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Liénard systems and their generalized forms are classical and important models of nonlinear
oscillators, and have been widely studied by mathematicians and scientists. The main problem
considered is the maximal number of limit cycles that the system can have. In this paper, two
types of symmetric polynomial Liénard systems are investigated and the maximal number of
limit cycles bifurcating from Hopf singularity is obtained. A global result is also presented.
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1. Introduction and Main Results

Consider the following system in the Liénard plane:

ẋ = y − F (x), ẏ = − g(x), (1)

where F (x) is of degree m + 1 and g(x) is of degree
n, given by

F (x) =
m+1∑
i=1

aix
i, g(x) =

n∑
i=1

bix
i (b1 > 0). (2)

Then the origin of system (1) is a singular point
with index +1.

This paper is concerned with limit cycles in
symmetric Liénard systems and there are potential

applications, particularly in engineering, when con-
sidering large-amplitude limit cycle bifurcations
when modeling wing rock phenomena and surge
in jet engines (for example, see [Lynch & Christo-
pher, 1999; Agarwal & Ananthkrishnan, 2000;
Owens et al., 2004]). Engineers consider limit
cycles as steady state behavior and they are
interested in hard (dangerous) and soft (safe)
bifurcations.

An interesting problem studied widely in recent
years is to find the maximal number of limit cycles
in a small neighborhood of the origin of (1), namely,
the Hopf cyclicity of (1) at the origin. Recall that
system (1) has Hopf cyclicity k at the origin if the
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following two conditions are satisfied:

(i) There exists a neighborhood U of the origin such
that for any functions F and g of the form (2),
Eq. (1) has at most k limit cycles in U .

(ii) For any neighborhood U0 of the origin with
U0 ⊂ U there exist functions F and g of the
form (2) such that system (1) has exactly k limit
cycles in U0.

Clearly, the cyclicity k depends only on m and
n, denoted by Ĥ(m,n), that is, k = Ĥ(m,n).
In 1984, Blows and Lloyd [1984] proved that
Ĥ(m, 1) = �m/2� and in 1988, Lloyd and Lynch
[1988] considered a number of classes of systems,
and in particular, proved that Ĥ(1, n) = �n/2�,
where � � denotes the integer part. Han [1999]
proved that Ĥ(m, 2) = �(2m + 1)/3� and Gasull
and Torregrosa [1999] provided results for a number
of cases for varying degrees of m and n. In [Christo-
pher & Lynch, 1999], it is shown that Ĥ(m, 2) =
Ĥ(2,m) = �(2m + 1)/3� for all natural numbers m,
n, and Ĥ(m, 3) = Ĥ(3,m) = 2�3(m + 2)/8�, for all
1 < m ≤ 50, for generalized Liénard systems

ẋ = h(y) − F (x), ẏ = − g(x),

where h(y) is analytic with h′(y) > 0. Other results
for larger values of m and n are also listed in
this paper. Recently, Yu and Han considered small
limit cycles bifurcating from symmetric Hopf criti-
cal points [Yu & Han, 2006].

Christopher and Lloyd [1996] have proven that
Ĥ(m,n) = Ĥ(n,m) but only in the restricted cases
where the quadratic coefficient in F (x) is nonzero.

In this paper, we consider two types of symmet-
ric Liénard systems of the form

ẋ = y −
m∑

i=0

aix
2i+1, ẏ = −

n∑
i=0

bix
2i+1, (3)

and

ẋ = y −
m∑

i=0

aix
2i, ẏ = −

n∑
i=0

bix
2i+1, (4)

where
n∑

i=0

bi = 0,
n∑

i=0

(2i + 1)bi > 0. (5)

Condition (5) implies that system (3) or sys-
tem (4) has two singular points of index +1 away
from the origin. One is at A(1, y0), and the other at

B(−1,−y0) for system (3) or B(−1, y0) for system
(4), where

y0 =
m∑

i=0

ai.

Denote by Ĥ0(m,n) (resp. Ĥe(m,n)) the Hopf
cyclicity of system (3) (resp. system (4)) at the
point A. Then the maximal number of small-
amplitude limit cycles of system (3) (resp. system
(4)) is at least 2Ĥ0(m,n) (resp. 2Ĥe(m,n)). Yu and
Han have showed [2006] that Ĥ0(m, 1) = m, for
1 ≤ m ≤ 10, and conjectured that Ĥ0(m, 1) = m,
for all m ≥ 1. By applying a previously developed
theorem obtained by Han [1999] we have obtained
the following main results.

Theorem 1. Suppose condition (5) is satisfied.Then
for system (3) Ĥ0(m, 1) = m. Hence, the maximal
number of small-amplitude limit cycles of system
(3) is 2m for n = 1.

Theorem 2. Suppose condition (5) holds. Then for
system (4) Ĥe(m,n) = Ĥ(m − 1, n). In particular,
the maximal number of small-amplitude limit cycles
of system (4) is 2�(m − 1)/2� for n = 1 and
2�(2m − 1)/3� for n = 2.

For a global result we have

Theorem 3. When m ≤ 3, n ≤ 2, system (4) has
at most two limit cycles on the plane.

2. Proof of the Main Results

In order to prove Theorem 1, here we will apply a
theorem given by Han [1999]. To state the theorem,
consider a Liénard system of the form

ẋ = p(y) − F (x, a), ẏ = − g(x), (6)

where F, g and p are C∞ functions near the origin
with

g(0) = 0, g′(0) > 0, p(0) = 0, p′(0) > 0,
F (0, a) = 0, a ∈ Rn.

Let α(x) = −x + O(x2) satisfying G(α(x)) = G(x)
for |x| � 1, where G(x) =

∫ x
0 g(x)dx.

Theorem 4. Suppose F is linear in a and

F (α(x), a) − F (x, a) =
∑
i≥1

Bi(a)xi,

a = (a1, . . . , am)

formally for |x| � 1.
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(1) If

B2j+1(a) = 0, j = 0, . . . , k−1, B2k+1(a) �= 0

for a fixed a ∈ Rm, then for this value of a
system (6) has a focus of order k at the origin.

(2) If there exists 1 ≤ k ≤ m − 1 such that

(i) rank[(∂(B1, B3, . . . , B2k+1))/∂(a1, a2, . . . ,
am) ] = k + 1;

(ii) F (α(x), a) − F (x, a) = 0 when B2j+1 =
0, j = 0, 1, . . . , k.

Then system (6) has Hopf cyclicity k at the
origin.

Proof of Theorem 1. Consider system (3) with
n = 1. By (5) we have

b0x + b1x
3 = − b0x(x2 − 1), b0 < 0.

Rescaling system (3) by y → √−b0y, t → t/
√−b0,

we can suppose b0 = −1. Hence (3) becomes

ẋ = y −
m∑

i=0

aix
2i+1, ẏ = −x(x2 − 1). (7)

Let u = x2 − 1, v = y − y0, where y0 =
∑m

i=0 ai.
Then on the half plane x > 0, system (7) can be
further written as

u̇ = 2
√

1 + u

[
v −√

1 + u

m∑
i=0

ai(u + 1)i + y0

]
,

v̇ = −u
√

1 + u,

which is equivalent to

u̇ = v −
[
√

1 + u

m∑
i=0

yiu
i − y0

]
,

(8)
v̇ = −1

2
u

on u > −1, where




y0

y1
...

ym


 =




1 1 1 · · · 1
1 2 · · · m

1 · · · m(m − 1)
2

. . .
...
1







a0

a1
...

am


 . (9)

Let

F (u, β) =
√

1 + u

m∑
i=0

yiu
i − y0,

β = (y0, y1, . . . , ym) ∈ Rm+1.

(10)

The function F is analytic for |u| < 1. Hence we
can write

F (u, β) =
∞∑
i=1

ciu
i for |u| < 1. (11)

We first have

Lemma 1. The function F is even in u for |u| < 1
if and only if β = 0.

In fact, if β = 0 then F = 0 and hence it is
even. Conversely, let F be even, we want to prove
β = 0. Otherwise, yk �= 0 and yk+1 = · · · = ym = 0
for some k ≤ m. It follows from (10) that

(F + y0)2 = (1 + u)(y0 + y1u + · · · + yku
k)2

= y2
0 + y0(y0 + 2y1)u + · · · + y2

ku
2k+1.

Since F is even, then (F + y0)2 is even, implying
yk = 0, a contradiction. Therefore β = 0.

Further we prove

Lemma 2. Let ci be given in (11). Then

(i) β = 0 if and only if c2j+1 = 0, j = 0, 1, . . . ,m.
(ii) det[ ∂(c1, c3, . . . , c2m+1)/∂(y0, y1, . . . , ym) ] �= 0.

In fact, if β = 0, then by (10) we have F = 0.
Hence, c2j+1 = 0 for all j ≥ 0 by (11). Conversely,
let c2j+1 = 0, j = 0, 1, . . . ,m. Then by (11) we can
write

F (u, β) + y0 = F0(u) + u(2m+3)F1(u), (12)

where

F0(u) =
∞∑
i=0

c2ju
2j, c0 = y0,

F1(u) =
∞∑

j=m

c2j+3u
2(j−m).

There are two cases to consider.

Case 1. F0 = 0. In this case, by (12) we have

(F + y0)2 = u2(2m+3)F 2
1 .

Note that (F + y0)2 is a polynomial having degree
at most 2m + 1. It implies F1 = 0. Thus we have
F = 0 in this case. Then β = 0 by Lemma 1.
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Case 2. F0 �= 0. In this case we can write

F0 = u2k
∞∑

j=k

c2ju
2(j−k), c2k �= 0, k ≥ 0. (13)

By (12) we have

(F + y0)2 = F 2
0 + 2u2m+3F0F1 + u2(2m+3)F 2

1 . (14)

If F1 �= 0, then

F1 = c2n+3u
2(n−m) + O(u2(n−m)+2),

c2n+3 �= 0, n ≥ m. (15)

It follows from (13)–(15) that

(F + y0)2 = (F 2
0 + u2(2m+3)F 2

1 ) + 2c2kc2n+3u
2l+3

+ O(u2l+5),

where l = n + k ≥ m. Note that the function
F 2

0 + u2(2m+3)F 2
1 is even in u. The above equal-

ity implies that a nontrivial term of degree 2l + 3
appears in the polynomial (F + y0)2. This contra-
dicts that (F + y0)2 is of degree at most 2m + 1.
Hence, it must have F1 = 0, and then by (12)
F + y0 = F0 is even. Therefore, β = 0 by Lemma 1.
Thus, the conclusion (i) follows.

By (10) and (11) each cj is linear in β. Hence

(c1, c3, . . . , c2m+1)T = Q(y0, . . . , ym)T ,

where Q is a constant matrix of order m+1. By con-
clusion (i) we have detQ �= 0. Hence, the conclusion
(ii) follows.

Now we continue our proof for Theorem 1. For
(8) we have α(u) = −u. By (11) we have

F (α(u), β) − F (u, β) = −
∞∑
i=0

c2i+1u
2i+1.

Hence, by Lemma 2 and Theorem 4 we know that
system (8) has Hopf cyclicity n at the origin. The
proof of Theorem 1 is thus completed. �

Proof of Theorem 2. Let

u = x2 − 1, v = y −
m∑

i=0

ai = y − y0.

Then similar to (8) we obtain from (4)

u̇ = v −
m∑

i=1

yi u
i,

v̇ = −1
2

n∑
i=1

zi ui (16)

on u > −1, where




y1

y2
...

ym


 =




1 2 · · · m

1 · · · m(m − 1)
2

. . .
...

1 m

1







a1

a2
...

am


 ,




z1

z2
...

zm


 =




1 2 · · · n

1 · · · n(n − 1)
2

. . .
...

1 n

1







b1

b2
...
bn


 .

By (5) we have

z1 = b1 + 2b2 + · · · + nbn > 0.

Noting (2) and comparing (16) with (1) we know
that the Hopf cyclicity of (16) at the origin is
Ĥ(m− 1, n). Hence, the Hopf cyclicity of (4) at the
point A(1, y0) is Ĥ(m − 1, n). That is, Ĥe(m,n) =
Ĥ(m − 1, n).

By the result of Lloyd and Lynch [1988] or The-
orem 4, Ĥ(m − 1, 1) = �(m − 1)/2�. This follows
that the maximal number of small-amplitude limit
cycles of system (4) is 2�(m − 1)/2� for n = 1. Since
Ĥ(m−1, 2) = �(2m − 1)/3� by Han [1999], the con-
clusion follows for the case of n = 2. This completes
the proof of Theorem 2. �

For the case of (m,n) = (3, 1), system (4)
becomes

ẋ = y − (a0 + a1x
2 + a2x

4 + a3x
6),

(17)
ẏ = −b1x(x2 − 1), b1 > 0.

Further, without loss of generality suppose b1 =
1, a0 = 0. The system (17) becomes

ẋ = y − (a1x
2 + a2x

4 + a3x
6),

(18)
ẏ = −x(x2 − 1).
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v

u0-1 u

v

-1 0 u-1 0

v

(a) (b) (c)

Fig. 1. Existence of the limit cycle Γ(a11) for system (19) as a1 is varied: (a) a11 < a1 < a10, (b) a1 = a11, and (c) a1 < a11.

x

y y

x x

y

(a) (b) (c)

Fig. 2. Existence of the limit cycle Γ(a11) for system (18) as a1 is varied: (a) a11 < a1 < a10, (b) a1 = a11, and (c) a1 < a11.

Then the corresponding Eq. (16) has the form

u̇ = v − u(a1 + 2a2 + 3a3 + (a2 + 3a3)u + a3u
2),
(19)

v̇ = − 1
2
u.

By the results of Lins–deMelo–Pugh [Lins et al.,
1977], system (19) has at most one limit cycle and
it exists if and only if a3(a1 + 2a2 + 3a3) < 0. For
definiteness, let a3 > 0. Note that system (19) forms
a rotated vector field with respect to a1 (see [Han,
1999]). Hence, for a1 + 2a2 + 3a3 < 0 and a1 near
a10 = −2a2−3a3, say, system (19) has a stable limit
cycle, denoted by Γ(a1). The limit cycle expands as
a1 decreases. Thus, there is a unique value a11, with
a11 < a10, such that the limit cycle Γ(a11) is tan-
gent to the line u = −1, and for a11 < a1 < a10

the limit cycle Γ(a1) is on the region u > −1. The
above discussion is demonstrated in Fig. 1.

Let v0 = −(a1 +a2 +a3). Denote by γ the orbit
of system (19) passing through the point (−1, v0).
Then γ = Γ(a11) and Λ+(γ) = Γ(a1) for a11 < a1 <
a10, or a1 < a11. Also, γ is inside Γ(a1) if and only if
a1 < a11. This corresponds to Fig. 2 for system (18).

Hence, we have proved the following result.

Proposition 1. Let a3 > 0 in (18). Then there exist
a10 = −2a2 − 3a3 and a11 < a10 such that (18) has
exactly two limit cycles on the plane if and only if
a11 < a1 < a10.

Similarly, by Theorem 3.3.1 of Luo–Wang–Zhu–
Han [Lu et al., 1997] we have

Proposition 2. The system (4) with (m,n) = (3, 2)
has at most two limit cycles on the plane.

Then Theorem 3 follows.

3. Conclusion

In this paper, we have investigated two types of
symmetric Liénard systems. It has been shown that
the maximal number of small-amplitude limit cycles
for one type of system is 2m, for n = 1, while
that for another type of system is 2�(m − 1)/2�,
for n = 1 and 2�(2m − 1)/3�, for n = 2.
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