
Qualitative Theory of Dynamical Systems            (2024) 23:8 
https://doi.org/10.1007/s12346-023-00863-3

A Complete Classification on the Center-Focus Problem of a
Generalized Cubic Kukles Systemwith a Nilpotent Singular
Point

Feng Li1 · Ting Chen2 · Yuanyuan Liu1 · Pei Yu3

Received: 25 March 2023 / Accepted: 28 August 2023
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023

Abstract
In this paper, we study the center-focus problem for a generalized cubic Kukles system
with a nilpotent singular point, which consists of a cubic systemwith an extra 4th-order
term. A complete classification is given on the center conditions which are explicitly
expressed in term of the system parameters. A total of 15 cases are obtained, among
them 4 for the generalized cubic Kukles system and 12 for the cubic Kukles system,
with one common for both. One of the center conditions is analytic. Moreover, it is
shown that 8 small-amplitude limit cycles can bifurcate in the neighborhood of the
singular point for the generalized cubic Kukles system, while only 7 small-amplitude
limit cycles can exist around the singular point for the cubic Kukles system. The
center-focus problem for the generalized cubic Kukles system with a nilpotent origin
is thoroughly solved.
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1 Introduction

Classical problems on the Kukles systemswith an elementary singular point have been
investigated intensively for many years. The center conditions and bifurcation of limit
cycles for the Kukles systems with an elementary singular point have been studied in
[9, 28, 29, 34]. In particular, the solution to the center problem of the cubic Kukles
system was obtained independently by Lloyd and Pearson [29], and Sadovskii [34]
using different methods. A predator–prey model which can be reduced to the Kukles
system was considered by Pitchford and Brindley [31], and Lloyd and Pearson [18],
in which bifurcation of limit cycles was analyzed in detail. The center problem for a
linear center perturbed by homogeneous polynomials (with odd or even degree), called
Kukles homogeneous systems, was proposed byGiné [11], and investigated byGiné et
al. [14, 15]. Recently, the Kukles system was reconsidered [30] by using the advanced
technique in symbolic computation to obtain the first seven focal values, which were
used to classify the center and isochronous center conditions of the Kukles system.
The extendedKukles systemswere also considered recently bymany researchers, with
attention paid to some classical problems such as center problem and isochronous
center problem, for example see [13, 16, 17, 33] and references therein. A class of
generalizations of the Kukles systems with an elementary singular point, described
by

dx

dt
= y (1 + kx + lx2),

dy

dt
= −x + a1x2 + 3a2xy + a3y2 + a4x3 + 3a5x2y + a6xy2 + a7y3,

(1.1)

was proposed by Bondar and Sadovskii [4], and further considered by Sadovskii
and Shcheglova [35], in which 25 center conditions were classified and all of them
were proved to be sufficient [4] and necessary [35]. Around the same time, Kushner
and Sadovskii [19] proposed a more generalized Kukles system with an elementary
singular point, which can be reduced to the following system,

dx

dt
= y(1 + kx + lx2 + mx3),

dy

dt
= −x + a1x2 + 3a2xy + a3y2 + a4x3 + 3a5x2y

+ a6xy2 + a7y3 + a8x4 + 3a9x3y + a10x2y2 + a11y4.

(1.2)

Center conditions were carefully studied in [36] for some even more complex gener-
alized Kukles systems. Averaging theory has been applied [32] to consider bifurcation
of limit cycles for a family of perturbed Kukles differential systems.

However, because of the computational difficulty, very little attention has been paid
to the Kukles systems with a nilpotent singular point. The following system,
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dx

dt
= y,

dy

dt
= a2xy + a3y

2 + a4x
3 + a5x

2y + a6xy
2 + a7y

3,

(1.3)

was studied by many authors, see for example [1, 2, 5, 11, 13–15] and references
therein. Alvarez and Gasull [2], who proved that 3 limit cycles can bifurcate from
the nilpotent singular point. Later, the result was improved by Liu and Li [25], who
showed that there can exist 4 limit cycles in a perturbed system of (1.3). Recently,
bifurcation of limit circles in a class of Z2-equivalent cubic planar differential systems
with two nilpotent singular points was studied by Li et al. to prove the existence of
6× 2 = 12 limit cycles. In another article [20], a class of generalized Kukles systems
with a nilpotent singular point, written as

dx

dt
= y(1 + a11x),

dy

dt
= b20x

2 + b11xy + b02y
2 + b30x

3 + b21x
2y + b12xy

2 + b03y
3,

(1.4)

was studied to derive the center conditions and investigate bifurcation of limit cycles,
and to prove the existence of 6 limit cycles around the nilpotent singular point.

In this paper, as a continuous work, we will consider the following system,

dx

dt
= y(1 + a11x + a21x

2 + a31x
3),

dy

dt
= b20x

2 + b11xy + b02y
2 + b30x

3 + b21x
2y + b12xy

2 + b03y
3,

(1.5)

which has a nilpotent singular point at the origin. Compared to the Kukles system (1.3)
and the generalized Kukles system (1.4), our proposed new system (1.5) contains three
more terms in the first equation dx

dt , in particular, including the 4th-order term a31x3y.
This work is motivated by the series results obtained from the study of Kukles system
and the generalized Kukles system, which promoted the research in this direction,
especially for the bifurcation of limit cycles in such polynomial systems. Our aim is
to demonstrate that the center problem becomes much more complex even for just
adding one 4th-order term, and to try developing new techniques in solving center
problem of more complex dynamical systems.

We will present a complete classification on the center conditions of the system
(1.5), showing that a total of 15 cases are classified, among them 4 for the case a31 �= 0
and 12 for the case a31 = 0, with one common for both. Moreover, we will show that
8 small-amplitude limit cycles can bifurcate in the neighborhood of the singular point
for the case a31 �= 0, while only 7 small-amplitude limit cycles can exist around the
singular point for a31 = 0.

The rest of the paper is organized as follows. In the next section, the classification
of the nilpotent origin will be given. In Section 3, the first eight Lyapunov constants
will be computed for the nilpotent foci, which are used to obtain the necessary center
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conditions, and they are further proved to be sufficient. An analytic center condition
is also classified. Finally, a conclusion is drawn in Section 4.

2 Classification of the Singular Point of System (1.5)

In this section, we present the classification on the nilpotent origin of system (1.5).
For the planar polynomial differential systems, described by

dx

dt
= P(x, y),

dy

dt
= Q(x, y), (2.1)

if its linear part has a double-zero eigenvalue and the matrix of the linearized system
at the origin is not identically null, then the origin of the system is called a nilpotent
singular (or critical) point. In [38], it is shown that there exist many different kinds of
topological phase constructions around a nilpotent singular point. Some early results
on this topic can be found in Sections 17–19 of [3].

Planar autonomous analytic systems with a nilpotent singular point can always be
transformed into the following form,

dx

dt
= �(x, y) = y +

∞∑

k+ j=2

akj x
k y j ,

dy

dt
= �(x, y) =

∞∑

k+ j=2

bkj x
k y j ,

(2.2)

by a proper linear transformation, where �(x, y),�(x, y) are analytic in the
neighborhood of the origin.

Suppose the equation,

�(x, f (x)) = 0, f (0) = 0, (2.3)

has an unique solution y = f (x), satisfying that

�(x, f (x)) = αk xk + o(xk), ak �= 0,
[
∂�(x, y)

∂x
+ ∂�(x, y)

∂ y

]

y= f (x)
= βnxn + o(xn).

(2.4)

By using Theorems 7.2 and 7.3 in [38], we have the following result.

Theorem 2.1 For system (2.4), the following holds:

The origin is a

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

degenerate point, if b20 �= 0;
saddle point, if b20 = 0, b30 > 0;
degenerate point, if b20 = 0, b30 < 0, b211 + 8b30 ≥ 0;
center or a focus, if b20 = 0, b30 < 0, b211 + 8b30 < 0.
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The origin is a nilpotent center or focus when b20=0, b30<0 and b211 + 8b30 < 0.
So we can always suppose that b211 + 8b30 = −16 in system (1.5). Otherwise, we can
change system (1.5) to

du

dτ
= v(1 + a11r

2u + a21r
3u + a31r

4u4),

dv

dτ
= r2(rb11xy + b02y

2 + b30r
4x3 + b21r

3x2y + b12r
2xy2 + b03r y

3),

by using the transformation, x = r2u, y = rv, and the time rescaling dt = rdτ . Then,
it can be shown [22] that the nilpotent origin is a center or focus if and only if b30 < 0,
and r6(b211 + 8b30) = −16 < 0, which leads to b11 = 4μ, b30 = −2 − 2μ2, under
which system (1.5) becomes

dx

dt
= y(1 + a11x + a21x

2 + a31x
3),

dy

dt
= 4μxy + b02y

2 − 2(1 + μ2)x3 + b21x
2y + b12xy

2 + b03y
3.

(2.5)

In the following, we will use (2.5) to study the original system (1.5).

3 Center Conditions of System (2.5)

In order to study center conditions, the only way is to compute the Lyapunov constants
of the system under consideration. There are many methods for computing the Lya-
punov constants, such as the inverse integrating method [25], the method of normal
forms [37], etc. In this paper, both the inverse integrating method and the method of
normal forms will be adopted, so that their results can be cross checked to guarantee
the correctness.

We first consider the case a31 �= 0 for which (2.5) is a generalized cubic Kukles
system, and then the case a31 = 0 for which (2.5) is a cubic Kukles system.

3.1 Center Conditions of System (2.5) for a31 �= 0

In order to simplify the analysis in finding the center conditions and the maximal
number of bifurcating limit cycles, we first suppose a11 �= 0 and use it to make a
scaling. Then, we consider the case a11 = 0 which will certainly not generate maximal
number of bifurcating limit cycles, but may have center conditions. With a11 �= 0, we
introduce the following scaling:

x = X

a11
, y = Y

a11
, τ = t

a11
,

a21 = A21a211, a31 = A31a311, b02 = B02a11, b21 = B21a11,

b12 = B12a211, b03 = B03a311,

(3.1)

into (2.5) to obtain the following scaled system,
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dx

dτ
= Y (1 + X + A21X

2 + A31X
3),

dy

dτ
= 4μXY + B02Y

2 − 2(1 + μ2)X3 + B21X
2Y + B12XY

2 + B03Y
3.

(3.2)

Then, once we obtain the center conditions from the system (3.2), we can easily use
(3.1) to get the center conditions for the original system (2.5).

In order to consider the center-focus problem of system (3.2), a powerful method it
to compute the so-called the generalized Lyapunov constants. For dynamical systems
associated with an elementary center, three methods are mainly used for computing
Lyapunov constants: themethodof normal forms, themethodof Poincaré returnmapor
focus value method, and the method of Lyapunov function. More details can be found,
for example, in [37] and references therein. The above mentioned three methods have
been used to study the center-focus problem associated with nilpotent critical points,
see for example [1, 5]. But the method of normal forms was only recently applied to
compute the so-called generalized Lyapunov constants in determining the lower bound
of cyclicity [2, 37]. The method developed in [37] is a generalization of the approach
for computing the focus values associated with the singular point of elementary center
to the case associated with the singular point of nilpotent point. All computations are
purely algebraic for solving linear polynomial equations in an iterative procedure,
and thus the computation is significantly efficient. The program developed using the
computer algebra system – Maple can be easily executed by an end-user to obtain
the normal form or the generalized Lyapunov constants. Therefore, in this paper, we
apply the method of normal forms [37] and its associated Maple program to compute
the Lyapunov constants of the system (3.2), given in the following theorem.

Theorem 3.1 When a31a11 �=0, the first 8 Lyapunov constants at the origin of system
(3.2) are given as follows:

L1 = 1

5

[
5B21 + 4μ(B02 − 2)

]
,

L2 = 1

35

[
B21(65A21 − 30B12 − B2

02 + 9B02 − 4) + 10(21 + 5μ2)B03

− 40μ(2A21 + A31 − B12)
]
,

L3 = 1

27000

{
44125B03B

2
21 + [

40A31(1081B02 + 3868) − 256500μB03

− 400(454A2
21+123B2

12)+189800A21B12+16A21(1112B
2
02+5667B02−8757)

− 8B12(833B
2
02 + 5063B02 − 7008) + 8(2196B2

02 − 6604B02 + 2624)
]
B21

− 48
[
1200(9A21 − 4B12) − 791B2

02 − 7591B02 + 23146
]
B03

+ 1600μ
[
6(11A21 − 6B12 − 4)A31 + 142A2

21 + 41B2
12

− 153A21B12 + 72A21 − 36B12
]}

,

L4 = −1

160224243656400000

{
125B03(11950520375044135A21 − 13675341705133535B12

+ 1132574198104706B2
02 − 13314054421345314B02 − 1461890469098436)B2

21

+[
112104949701150000A2

31 + 100A31
(
21501738022823625μB03
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+ 500A21(63923003350555B02 + 521300229167026)

− 8330B12(2714562059597B02 + 17929731667646) + 1685974367750722B3
02

− 24025434900710222B2
02+105822631355719914B02+883278821847120084

)

− 156062574990000B2
03(40317+14573μ2) − 7500μB03(2491547435642281A21

− 1658506710437731B12+14722849389811216)−18229032669417900000A3
21

+ 2000A2
21(14653641096336150B12 − 67966702067004B2

02

+ 11907433842385217B02 − 50677420717253798)

− 200A21
(
10B12(7884191910763950B12 + 12222351922188939B02

− 51671506143086548) − 107052696707698B4
02 + 1746566514541716B3

02

− 6526202245432629B2
02−305749254823012585B02+359341684006642976

)

+ 2000B12
(
1415543485778100B2

12 + 40B12(77754173334187B02

− 325982227731669) − 13024257916073203B02 + 13713279937386821
)

+ 8(167973039509422B6
02−3604144943410354B5

02+38196182144361745B4
02

− 314027474456124170B3
02 + 2016088131205650555B2

02

− 4230716226799244974B02 + 1576816387639846488)
]
B21

+ 208083433320000μ(40317+14573μ)B2
03−

[
52020858330000A31(1188−5643B02

+ 57278μ2) + 7440000A2
21(6975604460847 − 59534982311μ2)

+ 74970000B2
12(171292589973−3860104507μ2)−30000A21B12(1724684386382607

− 29770381203185μ2) + 30000A21(72427326580007B
2
02 − 2922070221604217B02

+ 14086990920322148 + 140200837275646μ2) + 6000B12(37332698609101B
2
02

+ 7028813384491871B02 − 33240523945545311 − 187486063469005μ2)

+ 2400(42503280435413B4
02 − 840097072912349B3

02 + 11844823687901162B2
02

− 137423809804840476B02 + 278177525762443488 + 619048214127000μ2)
]
B03

− 40000μ
[
4213689524730A2

31 − (264481516712790A2
21 − 292061524988571A21B12

+ 81875773202853B2
12 + 1066400289515844A21 − 553967364982377B12

− 390970428808920)A31 − (2A21 − B12)(285236198374521A
2
21

− 325309999165989A21B12 + 94369565718540B2
12 + 1415022304995647A21

− 802740822864698B12 + 660741428908620)
]}

,

where Lk, k = 2, 3, 4 have been simplified by using the Groebner basis approach,
and the lengthy Lk, k = 5, 6, 7, 8, are not listed here for brevity.

Based on the Lyapunov constants given in Theorem 3.1, we obtain the following
result.

Proposition 3.1 When a31a11 �= 0, the first 8 Lyapunov constants at the origin of
system (2.5) are zero if and only if one of the following conditions holds:
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(a) b03 = b21 = μ = 0;
(b) b03 = b21 = a21 + 24a211 = a31 − 36a311 = b02 − 2a11 = b12 + 12a211 = 0;
(c) b03 = b02 = b12 = 25a21 − 8a211 = 125a31 − 4a311 = 5b21 − 8μa11 = 0;
(d) b03 = 529a21 − 174a211 = 12167a31 − 432a311 = 23b02 − a11

= 23b21 − 36μa11 = 529b12 − 6a211 = 0.

Proof We first apply the Lyapunov constants at the origin of system (3.2) to obtain
the conditions and then use (3.1) to get the conditions for system (2.5), as listed in the
proposition. In general, the center condition candidates found by setting Lk = 0, k =
1, 2, . . ., are possible center conditions, since some center conditions might bemissed.
Unless one can show that all such conditions are obtained, then after the sufficiency of
these conditions is proved, one can claim that the obtained center condition candidates
are necessary and sufficient. In the following,wewill use theLyapunov constants given
inTheorem3.1 to show the details that the conditions (a), (b), (c) and (d) are all possible
center condition candidates which can be obtained from the Lyapunov constants.

It is easy to see that the equation L1 = 0 yields two cases: (I) B21 = 0 and (II)
B21 �= 0.

(I) For B21 = 0, there are two sub-cases: (I-a)μ = 0 (B02 is free), and (I-b) B02 = 2
(μ �= 0).

(I-a) For this case, we have B21 = μ = 0, which leads to L2 = 6B03. Setting L2 = 0
gives B03 = 0, yielding L3 = L4 = · · · = L8 = 0. Hence, we obtain the
first condition for the system (3.2) as B21 = B03 = μ = 0. Then using the
transformation (3.1) directly yields the condition (a) for system (2.5).

(I-b) For this case, we have

L2 = 2

7

[
(21 + 5μ2)B03 − 4(A31 + 2A21 − B12μ

]
.

Setting L2=0 yields B03= 4(A31+2A21−B12)μ
5μ2+21

under which

L3 = 8μ

27(5μ2 + 21)

{
6M1A31 + 2(2A21 − B12)

[
(39 + 71μ2)A21

+(57 + 41μ2)B12 + 36(1 + μ2)
]}

,

where

M1 = (3 + 11μ2)A21 − 6(1 + μ2)B12 − 4(9 + μ2).

There are two possibilities: (I-b-i) M1 = 0 or (I-b-ii) M1 �= 0.

(I-b-i) When M1 = 0, we have A21 = 6(1+μ2)B12+4(9+μ2)

3+11μ2 , for which L3 becomes

L3 = − 8μ

27(5μ2 + 21)
(B12 − 8)

[
(5μ2 − 3)B12 − (136μ2 + 72)

]
.
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Note that if A21 = 0, i.e., B12 = − 2(9+μ2)

3(1+μ2)
, leading to L3 �=0. Thus, L3 = 0

gives either the solution B12 = 8, or the solution B12 = 8(17μ2+9)
5μ2−3

if B12 �= 8,

noticing that μ2 = 3
5 yields L3 �= 0 under the condition B12 �= 8. When

B12 = 8, we have A31 = − 17(5μ2+21)
41μ2+9

, and then L3 = L4 = L5 = 0, but

L6 �= 0. When B12 = 8(17μ2+9)
5μ2−3

, (5μ2−3 �= 0), A21 = 4(19μ2+27)
5μ2−3

. Then, we
obtain

L4 = 128μ(μ2 + 9)

55(5μ2 + 21)2(5μ − 3)3
L4,

L5 = − 64μ(μ2 + 9)

1365(5μ2 + 21)2(5μ − 3)3
L5,

L6 = − 16μ(μ2 + 9)

51975(5μ2 + 21)2(5μ − 3)3
L6,

where Lk, k = 4, 5, 6 are polynomials in A31 and μ. With the help of Maple,
eliminating A31 and μ from these three polynomials results in two resultants,
one of which is positive, showing that there do not exist solutions for A31 and
μ such that L4 = L5 = L6 = 0 simultaneously, which indicates that the case
(I-b-i) does not have possible solutions such that Lk = 0, k = 1, 2, . . . , 8.

(I-b-ii) For this case, we have

A31 = 1

3M1
(2A21 − B12)

[
(39 + 71μ2)A21

+ (57 + 41μ2)B12 + 36(1 + μ2)
]
, (B12 �= 2A21),

(3.3)

under which L3 = 0. Then, Lk, k = 4, 5, 6 are obtained as

L4 = − 4μ(2A21 − B12)

495M2
1

L̃4,

L5 = 2μ(2A21 − B12)

12285M3
1

L̃5,

L6 = μ(2A21 − B12)

5613300M3
1

L̃6,

where L̃k, k = 4, 5, 6 are polynomials in A21, B12 and μ. With the help of
Maple, eliminating A21 from these three polynomials yields solutions A21 =
A21(B12, μ) and two resultants:

R45 = C1 R̃45, R46 = C1 R̃46,

where the common factor C1 is given by

C1 = B12 (μ2 + 1)(μ2 + 9)(B12 + 12)(B12 + 8)
×[

(5μ2 − 3)B12 − 8(17μ2 + 9)
]
,
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and R̃45 and R̃46 are polynomials in B12 and μ. The common factor C1 has
three possible solutions for B12: B12=−12 generates the condition (b); while

the other two solutions B12 = −8 and B21 = 8(17μ2+9)
5μ2−3)

yield M1 = 0, as

discussed above. The resultant of R̃45 and R̃46 with respect to B12 has a factor
μ2−3 for which Lk, k = 4, 5, 6, 7, 8 have a common factor:

M2 = 826208126B9
12 − 51264404745B8

12 − 1999127381612B7
12

−58287364950288B6
12 − 1350601624681984B5

12

−19328008337820160B4
12 − 171358789352458240B3

12

−822123861520384000B2
12 − 1025400150491136000B12

+3403321389875200000,

for which it can be shown that A31= B03=0. The above discussions indicate
that the case (I-b-ii) also does not yield additional conditions such that Lk =
0, k = 1, 2, . . . , 8.

(II) Now, we consider the case B21 �= 0. L1 = 0 gives

B21 = − 4

5
μ (B02 − 2) �= 0.

Then, setting L2=0 we have the solution,

B03 = 4μ

50(5μ2 + 21)

[
50A31 + 5(13B02 − 6)A21 − 10(3B02 − 1)B12

−(B02 − 2)(B2
02 − 9B02 + 4)

]
.

Next, solving L3 = 0 we obtain the solution A31 = A31n
A31d

, where

A31n = −2500
[
(227μ2 + 111)B02 − 9(11μ2 + 3)

]
A2
21

+125
{
5
[
(949μ2 + 933)B02 − 16(23μ2 + 21)

]
B12

−(473μ2 − 375)B3
02 − 9(133μ2 + 293)B2

02

+(3014μ2 + 2118)B02 − 96(11μ2 + 3)
}
A21

−1250(3B02 − 1)(41μ2 + 57)B2
12 + 125

[
(257μ2 − 15)B3

02

+(563μ2 + 1155)B2
02 − 8(187μ2 + 195)B02

+4(121μ2 + 105)
]
B12 + (B02 − 2)

[
(1765μ2 + 2373)B4

02

−8(1265μ2 − 177)B3
02 − (8515μ2 + 34323)B2

02

+2(12635μ2 + 11307)B02 − 24(365μ2 + 93)
]
,

A31d = 375
[
100(11μ2+3)A21−600(μ2+1)B12−(125μ2+1197)B2

02

+8(25μ2 + 81)B02 − 12(25μ2 + 9)
]
.
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If A31d=0, then L3 does not contain A31, and A21 can be solved from A31d=0,
given by

A21 = 600(μ2+1)B12+(125μ2+1197)B2
02−8(25μ2+81)B02+12(25μ2+9)

100(11μ2 + 3)
.

Then, eliminating B12 from L3 = L4 = L5 = 0 yields the solution for B12,
and two resultants from which the solution Ã31 for A31 is obtained by using
the Maple command “eliminate”, with a resultant which contains the following
three factors,

(B02 − 2)(3B02 − 1)
[
(97μ2 + 1137)B2

02 + 12(μ2 − 39)B02 − 12(μ2 + 1)
]
.

But these three factors happen to be involved in the numerator of the solution
Ã31, implying that letting A31d = 0 does not yield conditions satisfying Lk =
0, k = 1, 2, . . . , 8.
Now, assuming A31d �= 0, we have the solution A31 = A31n

A31d
such that L3 = 0.

Then, Lk, k = 4, 5, 6, 7, become

L4 = − 4μ

116015625A2
31d

L4b,

L5 = 2μ

14396484375A3
31d

L5b,

L6 = μ

274086914062500A3
31d

L6b,

L7 = − μ

5451588720703125000A4
31d

L7b,

where Lkb, k = 4, 5, 6, 7, are lengthy polynomials in μ2, B02, A21 and
B12. Eliminating μ2 from these four polynomials gives a solution μ̃2 =
μ̃2(A21, B12, B02), and three resultants R45, R46 and R47, which have two
common factors F1 and F2:

F1 = 50A21 − 25B12 − B2
02 + 9B02 − 14,

and

F2 = 12500B02A2
21 − 25

[
50(17B02−4)B12− 2053B3

02+1068B2
02+64B02+24

]

A21 + 2500(3B02−1)B2
12−100(7B02−4)(37B2

02+2B02−2)B12

− (B02 − 2)(1081B4
02 − 8023B3

02 + 4394B2
02 − 392B02 + 96).

F1 = 0 yields μ2 = −9 < 0. To verify whether F2 = 0 can produce
the conditions such that Lk = 0, k = 1, 2, · · · , 8, we use the Maple com-
mand eliminate({F2, L4b, L5b, L6b}, {A21, μ

2}) to find that no resultants can
be obtained from this operation, implying that the factor F2 does not yield the
required conditions.
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Finally, in order to find if there exist the required conditions from setting the
resultants R45=R46=R47=0, we use the Maple built-in command resultant to
obtain the two resultants:

R456 = resultant(R45,R46, A21) = C2 R̃456,

R457 = resultant(R45,R47, A21) = C2 R̃457,
(3.4)

where the common factor C2 contains four factors, given by

C2 = [
5B12 + B02(B02 − 2)

]
(25B12 + 11B2

02 + B02 + 4)
×(25B12+17B2

02−43B02+18)(25B12+11B2
02−19B02−6),

and R̃456 and R̃457 are lengthy polynomials in B12 and B02. Each of the four
factors in C2 has a linear solution for B12, which is then used to determine
A31 = A31n

A31d
. It is found that the first three factors yield μ̃2 = 3 and A31n = 0

(A31d �= 0), while the last factor gives μ̃2 = −1. Hence, these four factors do
not produce the required conditions.
Next, the lengthy polynomial factors R̃456 and R̃457 in (3.4), with the command
resultant, yield the following factors:

C3 = (B02 − 2)160B5
02(23B02 − 1)(3B02 − 1)35(2B02 + 1)13

×(3B02 + 4)2(23B02 − 6)2(11B02 − 2)(11B02 + 3) F3 F4,

where

F3 = 334B3
02 − 339B2

02 + 98B02 − 12,
F4 = 70127B5

02−107890B4
02+58365B3

02−13790B2
02+100B02+216.

There are a total of 11 factors inC3. Since B02 −2 �=0, we only need to consider
the remaining 10 factors. For each of the 10 factors, we use L4b, L5b and L6b
to eliminate A21 to get a solution Ã21 for A21, and two resultants. Verifying the
common factors of the two resultants we obtain the following results. First, for
the 6 factors, 3B02−1, 2B02+1, 3B02+4, 23B02−6, 11B02−2 and 11B02+3,
we can show that these factors yield either A31n = 0, or A31n = A31d = 0.
For example, for the solution B02 = 1

3 from the factor 3B02−1, we obtain the
following common factors from the two resultants:

B12(μ
2 − 3)

[
216(μ2 + 1)B12 + μ2 − 15

][
9(μ2 + 9)B12 − 4(4μ2 + 3)

]
.

Then,we can use the formulas A31n and A31d, aswell as the solution Ã21 obtained
above to verify that A31n = 0 for the first two factors; and A31n = A31d = 0 for
the other two factors. Similarly, we can prove that the other five factors yield
either A31n=0 or A31n= A31d=0.
Next, consider the factor B02. Using B02=0 we obtain the common factors:

B12(25B12 + 2)
[
(625B2

12 + 650B12 + 78)μ2 + 3 (1875B2
12 − 50B12 − 6)

]
,
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which gives four roots:

B12 = −13μ2 + 3 ± √
91μ4 − 762μ2 + 171

25(μ2 + 9)
, − 2

25
, 0.

The first two roots yield A31n= A31d =0, and the third root gives A31n=0. For
the last root, we obtain the solution:

B03 = B02 = B12 = 0, A21 = 8

25
, A31 = 4

125
, B21 = 8

5
μ,

which, with the transformation (3.1), leads to the condition (c).
From the factor 23B02 − 1, we have the solution B02 = 1

23 , and then obtain the
common factors from the two resultants, yielding the following roots:

B12 = −156273μ4 + 64326μ2 + 28215 ± √
�

8464(47μ4 + 438μ2 + 135)
, − 36

529
,

6

529
,

where

� = 10997677537μ8 − 151771646796μ6 − 105265288170μ4

− 22658655852μ2 − 1489591215.

Similarly, we can show that the first two roots yield A31n = A31d = 0, and the
third root gives A31n=0. For the last root, we obtain the solution:

B03 = 0, B12 = 6

529
, A21 = 174

529
, A31 = 432

12167
, B21 = 36

23
μ,

under which Lk = 0, k = 1, 2, . . . , 8. Then, using the transformation (3.1) to
the above parameter solutions, we obtain the condition (d) in Proposition 3.1.
For the factors F3 and F4, it is easy to show that F3 = 0 has one real solution,
and F4 = 0 has three real solutions. But it can be proved that none of these four
real solutions can yield a common factor in R̃456 and R̃457.

The proof of Proposition 3.1 is complete. ��
Next, we consider the case a31 �=0, a11 =0. For this case, we apply the following

scaling

x = X
3
√
a31

, y = Y

3
√
a231

, τ = t
3
√
a31

,

a11 = A11 3
√
a31, a21 = A21

3
√
a231, b02 = B02 3

√
a31,

b21 = B21
3
√
a31, b12 = B12

3
√
a211, b03 = B03a31,

(3.5)

into (2.5) yields the scaled system,

dx

dτ
= Y (1 + A21X

2 + X3),
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dy

dτ
= 4μXY + B02Y

2 − 2(1 + μ2)X3 + B21X
2Y + B12XY

2 + B03Y
3. (3.6)

Similarly, we apply the method of normal forms [37] to compute the Lyapunov
constants of the system (3.6), which are given in the following theorem.

Theorem 3.2 When a31 �= 0, a11 = 0, the first 8 Lyapunov constants at the origin of
system (3.6) are

L1 = B21 + 4

5
μB02,

L2 = 1

35

[
10B03(5μ

2 + 21) + B21(65A21 − 30B12 − B2
02) − 40μ

]
,

L3 = − 1

27000

{
B03

[
57600(9A21 − 4B12) − (44125B2

21 + 37968B2
02)

]

+ 40B21(4540A
2
21 + 1230B2

12 − 1081B02) − 8A21(2224B
2
02B21

+ 23725B12B21 + 13200μ) + 8B12(833B
2
02B21 + 7200μ)

}
,

L4 = 1

160224243656400000

{
156062574990000B2

03B21(14573μ
2 + 40317)

−25B03
[
297600A2

21(59534982311μ
2 − 6975604460847)

+2998800B2
12(3860104507μ

2 − 171292589973)

−1200A21B12(29770381203185μ
2 − 1724684386382607)

+4165B2
21(1359632890882B

2
02 − 16416976836895B12)

−25A21(3476511675840336B
2
02 − 2390104075008827B2

21)

−349860(25609808684B2
02B12 − 245832481825B21μ)

−233146704B02(17501062B
3
02 − 50363775)

]

+300000B21(60763442231393A
3
21 − 9436956571854B3

12)

+12000A2
21(11327783677834B

2
02B21 − 2442273516056025B12B21

−881605055709300μ) + 60000B2
12(262806397025465A21B21

−54583848801902μ) + 11682460999542840000A21B12μ

−8B21
[
125B02(3196150167527750A21 − 2261230195644301B12)

+2676317417692450A21B
4
02 + 693889(242074798B6

02

+30371831225B3
02 + 20195043750)

]}
,

...

where Lk, k = 2, 3, 4 have been simplified by using the Groebner basis approach,
and the lengthy polynomials L5 and L6 are omitted here for brevity.

Based on the Layponov constants given in Theorem 3.2, we have the following
result.
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Proposition 3.2 When a31 �= 0, a11 = 0, except for the condition (a) in Proposition
3.1, there do not exist conditions such that the first 6 Lyapunov constants at the origin
of system (2.5) are zero.

Proof Since when a31 �= 0, a11 = 0, the original system (2.5) is equivalent to the
system (3.6), we consider the Lypunov constants at the origin of the system (3.6),
given in Theorem 3.2.

Similar to proving Proposition 3.1, we have two cases: (I) B21=0 and (II) B21 �=0.

(I) For this case, there are two sub-cases: (I-a)μ=0 (B02 is free), and (I-b) B02=0
(μ �=0).

(I-a) When μ=0, it is easy to get B03=0 from L2=0, yielding the condition (a) in
Proposition 3.1.

(I-b) When B02 =0 (μ �=0), we have B03 = 4μ
5μ2+21

�=0 under which L2 =0. Then,
L3 is given by

L3 = 16μ[(11μ2 + 3)A21 − 6(μ2 + 1)B12]
9(5μ2 + 21)

.

L3 = 0 yields two solutions: either A21 = B12 = 0, or A21 = 6(μ2+1)
11μ2+3

B12 �= 0.
When A21= B12=0, we have L3=L4=L6=L7=0, but

L5 = −64μ(μ2 + 9)(395μ4 + 118μ2 − 21)

91(5μ2 + 21)3
,

L8 = −256μ(μ2+9)(6911555μ8+6470470μ6+147264μ4−422982μ2−11907)

25925(5μ2 + 21)5
.

It is obvious that L8 �= 0 when L5 = 0. Similarly, we can prove that when

A21= 6(μ2+1)
11μ2+3

B12, L2=L3=0, while L4=0 yields L5 �=0.

(II) For this case, B21 �=0. L1=0 gives B21=− 4
5μB02 �=0. Then,

L2 = 2

175

{
25(5μ2 + 21)B03 + 2

[
B02(B

2
02 − 65A21 + 30B12) − 50

]
μ

}
.

Considering L2=0, there are two cases: (II-a) B03=0 and (II-b) B03 �=0.
(II-a) For B03 = 0, L2 = 0 gives B12 = 1

30B02
[50 + B02(65A21 − B2

02)]. Then, L1 =
L2 =0, and we can use L3, L4 and L5 to show that L5 �=0 when L3 = L4 =0
since there are only two free parameters A21 and B02 are involved in these
Lyapunov constants.

(II-b) When B03 �=0, we obtain

B03 = 2μ[50 − B02(B2
02 − 65A21 + 30B12)]

25(5μ2 + 21)
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from L2=0. Then, L3 is a linear function inμ2. Solvingμ2 from L3=0 yields

μ̄2 = 3μ̄2
n

5μ̄2
d
, where

μ̄2
n = −625B02(148A

2
21−311A21B12+114B2

12)+625B3
02(25A21−B12)

− 37500(A21 − 2B12) + 7B2
02(113B

3
02 + 21375),

μ̄2
d = 125B02(908A

2
21−949A21B12+246B2

12)+25B3
02(473A21−257B12)

+ 7500(11A21 − 6B12) − B2
02(353B

3
02 + 9375).

If μ̄2
d = 0, then μ is free, and L3 = 0 implies μ̄2

n = 0. Then, eliminating A21

from the equations: μ̄2
d = μ̄2

n =L4 = 0 yields two resultants which do not have
common factors. This implies that μ̄2

d = 0 does not yield conditions such that
L3=L4=· · ·=0. So assuming μ̄2

d �= 0, we have

L4 = − 9216μ[5(13A21 − 6B12)B02 − B3
02 + 50]2

4296875(5μ2 + 21)2(μ̄2
d)

2
L4c,

L5 = − 221184μ[5(13A21 − 6B12)B02 − B3
02 + 50]3

35546875(5μ2 + 21)3(μ̄2
d)

3
L5c,

L6 = 1536μ[5(13A21 − 6B12)B02 − B3
02 + 50]3

93994140625(5μ2 + 21)3(μ̄2
d)

3
L6c,

L7 = − 12288μ[5(13A21 − 6B12)B02 − B3
02 + 50]4

20772705078125(5μ2 + 21)4(μ̄2
d)

4
L7c,

where L4c, L5c, L6c and L7c are polynomials in A21, B12 and B02. Eliminating
A21 from L4c, L5c, L6c and L7c results in a solution for A21, and three resultants,
R45c = G1R45d, R46c = G1R46d, and R47c = G1R47d, which have a common
factor,

G1 = 36250B02B
2
12+1250(103B3

02−540)B12+B2
02(44872B

3
02−1798875).

Then, eliminating B12 from G1, L4c, L5c and L6c yields a solution for B12, and
three resultants which have a common factor,

G2=18125B02A21
2 + 250(137B3

02 − 600)A21 + 3B2
02(3107B

3
02 − 67000).

Now, eliminating A21 and B12 from G1, G2, L4c, L5c and L6c shows that no
resultants can be obtained, implying that the common factors G1 and G2 do
not yield the required conditions.
Finally, we consider the possibility fromR45d, R46d and R47d which are lengthy
polynomials in B12 and B02. Using the Maple built-in command resultant we
obtain two resultants:

R4546d = resultant(R45d,R46d, B12),

R4547d = resultant(R45d,R47d, B12),
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which do not have common factors, implying that the polynomials R45d, R46d
and R47d do not have possible solutions such that Lk = 0, k = 1, 2, . . . , 8.

Summarizing the above results we have shown that when a31 �= 0, a11 = 0, except
for the case (a) in Proposition 3.1, there are no more solutions such that the first 8
Lyapunov constants vanish. In otherwords, the case a11=0 is included in the condition
(a) in Proposition 3.1.

This completes the proof of Proposition 3.2. ��
Now, we prove that the four conditions given in Proposition 3.1 are necessary and

sufficient for the origin of system (2.5) to be a center.

Theorem 3.3 When a31 �= 0, the nilpotent origin of system (2.5) is a center if and only
if one of the 4 conditions in Proposition 3.1 holds.

Proof The necessity has been shown in the proof of Proposition 3.1, since only those
four conditions satisfy Lk = 0, k = 1, 2, . . . , 8. In the following, the sufficiency will
be proved one by one. The main idea of proving the sufficiency is to transform the
system (2.5) under eachof the four conditions to aLiénard systemso that twoprimitives
are formed for proving the sufficiency. More details on the theory and methodology of
this development can be found in [6–8, 10, 12]. More precisely, Cherkas established
the method [6, 7], which was further improved and generalized in [8, 10, 12], from
which we particularly apply Corollary 6 in [12] to prove the sufficiency of a center in
Liénard systems. The detailed steps can be seen in the following proof.

When the condition (a) in Proposition 3.1 holds, system (2.5) can be rewritten as

dx

dt
= y(1 + a11x + a21x

2 + a31x
3),

dy

dt
= −2x3 + b02y

2 + b12xy
2,

which is obviously a revertible system (symmetric with respect to the x-axis).
When the condition (b) holds, system (2.5) becomes

dx

dt
= (1 − 2a11x)(1 − 3a11x)(1 + 6a11x)y,

dy

dt
= −2(x3 − a11y

2 + 6a211xy
2 − 2xyμ + x3μ2),

which can be changed into a Liénard system in the form of

dx

dτ
= y,

dy

dτ
= −2(x3 − a11y2 + 6a211xy

2 − 2xyμ + x3μ2)

(1 − 2a11x)(1 − 3a11x)(1 + 6a11x)

= p0(x) + p1(x)y + p2(x)y
2,

(3.7)
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by dτ = (1 − 2a11x)(1 − 3a11x)(1 + 6a11x) dt . Now, we construct

W1(x) = (p0(x)p1(x)p2(x) − p1(x)p0′(x) + p0(x)p1′(x))
p1(x)3

,

W2(x) = W ′
1[x]p0(x)
p1(x)2

.

Then, the system (3.7) has a center if and only ifW1(x) −W1(y) andW2(x) −W2(y)
have a common factor with the form x + y + h.o.t. It is easy to verify that

W1(x) − W1(y) =9a211(x − y)(1 + μ2)

2μ2 h1(x, y),

W2(x) − W2(y) =9a211(x − y)

2μ2 h1(x, y)(1 − 3a11x − 3a11y)(1 + μ2)2

× (1 + 3a11x − 18a211x
2 + 3a11y + 18a211xy − 18a211y

2),

where

h1(x, y) = −x + 2a11x
2 − y + 2a11xy + 2a11y

2,

is a common factor, implying that the origin of the system is a nilpotent center.
When the condition (c) is satisfied, system (2.5) can be rewritten as

dx

dt
= 1

125
(5 + a11x)(5 + 2a11x)

2y,

dy

dt
= − 2

5
x(5x2 − 10yμ − 4a11xyμ + 5x2μ2),

which can be changed into a Liénard system,

dx

dτ
= y,

dy

dτ
= − 50x((5x2 + 5x2μ2) − y(10μ + 4a11xμ))

(5 + a11x)(5 + 2a11x)2

= p0(x) + p1(x)y + p2(x)y
2,

(3.8)

by dτ = (5+a11x)(5+2a11x)2

125 dt . Similar to the proof for the case (b), let

W1(x) = p0(x)p1(x)p2(x) − p1(x)p0′(x) + p0(x)p1′(x)
p1(x)3

,

W2(x) = W ′
1[x]p0(x)
p1(x)2

.
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Then, the system (3.8) has a center if and only ifW1(x) −W1(y) andW2(x) −W2(y)
have a common factor in the form of x + y + h.o.t. It is easy to verify that

W1(x) − W1(y) = a211(x − y)(1 + μ2)

20(5 + 2a11x)(5 + 2a11y)μ2 h2(x, y),

W2(x) − W2(y) = − a211(x − y)(1 + μ2)2(5 + a11x + a11y)

400(5 + 2a11x)2(5 + 2a11y)2μ4

× (25 + 5a11x + 5a11y + 2a211xy)h2(x, y),

where
h2(x, y) =5x + 5y + 2a11xy,

is a common factor, showing that the origin of the system is a nilpotent center.
When the condition (d) is satisfied, system (2.5) can be rewritten as

dx

dt
=(1 + 6b02x)(1 + 8b02x)(1 + 9b02x)y,

dy

dt
= − 2x3 + b02y

2 + 6b202xy
2 + 4xyμ + 36b02x

2yμ − 2x3μ2,

which can be changed into a Liénard system,

dx

dτ
= y,

dy

dτ
= −2x3 + b02y2 + 6b202xy

2 + 4xyμ + 36b02x2yμ − 2x3μ2

(1 + 6b02x)(1 + 8b02x)(1 + 9b02x)
,

(3.9)

by dτ = (1+ 6b02x)(1+ 8b02x)(1+ 9b02x)dt . Similar to the proof for the case (b),
let

W1(x) = p0(x)p1(x)p2(x) − p1(x)p0′(x) + p0(x)p1′(x)
p1(x)3

,

W2(x) = W ′
1[x]p0(x)
p1(x)2

.

Then, the system (3.9) has a center if and only ifW1(x) −W1(y) andW2(x) −W2(y)
have a common factor in the form of x + y + h.o.t. It is easy to verify that

W1(x) − W1(y) = 27b202(x − y)(1 + μ2)

4(1 + 9b02x)2(1 + 9b02y)2μ2 h3(x, y),

W2(x) − W2(y) = − 27b202(x − y)(1 + μ2)2

16(1 + 9b02x)4(1 + 9b02y)4μ4 h3(x, y)

×(1 + 18b02x + 108b202x
2 + 216b302x

3 + 18b02y

+324b202xy + 1944b302x
2y + 3888b402x

3y + 108b202y
2

+1944b302xy
2 + 10935b402x

2y2 + 17496b502x
3y2
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+216b302y
3 + 3888b402xy

3 + 17496b502x
2y3),

where
h3(x, y) = x + 8b02x

2 + y + 26b02xy + 144b202x
2y + 8b02y

2

+ 144b202xy
2 + 648b302x

2y2,

is a common factor, showing that the origin of the system is a nilpotent center. ��
Furthermore, we want to prove that under the condition (a) in Proposition 3.1, the

origin of system (2.5) is an analytic center. To prove this, we apply the definitions and
relative theorems given in [5, 27], which are listed below for convenience. It should
be noted that Theorems 6 and 12 in [27] are only applicable for cubic-order systems.

Lemma 3.1 [5, 27] The origin of system (2.5) is an analytic center if and only if the
origin of system (2.5) is a center and for any natural number k, Lk = 0.

Lemma 3.2 [5, 27] If system (2.5) is symmetric with respect to the x-axis, then the
origin of system (2.5) is an analytic center.

For system (2.5), we have the following result.

Theorem 3.4 The origin of system (2.5) is an analytic center if and only if the condition
(a) in Proposition 3.1 is satisfied, i.e.,

b03 = b21 = μ = 0.

Proof When the condition holds, system (2.5) can be brought into the form,

dx

dt
= y(1 + a11x + a21x

2 + a31x
3),

dy

dt
= −2x3 + b02y

2 + b12xy
2,

which is symmetric with respect to the x-axis.
By the change of state variables, u = x, v = y2 and the time rescaling τ = yt , the

above system can be changed to the new system,

du

dτ
= 1 + a11u + a21u

2 + a31u
3,

dv

dτ
= −2u3 + b02v

2 + b12uv2,

whose origin is a regular point, and by Lemmas 3.1 and 3.2 it is analytical integrability.
��

In the following, we present one of our main results in this paper.

Theorem 3.5 When a31 �= 0, system (2.5) can have at least 8 small-amplitude limit
cycles around the origin by small parameter perturbation.
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Proof To obtain maximal number of the limit cycles around the origin of the system
(2.5), we need to find the conditions such that L j = 0, j = 1, 2, . . . , k − 1, but
Lk �= 0 for as large k as possible. For a11 �= 0, the system (2.5) is equivalent to the
system (3.2) under the transformation (3.1). The system with a11 = 0 is obviously to
have less limit cycles than that of the system with a11 �= 0. Thus, we consider system
(3.1) which has 7 independent parameters. In general, with a linear perturbation, the
system may have 8 limit cycles bifurcating from the origin. It has been clearly shown
in the proof of Proposition 3.1 that bifurcation of maximal limit cycles can only come
from the case (II) B21 �= 0 when B03 �=0. If B03=0, it can be shown that the maximal
number of limit cycles bifurcating from the origin is 6. If B03 �=0, it is seen from (3.4)
that the two polynomials R̃456 and R̃457 still contain two parameters B12 and B02.
Thus, it may be possible to have solutions for B12 and B02 such that R̃456= R̃457=0,
which may lead to L4 = L5 = L6 = L7 = 0, but L8 �= 0. To achieve this, eliminating
B12 from R̃456 and R̃457 yields a resultant polynomial in B02,

R̃4567 = (334B3
02 − 339B2

02 + 98B02 − 12)(70127B5
02 − 107890B4

02

+58365B3
02 − 13790B2

02 + 100B02 + 216) F667(B02),

where F667 represent a 667th-degree polynomial in B02. The first two factors have 4
real solutions, but none of them yields solution B12 to satisfy R̃456 = R̃457 = 0. The
polynomial F667 yields 73 real solutions:

−2.6540242544 · · · , −2.0351509596 · · · , · · · , 4.4358229258 · · · ,

which have corresponding 73 solutions for B12 such that R̃456= R̃457=0. Then, using
the polynomials R45, R46 and R47 we obtain corresponding 73 solutions for A21 such
that R45 = R46 = R47 = 0. Finally, we use the solutions μ̃2(A21, B12, B02) to check
if μ̃2 > 0 for the set of 73 solutions (A21, B12, B02)k, k = 1, 2, . . . , 73. It is found
that 31 of the 73 solutions satisfy μ̃2>0, 7 of them yield L8<0 and 24 of them give
L8 > 0. To guarantee the existence of 8 limit cycles, we compute the determinant of
the Jacobian to obtain

det7 = det

[
∂(L1, L2, L3, L4, L5, L6, L7)

∂(B21, B03, A31, A21, B12, B02)

]

C
,

where the subscript C denotes a critical point using one solution of the above 31
solutions. In the following, we list two solutions, with one for v8 < 0 and one for
v8>0:

v8 = −3.79957976 · · ·

⎧
⎪⎪⎨

⎪⎪⎩

B21 = 0.35951158 · · · , B03 = −0.72206432 · · · ,

A31 = 0.12284334 · · · , A21 = −6.71259965 · · · ,

B12 − 7.71405139 · · · , B02 = 1.63917500 · · ·
det7 = −181397.86 · · · ;
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v8 = 1.02997402 · · ·

⎧
⎪⎪⎨

⎪⎪⎩

B21 = 2.51956740 · · · , B03 = 0.39729450 · · · ,

A31 = −0.32360952 · · · , A21 = −9.03972383 · · · ,

B12 − 12.26798825 · · · , B02 = 0.15355900 · · ·
det7 = 495.225881 · · · .

Note that under the time rescaling given in (3.1), the Lyapunov constants for the
original system (2.5) are a11Lk , and thus the nonzero free parameter a11 can be used
to adjust the order of the Lyapunov constants. This shows, with a linear perturbation,
the existence of 8 small-amplitude limit cycles bifurcating from the origin of the
system (2.5).

This finishes the proof of Theorem 3.5. ��

We should point out that for the generalized Kukles system (2.5) one may apply
the so-called “double bifurcation” analysis [21] to obtain one more limit cycle. That
is,

Theorem 3.6 When a31 �= 0, at least 9 small-amplitude limit cycles can bifurcate from
the origin of system (2.5) by using the double bifurcation analysis.

3.2 Center Conditions of System (2.5) for a31 = 0

We first compute the Lyapunov constants of system (2.5) at the origin to obtain the
following result.

Theorem 3.7 The first 7 Lyapunov constants at the origin of system (2.5) with a31 = 0
are given as follows:

u1 = 1

15
(1 + μ2)[5b21 + 4(b02 − 2a11)μ],

u2 = 2

875
(1 + μ2)(525b03 − 16a311μ + 44a211b02μ − 22a11b

2
02μ + 2b302μ

+ 125b03μ
2 − 20a11μb12 + 60b02μb12 + 60a11a21μ − 130a21b02μ),

u3 = − 4μ(1 + μ2)

590625(21 + 5μ2)
f1,

u4 = − 199766310912μ(1+μ2)(14a211−9a11b02+b202+25b12−50a21)4

34375(9+μ2)(21+5μ2)2
f 22 f 43 f 24 ,

u5 = − 75144747810816μ(1+μ2)(14a211−9a11b02+b202+25b12−50a21)4

1001(4+μ2)(9+μ2)(21+5μ2)3
f 63 f 25 f 26 ,

u6 = − 33241631799575052288μ(1+μ2)(14a211−9a11b02+b202+25b12−50a21)4

3072265625(4+μ2)(9+μ2)(21+5μ2)3(1+9μ2)(25+9μ2)
f 63 f 27 f 28 f 29 ,

u7 = − 2450839029319069455089664μ(1+μ2)(14a211−9a11b02+b202+25b12−50a21)4

5611328125(4+μ2)(9+μ2)(1+4μ2)(9+4μ2)(21+5μ2)3(1+9μ2)(25+9μ2)
f 83 f 210 f

2
11 f

2
12,
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where

f1 = 4464a511 − 36000a311a21 + 67500a11a
2
21 − 47460a411b02 + 264750a211a21b02

− 277500a221b02+91260a311b
2
02−329625a11a21b

2
02−37155a211b

3
02+46875a21b

3
02

− 3330a11b
4
02 + 2373b502 + 17520a511μ

2 − 132000a311a21μ
2 + 247500a11a

2
21μ

2

− 59300a411b02μ
2 + 376750a211a21b02μ

2 − 567500a221b02μ
2 + 42300a311b

2
02μ

2

− 149625a11a21b
2
02μ

2 + 11725a211b
3
02μ

2 − 59125a21b
3
02μ

2 − 13650a11b
4
02μ

2

+ 1765b502μ
2 + 52500a311b12 − 210000a11a21b12 − 195000a211b02b12

+ 583125a21b02b12 + 144375a11b
2
02b12 − 1875b302b12 + 60500a311μ

2b12

− 230000a11a21μ
2b12 − 187000a211b02μ

2b12 + 593125a21b02μ
2b12

+ 70375a11b
2
02μ

2b12 + 32125b302μ
2b12 + 71250a11b

2
12 − 213750b02b

2
12

+ 51250a11μ
2b212 − 153750b02μ

2b212,

f2 = 456a311 − 1800a11a21 − 1154a211b02 + 4025a21b02 + 87a11b
2
02 + 563b302

+ 650a11b12 − 1950b02b12,

f3 = 8a311 − 30a11a21 − 22a211b02 + 65a21b02 + 11a11b
2
02 − b302 + 10a11b12 − 30b02b12,

f5 = 65616a511 − 492000a311a21 + 922500a11a
2
21 − 189740a411b02 + 1242250a211a21b02

− 1992500a221b02+77940a311b
2
02−268875a11a21b

2
02+84055a211b

3
02−283375a21b

3
02

− 51270a11b
4
02 + 4687b502 + 189500a311b12 − 710000a11a21b12 − 553000a211b02b12

+ 1789375a21b02b12 + 137125a11b
2
02b12 + 130375b302b12 + 133750a11b

2
12

− 401250b02b
2
12,

f7 = 2832a511 − 24000a311a21 + 45000a11a
2
21 − 45980a411b02 + 250750a211a21b02

− 241250a221b02 + 97380a311b
2
02 − 352125a11a21b

2
02 − 43265a211b

3
02

+ 60125a21b
3
02 − 2040a11b

4
02 + 2449b502 + 51500a311b12 − 207500a11a21b12

− 196000a211b02b12 + 581875a21b02b12 + 153625a11b
2
02b12 − 6125b302b12

+ 73750a11b
2
12 − 221250b02b

2
12,

f8 = 24864a511 − 186000a311a21 + 348750a11a
2
21 − 65960a411b02 + 439750a211a21b02

− 730625a221b02+14760a311b
2
02−48375a11a21b

2
02+39220a211b

3
02−118750a21b

3
02

− 19455a11b
4
02 + 1423b502 + 65000a311b12 − 241250a11a21b12 − 182500a211b02b12

+ 598750a21b02b12+28750a11b
2
02b12+51250b302b12+40000a11b

2
12−120000b02b

2
12,

f10 = 336a511 − 12000a311a21 + 22500a11a
2
21 − 130540a411b02 + 682250a211a21b02

− 542500a221b02 + 322740a311b
2
02 − 1168875a11a21b

2
02 − 160345a211b

3
02

+ 246625a21b
3
02 + 330a11b

4
02 + 7727b502 + 149500a311b12 − 610000a11a21b12

− 593000a211b02b12 + 1739375a21b02b12 + 507125a11b
2
02b12 − 39625b302b12

+ 233750a11b
2
12 − 701250b02b

2
12,

f11 = 46608a511 − 348000a311a21 + 652500a11a
2
21 − 114620a411b02 + 777250a211a21b02

− 1332500a221b02 + 5220a311b
2
02 − 9375a11a21b

2
02 + 84715a211b

3
02 − 239875a21b

3
02

− 36510a11b
4
02+2131b502+111500a311b12−410000a11a21b12−301000a211b02b12
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+ 1001875a21b02b12 + 18625a11b
2
02b12 + 98875b302b12 + 58750a11b

2
12

− 176250b02b
2
12,

and the lengthy f4, f6, f9 and f12 are not listed here for brevity.

Based on the Lyapunov constants given in Theorem 3.7, we obtain the following
result.

Proposition 3.3 The first 7 Lyapunov constants at the origin of system (2.5) with
a31 = 0 are zero if and only if one of the following conditions holds:

(1) b03 = b21 = μ = 0;
(2) b03 = b21 = a11 = b02 = 0;
(3) b03 = b21 = b02 − 2a11 = b12 − 2a21 = 0;
(4) b03 = 3b21 − 4a11μ = 3b02 − a11 = 9a21 − 2a211 = 0;
(5) b03 = 5b21 − 4(2a11 − b02)μ = 25a21 − (2a11 − b02)(3a11 + b02)

= 25b12 + (2a11 − b02)(a11 − 3b02) = 0;
(6) b03 = 5b21 − 12b02μ = 25b12 + 3b202 = 25a21 − 9b202 = a11 − 2b02 = 0;
(7) b03 = b21 − 6b02μ = 2b12 − 3b202 = 2a21 − 9b202 = 4a11 − 17b02 = 0;
(8) b03 = b21 − 2b02μ = b12 + b202 = 2a21 + b202 = 4a11 − 7b02 = 0;
(9) μ2−3 = 9000b03 − μ(2a11 − b02)

2(4a11 − 17b02) = 5b21 − 4μ(2a11 − b02)

= 5b12 − b02(2a11 − b02) = 100a21 − 3(2a11 − b02)(4a11 + 3b02) = 0;
(10) μ2−3 = 225b03 − μ(2a11 − b02)

2(a11 − 2b02) = 5b21 − 4μ(2a11 − b02)

= 25b12+(2a11−b02)(9a11−17b02)=25a21+3(2a11−b02)(a11−3b02)=0;
(11) μ2−3 = 1125b03 − μ(a11 + 2b02)

2(4a11 − 7b02) = 5b21 − 4μ(2a11 − b02)

= 25b12 + 4a211 + b02a11 + 11b202 = 25a21 − (4a11+3b02)(a11−3b02) = 0;
(12) μ2−3 = 72b03 − μ b02(2b

2
02−3b12) = b21 − 4μ b02 = 4a21 − 3(2b202+b12)

= 3b02 − a11 = 0.

Remark 3.1 Linh and Sadovskii considered the Kukles system in the following format
[23]:

dx

dt
= y (1 + Dx + Px2),

dy

dt
= − x3 + Axy + By2 + Kx2y + Lxy2 + My3,

(3.10)

which can be transformed into (2.5) with a31=0, under the following transformation:

ξ = √
2(1 + μ2), x → x, y → ξ y, t → ξ t,

D = a11, P = a21, A = 4μ

ξ
, B = b02, K = b21

ξ
, L = b12, M = ξ b03.

(i) 14 center conditions were obtained in [23], in which the first 12 conditions are
the same as the 12 conditions (1)–(12) given in Proposition 3.3, while the last two
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conditions (13) and (14) given in [23] are actually not center conditions. These two
cases are characterized by A2=9, which corresponds to our system (2.5) with a31=0
for μ2=−9 (yielding b30=16 > 0), showing that these two cases lead to a nilpotent
saddle point, not a nilpotent center (see Theorem 2.1).

(ii) In [23], the authors claimed that the origin of the Kukles system (3.10) is a focus
of 8th order. This is not true since our analysis given above clearly shows that the 7
parameters/coefficients are not independent, and a simple scaling reduces the number
of parameters from 7 to 6. Hence, the origin of the system is a focus of 7th order.

Proof The proof is similar to that for proving Proposition 3.1. Again, it is seen from
u1=0 that

b21 = 4

5
μ (2a11 − b02). (3.11)

There are two cases: (I) b21=0 and (II) b21 �=0.

(I) This case has two sub-cases: (I-a) μ=0 and (I-b) b02−2a11=0 (μ �=0).

(I-a) For this case, u2 = 0 gives b03 = 0 and so u3 = u4 = · · · = 0, yielding the
condition (1).

(I-b) Under this condition, u2 becomes

u2 = 2

35
(1 + μ2)

[
(5μ2 + 21)b03 + 4μa11(b12 − 2a21)

]
,

which gives the solution b03=− 4μa11(b12−2a21)
5μ2+21

by setting u2=0. Then, u3, u4,
· · · have common factors a11(b12−2a21). Setting a11=0 yields the condition
(2), while letting b12−2a21=0 leads to the condition (3).

(II) For this case, b21 �=0, i.e., μ (2a11−b02) �=0. Then, u2=0 yields

b03 = − 2μ

25(5μ2 + 21)

[
5(6a11 − 13b02)a21 − 10(a11 − 3b02)b12

− (2a11 − b02)(4a211 − 9a11b02 + b202)
]
.

(3.12)

With the solutions (3.11) and (3.12), we have u1=u2=0, and

u3 = −4μ(1 + μ2)

590625(21 + 5μ2)
u3,

u4 = −199766310912μ(1 + μ2)

34375(9 + μ2)(21 + 5μ2)2
u4,

u5 = −75144747810816μ(1 + μ2)

1001(4 + μ2)(9 + μ2)(21 + 5μ2)3
u5,

u6 = −33241631799575052288μ(1 + μ2)

3072265625(4+μ2)(9+μ2)(21+5μ2)3(1+9μ2)(25+9μ2)
u6,

(3.13)
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where u3, u4, u5 and u6 are polynomials in a11, a21, b11, b02 and b12. Eliminating
b12 from the equations u3 = u4 = u5 = u6 = 0 we obtain a solution b̃12 =
b̃12(a11, a21, b11, b02) and three resultants:

R34 = C1 R̃34, R35 = C1 R̃35, R36 = C1 R̃36, (3.14)

where the common factor C1 is

C1 = (μ2 + 9)(5μ2 + 21)(2a11 − b02)
[
(2a11 − b02)(3a11 + b02) − 25a21

]
.

The factor in the square bracket gives the condition (5). Further, eliminating a21
from (R̃34, R̃35, R̃36), we obtain the solution ã21 = ã21(a11, b11, b02) and two
resultants which have the following common factors:

C2 = (a11 − 3b02)(a11 − 2b02)(4a11 − 17b02)(4a11 − 7b02)

×(2a11 − b02)(a11 + 2b02)(μ
2 − 3).

It is easy to verify that the first 4 factors yield the conditions (4), (6), (7) and (8),
respectively, all of which actually generate b03=0. Note that the factor 2a11−b02 �=
0. For the factor a11+2b02, we have b02=− 1

2a11, and then use the above obtained
solution ã21 to get a21= 1

4a
2
11, leading to that the last factor in C1 is satisfied. This

implies that the factor a11+2b02 gives a special case of the condition 5.
The remaining factor is μ2 − 3 which gives μ2 = 3. Under this condition, the
polynomials in (3.13) become the functions in a11, a21, b12 and b02. Eliminating
a21 from these polynomials results in three resultants which have the common
factors:

C3 = (2a11 − b02)
[
(2a11 − b02)(a11 − 3b02) + 25b12

]
(a11 − 3b02)

×[
b02(2a11−b02)−5b12

][
(2a11−b02)(9a11−17b02)+25b12

]

×[
4a211 + a11b02 + 11b202 + 25b12

]
.

All these factors satisfy u1=u2=· · ·=u7=0. Note that the first two factors have
appeared in the factor C1. The next four factors yield the conditions (9), (10), (11)
and (12), respectively. Note that although the third factor a11−3b02 has appeared
in the condition (4) which has b03=0, but the condition (9) contains b03 �=0.

This finishes the proof of Proposition 3.3. ��
The following theorem directly follows Proposition 3.3.

Theorem 3.8 When a31 = 0, the nilpotent origin of system (2.5) is a center if and only
if one of the conditions in Proposition 3.3 holds.

Proof The necessity is directly given by Proposition 3.3 since all the 7 Lyapunov con-
stants vanish under these conditions. In the following, we prove that these conditions
are also sufficient.
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Since the condition (1) is identical to the condition (a) in Proposition 3.1 for the
case a31 �=0, we start the proof from the condition (2) under which system (2.5) can
be rewritten as

dx

dt
= y(1 + a21x

2),

dy

dt
= x(−2x2 + b12y

2 + 4μy − 2μ2x2),

which is symmetric with respect to the y-axis.
When condition (3) holds, system (2.5) is reduced to

dx

dt
= y(1 + a11x + a21x

2),

dy

dt
= 4μxy + 2a11y

2 − 2(1 + μ2)x3 + 2a21xy
2,

which has two invariant algebraic curves:

f31 = 1 + a11x + a21x
2 and f32 = y2 − 2μx2y + x4(1 + μ2),

and an inverse integrating factor I3 = f31 f32.
When the condition (4) holds, system (2.5) can be brought into

dx

dt
= y

(
1 + a11x + 2

9
a211x

2
)
,

dy

dt
= 1

3
a11y

2 + b12xy
2 + 4μxy + 4

3
a11μx2y − 2x3(1 + μ2).

By the transformation,

u = x

1 + a11x
3

,

v =
(
1 + a11x

3

)1− 9b12
a211

(
1 + 2a11x

3

)−1+ 9b12
a211 y,

and the time scaling,

τ =
(
1 + a11u

3

)−2(
1 − a211u

2

9

) 9b12
a211 t,

the system can be changed to

du

dτ
= v,

dy

dτ
= −2u3

(
1 − a211u

2

9

)−3+ 9b12
a211 + 4μu

(
1 − a211u

2

9

)−2+ 9b12
a211 v,

which is symmetric with respect to the v-axis.
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When the condition (5) holds, system (2.5) can be rewritten as

dx

dt
= 1

25
y(5 + 2a11x − b02x)(5 + 3a11x + b02x),

dy

dt
= 1

25
(−50x3 + 25b02y

2 − 2a211xy
2 + 7a11b02xy

2 − 3b202xy
2

+ 100μxy + 40μa11x
2y − 20b02μx2y − 50μ2x3),

which has three invariant algebraic curves:

f51 = 5 + 3a11x + b02x,

f52 = 5 + 2a11x − b02x,

f53 = 25x4 + 25y2 + (20a11 + 10b02)xy
2 + (4a211 − 4a11b02+b202

x2y2

− 50μx2y − 20a11x
3yμ + 10b02x

3yμ + 25x4μ2,

and admit an inverse integrating factor I5 = f51 f
−1
52 f53.

When the condition (6) is satisfied, system (2.5) becomes

dx

dt
= 1

4
y(4 − b02x)(1 + 2b02x),

dy

dt
= −2x3 + b02y

2 − b202xy
2 + 4μxy + 2μb02x

2y − 2μ2x3,

which can be further changed to a Liénard system,

dx

dτ
= y,

dy

dτ
= (−2x3 + b02y2 − b202xy

2 + 4μxy + 2μb02x2y − 2μ2x3)

(4 − b02x)(1 + 2b02x)

= p0(x) + p1(x)y + p2(x)y
2,

by a time rescaling τ = 1
4 y(4 − b02x)(1 + 2b02x) t . Let

W1(x) = (p0(x)p1(x)p2(x) − p1(x)p0′(x) + p0(x)p1′(x))
p1(x)3

,

W2(x) = W ′
1[x]p0(x)
p1(x)2

.

Then, the system 3.15 has a center if and only if W1(x) − W1(y) and W2(x) − W2(y)
has a common factor with the form x + y + h.o.t. It can be shown that

W1(x) − W1(y) = −9(1 + μ2)b202(x − y)

8μ2(2 + b02x)3(2 + b02y)3
h(x, y),
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W2(x) − W2(y) = 9(1 + μ2)2b202(x − y)(4 − b02x − b02y − 2b202xy)

64μ2(2 + b02x)6(2 + b02y)6

× h(x, y)(32 + 56b02x − 16b202x
2 + 56b02y + 116b202xy

+ 8b302x
2y − 16b202y

2 + 8b302xy
2 − b402x

2y2),

where the common factor h(x, y) is given by

h(x, y) = 8x + 8y + 12b02xy − b302x
2y2.

So the origin is a nilpotent center.
When the condition (7) holds, system (2.5) becomes

dx

dt
= 1

25
y (5 − b02x)(5 + b02x),

dy

dt
= 1

25
(−50x3 + 25b02y

2 − 3b202xy
2 + 100μxy − 20μb02x

2y − 50μ2x3),

which has three invariant algebraic curves:

f81 = 5 − b02x,

f82 = 5 + b02x,

f83 = 25x4 + 25y2 − 10b02xy
2 + b202x

2y2 − 50μx2y + 10b02μx3y + 25μ2x4,

and admits an inverse integrating factor I8 = f −1
81 f82 f83.

When the condition (8) holds, system (2.5) can be rewritten as

dx

dt
= 1

4
y(1 + 2b02x)(4 + 9b02x),

dy

dt
= 1

2
(−4x3 + 2b02y

2 + 3b202xy
2 + 8μxy + 12μb02x

2y − 4μ2x3).

When μ = 0, the system has a first integral,

H1 = 1

(9b02x + 4)8
(324b602x

2y2 + 324b502xy
2 + 216b402x

4

+ 81b402y
2 − 720b302x

3 − 1440b202x
2 − 768b02x − 128)3.

When b02 = 0, the system has a first integral,

H2 = (μ2x4 − 2μx2y + x4 + y2)e
−2μ arctan μx2−y

x2 .
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When μb02 �= 0, the system can be transformed into

du

dτ
= v,

dv

dτ
= −u3c + 4(6u + 1)v(u + v)

(8u + 1)(9u + 1)
,

by u = 4
b x , v = 16

ab2
y, τ = 4a

b (72u2 + 17u + 1)t , where c =
√

2
μ−2 . Furthermore,

with z = 8u+1

(9u+1)
4
3
v, τ = 8u+1

(9u+1)
4
3
T , the above system can be changed to

du

dT
= z,

dz

dT
= −cu3(8u + 1)

(9u + 1)
11
3

+ 4u(6u + 1)z

(9u + 1)
7
3

= − f (u) − g(u)z. (3.15)

Now, let

F(x) =
∫ x

0
f (u) = (9x + 1)

4
3 − 36x2 − 12x − 1

9(9x + 1)
4
3

,

G(x) =
∫ x

0
g(u) = c (x + 1

9 )
2

8(9x + 1)2
+ c (432x4 − 360x3 − 180x2 − 24x − 1)

648(9x + 1)
8
3

.

Then, the system (3.15) has a center if and only if G(x) is a function of F(x). It is
easy to verify that

G(x) =
[ 1

24
F2(x) − 1

108
F(x) + 1

486
− 1

486

√
1 − 9F(x)

]
c

+ c

16
F2(x) + 3c

32
F3(x) + o(F4(x)),

which satisfies

F2(x)
[
27F2(x) − 12F(x) + 4

]
c2

− 16G(x)
[
81F2(x) − 18F(x) + 4

]
c + 15552G2(x) = 0.

So the origin is a nilpotent center.
For the remaining four cases (9)–(12), we will only consider μ = √

3, since for
μ=−√

3, we can use the transformation u = x , v = −y, T = −t to obtain the same
system as that obtained for μ=√

3.
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When the condition (9) holds for μ=√
3, system (2.5) can be written as

dx

dt
= 1

100
y(10 + 6a11x − 3b02x)(10 + 4a11x + 3b02x),

dy

dt
= − 8x3 + 4

√
3xy + 4

5

√
3(2a11 − b02)x

2y + b02y
2

+ 1

5
(2a11 − b02)b02xy

2 + (4a11 − 17b02)(2a11 − b02)2

3000
√
3

y3,

which has three invariant algebraic curves:

f101 = 10 + 6a11x − 3b02x,

f102 = 10 + 4a11x + 3b02x,

f103 = − 12000
√
3x4 + 18000x2y + 7200a11x

3y − 3600b02x
3y − 3000

√
3y2

− 2400
√
3a11xy

2 + 1200
√
3b02xy

2 − 480
√
3a211x

2y2 + 480
√
3a11b02x

2y2

− 120
√
3b202x

2y2 + 60a211y
3 − 60a11b02y

3 + 15b202y
3

+ 32a311xy
3 − 48a211b02xy

3 + 24a11b
2
02xy

3 − 4b302xy
3,

and admits an inverse integrating factor I10 = f
− 1

3
101 f102 f103.

When the condition (10) holds for μ=√
3, system (2.5) can be rewritten as

dx

dt
= − 1

25
y(−5 + a11x − 3b02x)(5 + 6a11x − 3b02x),

dy

dt
= − 8x3 + 4

√
3xy + 4

5

√
3(2a11 − b02)x

2y + b02y
2

+ 1

25
(9a11 − 17b02)(2a11 − b02)xy

2 + (a11 − 2b02)(2a11 − b02)2

75
√
3

y3,

which has three invariant algebraic curves:

f111 = − 5 + a11x − 3b02x,

f112 = 5 + 6a11x − 3b02x,

f113 = − 3000
√
3x4 + 4500x2y + 1800a11x

3y − 900b02x
3y − 750

√
3y2

− 600
√
3a11xy

2 + 300
√
3b02xy

2 − 120
√
3a211x

2y2 + 120
√
3a11b02x

2y2

− 30
√
3b202x

2y2 + 60a211y
3 − 60a11b02y

3 + 15b202y
3

+ 8a311xy
3 − 12a211b02xy

3 + 6a11b
2
02xy

3 − b302xy
3,

and admits an inverse integrating factor I11 = f111 f
1
3
112 f113.
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When the condition (11) holds for μ=√
3, system (2.5) can be similarly brought

into

dx

dt
= 1

25
y(5 + a11x − 3b02x)(5 + 4a11x + 3b02x),

dy

dt
= − 8x3 + 4

√
3xy + 4

5

√
3(2a11 − b02)x

2y + b02y
2

+ 1

25
(−4a211 − a11b02 − 11b202)xy

2 + (4a11 − 7b02)(a11 + 2b02)2

375
√
3

y3,

which has three invariant algebraic curves:

f121 = 5 + a11x − 3b02x,

f122 = 5 + 4a11x + 3b02x,

f123 = 3000
√
3x4 − 4500x2y − 1800a11x

3y + 900b02x
3y + 750

√
3y2

+ 600
√
3a11xy

2 − 300
√
3b02xy

2 + 120
√
3a211x

2y2 − 120
√
3a11b02x

2y2

+ 30
√
3b202x

2y2 − 15a211y
3 − 60a11b02y

3 − 60b202y
3

− 4a311xy
3 − 9a211b02xy

3 + 12a11b
2
02xy

3 + 28b302xy
3,

and admits an inverse integrating factor I12 = f
− 1

3
121 f

1
3
122 f123.

Finally, when the condition (12) for μ=√
3 holds, system (2.5) becomes

dx

dt
= 1

4
y(4 + 12b02x + 6b202x

2 + 3b12x
2),

dy

dt
= 1

72
(−576x3 + 288

√
3xy + 288

√
3b02x

2y + 72b02y
2

+ 72b12xy
2 + 2

√
3b302y

3 − 3
√
3b02b12y

3),

which has two invariant algebraic curves:

f91 = 4 + 12b02x + 6b202x
2 + 3b12x

2,

f92 = − 288x4 + 144
√
3x2y + 144

√
3b02x

3y − 72y2 − 144b02xy
2

− 72b202x
2y2 + 6

√
3b202y

3 − 3
√
3b12y

3 + 4
√
3b302xy

3,

and admits an inverse integrating factor I9 = f
1
3
91 f92.

The proof of Theorem 3.8 is complete. ��
Similar to Theorem 3.5, we have a theorem on the number of limit cycles for the

system (2.5) when a31=0. Since the proof is similar to that for Theorem 3.5, we state
the results without proof.
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Theorem 3.9 When a31 = 0, system (2.5) can have at least 7 small-amplitude limit
cycles around the origin by small parameter perturbation, and 8 small-amplitude limit
cycles around the origin by the double bifurcation analysis.

To end this section, as a summary, we list the 15 center conditions obtained for
the generalized Kukles system (2.5), given in Theorems 3.3 and 3.8, in the following
theorem.

Theorem 3.10 The nilpotent origin of system (2.5) is a center if and only if one of the
following 15 conditions holds.

(1) b03 = b21 = μ = 0;
(2) b03 = b21 = a21 + 24a211 = a31 − 36a311 = b02 − 2a11 = b12 + 12a211 = 0;
(3) b03 = b02 = b12 = 25a21 − 8a211 = 125a31 − 4a311 = 5b21 − 8μa11 = 0;
(4) b03 = 529a21 − 174a211 = 12167a31 − 432a311 = 23b02 − a11

= 23b21 − 36μa11 = 529b12 − 6a211 = 0;
(5) a31 = b03 = b21 = a11 = b02 = 0;
(6) a31 = b03 = b21 = b02 − 2a11 = b12 − 2a21 = 0;
(7) a31 = b03 = 3b21 − 4a11μ = 3b02 − a11 = 9a21 − 2a211 = 0;
(8) a31 = b03 = 5b21 − 4(2a11 − b02)μ = 25a21 − (2a11 − b02)(3a11 + b02)

= 25b12 + (2a11 − b02)(a11 − 3b02) = 0;
(9) a31 = b03 = 5b21−12b02μ = 25b12+3b202 = 25a21−9b202 = a11−2b02 = 0;

(10) a31 = b03 = b21 − 6b02μ = 2b12 − 3b202 = 2a21 − 9b202 = 4a11 − 17b02 = 0;
(11) a31 = b03 = b21 − 2b02μ = b12 + b202 = 2a21 + b202 = 4a11 − 7b02 = 0;
(12) a31 = μ2−3=9000b03−μ(2a11−b02)

2(4a11−17b02)=5b21−4μ(2a11−b02)

= 5b12 − b02(2a11 − b02) = 100a21 − 3(2a11 − b02)(4a11 + 3b02) = 0;
(13) a31 = μ2−3=225b03−μ(2a11−b02)

2(a11−2b02)=5b21−4μ(2a11−b02)

= 25b12+(2a11−b02)(9a11−17b02)=25a21+3(2a11−b02)(a11−3b02)=0;
(14) a31 = μ2−3=1125b03−μ(a11+2b02)

2(4a11−7b02) = 5b21−4μ(2a11−b02)

= 25b12+4a211+b02a11+11b202 = 25a21−(4a11+3b02)(a11−3b02) = 0;
(15) a31 = μ2−3=72b03−μ b02(2b

2
02−3b12)=b21−4μb02=4a21−3(2b202+b12)

= 3b02 − a11 = 0.

4 Conclusion

In this paper, the cubic Kukles systems with an extra 4th-order term, associated with
the nilpotent origin is studied. It is shown that such systems can have only 4 center
conditions, while 12 center conditions are obtained without this extra term. One of the
center conditions is an analytic center condition. Moreover, for the Kukles systems
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with the extra term, at least 8 limit cycles can bifurcate from the nilpotent singular
point, one more than that of the cubic Kukles systems.
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