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Abstract

In this paper, we study the center-focus problem for a generalized cubic Kukles system
with a nilpotent singular point, which consists of a cubic system with an extra 4th-order
term. A complete classification is given on the center conditions which are explicitly
expressed in term of the system parameters. A total of 15 cases are obtained, among
them 4 for the generalized cubic Kukles system and 12 for the cubic Kukles system,
with one common for both. One of the center conditions is analytic. Moreover, it is
shown that 8 small-amplitude limit cycles can bifurcate in the neighborhood of the
singular point for the generalized cubic Kukles system, while only 7 small-amplitude
limit cycles can exist around the singular point for the cubic Kukles system. The
center-focus problem for the generalized cubic Kukles system with a nilpotent origin
is thoroughly solved.
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1 Introduction

Classical problems on the Kukles systems with an elementary singular point have been
investigated intensively for many years. The center conditions and bifurcation of limit
cycles for the Kukles systems with an elementary singular point have been studied in
[9, 28, 29, 34]. In particular, the solution to the center problem of the cubic Kukles
system was obtained independently by Lloyd and Pearson [29], and Sadovskii [34]
using different methods. A predator—prey model which can be reduced to the Kukles
system was considered by Pitchford and Brindley [31], and Lloyd and Pearson [18],
in which bifurcation of limit cycles was analyzed in detail. The center problem for a
linear center perturbed by homogeneous polynomials (with odd or even degree), called
Kukles homogeneous systems, was proposed by Giné [11], and investigated by Giné et
al. [14, 15]. Recently, the Kukles system was reconsidered [30] by using the advanced
technique in symbolic computation to obtain the first seven focal values, which were
used to classify the center and isochronous center conditions of the Kukles system.
The extended Kukles systems were also considered recently by many researchers, with
attention paid to some classical problems such as center problem and isochronous
center problem, for example see [13, 16, 17, 33] and references therein. A class of
generalizations of the Kukles systems with an elementary singular point, described
by

dx 2
d—:y(1+kx+lx ),
f (1.1)
d_y — 2 2 3 2 2 3
yri x +aix” 4+ 3axxy + az3y” + asx” + 3asx“y + agxy” + azy”,

was proposed by Bondar and Sadovskii [4], and further considered by Sadovskii
and Shcheglova [35], in which 25 center conditions were classified and all of them
were proved to be sufficient [4] and necessary [35]. Around the same time, Kushner
and Sadovskii [19] proposed a more generalized Kukles system with an elementary
singular point, which can be reduced to the following system,

d

d_); = y(1 + kx + Ix% + mx?),

d

d—i = —x+ax*+ 3axxy + a3y2 +asx3 + 3a5x2y (1.2)

+aexy? + a7y® + agx* + 3agx3y + ajox?y* + apy*.

Center conditions were carefully studied in [36] for some even more complex gener-
alized Kukles systems. Averaging theory has been applied [32] to consider bifurcation
of limit cycles for a family of perturbed Kukles differential systems.

However, because of the computational difficulty, very little attention has been paid
to the Kukles systems with a nilpotent singular point. The following system,
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dx
dt
% = arxy +azy* + asx® + asx?y + agxy? + a7y,

was studied by many authors, see for example [1, 2, 5, 11, 13-15] and references
therein. Alvarez and Gasull [2], who proved that 3 limit cycles can bifurcate from
the nilpotent singular point. Later, the result was improved by Liu and Li [25], who
showed that there can exist 4 limit cycles in a perturbed system of (1.3). Recently,
bifurcation of limit circles in a class of Z,-equivalent cubic planar differential systems
with two nilpotent singular points was studied by Li et al. to prove the existence of
6 x 2 = 12 limit cycles. In another article [20], a class of generalized Kukles systems
with a nilpotent singular point, written as

= y,
(1.3)

dx 1+ )

- =) aiix),

dt (1.4)
_, 2 4 brixy 4+ boay? + b3ox> 4+ by x2y + biaxy? + bz y?

dt = D0X 11Xy 02y 30X 21Xy 12Xy 03y >

was studied to derive the center conditions and investigate bifurcation of limit cycles,
and to prove the existence of 6 limit cycles around the nilpotent singular point.
In this paper, as a continuous work, we will consider the following system,

dx 5 3

T y( +anx +anx” +azx’),

d; (1.5)
i baox* 4 brixy + boay? + b3ox® + by1x%y + biaxy? + bosy’,

which has a nilpotent singular point at the origin. Compared to the Kukles system (1.3)
and the generalized Kukles system (1.4), our proposed new system (1.5) contains three
more terms in the first equation ‘jl—’t‘ , in particular, including the 4th-order term az; x> y.
This work is motivated by the series results obtained from the study of Kukles system
and the generalized Kukles system, which promoted the research in this direction,
especially for the bifurcation of limit cycles in such polynomial systems. Our aim is
to demonstrate that the center problem becomes much more complex even for just
adding one 4th-order term, and to try developing new techniques in solving center
problem of more complex dynamical systems.

We will present a complete classification on the center conditions of the system
(1.5), showing that a total of 15 cases are classified, among them 4 for the case a3; # 0
and 12 for the case a3; = 0, with one common for both. Moreover, we will show that
8 small-amplitude limit cycles can bifurcate in the neighborhood of the singular point
for the case a3; # 0, while only 7 small-amplitude limit cycles can exist around the
singular point for az; = 0.

The rest of the paper is organized as follows. In the next section, the classification
of the nilpotent origin will be given. In Section 3, the first eight Lyapunov constants
will be computed for the nilpotent foci, which are used to obtain the necessary center
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conditions, and they are further proved to be sufficient. An analytic center condition
is also classified. Finally, a conclusion is drawn in Section 4.

2 Classification of the Singular Point of System (1.5)

In this section, we present the classification on the nilpotent origin of system (1.5).
For the planar polynomial differential systems, described by

dx dy
—=Pkx,y), — =0y, 2.1

dt dar

if its linear part has a double-zero eigenvalue and the matrix of the linearized system
at the origin is not identically null, then the origin of the system is called a nilpotent
singular (or critical) point. In [38], it is shown that there exist many different kinds of
topological phase constructions around a nilpotent singular point. Some early results
on this topic can be found in Sections 17-19 of [3].

Planar autonomous analytic systems with a nilpotent singular point can always be
transformed into the following form,

dx s ,
=0y =yt Y agrty,
k+j=2 99
o Ny | 22)
S =V y) = > byjxkyd,
k+j=2

by a proper linear transformation, where ®(x,y), ¥(x,y) are analytic in the
neighborhood of the origin.
Suppose the equation,

®(x, f(x))=0, f(0)=0, 2.3)
has an unique solution y = f(x), satisfying that

W(x, f(x) = agx* +o(xk), ax #0,

0P(x,y) | dW(x,y)
+
ax ay

(2.4)

i| = Bux" 4+ o(x™).
y=fx)

By using Theorems 7.2 and 7.3 in [38], we have the following result.
Theorem 2.1 For system (2.4), the following holds:
degenerate point, if byy # 0;
saddle point, if byo =0, b3g > 0;
The origin is a degenerate point, if by =0, b3g < 0, b%l + 8b3y > 0;
center or a focus, if byy =0, b3y <0, b%l + 8b39 < 0.
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The origin is a nilpotent center or focus when by =0, b3g <0 and b%l + 8b3p < 0.

So we can always suppose that b%l + 8b30 = —16 in system (1.5). Otherwise, we can
change system (1.5) to
d
d_u =v(l+ a11r2u + a21r3u + a31r4u4),
T
dv
e = r2(rb11xy + b02y2 + b30r4x3 + b21r3x2y + b12r2xy2 + b03ry3),

by using the transformation, x = rlu, y = rv, and the time rescaling d¢ = rdt. Then,
it can be shown [22] that the nilpotent origin is a center or focus if and only if b3y < 0,
and r8(b3, + 8b39) = —16 < 0, which leads to b1y = 4u, b3p = —2 — 2112, under
which system (1.5) becomes

e y(1 +anx +axx® +azx’),
d; (2.5)
i duxy + boay? — 2(1 + p2)x> + barx?y + biaxy? + bosy°.

In the following, we will use (2.5) to study the original system (1.5).

3 Center Conditions of System (2.5)

In order to study center conditions, the only way is to compute the Lyapunov constants
of the system under consideration. There are many methods for computing the Lya-
punov constants, such as the inverse integrating method [25], the method of normal
forms [37], etc. In this paper, both the inverse integrating method and the method of
normal forms will be adopted, so that their results can be cross checked to guarantee
the correctness.

We first consider the case a3; # 0 for which (2.5) is a generalized cubic Kukles
system, and then the case a3; = 0 for which (2.5) is a cubic Kukles system.

3.1 Center Conditions of System (2.5) for a3 # 0

In order to simplify the analysis in finding the center conditions and the maximal
number of bifurcating limit cycles, we first suppose aj; # 0 and use it to make a
scaling. Then, we consider the case a1; = 0 which will certainly not generate maximal
number of bifurcating limit cycles, but may have center conditions. With a1y # 0, we
introduce the following scaling:

X Y t

X = —, = —, T =—,
ail aill aill

3.1
a1 = Anialy, az1 = Ana3y, box = Booaii, ba1 = Boiani, G-

2
bi2 = Biaal,, bos = Bpsas,,

into (2.5) to obtain the following scaled system,
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dx 2 3

e Y1+ X+ AnX"+ A5 X7),

d

d—i — 4uXY + BppY? — 2(1 + > X3 + By X2Y + BjaXY? + BosY3.

(3.2)

Then, once we obtain the center conditions from the system (3.2), we can easily use
(3.1) to get the center conditions for the original system (2.5).

In order to consider the center-focus problem of system (3.2), a powerful method it
to compute the so-called the generalized Lyapunov constants. For dynamical systems
associated with an elementary center, three methods are mainly used for computing
Lyapunov constants: the method of normal forms, the method of Poincaré return map or
focus value method, and the method of Lyapunov function. More details can be found,
for example, in [37] and references therein. The above mentioned three methods have
been used to study the center-focus problem associated with nilpotent critical points,
see for example [1, 5]. But the method of normal forms was only recently applied to
compute the so-called generalized Lyapunov constants in determining the lower bound
of cyclicity [2, 37]. The method developed in [37] is a generalization of the approach
for computing the focus values associated with the singular point of elementary center
to the case associated with the singular point of nilpotent point. All computations are
purely algebraic for solving linear polynomial equations in an iterative procedure,
and thus the computation is significantly efficient. The program developed using the
computer algebra system — Maple can be easily executed by an end-user to obtain
the normal form or the generalized Lyapunov constants. Therefore, in this paper, we
apply the method of normal forms [37] and its associated Maple program to compute
the Lyapunov constants of the system (3.2), given in the following theorem.

Theorem 3.1 When azjay #0, the first 8 Lyapunov constants at the origin of system
(3.2) are given as follows:
1
L= 3[5321 + 4u(Boy — 2)],
1
Ly= 3=[Bai(65An —30B12 — B, + 9Bz — 4) + 1021 + 51) Bos
—401(2A21 + A3 — Bp)].
1
L= m{44125303322, + [40A31 (1081 By, + 3868) — 2565004 Bo
—400(454A3, +123B%,) 4+ 189800A2; B12+16A2; (1112 B3, 45667 Boz —8757)
— 8B12(833B2, + 5063 By — 7008) + 8(2196B3, — 6604 By + 2624)] B2
—48[1200(9A21 — 4B12) — 79183, — 7591 Bgz + 23146] Bos
+1600u[6(11A421 — 6B12 — 4)A3; + 14243, + 4183,
— 153421 Bi> + 72A21 — 36B12]},
-1
Ly= {125B03(1 1950520375044135A,1 — 13675341705133535B12
160224243656400000
+ 1132574198104706332 — 13314054421345314By; — 1461890469098436)3%1

+[112104949701150000A3; + 10043 (215017380228236254 Bo3
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+ 500421 (63923003350555 Bo> + 521300229167026)
— 8330B12(2714562059597 By + 17929731667646) + 1685974367750722B3,

— 24025434900710222 B3, +105822631355719914 By +883278821847120084)

— 156062574990000 B3, (40317414573 4%) — 75004 Bo3 (2491547435642281 A5,

— 1658506710437731 B2 +14722849389811216) — 18229032669417900000A3,

+2000A3, (14653641096336150B12 — 67966702067004 B2,

+ 11907433842385217 By — 50677420717253798)

— 200421 (10B12(7884191910763950 B + 12222351922188939 Boy

— 51671506143086548) — 107052696707698 By, + 1746566514541716 B3,

— 6526202245432629 B}, —305749254823012585 By +359341684006642976)
+2000B1(1415543485778100 B, + 40B1(77754173334187 Boy

— 325982227731669) — 13024257916073203 Byy + 13713279937386821)

+ 8(167973039509422 BS, —3604144943410354 B3, +38196182144361745 B,

— 314027474456124170 B3, + 2016088131205650555 B3,

— 4230716226799244974Bgy + 1576816387639846488)] B

-+ 20808343332000074 (40317 +14573) B, — [ 52020858330000 A3 (1188 —5643 Boo
+57278u%) 4 744000043, (6975604460847 — 595349823111.%)

+74970000B% (171292589973 — 3860104507 14%) —30000A2; B12(1724684386382607
—2977038120318542) 4 300002 (72427326580007 B3, — 2922070221604217 By
+ 14086990920322148 + 1402008372756467) + 6000B;2(37332698609101 B3,
+7028813384491871 By — 33240523945545311 — 187486063469005%)
+2400(42503280435413 By, — 840097072912349B3, + 11844823687901162B3,

— 137423809804840476 By + 278177525762443488 + 6190482141270004.%) ] By

— 400004 [4213689524730A3, — (264481516712790A3, — 292061524988571 A2 B>
+ 81875773202853B%, + 1066400289515844 A1 — 553967364982377 B1>
—390970428808920) A3; — (2A21 — B12)(285236198374521A3%,
—325309999165989A2) B12 + 94369565718540 B, + 1415022304995647 A5,

— 802740822864698 B> + 660741428908620) ]},

where Ly, k = 2, 3,4 have been simplified by using the Groebner basis approach,
and the lengthy Ly, k = 5, 6,7, 8, are not listed here for brevity.

Based on the Lyapunov constants given in Theorem 3.1, we obtain the following

result.

Proposition 3.1 When azjaj; # 0, the first 8 Lyapunov constants at the origin of
system (2.5) are zero if and only if one of the following conditions holds:
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(@) bo3 =b21 = =0
(b) bos = by = ap| + 24a?, = az; — 36a3, = boy — 2a1; = byy + 12a}, = 0;
(c) bz = boy = b1y = 25ay1 — 8a?, = 125a31 — 4a3; = 5bay — 8uay; = 0;
(d) bos = 529ay) — 174a}, = 12167az; — 432a3j, = 23byy — aj;

= 23by1 — 36 uay = 529b1; — 6a?, = 0.

Proof We first apply the Lyapunov constants at the origin of system (3.2) to obtain
the conditions and then use (3.1) to get the conditions for system (2.5), as listed in the
proposition. In general, the center condition candidates found by setting Ly = 0, k =
1,2, ..., are possible center conditions, since some center conditions might be missed.
Unless one can show that all such conditions are obtained, then after the sufficiency of
these conditions is proved, one can claim that the obtained center condition candidates
are necessary and sufficient. In the following, we will use the Lyapunov constants given
in Theorem 3.1 to show the details that the conditions (a), (b), (c) and (d) are all possible
center condition candidates which can be obtained from the Lyapunov constants.

It is easy to see that the equation L; = 0 yields two cases: (I) By; = 0 and (II)
By # 0.

(I) For By; = 0, there are two sub-cases: (I-a) u = 0 (B is free), and (I-b) By, = 2
(n #0).

(I-a) For this case, we have By = p = 0, which leads to L, = 6Bg3. Setting L, =0
gives Boz = 0, yielding L3 = L4 = --- = Lg = 0. Hence, we obtain the
first condition for the system (3.2) as By; = Bg3 = n = 0. Then using the
transformation (3.1) directly yields the condition (a) for system (2.5).

(I-b) For this case, we have

2
Ly = Z[(21451) By — 4(A31 + 2421 — Biou].

4(A3142A2,—B12)p

Setting L, =0 yields Byz = under which

S5ur+21
L= o {6M Ayt +2QA0 — Bi)[(39 + 711D Az
3T 2762 +21)
+(57 + 414%) B1z + 36(1 + p?) ]},
where

Mi = 3+ 11u>) A — 6(1 + u?)Bio — 49 + p?).

There are two possibilities: (I-b-i) M1 = 0 or (I-b-ii) M| # 0.

2 2
(I-b-i) When M; = 0, we have A, = U+« ;fllzlﬁ(%“ ) for which L3 becomes

8u

Ly=—— 1"
3 2752 + 21)

(Biz = 8)[(51* = 3)B1z — (1361 + 72)].
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(I-b-ii)

2
Note that if A2} = 0, i.e., Bjy = —55‘]’1%, leading to L3 #£0. Thus, L3 = 0

2
gives either the solution By = 8, or the solution By, = % if Byy # 8,
noticing that u? = % yields L3 # 0 under the condition Bia # 8. When

2
B, = 8, we have A3 = —%, and then L3 = L4 = Ls = 0, but

2 2
L¢ # 0. When By, = % (5u2=3 #£0), Ay = %—jﬁ Then, we
obtain

128 (u* +9) _
Ly= 2 2 3 4
55(5u +21)*(5pn —3)

64 (u? +9) _

LS - - 2 2 3 LSv
1365502 +21)2(5p — 3)

16 9 _

Lo = w(u” +9) Le.

51975562 + 21)2(5u — 3)3

where Ly, k =4, 5, 6 are polynomials in A3y and . With the help of Maple,
eliminating A3 and p from these three polynomials results in two resultants,
one of which is positive, showing that there do not exist solutions for A3 and
w such that Li=Ls=Le=0 simultaneously, which indicates that the case
(I-b-1) does not have possible solutions such that Ly =0, k =1,2,...,8.
For this case, we have

1
Azl = %(21421 — B1)[(39 + 7T1u?) Az
+ (57 + 41 B1o +36(1 + 12)],  (Biz # 2421),

(3.3)

under which L3 = 0. Then, L, k = 4, 5, 6 are obtained as

_ 4u(2A2 — Bpa) ~

Ly = s
! 495M? !
2u(2A21 — B12) ~
Ls = —mmoc3  Ls
12285M3
w(2A21 — B12) ~
Le=——"—> Lg,
5613300M;

where Zk, k = 4,5, 6 are polynomials in Asj, B2 and p. With the help of
Maple, eliminating A1 from these three polynomials yields solutions Ay =
A21(B12, ) and two resultants:

Rys = C1 Rys, Ry = C1 Rus,
where the common factor Cy is given by

Ci = Bip (u? + D(u? +9)(B12 + 12)(B12 + 8)
x[(5u? = 3)Bip — 8(17u% 4+ 9)],
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and ﬁ45 and ﬁ46 are polynomials in Bj; and p. The common factor Ci has
three possible solutions for By: Bjp = —12 generates the condition (b); while

2
the other two solutions Bjp = —8 and By = % yield M| = 0, as

discussed above. The resultant of ﬁ45 and li46 with respect to Bj; has a factor
u2—3 for which Ly, k = 4,5, 6,7, 8 have a common factor:

M, = 826208126 B], — 51264404745B%, — 1999127381612B],
—58287364950288 B, — 1350601624681984 B3,
—19328008337820160B;, — 171358789352458240B5,
—82212386152038400087, — 1025400150491136000B,
+3403321389875200000,

for which it can be shown that A3; = Bgz =0. The above discussions indicate
that the case (I-b-ii) also does not yield additional conditions such that Ly =
0,k=1,2,...,8.

(I) Now, we consider the case By # 0. L1 = 0 gives

4
By = —EM(Boz—Z) # 0.
Then, setting L, =0 we have the solution,
. [S0A31 + 5(13Bz — 6) Az — 10(3Bgs — 1) B
5062+ 21) 31 02 21 02 12
—(Boz — 2)(B§, — 9By +4)].

Bos

Next, solving L3 = 0 we obtain the solution A3} = 2;; where

Asin = —2500[(227u* + 111)Boy — 9(111* + 3)] A3,
+125{5[(9492 + 933) Bpp — 16(2314* +21)] B1o
—(473u* — 375) B3, — 9(13314% + 293) BZ,
+(30144% +2118) Boo — 96(1114% + 3)} sy
—1250(3Bo — )(41p* + 57)BY, + 125[(257p* — 15)Bg,
+(563u% + 1155) B2, — 8(187u> + 195) By
+4(1214% 4+ 105)]B12 + (Boz — 2)[ (176512 + 2373) By,
—8(1265u> — 177) B, — (8515u> + 34323) B,
+2(1263514% + 11307) Boo — 24(36512 + 93)],

Az1g = 375 [100(11 02 +3) Ayy —600(u? +1) Bio— (125> +1197) B,
+8(25u% + 81) Bz — 12(254% +9)].
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If A314=0, then L3 does not contain A3, and A can be solved from A314=0,
given by

_600(u*+1) Bia+ (12547 +1197) B3, —8(25u>+81) Boo +12(2514% 4-9)

A
2 100(1122 + 3)

Then, eliminating Bj; from L3 = L4 = L5 = 0 yields the solution for Bj»,
and two resultants from which the solution ;f3 1 for A3 is obtained by using
the Maple command “eliminate”, with a resultant which contains the following
three factors,

(Boa — 2)(3Boa — D[(971® + 1137) B, + 12(u? — 39) Bop — 121 + 1)].

But these three factors happen to be involved in the numerator of the solution
;\'31, implying that letting A314 = O does not yield conditions satisfying L, =
0,k=1,2,...,8.

Now, assuming A3jg # 0, we have the solution A3 = % such that L3 = 0.
Then, L;, k =4,5, 6,7, become

Ly= i L
t T T 601562542,
21
Ls = 57— Lsb,
1439648437543 4
u
L¢ = 57— Leb,
274086914062500A%, ,
L7 = a Ly,

~ 54515887207031250004%

where Lyy, k = 4,5,6,7, are lengthy polynomials in ,uz, By, Az and
Bi>. Eliminating p? from these four polynomials gives a solution fi> =
;12(A21, Bi2, Byp), and three resultants R4s, R4¢ and Ry47, which have two
common factors F| and F»:

Fi = 50Aa; — 25B12 — B3, + 9Bg, — 14,
and

Fy = 12500B A3, — 25[50(17Bo, —4) B1o— 2053 B3, + 1068 BZ, +64 By, +24]
Aay + 2500(3Bg> — 1) B, — 100(7Bo2 —4)(37B3,+2Bo2 —2) B1n
— (Bpz — 2)(1081 By, — 8023 B3, + 4394 B2, — 392B, + 96).

F| = 0 yields u> = =9 < 0. To verify whether F, = 0 can produce
the conditions such that Ly = 0, k = 1,2,---,8, we use the Maple com-
mand eliminate({F>, L4y, Lsp, Lep}, {A21, ,u2}) to find that no resultants can
be obtained from this operation, implying that the factor F> does not yield the
required conditions.
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Finally, in order to find if there exist the required conditions from setting the
resultants R45 =R46 =R47 =0, we use the Maple built-in command resultant to
obtain the two resultants:

Ryse = resultant(Rys, Ra, A21) = C2 E456, (3.4)
Rys7 = resultant(Rys, R47, A21) = C2 Rysy, '

where the common factor C, contains four factors, given by

Cy = [5B12 + Boa(Boz — 2)] (25B12 + 11B3, + Byy +4)
x(25B12+17B3, —43By>+18)(25B12+ 11 B3, — 19Bg, —6),

and §456 and §457 are lengthy polynomials in By, and Bgy. Each of the four
factors in C, has a linear solution for Bjp, which is then used to determine

Azl = 1’2:1"; It is found that the first three factors yield 4?=3and A3;p =0

(A314 # 0), while the last factor gives i = —1. Hence, these four factors do
not produce the required conditions.

Next, the lengthy polynomial factors §456 and §457 in (3.4), with the command
resultant, yield the following factors:

C3 = (Boz — 2)'°B3,(23Bpz — D(3By2 — D (2B + D13
x (3Bg2 + 4)2(23Bgy — 6)2(11Bpa — 2)(11Bgy + 3) F3 Fu,

where

F3 = 334B3, — 339B2, + 98By, — 12,
F4 = 70127 B}, — 107890 B}, +58365 B3, — 137907, + 100 Byr +216.

There are a total of 11 factors in C3. Since By, — 2 #0, we only need to consider
the remaining 10 factors. For each of the 10 factors, we use L4p, Lsb and Leb
to eliminate A, to get a solution A, for A»1, and two resultants. Verifying the
common factors of the two resultants we obtain the following results. First, for
the 6 factors, 3Bgp — 1, 2Bp2+1, 3Bp2+4, 23Bg2 —6, 11Byy —2 and 11Bgy+3,
we can show that these factors yield either A3;p, = 0, or Az, = A3zg = 0.
For example, for the solution By = 1 from the factor 3Bgy — 1, we obtain the
following common factors from the two resultants:

Bia(® = 3[216(* + DBi2 + p? — 15][9(* + 9) Bz — 44> +3)].

Then, we can use the formulas A3, and A31q, as well as the solution ;\'21 obtained
above to verify that A3y, =0 for the first two factors; and Az, = A319 =0 for
the other two factors. Similarly, we can prove that the other five factors yield
either A3, =0 or A3, =A319=0.

Next, consider the factor By;. Using Bgy =0 we obtain the common factors:

B12(25B12 + 2)[(625B7, + 650B1> + 78)u* + 3 (187587, — 50B1> — 6)],
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which gives four roots:

=132 +3+/91uf — 7622 + 171 2

B 3 Py
12 25(u2 +9) 25

The first two roots yield A3jn = A31q4 =0, and the third root gives Az, =0. For
the last root, we obtain the solution:

4 8
By = - p,

8
Bis=Bn=Bn=0, Ay=--, Ay =—c,
03 02 12 21 31 125 5

25°

which, with the transformation (3.1), leads to the condition (c).
From the factor 23 By, — 1, we have the solution By, = %, and then obtain the
common factors from the two resultants, yielding the following roots:

—156273u* + 6432612 + 28215 + /A 36 6
8464 (47 % 4 4382 + 135) T 5297 529°

12 =

where

A = 10997677537u® — 1517716467965 — 105265288170u*
— 226586558522 — 1489591215,

Similarly, we can show that the first two roots yield Az, = A31g =0, and the
third root gives A3, =0. For the last root, we obtain the solution:

174 432 36
A3z By = = u,

B3 =0, Bip= 5, Aan= = 2167 3

529 529’
under which Ly =0, k = 1,2, ..., 8. Then, using the transformation (3.1) to
the above parameter solutions, we obtain the condition (d) in Proposition 3.1.
For the factors F3 and Fy, it is easy to show that F3 = 0 has one real solution,
and F4 = 0 has three real solutions. But it can be proved that none of these four
real solutions can yield a common factor in §456 and §457.

The proof of Proposition 3.1 is complete. O

Next, we consider the case a3 #0, aj1 =0. For this case, we apply the following
scaling

X Y t
X = , y el s T = s
Jaz 3/ 3 Yaz

(3.5)
ai = A.Yaz1, ax = Aa1yJa3,, box = B /a1,

3 2
b1 = Ba1/as1, bia = Biay/ai;, bos = Bozasi,

into (2.5) yields the scaled system,

dx ’ 3
— =Y+ A X"+ X°),
dt
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d_y _ 2 2\ v3 2 2 3
17 =4uXY 4+ BppY 2(1 4+ pu)X" + By X°Y + BioXY“ + BozY™. (3.6)

Similarly, we apply the method of normal forms [37] to compute the Lyapunov
constants of the system (3.6), which are given in the following theorem.

Theorem 3.2 When a3; # 0, aj; =0, the first 8 Lyapunov constants at the origin of
system (3.6) are

4
Ly =By + gMBoz,

1
Ly = §[10303(5u2 +21) + By1(65421 — 30B15 — B(%z) — 40p],

1
Ly=— m{sm [57600(9A21 — 4B12) — (44125B3, + 37968 B3,)]

+40B,1 (454043, + 1230B7, — 1081Bga) — 8A21(2224B%, By
+23725B12By1 + 132000) + 8B12(833Bg, Bay + 72001) },
1

Ly = qes oot {156062574990000B%; By (1457314% + 40317)

—25B03[297600A43, (59534982311 14% — 6975604460847)
+2998800B7, (3860104507 1% — 171292589973)

—1200A21 B12(29770381203185u> — 1724684386382607)
+4165B3, (1359632890882 B3, — 16416976836895 B)2)
—25A21(3476511675840336 B3, — 2390104075008827 B3,)
—349860(25609808684 B3, B2 — 245832481825 B)1 11)
—233146704 By (17501062 B3, — 50363775)]
4300000 By (60763442231393A3, — 9436956571854 B3,)
+12000A3, (11327783677834 B3, By — 2442273516056025 B12 By
—8816050557093004) + 60000 B3, (262806397025465 A2 B
—545838488019021) + 11682460999542840000A21 Biajt
—8B)1[125B02(3196150167527750 A1 — 2261230195644301 B1»)

+2676317417692450 A5 By, + 693889(242074798 B,
+30371831225B, 4 20195043750) ]},

where Ly, k = 2, 3,4 have been simplified by using the Groebner basis approach,
and the lengthy polynomials Ls and L¢ are omitted here for brevity.

Based on the Layponov constants given in Theorem 3.2, we have the following
result.
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Proposition 3.2 When az; #0, aj1 =0, except for the condition (a) in Proposition
3.1, there do not exist conditions such that the first 6 Lyapunov constants at the origin
of system (2.5) are zero.

Proof Since when a3y # 0, aj; = 0, the original system (2.5) is equivalent to the
system (3.6), we consider the Lypunov constants at the origin of the system (3.6),
given in Theorem 3.2.

Similar to proving Proposition 3.1, we have two cases: (I) Bo; =0 and (II) B2; #0.

(I) For this case, there are two sub-cases: (I-a) u =0 (By; is free), and (I-b) By, =0
(1 #0).
(I-a) When p =0, it is easy to get Bgp3 =0 from L, =0, yielding the condition (a) in
Proposition 3.1.
(I-b) When B> =0 (i #0), we have By = % #0 under which L, =0. Then,

L3 is given by

. 16 [(111% 4 3) Az — 6(1% + 1) B1a]
3 = .

9(5u2 +21)
Lx=0vi S _ _ _ 6(%+D
3 =0 yields two solutions: either Ay; = B1p =0, or Ay = 1,753 By #0.
When Az =B1=0, we have L3y=L4=Lg=L7=0, but
Lo _ 64 +9)(395ut + 1182 — 21)
3= 91(5u2 + 21)3 ’
. —256 (2 +9)(6911555u8 4647047010+ 147264 1% — 42298242 — 11907)
8 = .

25925(5u% + 21)3

It is obvious that Lg # 0 when Ls; = 0. Similarly, we can prove that when

Ay = 61% 70 By, Ly=L3=0, while Ly =0 yields Ls #0.

(IT) For this case, By1 #0. L1 =0 gives By; = —%MBoz #0. Then,

2
Ly = ={25(51% +21) Bos + 2[ Boa (B, — 65A21 +30B12) — 50}

Considering L, =0, there are two cases: (II-a) Bg3 =0 and (II-b) B3z #0.
(IT-a) For Byz =0, Ly =0 gives Bjp = 301702[50 + By (65A71 — Bgz)]. Then, L| =
L> =0, and we can use L3, L4 and L5 to show that L5 #0 when L3 =L4=0
since there are only two free parameters Aj; and Bg; are involved in these
Lyapunov constants.
(II-b) When B3 #0, we obtain

_ 2u[50 — Boa(Bj, — 65421 +30B12)]
B 25(5u2 +21)

Bos
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from L, =0. Then, L3 is a linear function in /ﬂ. Solving uz from L3 =0 yields

2
-2 _ 3,
= =4 where

1% 503

A2 = —625Bo(148A3, —311A B2+ 114B3,)+625B3,(25A21 — B12)
—37500(Aa1 — 2B12) + 7B, (113B3, + 21375),

15 = 125B02 (908 A%, —949 A B1o+246B7,)+25B3,(473A21 —257B12)
+7500(11A2; — 6B12) — B3 (353B3, 4 9375).

If /1‘21 =0, then u is free, and L3 =0 implies /13 = 0. Then, eliminating A

from the equations: [Lfi = ﬁ% = L4 = 0 yields two resultants which do not have

common factors. This implies that [LZZ =0 does not yield conditions such that
L3=L4=---=0. So assuming ﬂg, # 0, we have

9216u[5(13A21 — 6B12) Boa — Bj, + 5017

ba= 4296875(512 + 21)2(f12)? o
Lg = _ 2211841513451 — 6B12) Boo — B3, + 503 .
35546875(5u% + 21)3(23)? ’
Lo - 1536u[5(13A21 — 6B12) Box — BY, + 501 N
93994140625(5u2 4 21)3(f13)3 ’
L, = _ 1228015013421 — 6B12) B — B3, + 501 N

20772705078125(52 + 21)*(i2)*

where Ly¢, Lsc, Lec and L7 are polynomials in Asy, By and By,. Eliminating
Aoy from Ly, Lsc, Lgc and L7 results in a solution for A;1, and three resultants,
R45C = G1R45d, R460 = G1R46d, and R47c = G1R47d, which have a common
factor,

G1 = 36250 By B3, +1250(103 B3, —540) B12 + B2, (44872 B3, — 1798875).

Then, eliminating By from G, L4, Lsc and L. yields a solution for B>, and
three resultants which have a common factor,

G2 =18125Bp A21% 4 250(137B3, — 600) A21 + 3 B3, (3107 B3, — 67000).

Now, eliminating A»; and Bj from G1, G2, L4c, Lsc and Lg. shows that no
resultants can be obtained, implying that the common factors G| and G, do
not yield the required conditions.

Finally, we consider the possibility from R454, R46g and R474 which are lengthy
polynomials in B> and Bg,. Using the Maple built-in command resultant we
obtain two resultants:

Rus46q = resultant (Ry4sq, Ragd, B12),
Rys474 = resultant (R4sq, Raz4, B12),
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which do not have common factors, implying that the polynomials R4s54, Raed
and Ry474 do not have possible solutions such that Ly =0, k =1,2,...,8.

Summarizing the above results we have shown that when a3; # 0, aj; = 0, except
for the case (a) in Proposition 3.1, there are no more solutions such that the first 8
Lyapunov constants vanish. In other words, the case a1 =01is included in the condition
(a) in Proposition 3.1.

This completes the proof of Proposition 3.2. O

Now, we prove that the four conditions given in Proposition 3.1 are necessary and
sufficient for the origin of system (2.5) to be a center.

Theorem 3.3 When az1 # 0, the nilpotent origin of system (2.5) is a center if and only
if one of the 4 conditions in Proposition 3.1 holds.

Proof The necessity has been shown in the proof of Proposition 3.1, since only those
four conditions satisfy Ly =0, k = 1, 2, ..., 8. In the following, the sufficiency will
be proved one by one. The main idea of proving the sufficiency is to transform the
system (2.5) under each of the four conditions to a Liénard system so that two primitives
are formed for proving the sufficiency. More details on the theory and methodology of
this development can be found in [6-8, 10, 12]. More precisely, Cherkas established
the method [6, 7], which was further improved and generalized in [8, 10, 12], from
which we particularly apply Corollary 6 in [12] to prove the sufficiency of a center in
Liénard systems. The detailed steps can be seen in the following proof.
When the condition (a) in Proposition 3.1 holds, system (2.5) can be rewritten as

dx

e y(1 4+ anx + anx® + azx’),
d

d—}; = —2x% + boay* + b1axy?,

which is obviously a revertible system (symmetric with respect to the x-axis).
When the condition (b) holds, system (2.5) becomes

dx

i (1 —2ay1x)(1 = 3apx)(1 + 6anx)y,

d_y A3 2 2 .2 3.2
yi 2(x7 —any” + 6ap xy” —2xypu +x7u’),

which can be changed into a Liénard system in the form of

dx _

E =)

dy =20 —aiy? +6a2 xy? — 2xyp + x> u?) (3.7)
dtr (1 -2a1x)(1 —3anx)(1 + 6ajix)

Po(x) + p1(x)y + pa(x)y?,
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bydt = (1 —2ay1x)(1 —3a11x)(1 + 6a11x) dt. Now, we construct

(Po(xX) p1(x) p2(x) — p1(x) p(x) + po(x) p{(x))

M= i)

Wilx]1po(x)
X)) = ————.
p1(x)?

Then, the system (3.7) has a center if and only if W1 (x) — W1 (y) and W (x) — Wa(y)
have a common factor with the form x 4+ y + h.o.t. It is easy to verify that

9a7; (x = y)(1 + p?)

212

9aty (x — )
2u?

x (1+4+3an1x — 18a121x2 +3aiy + 18a121xy - 18a121y2),

Wi(x) = Wi(y) =

hi(x,y),

Wa(x) — Wa(y) = 22

hi(x, y)(1 = 3ay1x —3any)(1+p

where

hi(x,y) = —x 4 2an1x* — y + 2ar1xy + 2ar y*,

is a common factor, implying that the origin of the system is a nilpotent center.
When the condition (c) is satisfied, system (2.5) can be rewritten as

L s an G+ 2an0)?

—_— = aix argx 9

i 125 11 11 Yy

d 2

d—f =— gx(sz — 10y — dayxyp + 5x*pu),

which can be changed into a Liénard system,

dx .

E =Y

dy  50x((5x% 4 5x2u?) — y(10u + 4aj  xp)) (3.8)
dt — (54 ai1x)(5 + 2a11x)?

= po(x) + p1(x)y + pa(x)y?,

2
by dt = w dt. Similar to the proof for the case (b), let

_ po(xX)p1(x) p2(x) = p1(x) p4(x) + po(x) pi(x)
Wl ('x) - 3 k)
pi(x)

Wi[x]po(x)

W0 == o
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Then, the system (3.8) has a center if and only if W;(x) — W1 (y) and W (x) — Wa(y)
have a common factor in the form of x 4+ y + h.o.t. It is easy to verify that

at (x — y) (1 +p?)
20(5 + 2a11x)(5 4 2a11y)u?
a2 (x — )+ uH2(S +anx +any)
4005 + 2a11X)2(5 + 2a11 y)2pt
x (25 + 5ajix + Saiy + 2“%1”)]12(’6’ )

Wix) — Wi(y) =

ha(x,y),

Wa(x) — Wa(y) = —

where
ha(x,y) =5x + 5y + 2a11xy,

is a common factor, showing that the origin of the system is a nilpotent center.
When the condition (d) is satisfied, system (2.5) can be rewritten as

dx

T =(1 4+ 6bo2x) (1 + 8bo2x)(1 + 9bp2x)y,

d

d_)t} =—2x3 + by + 6b(2)2xy2 + 4xyp + 36boax?yu — 2x3u?,

which can be changed into a Liénard system,

dx

dr =D

dy —2x3 4 bppy® + 6b(2)2xy2 +dxyu + 36bgax?yp — 2x3 12 (3.9
dr (1 + 6bgax) (1 + 8bgax) (1 + 9bgax) ’

by dt = (1 + 6bp2x)(1 + 8bgox) (1 + 9bp2x)dt. Similar to the proof for the case (b),
let

Po(X) p1(x) p2(x) — p1(x) pd(x) + po(x) pi(x)

Wito = P1()?

_ Wi [x]1po(x)
p1(x)?

Then, the system (3.9) has a center if and only if Wi (x) — Wi (y) and W2 (x) — Wa(y)
have a common factor in the form of x 4+ y + h.o.t. It is easy to verify that

27bgy (x = y) (1 + 12
4(1 + 9bo2x) (1 + b y) > pu?
27b5, (x = y)(1 + p?)?
4 4,,4 h3 (X, y)
16(1 + 9bo2x)*(1 4 9bo2y)* 1
x (1 4 18bgax + 108b3,x% 4 216> + 18by2y
+324b%,xy + 1944b3,x%y + 3888b(, x>y + 108b3, y*
+1944b3,xy% + 10935b§,x%y* + 17496b3,x° y*

Wix) — Wi(y) = h3(x, y),

Wa(x) = Wa(y) = —
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+216b3,y* + 3888bg,xy> 4 17496b3,x2y3),

where
h3(x, y) = x + 8boox? + y + 26bpxy + 144b3,x%y + 8bgay?
+ 144b3,xy* + 648b3,x%y?,
is a common factor, showing that the origin of the system is a nilpotent center. O

Furthermore, we want to prove that under the condition (a) in Proposition 3.1, the
origin of system (2.5) is an analytic center. To prove this, we apply the definitions and
relative theorems given in [5, 27], which are listed below for convenience. It should
be noted that Theorems 6 and 12 in [27] are only applicable for cubic-order systems.

Lemma 3.1 [5, 27] The origin of system (2.5) is an analytic center if and only if the
origin of system (2.5) is a center and for any natural number k, Ly = 0.

Lemma 3.2 [5, 27] If system (2.5) is symmetric with respect to the x-axis, then the
origin of system (2.5) is an analytic center.

For system (2.5), we have the following result.

Theorem 3.4 The origin of system (2.5) is an analytic center if and only if the condition
(@) in Proposition 3.1 is satisfied, i.e.,

boz = by = pn=0.

Proof When the condition holds, system (2.5) can be brought into the form,

dx

i y(1 +aix + axx? + azx),
d

d_)t) = —2x% 4 bopy? + b1oxy?,

which is symmetric with respect to the x-axis.
By the change of state variables, u = x, v = y2 and the time rescaling T = yt, the
above system can be changed to the new system,

du 2 3
— = 1+anu+ayu” +azu’,
dt

dv

— = —2u® + bopv? + bpuv?,
dt

whose origin is a regular point, and by Lemmas 3.1 and 3.2 it is analytical integrability.
O

In the following, we present one of our main results in this paper.

Theorem 3.5 When a3z # 0, system (2.5) can have at least 8 small-amplitude limit
cycles around the origin by small parameter perturbation.
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Proof To obtain maximal number of the limit cycles around the origin of the system
(2.5), we need to find the conditions such that L; = 0, j = 1,2,...,k — 1, but
Ly # 0 for as large k as possible. For aj; # 0, the system (2.5) is equivalent to the
system (3.2) under the transformation (3.1). The system with aj; = 0 is obviously to
have less limit cycles than that of the system with a;; # 0. Thus, we consider system
(3.1) which has 7 independent parameters. In general, with a linear perturbation, the
system may have 8 limit cycles bifurcating from the origin. It has been clearly shown
in the proof of Proposition 3.1 that bifurcation of maximal limit cycles can only come
from the case (II) B2; # 0 when B3 #0. If Bgz =0, it can be shown that the maximal
number of limit cycles bifurcating from the origin is 6. If Bz #0, it is seen from (3.4)
that the two polynomials §456 and §457 still contain two parameters By and Byy.
Thus, it may be possible to have solutions for By, and By such that I~{456 = §457 =0,
which may lead to L4 =Ls=Le=L7=0, but Lg #0. To achieve this, eliminating
B, from R456 and R457 yields a resultant polynomial in By»,

Ruse7 = (334B3, — 339B%, 4+ 98By, — 12)(70127B3, — 1078908y,
+58365B3, — 13790B2, + 100Bo, + 216) Fee7(Bo2),

where Fee7 represent a 667th-degree polynomial in Boy. The first two factors have 4
real solutions, but none of them yields solution Bj; to satisfy R456 = R457 =0. The
polynomial Fgg7 yields 73 real solutions:

—2.6540242544 - - -, =2.0351509596---, .., 4.4358229258-..,

which have corresponding 73 solutions for By, such that ﬁ456 = §457 =0. Then, using
the polynomials R45, R4¢ and R47 we obtain corresponding 73 solutions for A1 such
that R45 = R4 = R47 = 0. Finally, we use the solutions ,&2(A21, B12, Bpp) to check
if [Lz > ( for the set of 73 solutions (A»;, B2, Boo)k, k = 1,2, ...,73. It is found
that 31 of the 73 solutions satisfy /1> > 0, 7 of them yield Lg <0 and 24 of them give
Lg > 0. To guarantee the existence of 8 limit cycles, we compute the determinant of
the Jacobian to obtain

d0(Ly, Ly, L3, L4, Ls, Lg, L
det7:det|: (L1, La, L3, L4, Ls, Le 7)}

0(B21, Bos, As1, A21, B12, Bn2) ¢

where the subscript C denotes a critical point using one solution of the above 31
solutions. In the following, we list two solutions, with one for vg < O and one for
vg >0:

By = 0.35051158 -+ . Bos = —0.72206432 - - - .
o Asp = 0.12284334 - . Ay = —6.71259965 - - - |
vg = —3.79957976 -1 771405139 .- . By = 1.63917500 - - -

det; = —181397.86 - - - ;
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By = 2.51956740- - .  Bos = 0.39729450 - - - .
B Asi = —0.32360952 - - . Ayj = —9.03972383 - - - |
vg = 1.02997402--- ¢ g 1526798825 - . By = 0.15355900 - - -

det; = 495.225881 - - - .

Note that under the time rescaling given in (3.1), the Lyapunov constants for the
original system (2.5) are a1 Lk, and thus the nonzero free parameter a1 can be used
to adjust the order of the Lyapunov constants. This shows, with a linear perturbation,
the existence of 8 small-amplitude limit cycles bifurcating from the origin of the
system (2.5).

This finishes the proof of Theorem 3.5. O

We should point out that for the generalized Kukles system (2.5) one may apply
the so-called “double bifurcation” analysis [21] to obtain one more limit cycle. That
is,

Theorem 3.6 When a3y # 0, at least 9 small-amplitude limit cycles can bifurcate from
the origin of system (2.5) by using the double bifurcation analysis.

3.2 Center Conditions of System (2.5) foraz, = 0

We first compute the Lyapunov constants of system (2.5) at the origin to obtain the
following result.

Theorem 3.7 The first 7 Lyapunov constants at the origin of system (2.5) with az; = 0
are given as follows:

1
up= 0+ 1) [5ba1 + 4(boa — 2a11) ],

2
Uy = —— (1 + p?)(525bg3 — 16a3, u 4 44at boapn — 22a11b3y 11 + 263 1

875
+ 125bo3 > — 20a11 b1z + 60bo2 b1z + 60ariazi i — 130a21 b2 b)),
PR (G5 T B
) 59062521 +5u2) "’
199766310912 (14+u2) (143, —9a1 1 bo2 +b3, +25b12—50a2)* L2 .4 2
ua =- 343759+ 12) 21 +512)? RIS
7514474781081674(1+1%) (14a2, —9ay1 by +b3, +25b12—50a20)* 16 ;2 2
us=- 1001 (4412 (O+12) 21 +512)3 315 fe
_ 33241631799575052288 1 (1+1%) (14a%; —9ay 1 boo+b3, +25b12—50a21)* 16 2 2 2
o =r- 3072265625 (4-+12) (9+u2) 21+542)3 (14917) (25+9u2) ERENLRLE
_ 2450839029319069455089664 /1 (1+u2)(14a}; —9ay1boa+b3 +25b12—50a2)* 8 2 2 2
UT = ~ 56113281250+ 1) O+ i) (14412 9+412) (214523 (14 95%) (25491.2) f3 fiofirfizs
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where

fi=

f=

fi=
fs=

f1=

fio=

fi =

4464a3; — 3600047, a2 + 67500a11a3; — 47460a}, by + 2647507, a21bp

— 2775003, boa +91260a3, b3y —329625a11a21b3, —37155a3, by +46875a21 b3,

— 3330a11 b3, + 2373b, + 1752043, 1% — 1320003, az; u? 4 247500a1 a3, 12

— 59300a}, boapt* + 376750a3 az1boap* — 567500a3,boae* + 42300a3, b3, 1

— 149625a11a21 b3, 1> + 1172503, by u® — 59125a1b3, > — 13650a11b, 1>

+ 17653, > + 5250003, b1 — 210000a;1a21b12 — 195000a3, borb1n

+ 583125a21boab1z + 144375a11b3,b12 — 1875b3,b12 + 6050043, 1> b1a
—230000a11a21 1£*b12 — 187000a3, boopt*b1a + 593125a21boa > b1a

+ 70375a11 b3, 11> b1z + 32125b3, 12 b1a + 71250a;1 b3, — 213750bgyb3,

+ 51250a1 1*b}, — 153750boa 12 b3,,

456a3, — 1800a1 a2 — 1154a%,boy + 4025a21boy + 87a11b3, + 563b3,

+ 650a11b12 — 1950b02b12,

8a3, — 30ai1a21 — 22af by + 65a21b02 + 11ar1bgy — by, + 10a11b12 — 30boabiz,
65616a7, — 4920003, az; 4 922500a;;a3; — 189740a},boy + 124225043 a1 by
— 199250043, boo +77940a3, b3, —268875a11a21b3, +84055a7, by, —283375a21 b3,
— 51270a11 b3, + 4687b3, + 18950043, b12 — 710000a11a21b12 — 55300047, boabia
+ 1789375a21boab1a + 137125a11b3,b12 + 130375b3,b12 4 133750a11b3,

— 401250b02b3,,

283243, — 2400043, az1 + 45000a;1a3; — 45980a}, by + 25075047, az1 boa

— 2412503, boa + 9738043, b3, — 352125a11a21b%, — 4326543, by,

+ 60125a21 by, — 2040a11 b3y 4 2449b3, + 5150043, b12 — 207500a11a21b12

— 196000a7, bozb12 + 581875a21bozb1a + 153625a11bg,b12 — 612563,b1>
+73750a11b% — 221250b02b?,,

2486443, — 18600043, az1 + 348750a11a3, — 65960at, by + 43975043, az1 bon

— 730625a3,boa +14760a3, b, —48375a11a21b3, +39220a3, b, — 118750a21 b3,

— 19455a11b3, + 1423b, + 6500043, b12 — 241250a11a21b12 — 18250043, boabi2
+ 598750421 bo2b12+28750a11 by b12+51250b3, b1 +40000a1 1 b7, — 1200006257,
33647, — 1200043, az1 + 22500a;1a3, — 130540a}, by + 68225047, az1 boa

— 5425003, boa + 32274043, b3, — 1168875a11a21b3, — 16034543, b3,

+ 246625a21b3, + 330a11bg, + 7727b3, + 14950043, b1z — 610000a;ia21bin

— 593000a7, bo2b12 + 1739375a21bozb1a + 507125a11b3,b12 — 39625b3,b12

+ 233750a1b3, — 701250bg2b3,,

4660843, — 348000a3,az1 + 652500a11a3; — 114620}, boy + 777250a% az1 boy
— 13325003, boa + 522043, b3, — 9375a11a21b3, + 8471543, b3y — 239875a21b3,
—36510a11 by +2131b3, + 11150043, b12 —410000a11a21b12 —301000a7, boab12
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+ 1001875a21boab1a + 18625a11b3,b12 + 98875b3,b12 + 58750a11b?,
— 176250b02b3,,

and the lengthy fi, fe, fo and fi2 are not listed here for brevity.

Based on the Lyapunov constants given in Theorem 3.7, we obtain the following
result.

Proposition 3.3 The first 7 Lyapunov constants at the origin of system (2.5) with
az| = 0 are zero if and only if one of the following conditions holds:

(1) boz3 = by = u =0;
(2) bz = b1 = a1 = b2 = 0;
(3) boz = ba1 = bo2 — 2a11 = b1z —2az1 = 0;
(4) bos = 3by1 — darip = 3by — ary = 9az; — 243, = 0;
(5) bo3 = 5by1 — 4(2ar1 — boo) = 25a21 — (2ain — boz2) Bani + bo2)
= 25b12 + (2ain — bo2)(an — 3bp2) = 0;
(6) bos = Sbat — 12bgop = 25b12 + 3b3, = 25a21 — 9b3, = ar1 — 2bpy = 0;
(7) boz = bay — 6boajt = 2b1y — 3b3, = 2ap — b3, = 4ay) — 17bgy = 0;
(8) bo3 = bay — 2boajt = bia + b3, = 2a1 + b, = 4ay; — Thpy = 0;
(9) u?=3 =9000bos — p(ari — bpa)* (4aiy — 17bo2) = 5ba1 — 4u2arr — boo)
= 5b12 — bo2(2a11 — boz) = 100az1 — 3(2a1; — boz)(4air + 3bp2) = 0;
(10) p?—3 = 225bo3 — pu(2ars — bp)*(ar1 — 2bz) = Sbay — 4 (2ar1 — boo)
= 25b12+(2a11 —bo2) (9ai1 —17b2) =25a21 +3(2a11 —boz) (a11 —3bp2) =0;
(1) p* =3 = 1125bg3 — p(arr + 2bo2)* (4an — Thoa) = 5ba1 — 4u2ars — boo)
= 25b1y + 4af; + bpary + 1163, = 25az1 — (4ay1 +3bo2)(a11—3be) = 0;
(12) p? =3 =72bo3 — pboa(2biy —3b12) = bat — 4ubpy = 4az — 3(2bgy+b12)
— 3bgy —ay; = 0.

Remark 3.1 Linh and Sadovskii considered the Kukles system in the following format
[23]:

dx 2

— =y + Dx + Px9),

g; (3.10)
i —x3 + Axy + By? + Kx%y + Lxy?> + My?>,

which can be transformed into (2.5) with az; =0, under the following transformation:

E§=V21+u?, x—>x, y—>&y, t—>E&t,

4 b
D =an, P=an, AZ—M, B=by, K=, L =b1p, M =& bos.

3 3

(i) 14 center conditions were obtained in [23], in which the first 12 conditions are
the same as the 12 conditions (1)-(12) given in Proposition 3.3, while the last two
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conditions (13) and (14) given in [23] are actually not center conditions. These two
cases are characterized by A>2=9, which corresponds to our system (2.5) with a3; =0
for u?=—9 (yielding b3p=16 > 0), showing that these two cases lead to a nilpotent
saddle point, not a nilpotent center (see Theorem 2.1).

(ii) In [23], the authors claimed that the origin of the Kukles system (3.10) is a focus
of 8th order. This is not true since our analysis given above clearly shows that the 7
parameters/coefficients are not independent, and a simple scaling reduces the number
of parameters from 7 to 6. Hence, the origin of the system is a focus of 7th order.

Proof The proof is similar to that for proving Proposition 3.1. Again, it is seen from
u1 =0 that
4
by = M (a1 — bo2). (3.11)

There are two cases: (I) by1 =0 and (II) by #O.
(I) This case has two sub-cases: (I-a) u =0 and (I-b) bpp —2a11 =0 (u #0).

(I-a) For this case, up = 0 gives bpz3 = 0 and so u3z = ug = --- = 0, yielding the
condition (1).
(I-b) Under this condition, u becomes

2
uz = 2= (1 + uH[(G? +21bos + dpan (brz = 2a21)],
4““‘;3?% by setting u, =0. Then, u3, ug,
-+ - have common factors a1 (b2 —2as1). Setting a1 =0 yields the condition

(2), while letting b1 —2a;1 =0 leads to the condition (3).
(IT) For this case, b1 #0, i.e., u (2ai1 —boz) #0. Then, upy =0 yields

which gives the solution bg3 = —

2u
P I56an — 13 —10(ay; — 3boy)b
25(5M2+21)[ (6ai 02)a21 (a11 — 3bo2)b12

— Qay1 — bp)(4aj; —9ay1boy + bly)].

bos = (3.12)

With the solutions (3.11) and (3.12), we have u; =u, =0, and

—Apd+p?)
usz = us,
590625(21 + 5u2)
—199766310912(1 + pu?) _
uq = 2 22 U4
3437509 + u2)(21 + 5u2)
—75144747810816,(1 + u?)  _
us = 2 2 23 U5
10014 + u=)(9 + u=)(21 + 5u~)
—33241631799575052288.(1 + p2) _
Ue ue,

= 30722656254+ 112) 9+ 1 2) (21 +5u2)3 (1 4+9u2) (25 +9u2)
(3.13)
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where u3, u4, 5 and ug are polynomials in ajy, azy, b11, bop and b1». Eliminating
b1p from the equations u3 = us = us = ug = 0 we obtain a solution by, =
bia(aii, a1, b11, byp) and three resultants:

R3y = 61 §34, Rj35 = 61 ﬁSS, R3¢ = El l3367 (3.14)
where the common factor C is
Ci = (W +9)Gu* +21)2arr — boo)[(2an — bor) Bart + boz) — 25ax ]

The factor in the square bracket gives the condition (5). Further, eliminating a;
from (R34, R3s, Rzg), we obtain the solution dz; = dz1(ai1, b11, bp2) and two
resultants which have the following common factors:

Cy = (a1 — 3by) (a1 — 2b2) (4ayy — 17bg2) (4ary — 7boo)
x(2a11 — boo) (a1t + 2bo2) (u* — 3).

It is easy to verify that the first 4 factors yield the conditions (4), (6), (7) and (8),
respectively, all of which actually generate by3 =0. Note that the factor 2a;1—bgy #
0. For the factor aj1+2bg2, we have bgy = — %al 1, and then use the above obtained
solution dy; to get ap; = 211"%1 , leading to that the last factor in C is satisfied. This
implies that the factor ajj+2bg, gives a special case of the condition 5.

The remaining factor is x> — 3 which gives u?> = 3. Under this condition, the
polynomials in (3.13) become the functions in a1, az1, b12 and bg;. Eliminating
a1 from these polynomials results in three resultants which have the common
factors:

C3 = (2a11 — be)[(2a11 — bo2)(a11 — 3boz) + 25b12] (a1 — 3bo2)
x [bo2(2a11 —bo2) —5b12 ][ (2a11 —bo2) 9a11 —17b2) +25b12 |
x [4a}, + ai1boy + 1163, + 25b12].

All these factors satisfy u; =uy=---=u7=0. Note that the first two factors have
appeared in the factor C . The next four factors yield the conditions (9), (10), (11)
and (12), respectively. Note that although the third factor a;; —3bg, has appeared
in the condition (4) which has bg3z =0, but the condition (9) contains bg3 #0.

This finishes the proof of Proposition 3.3. O

The following theorem directly follows Proposition 3.3.

Theorem 3.8 When a3 = 0, the nilpotent origin of system (2.5) is a center if and only
if one of the conditions in Proposition 3.3 holds.

Proof The necessity is directly given by Proposition 3.3 since all the 7 Lyapunov con-
stants vanish under these conditions. In the following, we prove that these conditions
are also sufficient.
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Since the condition (1) is identical to the condition (a) in Proposition 3.1 for the
case a3 # 0, we start the proof from the condition (2) under which system (2.5) can

be rewritten as Ix

e y(1 + azx?),

Z—); =x(=2x2 + b12y2 +4uny — 2/1,2x2),
which is symmetric with respect to the y-axis.

When condition (3) holds, system (2.5) is reduced to

dx

==~y 2

a7 y(1 +anx +axnx”)

ay _ 2 2.3 >
7 =4duxy +2ary 2(1 4+ pu5)x” 4+ 2a1xy~,

which has two invariant algebraic curves:
1 =1+anx +ayx? and fp=y* —2ux?y +x*(1 + u?),

and an inverse integrating factor I3 = f31 f32.
When the condition (4) holds, system (2.5) can be brought into

dx (1+ 4242 ?)

_— = anx —ay X N

di y 11 !

dy 1 4

i §a11y2 + bioxy? +dpxy + ganﬂxzy — 27 (1 4 ).

By the transformation,

X
U= "amx;
T+5F
1_@ 2 _1+m
V= (1 + %) afl (1 + a;1x> u%l v,

and the time scaling,

apju\-—2 aju >
= _) <1 B _) o 5
’ ( I 9

the system can be changed to

du
_Zv’
dt

22 _34%1 2 2 04 %12
D (1= YT (- ),
T

which is symmetric with respect to the v-axis.
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When the condition (5) holds, system (2.5) can be rewritten as

dx 1

i EY(5 + 2a11x — boax) (5 + 3arix + bpzx),

d 1

d—f = g(—SOx3 + 25b02y2 — Za%l)cy2 + 7a11b02xy2 — 3b(2)2xy2

+ 100puxy 4+ 40pnaq 1x2y — 2Obozux2y — 50u2x3),
which has three invariant algebraic curves:

fs1 =5+ 3anx + boax,
fs2 =54 2a11x — bopx,

f53 = 25x* 4+ 25y + (20a1; + 10b2)xy* + (4af; — dayiby, +,,32x2 y?
—50ux?y — 20a11 x>y 4 10bogax>yu + 25x* 12,

and admit an inverse integrating factor Is = f5; fsal f53.
When the condition (6) is satisfied, system (2.5) becomes

dx 1

i Zy(4 — bo2x)(1 + 2bgpx),

d

d_)t) =-2x+ b02y2 - b(%zxy2 +4uxy + 2,ub02x2y —2u%x3,

which can be further changed to a Liénard system,

dx

it =Y

dy (=2x3 4 bopy? — 19(2)2xy2 + duxy 4+ 2ubprx?y — 2u*x3)
dt (4 — bopx)(1 + 2bgox)

= po(x) + pr(0)y + p2(x)y’,
by a time rescaling T = %y(4 — bopx)(1 4+ 2bppx) t. Let

(Po(X) p1(x) p2(x) — p1(x) p4(x) + po(x) p{(x))

Wito = p1()?

_ Wilxlpo(x)
p1(x)?

Then, the system 3.15 has a center if and only if W (x) — W1(y) and Wa(x) — Wa(y)
has a common factor with the form x + y + h.o.t. It can be shown that

=9(1 + u?)bg, (x — y)
822 + bopx)3(2 + bny)?

Wi(x) — Wi(y) = h(x, y),
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91 + u?)2bg, (x — y)(4 — boox — bopy — 2b%,xy)
6412 (2 + bo2x)0(2 + bo2y)°

X h(x, y)(32 4 56boax — 16b3,x> + 56bay + 116b3,xy

+ 853, x%y — 16b3,y* + 8bjxy* — birx?y?),

W2(x) — Wa(y) =

where the common factor A (x, y) is given by
— 3 .22
h(x,y) = 8x + 8y + 12bpaxy — by x“y~.

So the origin is a nilpotent center.
When the condition (7) holds, system (2.5) becomes

dx 1

— = — v (5 — bax) (5 + boax),

25 v ( 02%) (5 + bo2x)

d 1

d_i = E(_sof + 25boay? — 3b%,xy* + 100pxy — 20ubpx*y — 50u*x?),

which has three invariant algebraic curves:

fs1 =5 —bpax,
feo =5+ boox,
fas = 25x* +25y2 — 10boaxy? 4 box?y? — 50ux?y 4+ 10bgaux’y 4 251%x%,

and admits an inverse integrating factor Iy = f8_11 f32.f83.
When the condition (8) holds, system (2.5) can be rewritten as

dx 1

i Z)’(l + 2bpox) (4 4+ 9bprx),

dy 1 3 2 2 2 2 2.3
i E(—4x + 2bpy” + 3bpxy” 4+ 8uxy + 12ubgax”y — 4u”x”).

When p = 0, the system has a first integral,

Hl = m(324b82x2y2 + 3241?(5)2)6))2 + 216[)32)(4

+ 81bg,y* — 720b3,x> — 1440b%,x> — 768bgox — 128)°.
When by, = 0, the system has a first integral,

2
_ tap MXT—Y
2 arctan )

Hy = (2x* = 2ux?y + x* + yPe
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When wbg, # 0, the system can be transformed into

4 16
byu:zx,vzmy,r

Su+1

du _

d_'L' — Uy

dv  —uc+4(6u+ v +v)
dr Bu+DOu+1)

= ‘ﬁ(72u2 + 17u + 1)t, where ¢ = ,/ﬁ. Furthermore,
Su+1

with z = vV, T = + T, the above system can be changed to
Ou+1)3 Ou+1)3
du
dT - Z?
dz cd@u+1)  4u(6u + 1)z
T = T — = —fw) — gz (3.15)
Ou+1)3 Ou +1)3
Now, let

Ox + 1)3 —36x2 — 12x — 1

9(9x + 1)3
c(x+§)?  c(d32x* —360x> — 180x% — 24x — 1)

C8(9x+1)? 648(9x + 1)

F(X)=/ fu) =
0

G(X)=/ g(u)
0

’

Then, the system (3.15) has a center if and only if G(x) is a function of F(x). It is
easy to verify that

Tl 1
G(x)—[ﬁF () = 755 FOO + 12— e

+ S P20 + S F3x) + o(F4(x))
16 D :

T —9F(x)]c

which satisfies

F2(0)[27F?(x) — 12F (x) + 4] ¢
— 16G(x)[81F?(x) — 18F(x) + 4] ¢ + 15552G*(x) = 0.

So the origin is a nilpotent center.

For the remaining four cases (9)—(12), we will only consider u = /3, since for
nw= —\/5, we can use the transformation u = x, v = —y, T = —¢ to obtain the same
system as that obtained for  =+/3.
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When the condition (9) holds for u=+/3, system (2.5) can be written as

d 1

d_)tc = my(lo + 6ai1x — 3bypx)(10 + 4aj1x + 3byrx),
d 4

d—f = —8x* +4V3xy + gx/g(Zau — b2)x*y + by’

(4ay; — 17bp)(2ar; — b02)2y3
300043 '

1
+ 5(2011 — bo2)boaxy* +

which has three invariant algebraic curves:

Sio1 =104 6a11x — 3bpx,

f102 = 10 +4aq11x + 3boax,

fl03 = — 120008/3x* + 18000x2y + 7200a; x>y — 3600b92x>y — 3000+/3y>
— 2400+/3a;1xy? 4 12007/3bgxy? — 480+/3a%,x%y? + 480+/3a1 1 boa x> y?
— 120+/3b3,x%y% 4 60a}, y> — 60a11bo2y’ + 15b3,y°
+ 3243, xy* — 48a7, bopxy? + 24a11bxy? — 4bj,xy°,

_1
and admits an inverse integrating factor /1o = f1013 f102 f103-
When the condition (10) holds for 1 =+/3, system (2.5) can be rewritten as

d 1

= = 3e¥(=5 +aux — 3b02)(5 + 6a11x — 3boax).
dy _ 3 \/— 4\/— 2 2
E = —8x” +4+43xy + g 3Q2ai1 — bo2)x“y + booy

(a1 — 2boo) (2ary — bp)? 32
7543 ’

1
+ 55 Oan = 17bp) Qar — b)xy? +

which has three invariant algebraic curves:

fi11 = —5+anx — 3byx,
fi12 =5+ 6aix — 3bpyx,

fi13 = — 3000+/3x* 4 4500x2y + 1800a;1x>y — 900bgrx>y — 750+/3y?
— 600\/§a11xy2 + 300x/§b02xy2 — 120\/§a%1x2y2 + 120\/§a11b02x2y2
- 30\/§b(2)2x2y2 + 60a},y> — 60ar1bny’ + 15b3,y°

+ Sa?lxy3 — 1261%1[902)6)73 + 6a11b(%2xy3 — bazxy3,

1
and admits an inverse integrating factor 111 = fi11 f1312 fi13.
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When the condition (11) holds for = +/3, system (2.5) can be similarly brought
into

d 1

d_); = gy(S + ajix — 3bypx)(5 4+ 4ar1x + 3bgax),

d 4

d—f = —8x7 +4v3xy + 2V3Qan — boo)x’y + bony?

(4ar1 — Thoz)(ar1 + 2b2)? 3
3753 ’

1 2 2\ ..2
+ g(—4a“ —aibe — 11by)xy” +

which has three invariant algebraic curves:

f121 =5+ anx — 3bppx,

fi122 =5+ 4ayx + 3bpx,

fi23 = 3000+/3x* — 4500x%y — 1800a;1x>y + 900bgrx>y + 750+/3y?
+ 600«/§a11xy2 - 300x/§b02xy2 + 120«/§af1x2y2 - 120«/§a11b02x2y2
+ 308/3b3,x%y? — 15a%,y® — 60a11bo2y” — 60b3,y°
—4a3 xy® — 9a} bopxy? + 12a11b3,xy° + 28b3,xy,

_1 1
and admits an inverse integrating factor /12 = f,] fi3, f123.
Finally, when the condition (12) for = /3 holds, system (2.5) becomes

dx 1

= 7Y@+ 12b0ox + 6bpx7 + 301037,

dy 1

d_f = o5 (=576x" + 288+/3xy + 288+ b’y + 72602’

+ 72b12xy? 4+ 24363,y — 3v/3baab12y?),
which has two invariant algebraic curves:

for =4+ 12bax + 6633 + 3b1px?,
for = — 288x* + 1444/3x%y + 1444/3bga x>y — 72y% — 144bgrxy?
— 7263522 y% + 6v/3635° — 3v/3b12y? + 4v/3bjxy?,

1
and admits an inverse integrating factor Iy = fg) foz.
The proof of Theorem 3.8 is complete. O

Similar to Theorem 3.5, we have a theorem on the number of limit cycles for the
system (2.5) when a3 =0. Since the proof is similar to that for Theorem 3.5, we state
the results without proof.
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Theorem 3.9 When az; = 0, system (2.5) can have at least 7 small-amplitude limit
cycles around the origin by small parameter perturbation, and 8 small-amplitude limit
cycles around the origin by the double bifurcation analysis.

To end this section, as a summary, we list the 15 center conditions obtained for
the generalized Kukles system (2.5), given in Theorems 3.3 and 3.8, in the following
theorem.

Theorem 3.10 The nilpotent origin of system (2.5) is a center if and only if one of the
following 15 conditions holds.

(1) bz = b21 = pu = 0;

(2) bos = ba1 = azy + 24a}; = az1 — 36a3, = boy — 2a1; = b1y + 1243, = 0;

(3) boz = by = b1y = 25ap; — 8ai, = 125a31 — 4aj, = Shy — 8pay; =0;

(4) boz = 529ap) — 17443, = 12167a3; — 43243, = 23boa — a1

= 23by; — 36 pay = 52912 — 6aj; = 0;

(5) az1 = bz = bzt = ay1 = by = 0;

(6) as1 = boz = ba1 = box — 2a11 = b1z — 2a21 = 0;

(7) az1 = bos = 3byy — 4ajp = by — ary = Yaz) — 2ai, =0;

(8) az1 = boz = Sba1 — 4(2ay1 — bop) = 25az1 — (a1 — boz2)(3air + boz)

= 25b12 + (2a11 — boz2)(a11 — 3bg2) = 0;

(9) a31 = bos = 5o —12boat = 25b12+3b%, = 25a21—9b3, = ay1 —2bp = 0;
(10) a31 = boz = by — 6boaju = 2b1y — 3b§, = 2a21 — b3, = 4ay; — 17y = 0;
(11) az1 = boz = ba1 — 2bpop = b12 + b%z =2ay + b(z)z =4ay; — Thy = 0;

(12) a3y = p* —3=9000bo3 — st (2a11 — bo)* (4ai1 — 17boz) = 5bay —41u(2a11 —bo)
= 5b12 — bpo (a1 — bpz) = 100az1 — 3(2ay; — boz) (4ay1 + 3bw) = 0;
(13) az; = pu? —3=225bo3 — 1(2a11 —bo2)(a11 —2by) = Sha1 —4u(2a11 —boo)
= 25b12+(2a11 —bo2)(9a11—17bg2) =25a21 +3(2a11—boz) (a11—3bo2) =0;
(14) a3y = > =3=1125bg3 — pu(ar; +2bo2)* (4ar1 —Thoz) = 5bay —4u(2ar; —boy)
= 25b1p+4a? +bopar; +11b%, = 25a21 — (4a11 +3bo2) (a11 —3boa) = 0;
(15) a3y = p* —3=T72bo3 — 11 bo2 (2b, —3b12) = o1 —4ubor =4az —3(2bg, +b12)
= 3b()2 - a11 = O

4 Conclusion

In this paper, the cubic Kukles systems with an extra 4th-order term, associated with
the nilpotent origin is studied. It is shown that such systems can have only 4 center
conditions, while 12 center conditions are obtained without this extra term. One of the
center conditions is an analytic center condition. Moreover, for the Kukles systems
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with the extra term, at least 8 limit cycles can bifurcate from the nilpotent singular
point, one more than that of the cubic Kukles systems.
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