0m), m > k, then there exist a
constant g > 0 and a neighborhood V' of the origin
such that for all 0 < |e| < ep and |§ — dp| < go (1)
has at most k limit cycles in V. Moreover, for any
neighborhood Vi of the origin there exists (¢,0) near
(0,60) such that system (1) has k limit cycles in V.
In other words, system (1) has Hopf cyclicity k for
all (g,9) near (0,00).

In light of the above theorems, a key step in
studying the Hopf bifurcation problem of system
(1) is to find an efficient method to compute the
coefficients b;. The formulas for the first three coef-
ficients b;(9),j = 0, 1,2 were obtained by Hou and
Han [2006] by using the double integral in (5). How-
ever, such method and computation are hard to be
used to establish an algorithm to compute higher-
order coefficients b;. In this paper, we develop a new
approach to prove Theorem 1 and then establish
a computationally efficient algorithm to systemati-
cally compute b;(0),j =0,1,2,3,.... Moreover, we
consider the case where the Hamiltonian function H
depends on parameters and obtain a generalization
of Theorem 2.

This paper is organized as follows. In the next
section, we give a new proof for Theorem 1 and
further show a generalization of Theorem 2. An
efficient algorithm based on the new proof is also
developed in this section. Then in Sec. 3 we apply
the generalized theorem and the program to dis-
cuss the number of limit cycles for a class of cubic
systems.

2. Main Results

In this section, we first present a new proof for
Theorem 1, and then give a generalization of
Theorem 2. Finally, we establish an algorithm based
on the new proof and code programs using the com-
puter algebra system — Maple.

2.1. A new proof of Theorem 1

To develop a new proof for Theorem 1, we first
introduce a change of variables to make the form
of the Hamiltonian function simpler. By (3) and
using the implicit function theorem, we can show
that a unique C'* function ¢(x) exists such that
Hy(xz,p(x)) =0 for |z| small. Thus, we can write

plz) = e, (7)

Jj=2
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By introducing a new variable v = y — ¢(z),
system (1) can be rewritten as

&= H}(z,v) +ep*(z,v,0),

8
0= —H!(z,v)+eq*(z,v,0), (®)

where

H*(x,v) = H(z,v + ¢(z)),
p*(az,v,é) :p(x,ergo( )aé)a

g (x,v,0) = q(x,v + p(x),0) 9)

780/(33)}9 (33, ,(5)
Further, by (7) and noticing Hy(z,¢(z)) = 0, we
have
H*(2,v) = Hy(z) + Y _ Hj(z)/*!
Jj=1
= H}(x) +v*H(z,v), (10)
where
H(z) = z)) =) hjal,
Jj=2
1 o'H

¥ = ] 11

H(0,0) = H(0) = g

It follows from (3) that there exist a family of
periodic orbits surrounding the origin defined by
the equation H(z,y) = h or H*(x,v) = h for h > 0
small. Then, it is obvious that

M(h,d) = jl{ *da: —p*dv
H*(z,v)

// (py + q,)dxdv
H*<h

= ?{ q(z,v,0)dx, (12)
H*(z,v)=h

where
Q(xa v, 5) = q*(ﬂf, v, 6) - q*(«fﬂ, 07 5)
+ [ piu8)du (13)
0
satisfying

Go =75 +q and G(x,0,6) =0.
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With (7), (9) and (13), if

Pal@,y,0) + qy(2,9,0) = Y cya’y!,  (14)

i+5>0
then
q(z,v,0) =v Z bz = qu(x)vj, (15)
i+j>0 Jj>1
where
1 & N
qj"!‘l(x) ( )' av] ( + qv>’5:U:0
19
= —— Pz + @) (z,p(x),0,6
i>0

Next, consider the equation H*(z,v) = h. Fol-
lowing the proof of Lemma 2.1 [Han et al., 2009],
we have

Lemma 1. The equation H*(x,v) = h has ezactly
two C* solutions vi(x,w) and vy(z,w) in v
satisfying

v1(z,w) = V2w(l + O(|z, wl)),
vo(x,w) = vy (z, —w),
where w = \/h — Hj(x).

In fact, by (10) the equation H*(x,v) = h is
equivalent to

w = |o|(H(x,0))3. (17)

Introduce an equation of the form
= v(H (x, v))%

Noticing that [H (z, v)]2 € C* for |z| + |v| small
the implicit function theorem implies that the
above equation has a unique solution in v, denoted
by v*(z,u). Obviously, the solution is C'*° with
v*(x,u) = vV2u(l 4+ O(|z,ul)). Let
vi(z,w) =v*(z,w), wva(z,w)=1v"(x,—w).

Then, vy (z,w) and ve(x,w) are the only solutions
of (17) for v > 0 and v < 0, respectively, with

vi(z,w) = va(z, —w) for ||+ |w| small.
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Further, we write

= Zaj (z)w’. (18)

Jj=1

Then, combining (17) and (10) results in

w? = (v1(z,w)) ZH* lew)] -1
j>1
= ai(x) Hi (z)w” + (2a1 (z)as(z) Hy ()
+ai(z)Hy (z))w®
+[(a3(x) + 201 (x)az(x)) Hi ()

+ 3a}(x)az (z) Hj () + af (z) Hi (x)]jw* + . ...

Balancing the terms w’ in the above equation, we
have

1 Hj(x
a(r) = ===, as(r) = —5-= 2
Hlix) 2(Hy(z))? (19)
as(z) = — —[AHTH; — 5(H3)?,....
(z) 8(H{)5[ 1 H3 —5(H3)"

Let 1 (h) > 0 and x2(h) < 0 be the solutions of
the equation H{(x) = h. Then, it follows from (12)
that

z1(h)
Mt = [ e vr(ew) - g, vale,w)lds.

2(h)

By Lemma 1, the function q(x,v1) — g(z,v2) is odd

in w. Thus, we can write

gz v1) —q(z,v2) = > _g;(x)w (20)
7>0
and hence,
M(h,6) =" / Jw .
7>0

In order to compute the above integral, we
change the limits of integration. Let ¥ (z) =

sgn(x)[Hg(x)]% Then, by (11) the function v is
1

C* for small |z| with ¢/(0) = hZ. Therefore, we
may introduce the new variable u = ¥ (x) to obtain

M(h, ) Z/m Gj(w)yw*tdu
1

7>0

where w = vVh — u? and

Gj(w) =4 : (21)
! V() lomy1 ()
It is easy to see that we can assume
Gj(u) + Gi(—u) =Y riju®. (22)
i>0
Then,
)= > rijli(h), (23)
i+75>0
where

h
Ij(h) = /0 u?w dy

—u?)I\/h — u2du.
Lemma 2. Let

1
ﬂij:/o ‘(1 —v*) V1 —v2dv. (24)

Then

Lij(h) = Bk h>0, 0<py <l

Proof. Introducing v = u/ h%, we have

\/ 1 — v2dv.

) ) 1
Ilj(h) = h2127+1+3+% /0 1 — U

This ends the proof. MW

Now by (23) and Lemma 2, we have

M(h,8) =h > ryBih™ =h> b(8)h',  (25)

i+52>0 >0

where

bi(6) = Z TijBij- (26)

itj=l

Finally based on (20)-(22), we know that if
system (1) is analytic, then the series 2, .~,7i
2wt is convergent for (u,w) near the origin.
Then it follows that the series >, ;~q[rijl (it s
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convergent for some constant p > 0, and hence by
(25) M (h,d) is analytic in h.
This completes the proof of Theorem 1.

2.2. A generalization of Theorem 2

In many cases the Hamiltonian system (2) contains
some coefficients which can be varied. If we take
them as parameters and change them suitably, we
may find more limit cycles. More precisely, suppose
H(x,y,a) with a € R" satisfies (3), where the coef-
ficients h;; depend on a. Then by Theorem 1, we
have

M(h,6,a) =h Y by(,a)hl.
>0

(27)

For simplicity, suppose the functions p and ¢
in system (1) are linear in §. Then, the coefficients
b;(0,a) are linear in §. Suppose there exist an integer
k > 0, and vectors g € R™, ag € R™ such that

bj((i(),d())zo, jZO,...,k—l,
A(bo, - .., bp_1) (28)
et o) 20 70

Then, the linear equations b; = 0,5 = 0,...,k —1
of § have a unique solution in the form of

((51,... ,6k) = §(5k+1;~~~ ,(5m,a)

for a near ag. Obviously, € is linear in dx11,..., 0.
Further, let

Okt | (81 1.00s80) =€ (51 1evns8m 1)
= Lj(5k+1a e ,(Sm)Aj(CL),

We have the following theorem.

i=0,...,n. (29

Theorem 3. Consider the near-Hamiltonian sys-
tem (1), where H(x,y,a) with a € R"™ satisfies
(3) and the functions p and q are linear in § €
R™. Suppose there exist integer k > 0 and 6y =

(0105-+-,0m0) € R™, ag € R™ such that (28) and
(29) hold with

Lj((;k;—l—l,()a"'a(sm(]) 750, J=0,...,n, (30)
Aj(d())zo, j:O,...,n—l, An<a0>7é0,
and

(A, ..., Ap—1)
det 0. 31
o . an) (ag) # (31)

Then, for all (g,9,a) near (0,0q, ag), system (1) has
at most k + n limit cycles near the origin, and for
some (g,9,a) near (0,00,a9) system (1) can have
k +n limit cycles near the origin.
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P?“OOf. We fix (5k+1; v ;5m) = <6k+1,07 N 76m0>
such that

Lj((skJrl, . 76m> = Lj((sk+1’0, . ;5m0) = Lj() 7é 0.

Then noticing that b; = 0 for j = 0,...,k — 1 as

(01,...,0k) = &(Okt1s---50m,a), by (27)—(29), we
have

M (R, 6,a)|(5,,....60) =€t 1r0rns0m )

>0

Due to (31), we can change a near ag such that

LigLiy1008i0i41 <0,  |A;] < [Ajpal,

i=0,...,n—1 (33)
which implies that the function M in (32) has n pos-
itive simple zeros h;, < --- < h] near h = 0. Having
obtained a satisfying (33), by (28) we can change
(01,...,0k) near £(0k41,0,- - -, Omo, @) such that
bjbj+1 < 0, |bj‘ < |bj+1‘, j=0,....k—1, (34)
which indicates that the function M given by (27)
has k simple zeros in the interval (0, h})). Clearly,
under (34) the zeros h}, ..., h] keep to exist. Thus,
under (33) and (34) the function M has n + k posi-
tive simple zeros altogether. Hence, by (4) the func-
tion F' can have n+ k positive zeros in h near h =0
which give n + k£ hyperbolic limit cycles.
Finally, using (28)—(30), we have

bj((SQ,CLQ)ZO, j=0,....n+k—1,
btk (0, a0) = LnoAn(ag) # 0.

Following the proof of Theorem 1 given in [Han,
2000], one can show that system (1) has at most
n+ k limit cycles near the origin for all (g, d, a) near
(Oa do, aO) :

This completes the proof. W

2.3. Programs for computing {b;}

Based on the formulas given in Sec. 2.1, we have
developed Maple programs for computing {b;}, as
listed below. It contains several subroutines (as
shown in the code) for computing e;, ¢;(z), H]*(a:),
aj(a:), (jj(ﬂ?), Tb(HJ), dj» Tij Bij and b;.
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with(LinearAlgebra) : ########## read the input file ########H##
read input: ########## compute the e_j coefficients #####H#H#H###
H:i= W/2*(x"2+y~2):
for i from 3 to n+l do
for j from 0 to i do
H := H+h[i-j,jl*x~(i-j)*y"j:

od:
od:
P :=0:
Q := 0:

for i from 0 to n do
for j from 0 to i do
P := P+ali-j,jl*x~(i-j)*y~j:
Q := Q+bli-j,jl*x"(i-j)*y~j:
od:
od:
phi := 0:
for i from 2 to n do
phi := phi+e[i]l*x"i:
od:
temp := subs(y=phi,diff(H,y)):
templ[2] := diff (temp,x$2)/2:
for i from 3 to n do
templ[i] := diff(tempil[i-1],x)/i:
od:
for i from 2 to n do
templ[i] := subs(x=0,templ[i]):

el[i] = solve(templ[i],e[i]):
od:
BHHBERSEEE  compute q_j(x)  #ERBEHHESE
y := v+phi:
Pstar := subs(x=x*eps,v=vxeps,P):
Pstar := series(Pstar,eps=0,n+1):
Pstar := convert(Pstar,polynom):
Pstar := subs(eps=1,Pstar):
dphi := diff(phi,x):
Qstar := subs(x=x*eps,v=v*eps,(-dphi*Pstar):
Qstar := series(Qstar,eps=0,n+1):
Qstar := convert(Qstar,polynom):
Qstar := subs(eps=1,Qstar):
Qbar := int(diff(Pstar, x),v,v=0..v):
Qbar := Qbar+Qstar-subs(v=0,Qstar):
Qbar := sort(Qbar,v):
for i from 1 to n do
qjx[i] := series(coeff(Qbar,v,i),x=0,n-i+1):
qjx[i] := convert(qjx[i],polynom) :
od:
#iHH I compute Hx_j(x)  ##f##t######
Hstar := subs(x=x*eps,v=v*eps,H):
Hstar := series(Hstar,eps=0,n+2):
Hstar := convert(Hstar,polynom):

Hstar := subs(eps=1,Hstar):
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HOstar := subs(v=0,Hstar):

v2Htilde := factor(Hstar-HOstar-subs(v=0,diff (Hstar,v))*v):

v2Htilde := sort(v2Htilde/v~2,v):
for i from 1 to n do
Hjxstar[i] := coeff(v2Htilde,v,i-1):

od:
save Hjxstar, ‘output_Hjxstar‘:
Hjxstar := ’Hjxstar’:

# Y compute  a_j(x)  ###H#HHHHY
v2Htilde := O:
for i from 1 to n do

v2Htilde := v2Htilde+Hjxstar[i]*v~(i+1):

od:
F = u~2-v2Htilde:
vv := 0:
for i from 1 to n do
vv = vv+ajx[il*u~i:
od:
F := subs(v=vv,F):

ajx[1] := 1/Hjxstar[1]1°(1/2):
for i from 3 to n+l do
ajx[i-1] := solve(subs(u=0,diff (F,u$i)/i!),ajx[i-1]):
od:
read output_Hjxstar:
for i from 1 to n do
ajx[i] := series(ajx[i],x=0,n+1-i):
ajx[i] := convert(ajx[i],polynom):
od:
# i #E  compute bar_q_j(x)  #####Hn#e
vl := 0:
for 1 from 1 to n do

vl := vi+ajx[i]l*w’i:
od:
v2 = subs(w=-w,vl):
gbar := O:

for i from 1 to n do
gbar := gbar+qjx[i]l*(v1~i-v27i):
od:
for i from 0 to (n-1)/2 do
gbarjx[i] := subs(w=0, diff (gbar,w$(2*xi+1))/(2*i+1)!):
gbarjx[i] := series(gbarjx[i],x=0,n-2%i):

gbarjx[i] := convert(gbarjx[i],polynom) :
od:
#i## compute psi(x) #it#
HstarO := subs(y=phi,H):

HstarO_half := series((Hstar0/(W/2)/x"2)"(1/2),x=0,n+1):
HstarO_half:= x*x(W/2) " (1/2)*convert (Hstar0O_half,polynom):
psix[0] :=subs(x=0,Hstar0_half):
for i from 1 to n do
psix[i] := factor(subs(x=0,diff (HstarO_half,x$i)/i!)):
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od:
Hu#H##A#H##E  compute tilde_q_j ###HH#HHAH#
for j from 0 to (n-1)/2 do
qjutilde[jl := 0:
for i from O to (n-1)-j*2 do
qjutilde[j] := qjutilde[jl+qjtildel[i,jl*u"i:

od:
od:
psi := O:
for i from 1 to n do
psi := psit+psix[i]l*x"i:
od:

dpsi := diff(psi, x):

for j from 0 to (n-1)/2 do
qjutilde[j] subs (u=psi,qjutilde[j]):
qjutilde[j] := series(qjutilde[j],x=0,n-j*2):

qjutilde[j] := convert(qjutildel[j],polynom) :
od:
for j from 0 to (n-1)/2 do

qjutilde[j] := qjutilde[j]*dpsi:

qjutilde[j] := series(qjutilde[j],x=0,n-j*2):

qjutilde[j] := convert(qjutildel[j],polynom) :
od:

for j from 0 to (n-1)/2 do
for i from 0 to (n-1)-j*2 do
qjtilde[i,j] := solve(coeff(qjutilde[jl-gbarjx[j]l,x,i),qjtildel[i,j]1):
od:
od:
#HHHH#H compute r_ij coefficients #########H
for j from 0 to (n-1)/2 do
for i from 0 to (n-1)-j*2 by 2 do
r(i/2,j] := 2*qjtildeli,j]:
od:
od:
#HHHHHE compute beta_ij coefficients ######H#H#H#H
for i from 0 to (n-1)/2 do
for j from O to i do
betalj,i-j] := int(nu”~(2*j)*(1-nu~2) " (i-j)*(1-nu~2)"(1/2) ,nu=0..1):
od:
od:
##########  compute b_j coefficients #####H###HH
for i from 0 to (n-1)/2 do
B[i] := 0:
for j from 0 to i do
B[i] := B[i]+r[j,i-jl*betalj,i-j]:
od:
B[i] := factor(B[i]):
od:
save B, ‘output_b‘:
quit:
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Executing the above program yields the expressions, expressed in the original coefficients H;;, a;; and
bij. In the following, we list the final coefficients b; (the intermediate expressions such as e;, a;, etc. are

omitted).
2w
bo = —(a10 + bo1).
w
When by = 0, i.e. by = —aqo,
T
by = 3 * {w(3asg + bay + a2 + 3bos) — (2a20 + b11)(3h3o + h12) — (a11 + 2bp2) (ha1 + 3hos)},
T
by = = X {w3[(5a5o + ba1) + (as2 + bas) + (a14 + 5bos)] — w2[(2a20 + b11)(ha + Shsg + hi4)

+ (@11 + 2bg2)(ha1 + Shos + has) +
+ (@12 + 3bo3) (hao + haz + Shos) +

+ (2a92 + 3b13)(h12 + h3o) +

(3asp + ba1)(haz + hos + Shag) +
(4dago + b31)(hi2 + dhso) +

(a13 + 4boa) (ha1 + Sho3)] + w

(2a21 + 2b12>(h31 + h13>
(3agy + 2boa)(hoy + hos)

(2a20 + b11)(3h13ha1 + 3hoshs:

+ 3hi2haa + 35h3ohao + Shsiho1 + Shishag + Shaohea + Shoshis + 3hsohos + Shoahi2)
+ (a11 + 2bo2)(3hazhot + 3hi2hsi + Shathag + Shaohsi + 5haihos + 35ho3hos + Shizhia + Shoghas

3 5
+ 3hoshag + 3h30h13) + (3a30 -+ bzl) <3h03h21 + 5hsohio + 5}1%2 -+ §h(2]3 -+

35 5
7’1:2’,0 + §h§1>

5
+ (2a21 + 2b12)(3h12h21 + Shaoha1 + 3haohos + Shozhiz) + (ai2 + 3bo3) <§h%2 + 3h3ohi2

105 35
+ 5hosho + h21 + h03 + h >:| — |:(2CL20 + b11)< h%O + h30h21 + h12h21 + — hlghgo

5 35 15
+15hozhi2ho1 + 15h3ghoshar + §h§2 + h30h12 + h12h(2)3 + 7h30h(2)3)

35
+ (a1 + 2b02)< ho1his + h03h21 + h Toho1 + 7/1;2:,0}121 + 15h3gh12h21

5 105 15
+§h§’1 ho3 + h03h12 + h:%,oho:a + 15h30h03h12>} },

7r o
5 X (+--) (560 lines in outputfile).

by =

3. Application to a Class of Cubic
Systems

From [Bautin, 1952; Llibre, 2004; Schlomiuk, 1993],

we know that a quadratic Hamiltonian system hav-

ing an elementary center can be transformed into
the following form

& =y + bx? — 2axy + cy?,
= —x — ax® — 2bxy + ay?,

where a, b and ¢ are parameters.
We perturb the above system by cubic poly-
nomials to obtain a near-Hamiltonian system,

|
given by

i =y + bx? — 2axy + cy? + ep(x,y), (35)
y = —x — ax® — 2bxy + ay® + eq(x,y),
where

Z aijﬂfiyj, q(x,y)

1<it5<3

Z way .

1<i+5<3

The unperturbed system (35)|.—p is a Hamiltonian
system with Hamiltonian:

c
axy2 + —y3.

1 a
H = -(2* +9°) + 2% + ba?y — 3

2 3
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For system (35), there are two cases: a = 0 and
a # 0, which will be discussed separately in the fol-
lowing. First let a # 0. Without loss of generality,
we assume a = 1 (otherwise, we can introduce a
suitable rescaling of (x,y)). Further, we can assume
b > 0 (otherwise, we need only to change the sign
of y and t). Then, system (35) becomes

i =y +bx? — 2zy + cy? + ep(x,y),

36
§=—x—a®—2bzy + y* + eq(z,y). (36)
Correspondingly
1 1 c
H(z,y) = (2" +y*) + 327 + ba’y — zy” + 29
1
(22 +y?) Z hijz'y?, b >0,
i+7=3
(37)
and
Pz +qy = Z Cijfiyja
0<itj<2
where

c10 = 2az0 + b1,
Co0 = 3&30 + b21, (38)
cp2 = a12 + 3bp3.

coo = aio + bor,
co1 = a11 + 2boz,
c11 = 2(ag1 + bi2),

bilpy=0 = [ca0 + co2 — (b+ ¢)con),

Theorem 4. For system (36), introduce
6 = (coo, €10, Co1, C02; €11, ¢20), 7 = (b, ¢),
and
do = (€hos €10, €01+ Co2, €11+ C20)5 00 = (b7, ¢),
where &y and og satisfy
b* = 3x/%,
13

*x * 3k *
30 = 3bchy — o

15
¢ty = b7l - <2 +

=20, g— ey +che #0,
Cao - 0,

7 E t kK
(b )2> o1+ b Co2-

Then, for all (,0,0) near (0,00, 00) the system (36)
has Hopf cyclicity 5 at the origin.

Proof. Executing the Maple program yields
by = 271’(@1() + b01>.

Letting bgy = —aq9, under which by = 0, we obtain
the following expressions for b;’s.

5 10 40 5 40 35 5 35 5
balpy=0 = T b2 A4 =cb)eg+ (——=b—=cb? — —c—=cb— 20— = )em
3 3 9 2 9 18 2 18
(39)
5 16 4 16 35
+<Ec +ebt o+ b2>020+<—b—c>011+<9 “eb+ b2 = 2>c02},
bilby=0 = T(diac10 + dizco1 + diac20 + disci1 + disco2), @ = 3,4,5,
where
105 140 , 140 385 875 175 245
030 = — bt 4+ 1 + — 2 + =+ ——2p b+ ——cb® + =—¢3b,
527 A R T C+66
315 1225 175 385 175 5005 1435 560
033 = ——b° — ——be — —p3c? — 3503 — b2 — —ZhPe — bt — ——bc? — —b
32 96 16 48 3 864 27 27
5005 5 805 5 560
—0C
864 27 27 7
385 175 35 175 245 140 315 35
Sau — 4 oY 2b2 _b2 b3 3b 2 b4 ch
3= 361° T 18 24 24 et 3
B 35 3 175 o 385 5 70 175 3 70
O35 = =" — g bie— ggbe — b 55 .
175 175 105 35 385 245 5005 1085 140
San — _b4 _b3 _b2 2 _b2 b 3 iy 4 SVPY 2 -
6= 390 T Vet gt e T g b et e e T
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3080 6160 3080 20645 5005 8855 2695 11935 3773
5 _ 2 b b2 2b2 b3 3b b4 4 b5
2= Ot Ot g U T e g o e e g T g ©
8085 13475 3003 17017 95095 23023
+ et T A B0 + 5 + AAp? 4 25y
32 72 32 864 864 432
3003 4851 48515 , 2079 35035 13475 25025 2695
Sua = — b7 _ bG . b5 b5 b4 3 b4 . b3 4 b3 2
43 64 61~ 7 Toa 8 576~ © 214 * 7 16 0 € 1 €
3080 17017 20405 6160 323323 o 235235, , 52360
_ b3 _ b2 5 —b2 3 b2 _ b b b 2
9 576 C 36 ¢ 9 "7 15552 648 ¢ 81
24640, 323323 7 109109 5 24640 5 24640
- - ¢’ — ¢ — c
243 15552 648 81 243
13475 4480 280 980 3220 1715 1085 1155 1295
San = 4 = b —b2 Das 2 -y 2b2 b3 b4 3b
MR C T o T3 T g Ut g e 6 Ut T e
2695 1617 2205 3003 17017 5005 1001
+ 3 cb® + =2t bo P A+ ——cAb
144 32 64 64 15552° " 576 288
231 245 , 245 350 770 2030 5005 4970 1120
Ous = ——b° — ZZpte — =232 — 2 — P — b2 — bet — be? — b
2 2 3 9 9 108 27 27
1001 . 2030 4 1120
54 ¢ o7 ¢ o7 @
1617 1323 2695 1085 5005 1715 5005 1295
Sap = _bﬁ b5 b4 2 b4 b3 3 b3 b2 4 b2 2 14 b2
16~ 64 32 64 8 144 6 192 ¢+ 140
17017, 5 13475, 5 6440, 323323 ; 85085 , 12460 , 4450
—0C —0C C C C
864 54 27 15552 648 81 243"
350350 1121120 560560 1821820 1310309 560560 560560
050 = A+ ch + cb® + 2h? 6 b + ?
243 729 81 243 1944 729 729
70070 1121120 175175 1296295 665665 763763 9844835
b4 3b b6 3b3 2b4 b5 4b2
T U Ty T T Y e T T Y T s VT Tom
2277275 77077 875875 85085 15015 77077 595595
+ b+ Av® + At + b + be+ —2p8 + 2 653
972 36 576 128 8 32 648
11316305 323323 7436429
ASp? b S,
23328 1458 93312
265255 o 495495 143143 7, 185185 . 385385 5 161161, 595595 5 ,
=— — — ¢ — — c’ — c— c
53 1024 1024 256 96 768 32 1536
2312315, 49049 5 11316305, 5 6341335, , 3538535, 11316305 ,
32 12 41472 864 324 62208
_ 50800755 4 8058055 , 700700, 7436429, ; 10125115, 5 2137135 , 4
864 54 243 62208 2592 162
1541540 , 185910725 151638487 23158135 13313300 1121120
_ o _ _ 2d1s813o, 4 13313300, o 1121120
243 2239488 69984 2916 2187 2187
_ 185910725 o 64341277 ; 8275267 ; 5745740 5 1121120
2239488 69984 2916 2187 2187
_ 160160 | 255255, 7436429 ;160160 . 160160, 640640 5 205205 385385 5.
7 79187 1024 9239488 243 ¢ 243 2187 81 162 ¢
35035 5 1056055 , 55055 , 175175 5 5 35035 5, 49049 . 385385 , ,
2992 Bb b B4 22 2 b b
Tt © 2916 < 36 © T8 0T Ut et T ©
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235235 . 3250247 , 55055 77077 4. 175175 ., 77077 4., 595595 . .
b B —02 0 g LT g6 999999 5y
648 © 32002 C a8 T 382 U T m36 ©0 T a6 ©7 T 10368 ¢
161661 9332 4504
616615 | 323323 7, 45045
62208 31104 128
925025 . 63063 77077 923023 . 595595 175175 1226225
055 = — b — Ve — — 7P — b — v — Ao — 23t
64 64 64 13 576 54 1723
35035 10010 . 2127125 9245245 190190 9376367 785785
_ b32_ b3— 2.5 b23_ b2_ b6— b4
g ¢ 9 5184 € 81 ¢ 81~ °7 46656 C 486 ¢
490490, , 160160, 3556553 ; 251251 5 190190 ; 160160
— c — — ¢ — ¢’ — ¢’ —
243 729 16656 486 243 729
135135 . 33033 77077 49049 . 35035 921021 2977975 175175
Sen — bS b7 bG 2 b6 b5 3 b5 b4 4 b4 2
6= 020 0 T 1os VT osg PO T T g Pt g VOt g Vet 3g ¢ R €
205205 , 1616615 385385 385385 2263261 1176175
+ bt b3cP b3 + b3 b2l + T p2 et
108 10368 108 81 20736 432
35035 80080 ., 7436429 3950247 1056055 1281280 185910725
b2 2 b2 7 b 5 b 3 b 8
T Ut g 03312 C T qoaq "¢ T T oq3 T a9 "7 9930488 ©
26835809 5260255 , 2322320 , 160160
31992 ¢ 2916 < 2187 © ' 2187 °
Let | .
~ A; = ———(b+ ¢)*(—891b* + 135003 ¢ + 396b2 2
bj = bj‘b():()a J=1,2,3,4,5. (40) ' 288( ) (
- — 3240b% + 858bc® + 12000
Noticing (39), we can solve ¢y, ¢11 from by = by = 0 4 + 20 + ¢
I 14361 — 680¢2 — 2560),
(b+c) A 1001 (b+ ¢)?(—3645b° + 40500°
= - =0 c)*(— c
€20 C)Co1 — €Cp2, 2 20736

+2349b% % — 17280b* + 4860b° 3

c 5(c+b)c + < 502+30b 2>c
11 — 10 - - - 01
4 4 4 +5184b3¢ + 1581b%c* + 192 % — 24960b°

(5.3, (41) +1938bc” 4 7872bc* — 3840bc + 323c°
—c— —b ) coa.
47 4)™” — 576¢" — 96002 — 10240).
Substituting (41) into b3, by and bs results in For ¢ mear ¢ and (ci0,co1,co2) | hear
(Clos €1+ Ch2) wWe have L # 0. Thus, bg = 0 if and
bysi = Aim(cio — core + con) = AL, only if Ag = 0. For (b,c¢) near (b*,c*) we have

b+ c # 0. Then Ag = 0 if and only if ¢ = ¢1(b) or

1=0,1,2, (42) ¢ = co(b), where

where L = 7(c10 — co1¢ + coz2), and c(b) = —3b— (—1)i2y/32 12, i=1,2.
Ag = %bﬁl _ %b262 + 36_5[)2 When ¢ = ¢;(b), we have
Ay = —28(b + (—1)"/3b2 + 2)2(43b*
—ﬁbcg—l—% c—§c4+§c2
6 3 48 6 + (—=1)"b(25b% + 11)1/3b2 + 2 + 33b + 4)
:—%(b+c)2(c+3b—2\/3b2+2) = A1(b).

It is easy to observe from the fact b > 0 that
X (¢ + 3b+ 2v/3b% + 2), A; < 0 for i = 2, and Ay = 0 if and only if
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b = (2/13)v/26 = b* for i = 1. Thus, it follows
that when A; = 0 we have ¢ = 2b* and

898128
2197

Hence, it is clear that the conclusion follows from
Theorem 3.
The proof is complete. W

Now we turn to the case a = 0. Similar to the
case a = 1, we have by = 2mcyg. For simplicity, let
by =0, i.e. cgo = a1p + bp1 = 0. Taking a = 0 in the
program and using the same procedure as that for
the case a = 1, we obtain the following expressions
for b;’s:

bilbg=0 = m[—(b + ¢)co1 + c20 + co2)s

5 5 35 35
balpg=0 = 77[<§cb2 — 51)3 — 1—8021) — 1—803> co1

)
<0b+ b2 18 2)620

3 35
b e+ 2
+<2 3T 186>CO2]’
1225 315 5 175
3lb0=0 ”K o6 " 32" 16 ¢
885 4,5 5005 4, 5005 5
_ 2923 h—
48 ¢ 864 864 ) ol
15,5 315, 175 55 35 4
< et b g Tt
385 , 1755, 175,
o0 b4 =23
+864C>CQQ+< 2 c
105 5., 385 4 5005 ,
22 2p2 4 2223y,
HT 7277 364 >C°2}
Similar to (40), let
b; = bjlbe=0, 7 =1,2,3.

Then, letting by =0 gives

—(b+c)eor + 20 + co2 = 0,
or

c20 = (b+ ¢)co1 — cpa.
Substituting (43) into by and by yields

by = AgL, b3 =A;L,
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where L = m(—co1c + co2) and

2
Ao=§cb—b2+502_

3 —(b+ ¢)(5¢c — 3b),

Ay = ?;—;(b +¢)(11¢ — 3bc? + 9b%c

Further, let (b, c) and (coo, co1) satisfy b+c # 0
and L # 0. Then

—9b%).

~ 3
bQ:O@AO:M:»c:gb,

for which we have
Eb‘l
125" °

Summarizing the above results gives the following
theorem.

A= -

Theorem 5. For system (35), let a = 0 and intro-
duce

6 = (o0, €10, €01, Co2, €11, ¢20), 0 = (b, ¢),
and
§ = (Coo,€10,C01,C02,C11,E20), & = (b,€),
where § and & satisfy
b #0, 5:%5, oo = 0,

a0 = (b +E)Gor — G2, o2 — ECo1 # 0.
Then, for all (¢,6,0) near (0,5,5) system (35) has
Hopf cyclicity 3 at the origin.

4. Conclusions

We have studied bifurcation of limit cycles for
near-Hamiltonian systems. It is assumed that the
Hamiltonian function of the system depends on
parameters, in addition to the coefficients involved
in perturbations. We have extended the existing
theorem to a new theorem for this case, which can
generate more limit cycles. Moreover, based on a
new method developed in this paper, a compu-
tationally efficient algorithm has been established
to systematically compute the coefficients of the
Melinkov function. As an illustrative example, a
quadratic system with cubic perturbations has been
considered to show that the system can have five
limit cycles, two more than the case when all the
coefficients of the Hamiltonian function are fixed.
The method and program developed in this paper
can be extended to study nonpolynomial systems.
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