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SUMMARY

This paper considers robust absolute stability of Lurie control systems. Particular attention is given to the
systems with parameters having uncertain, but bounded values. Such so-called Lurie interval control
systems have wide applications in practice. In this paper, a number of sufficient and necessary conditions
are derived by using the theories of Hurwitz matrix, M matrix and partial variable absolute stability.
Moreover, several algebraic sufficient and necessary conditions are provided for the robust absolute
stability of Lurie interval control systems. These algebraic conditions are easy to be verified and convenient
to be used in applications. Three mathematical examples and a practical engineering problem are presented
to show the applicability of theoretical results. Numerical simulation results are also given to verify the
analytical predictions. Copyright © 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In modelling a physical or an engineering problem, strictly speaking, a mathematical model is
only an approximate description of a real system since the available information of the system
coefficients are usually the upper and lower bounds, not the exact values [1,2]. In the past two
decades, the study on the stability of linear control systems with parameters varied in finite
closed intervals has received considerable attention in control society, and some results are
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1670 X. LIAO ET AL.

obtained [3-6]. However, not many results have been given to consider the stability of nonlinear
control systems with varying parameters in intervals. In this paper, we will introduce robust
stability of control systems with parameters varied in intervals. In fact, such idea and
methodology can be generalized to consider other Lurie control systems. Due to the importance
in both theoretical development and applications, the research of the absolute stability of Lurie
control systems [7, 8] is expected to be continuously active in future [9-14].

In [15-17], we have used a linear transform to change a general Lurie control system
(including direct, indirect and critical controls) into two types of nonlinear control systems with
separable variables in which feedback states become state variables. Therefore, without loss of
generality, here we assume that the system is given in a standard form after the transformation.

Consider the following Lurie interval control system:

dx
= Ak huf () ()
t
and a simpler system:
d
S= B+ () @)

where x, y and f are n-dimensional vectors, and
J() € Fi={x,|0 <x,f (x,) < + 00 when x,#0, f(0) =0, f(x,) € C(—00,+00)}

A] = {A(afj)nxn : ASA S/‘i, ie. a,-jéal-,-éa_,-j, l,]= 1,2,...,7’!}

hy ={h: h<h<h, ie hi<hi<h, i=1,2,...,n}
By ={B(bj)yxn: B<B<B, ie. bj<b;<by, i,j=1,2,...,n}
rp={r: r<r<r, ie n<r<r, i=1,...,n rj=r=0,i=1,...,n—-1}

in which 4, 4, B, B are known n x n matrices, 4, &, r, 7 are known n-dimensional vectors, while
A, B, h and r are not precisely known. It is easy to see that system (2) is a special case of system
(1). Since many practical problems are described by the form of (2), we list this system explicitly
for convenience. However, we do not need to discuss this system in detail since all the results for
system (2) can be directly deduced from that of system (1) (given as corollaries).

Then, VA € 4;, Vh € hy (VB € By, Vr € ry), the corresponding Lurie systems of (1) and (2)
are given, respectively, by

dx /
4 = Ax ) M
d

=By @

Definition 1
IfVA € A;, Yh € h; (VB € By, Vr € ry), the zero solutions of the corresponding systems (1) and
(2)' are absolutely stable, i.e. V/(-) € F, the zero solutions of the systems (1) and (2)’ are globally
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ROBUST ABSOLUTE STABILITY OF LURIE INTERVAL CONTROL SYSTEMS 1671

asymptotically stable, then it is said that the zero solutions of the Lurie interval control systems
(1) and (2) are absolutely robust stable.

Definition 2

IfVA € A;, Yh € hy (YB € B;, Vr € ry), the zero solutions of the corresponding systems (1) and
(2) are absolutely stable with respect to the partial variables Xj s Xj 2o+« o3 X (Vi 15 Vjg2s « - -5 Vn)s
i.e. V/(-) € F, the zero solutions of the systems (1) and (2)’ are globally asymptotically stable
with respect to the partial variables x;1,xj42,..., X, (Vj+1,Yj4+2,...,Vu), then it is said that the
zero solutions of the Lurie interval control systems (1) and (2) are absolutely robust stable with
respect to the partial variables x;j i1, Xj42, ..., Xy (Vj1, Vjt2s - - -5 Vn)-

Definition 3
If VA € A;, (VB € Bj), A(B) is an Hurwitz matrix, then A4;(B;) is called an interval Hurwitz
matrix [18].

2. SUFFICIENT AND NECESSARY CONDITIONS FOR ROBUST ABSOLUTE
STABILITY OF LURIE INTERVAL CONTROL SYSTEMS

Since system (2) is a special case of system (1), we only discuss system (1), and the results for
system (2) can be directly obtained from the results of system (1), listed as the corollaries of the
theorems obtained from system (1).

Theorem 1
The sufficient and necessary conditions for the robust absolute stability of the zero solution of
the Lurie interval control system (1) are the following:

(1) A7+ (Opx@—1y, h10) is an interval Hurwitz matrix, where 0 =0 or 1, and O,x(—1) is an
n x (n— 1) zero matrix, i.e.

0o - 0 mo
(Onx(n—l)ahlg) = B hi € [@9//1_1]3 l= 1,2,...,}’1

0 -+ 0 ho

nxn

(2) the zero solution of system (1) is absolutely robust stable with respect to the partial
variable x,,.

Proof (Necessity )

When the Lurie interval control system (1) is a direct control system, i.e. 4; is an Hurwitz
matrix, we take 0 = 0; otherwise, choose f(x,) = x,, 0 = 1. Thus, A; + (O,x@u-1), h10) is an
Hurwitz matrix, implying that condition (1) holds. Condition (2) is obvious since the robust
absolute stability of the zero solution of system (1) implies that the zero solution is absolutely
robust stable with respect to (w.r.t.) the partial variable x;,.
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1672 X. LIAO ET AL.

Sufficiency. Let W = A + (Opx(n—1y, h0). Then, the zero solution of (1)’ can be expressed as

x(t, 103 x0) = e x(19) + / teW(H’h[f (xn(1)) — Ox,(0)] d7 (©)

fo

Since W is an Hurwitz matrix, there exists M >1 and « > 0 such that
[|le =) < Me™*=)  for all t>1,

In addition, since f(x,(t)) — 0 as t - +o00, x,(¢) continuously depends on x, and f(x,(?)) is a
continuous function of x(, Ve > 0, there exists d;(¢) > 0 and #; > ¢y such that

N it . &
/ Me™ I (DI + (10, (D) de <
)
t
/ Me_“(’_f)[||hf(xn(f))|l+||h9xn(f)||]df<§ for all r>1,
n

e =) < Me™ =) < ﬁ(s) for all 1>1,
provided ||xo|| <01(¢).
Thus, it follows that

Ix(@)11 < [l x| | + / "IN (a0 + [1h0x,(2)][] dT

Iy

15t
< Me™0)||xo] | + / Me I hf (xu(2)] + [1h0x,(7)][] dt

+ / Me I If ()] + [10xa(D)]]] de

1()+ ~|—§ ¢ for all 1>1

36 ( )
for any xy € R". Then applying the L’Hospital rule to the above inequality yields
0< lim |l
t
< tlim Mgl 4 Tim [ Me b ()l + (10,0 de
—>+o00 Ju

t——+00

04 M lim Sy €U Cen()I] + [170x(1)][] d

t—+00 e

ot
=M11121 ;eﬂﬂlhf(xn(t))” + ||h0x,(¥)||]] (by the L'Hospital rule)

o t—+oo
:0
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ROBUST ABSOLUTE STABILITY OF LURIE INTERVAL CONTROL SYSTEMS 1673

which clearly shows that lim,_,« ||x(¢)|| = 0. Therefore, the zero solution of system (1) is
globally asymptotically stable. So the zero solution of system (1) is absolutely robust stable. This
completes the proof. O

Corollary 1
The sufficient and necessary conditions for the robust absolute stability of the zero solution of
the Lurie interval control system (2) are given by the following:

(1) Br + (Oux@-1y,r10) is an interval Hurwitz matrix, where 6 =0 or 1;
(2) the zero solution of system (2) is absolutely robust stable with respect to the partial
variable y,.

Since in system (2), ;, =7 =0 (i=1,2,...,n— 1), (2) is a special case of system (1).

Theorem 2
The sufficient and necessary conditions for the robust absolute stability of the zero solution of
the Lurie interval control system (1) are the following:

(1) there exists an n-dimensional interval vector #; such that A; + (Onx -1y, 1) is an interval
Hurwitz matrix;
(2) the zero solution of system (1) is absolutely robust stable with respect to the partial variable x;,.

Proof (Necessity)
The existence of condition (1) is obvious. When A; is an Hurwitz matrix, we can choose
n; =(0,0,.. .,O)T; otherwise, take n; = h;, f(x,) = x,. It is easy to check under these choices
that condition (1) holds. Copdition (2) is obviously true.
Sufficiency. YA € Ay, let W = A + (Onx(n—1),1)- Then, rewrite (1) as

dx .

dr = Wx + hf (x,) — nx, 4)
Now for system (4), applying the method of constant variation yields

) ro
x(t, to; x0) = " x(1) + / "I (xu() — nxa(v)] dr.

fo

The remaining part of the proof can follow Theorem 2. This completes the proof. O

Corollary 2
The zero solution of the Lurie interval control system (2) is absolutely robust stable if and only if
the following conditions are satisfied:

(1) there exists an n-dimensional interval vector #; such that B; + (O,x—1), ;) is an interval
Hurwitz matrix;
(2) the zero solution of system (2) is absolutely robust stable with respect to the partial variable y,,.

Remark

Compared to the constructive conditions in Theorem 1 and Corollary 1, the existence conditions
in Theorem 2 and Corollary 2 are not so convenient in applications. However, if they are chosen
properly, sometimes the verification of these conditions can be simplified.
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Similar to Theorems 1 and 2, we can prove the following results.

Theorem 3
The zero solution of the Lurie interval control system (1) is absolutely robust stable if and only if

(1) condition (1) in Theorem 1 or condition (1) in Theorem 2 holds;
(2) the zero solution of system (1) is absolutely robust stable w.r.t. the partial variables

Xit1s Xjg2s « o o5 Xpe

Corollary 3
The zero solution of the Lurie interval control system (2) is absolutely robust stable if and
only if

(1) condition (1) in Corollary 1 or condition (1) in Corollary 2 holds;
(2) the zero solution of system (2) is absolutely robust stable w.r.t. the partial variables

Vi+1sVi+2s -+ 5 Vn-

3. SUFFICIENT CONDITIONS FOR ROBUST ABSOLUTE STABILITY OF LURIE
INTERVAL CONTROL SYSTEMS

In the previous section, we have used the absolute stability with respect to the partial variable x,,
and the Hurwitz stability of the linearized part of the system to obtain the sufficient and
necessary conditions of the robust absolute stability of the whole system. In this section, we
strength the condition on the partial variable x, to partial variables x;, ..., x,, but weaken the
condition of Hurwitz stability of linearized system with respect to xi,x3,...,Xx, to partial
variables xj,...,x; while the terms associated with the remaining variables are non-
homogeneous terms. We will obtain absolute stability criteria which are different from that
given in Section 2. This increases possibility of our results in applications.
First, we introduce the following notations:

ayp - dig, AiGo+1) - A

AYU) — , AS/())C — , 1<j0<n

A1 - Gy AjoGo+1)  **° Qjon
Similarly we define BY"” and BY"C.
Theorem 4

If the following conditions:

(1) A(IIO) is an interval Hurwitz matrix;
(2) the zero solution of system (1) is absolutely robust stable w.r.t. partial variables xj,.1,

Xjo425+ 5 Xns

are satisfied, then the zero solution of system (1) is absolutely robust stable w.r.t. all the state
variables.
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Proof

VAe A, heh, let x0() = xU0(t, o3 x0) = (x1(£, t0; X0), - - - » Xjy (1, 103 X0)) x(j‘_’)c(t) =
(g1t 103 X0), - « - » Xu(t, 103 X0)) ', H9(£) = (hy,...,h;,)". Thus, the first jo solutions, x)(¢), of
system (1)’ can be expressed as

A1) = AW =0 () + /

fo

teA(/o)(t—r)A(jn)Cx(jo)C(T) de 4 /f eA(/o)(zfr)h(jo)f(xn(T)) dr

)
Since ||xY)(9)|| <||x(0)||, the zero solution of (1)’ is absolutely robust stable w.r.t. x%0). In fact,
we may follow the proof for the sufficiency of Theorem 1 to show that Ve > 0, there exists d(¢)
such that when ||x%)(1)|| < ||x(t9)|| <9, we have ||xU0)(¢)|| <&, and Vx € R", lim,_, ;o x%)(7) = 0.
Thus, the zero solution of system (1) is absolutely robust stable w.r.t. x%)(), and thus also
absolutely robust stable w.r.t. all the state variables. O

Corollary 4
If the following conditions:

(1) By“) is an interval Hurwitz matrix;
(2) the zero solution of system (2) is absolutely robust stable w.r.t. partial variables yj,+1,
yjo+2:- v Vns

hold, then the zero solution of system (2) is absolutely robust stable w.r.t. all the state variables.

Theorem 5
If there exists constants ¢; >0 (i =1,2,...,n) such that

n
_ (m) .
_Cjajj> E Cialf/' s J:1,2,...,n—1
i=1i#j

n—1

— (m)
—Cplyy = cid;,

i=1

n—1
—caln =Y cih™ (5)
i=1
and at least one of the last two inequalities in (5) is a strict inequality. Then, the zero solution
of system (1) is absolutely robust stable. Here, aff’) = max;;j=12, .. {la;l, @]} and
A" = maxi—i o, 1 {17, 1hil}.

Proof
VA € Ay, h € hy, construct the positive definite and radially unbounded Lyapunov function:

n
V=) alxl
i=1

Note here that 77 is not a smooth function which does not have conventional derivative.
However, one can find Dini derivative function which is a standard formulation for non-smooth
functions (e.g. see [17,19,20]). Using the definition of Dini derivative, differentiating V with
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1676 X. LIAO ET AL.
respect to time 7 along the trajectory of (1)’ yields

DV = Z ¢iX; sign(x;(1))
i=1

n

= | Y apx(0) + hf (x,(1) | sign(xi(1)
j=1

i=1

=Y I+ D agxsign(xi(n) + Y hif (xa(1)) sign(xi(1))
i=1 i=1

i=1 j=1,j#i
n n n n—1
<D a0 Y lagl 101+ eilhil 1 Gea()] + ealtalf (D))
j=1 Jj=1 i=l,i#j j=1

n n r n—1
< |gai+ > ailagl| 0] + cnhn+zc,»|h,»|] [ Cenl)]
=1 L =1

L i=Li#] J

n—1

n
Slgai+ Y ad” | 1O+ cahn+> cihﬁ”’)] 1 (xa(0))]
j=1 j=1

i=Li#j

N

<0 when x#0

due to arbitrary of 4 € A4;.
Therefore, the zero solution of system (1) is absolutely robust stable. O

Corollary 5
When 7, <0, if there exists constants ¢; >0 (i = 1,2,...,n) such that

n
_CJ'E> Z Cjbgn), j:l,2,...,n—l
i=1i#j

n—1

—Cabm> Y b (6)

i=1

while when 7, <0, the last inequality in (6) is a strict inequality, then the zero solution of system
(2) is absolutely robust stable.

Theorem 6
If the following conditions are satisfied:

(1) A(,jO) is an interval Hurwitz matrix;

Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2007; 17:1669—1689
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(2) if there exists constants ¢;=0 (i =1,2,...,jp), ¢;>0, j=jo+1,...,nand & > 0 such that

[ 2aan mo o my My ]
|x1] o [x1]
myy 2000 - My, M)
R ||
mpy) mpp s 2epan, My(n4-1)
V(xn)l _ V(xn)|
LMyl M1y o Mgein 20y

N 2
=621 Xi Or
1
< —SZ:’szHx%—sfz(xn) or

-1
—& Y1 X7 — X (x)

where
my=m; = max_ [lca;+call, i#j, 1<i,j<n
Ay S i S djj
Mty = Mige) = mMax _ [l +ayl], 1<i<n
ni < i < Ay
hi <hi<h;

then the zero solution of the Lurie interval control system (1) is absolutely robust stable.

Proof
For the variables xj,11, . .., X,, construct the positive definite and radially unbounded Lyapunov
function:

Ve =3 ed 42 /0  F () o
i=1

Then
dv
dr |y
[ 2cian clap +cax - C1@y + . crby 4 ap |
X1 X1
Ciax1 + C2an 2crax s clay tean by +ap
Xn Xn
o) Clayl + a1, C1am + Cay, - 2, c1by + am o)
Xn Xn
Clbl +anl Clb2+a)12 Clbn +an2 2hn a
Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2007; 17:1669—1689
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[ 2aan mp
|| .
My PIGY)

<
[ X
) mpy) mpy
[f (xn)l

LM 1)1 Mn1)2

n 2
—¢ Zi:jﬁ—l X; or
1 .
< —& Z?:jﬁ—l X? - sz(xn) or

—1
—E Y1 X7 — exaf(x)

My, Migt) |
|1 |
myy mMom+1)
X
2¢pany My(n+1)
_ [ (xn)l
Mp1)n 2hn _

()

Therefore, the zero solution of (1) is globally asymptotically stable w.r.t. the partial variables
Xjo+1>- - - » Xn. SO the zero solution of (1) is absolutely robust stable w.r.t. the partial variables
Xjy+1>- - -» Xn. Further due to condition (1) in Theorem 6, we know by Theorem 4 that the

conclusion of Theorem 6 is true.

Theorem 7

O

If the following conditions are satisfied: for 7, <0,

(1) B(,j") is an interval Hurwitz matrix;

(2) if there exists constants ¢; =0, i=1,2,...

2c1by1 mpp
[y1l _
my 2cby
|ynl
LD M2

and for 7, <0,

(1) By is an interval Hurwitz matrix;

(2) if there exists constants ¢; >0, i=1,2,.

2c1by1 mp

my 2c2bx»

My L)

then the zero solution of system (2) is
max, _, g lleiby + ¢ibil), i#), 1<i,j<n.

i < Oij <

Copyright © 2007 John Wiley & Sons, Ltd.

o, ¢ >0, j=jo+1,...,n and ¢ > 0 such that

miy
31
myy, n
<—z Y »
i=jo+1
. [Vl
2Cnbnn_

..,n—1, and ¢, > 0 such that

miy

myy

2¢pbyn i

absolutely robust stable. Here, m; =m; =
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Proof

When 7,<0, for the variables yj11,...

unbounded Lyapunov function:

1679

,¥n, construct the positive definite and radially

n
V(y)= Z ey
=1
Then
[2¢1b11  mpn my, |
[yl _ [yl
dv my  2cby Moy, n
2
At |y <-e) v ®)
2) i=jo+1
[Val _ |\l
L Ml my 2cnbnn_

Equation (8) indicates that the zero solution of (2)' is globally asymptotically stable w.r.t. the

partial variables yj 41, ...

, n. Further following the proof of Theorem 4 for the robust absolute

stability w.r.t. %0, we can show that the zero solution of (2)' is also absolutely stable w.r.t. the

partial variables yy,...

> Vio-

Next, consider 7, <0. For variable y,, construct the positive definite and radially unbounded

Lyapunov function:

n
V) => i
i=1
Then, differentiating ¥ w.r.t. time ¢ along the trajectory of system (2) yields
c[2abn mp My |
[y1l — [v1l
dv my 2¢2by myy
d_ < + 2¢, 7 ynf (Vn)
t ©y
[Vl . [Vl
L My My 2Cnbnn_
< 2¢,7ynf (yu) <0 when y, #0 )

Further, use the method of constant variation to express y(¢) in form of

t
Wt to: y0) = X0y / B £ (7,(0)) dr

fo

and follow Theorem 1 to finish the proof. O

4. ALGEBRAIC SUFFICIENT AND NECESSARY CONDITIONS FOR ROBUST
ABSOLUTE STABILITY OF SPECIAL LURIE INTERVAL CONTROL SYSTEMS

For an interval matrix, it is difficult to verify if it is an Hurwitz matrix. Although we have
applied finite cover theorem to show that the Hurwitz stability of an infinite number of interval

Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2007; 17:1669—1689
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1680 X. LIAO ET AL.

matrices can be found from the Hurwitz stability of a finite number of interval matrices [21],
determining these finite number of matrices are very difficult.

In this section, we will consider some special Lurie interval control systems and derive several
very simple algebraic sufficient and necessary conditions for the robust absolute stability of these
special systems.

Again consider system (1), but now assume that —a; =@y, i#j, i,j=1,2,...,n, @;<0,
i=1,2,...,m h,<0, —hi=h;, i=12,....n—1, and h=ap, i=12
Then, we have the following theorem.

Theorem 8

The sufficient and necessary condition for the zero solution of the Lurie interval control system
(1) being absolutely robust stable is that —A4 is an M matrix.

(The definition of M matrix can be found, say, in [22] or [17, pp. 7-8].)

Proof (Necessity)
Take A € Ay, h € hy, f(x,) = x,,. Substituting these expressions into system (1) yields
dx - _ - -
a =Ax+ hxn = [A + (0)1><(nfl)a h)]x (10)

Since (10) is a linear system with constant coefficient, its coefficient matrix, [4 + (Onx(n— 1),5)],
must be an Hurwitz matrix. The diagonal elements of this matrix are negative, and non-diagonal
elements are non-negative. Thus, the matrix —[4 + (OW(”,]),E)] is an M matrix. Hence, there
exists constants ¢; >0, i=1,2,...,n such that

n

—g@p> Y ed@y, j=1,2...,n-1 (11)
i=List)
and
o n—1 o
— (@ + ) > Z ci(@m + hy) (12)

i=1
Equation (12) can be rewritten as —c¢,(1 + Day, > Z;:ll ci(1 + 1/ )ag,, ie.

n—1

_Cn@> § Ciaiin (13)
i=1

Equations (12) and (13) imply that —A4 is an M matrix.
Sufficiency. YA € A;, h € hy, for system (1), choose the positive definite and radially
unbounded Lyapunov function:

Vi(x) = Z cilxil
P

where ¢;’s are determined by Equations (11) and (12). It follows from
n—1
—Culn > Y i@y and Ahi=ay, (i=1,2,...,n)

i=1

Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2007; 17:1669—1689
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that
—ch, > Z cih;
i=1
Now, we compute the Dini derivative of V along the trajectory of (1)’ to obtain
D*V()lay = Z ¢iX; sign(ox;(2))
i=1

=> ¢ [Z ayxi(1) + hif (xn(t))l sign(x;(1))
= J=1

i=1

n—1

<D gaplyOl+ > > lagl Ix(0)] + Cnl1n+zci|hi|] AEAG)]
j=1 J=1 i=1,i#j i=1
n n n—1
< lg@p+ > ey |15+ ek + > i | 1f(x)l
j=1 i=Li#] i=1
<0 when x#0 (14)

Because of arbitrary of 4 € A; and h € hy, the zero solution of system (1) is absolutely robust
stable. The proof is complete. O

Next, consider system (2). Assume that b; <0, i=1,2,...,n, —by = b_,,, i#j, ,j=12,...,m
—ri=7, i=12,...,n—1and 7, <0. o

Theorem 9
The sufficient and necessary conditions for the zero solution of the Lurie interval control system
(2) being absolutely robust stable are the following:

(1) the zero solution of system (2) is absolutely robust stable w.r.t. the partial variable y,;
(2) e
11

bim—-1

_B(nfl) =

bu—n1 -+ bu—1)n—1)

is an M matrix.

Proof (Necessity)
(1) The robust absolute stability w.r.t. y, is obvious. For (2), substituting f(y,) = y, into (2)
results in an interval system:

d
d—J; = [B; + (Onxu—1), 1)y

So [B; + (Opx(u—1y,71)] is an interval Hurwitz matrix. Thus, [B + (Ouxu-1),7)] is an Hurwitz
matrix, indicating that —[B + (O,x (1), 7)] is an M matrix. In particular, —B(n,l) is an M matrix.
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Sufficiency. Let
b - big-y

B(nfl) —

An-n1 ~* An=1)n-1)
B—DC ._ (bius bans - - . b(nfl)n)T
r(nfl) — (rl’ Faye, Vn—l)T — (0, ey 0)2;1—1)><1

and y"= V(1) = (y1(1), y2(1), . . ., ya_1(¢))". Then, the first n — 1 solutions of system (2)' can be
expressed as

t
y(nfl)(t) =eB<n—l)(zft0)y(nfl)(tO) +/ eB(“fl)([fr)B(nfl)Cy”(I) dr

fo

t
+/ eB"xJ)(r—r)r(”_l)f(yﬂ(f)) de
fo

Re /lmax(B(nil)) < Re llllaX(B(nil)) (15)

where Re An,x denotes the largest real part of the eigenvalues of the corresponding matrix. There
exists constants M >1 and o > 0 such that

||eB(”’”(t7m)| 1< |eB(”’”(f7to)|| < MeRe Jmax(B"D)(1—10) < Me—*=0)
Hence,

t
_ § pn—1) _ _ max pn—1) _ =
[P () | < MeRe Aman B0, (=D ()] 4 / MeRe A (B0 Bo=C )y, (1)) do
ty

t
< Me™ )y D(ng) || + / Me I BV ()] de
fo

Due to condition (1), y,(f) — 0 as t - 400, we can follow the proof of Theorem 1 to show that
the zero solution of (2) is absolutely robust stable w.r.t. the partial variable y"~1(7). O

Remark
Although the conditions given in Theorems 8 and 9 are obtained in special cases, they are quite
useful in realizing robust absolute stability via feedback controls.

5. APPLICATIONS

In this section, we present several examples to demonstrate the applicability of theorems given in
the previous two sections. The first three systems are mathematical examples with numerical
simulation results to verify the analytical predictions. The last example is a practical engineering
system for which we employ the theorems presented in this paper to obtain stronger conclusions
than the existing results.
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Example 1
The first example is to consider the robust absolute stability of the zero solution of the following
Lurie interval control system:

dxl
dr [-1.2,—-1] [-0.5,1.5]| [ x [—2,2]
= + /(x2) (16)
dxy [-2,2] [—5,—4] X2 [—4.5,—4.2]
dt
where f(-) € F.
It is easy to verify that the conditions in Theorem 5 are satisfied: a7 = —1, a3 = —4, a(lng) = %,

a(z'f) =2, h(lm) =2, h, = —42. Take ¢; = 2.1 and ¢» = 1. Then, we construct the positive definite

and radially unbounded Lyapunov function:
V= cilxil + e2lxa]
and find that
D" V(16 < (a1@ir + S xit] + (2@ + cray)xal + (eabs + 1B (o))

= (=214 2)xi| + (=4 + 2.1 X d|xs| + (=42 + 4.2)[f (x2)|
< — 0.1|X1| — 085|X2|

<0 when |xi|+ |x2|#0

Thus, all the conditions in Theorem 5 are satisfied. Hence, the zero solution of system (16) is
absolutely robust stable.
To simulate this example, we take the upper bounds of the system coefficients to obtain

d

% = — X1+ L5xs + 2f(x2)

d

g =21 — 4x, — 4.2f(x2) (17)

and, for definiteness, take f(x2) = x3. The simulation results are depicted in Figure 1, where two
different initial conditions are chosen, given by

(x1,x2) =(0.5,-2.0) and (x,x2) = (—28.0,20.0) (18)

It is seen from Figures 1(a) and (b) that the two trajectories starting from different initial points
converge to the same equilibrium point—the origin.

Example 2
Analyse the stability of the zero solution of the following Lurie interval control system:
dX1
dr (=5 -4 [-3.3] | (= (-2,2]
= + /(x2) 19)
dxy [-2,2] [-4,-3]| \x [-3,-2]
dr
where f(x;) € F.
Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2007; 17:1669—1689
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Figure 1. Simulated trajectories of system (17) for Example 1 converge to the origin, with the initial points:
(a) (x1,x2) = (0.5,—2.0) and (b) (x1,x2) = (=28,20).

1 15
10
0
H = 5
-1
0
) -5
-06 -0.3 0 0.3 0.6 25 -20 -15 -10 -5 0 5
(@) €T (b) T,

Figure 2. Simulated trajectories of system (20) for Example 2 converge to the origin, with the initial points:
(a) (x1,x2) = (0.5,-2.0) and (b) (x1,x2) = (=25, 10).

o

it is obvious to see that —4 is an M matrix. Further, from 4 =2, hh = =2, @2 = 3, an = —3,
and taking 1 = % yields 2h; = @, i = 1,2. So all the conditions in Theorem 8 are satisfied. Thus,
the zero solution of system (19) is absolutely robust stable.

For simulation, we consider

Since

d
% = —4x; + 3% + 2/ (x2)

d

% —2x1 — 332 — 2f(x2) (20)

and choose f(x;) = x3. The simulation results are given in Figure 2 which again shows that
trajectories from difference initial points converge to the origin. The two initial points are
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chosen as

(x1,x2) =(0.5,-2.0) and (x,x3) =(—25.0,10.0) 21
respectively.
Example 3

Consider the stability of the zero solution of a 3-D simplified Lurie interval control system,
described by

dyi

dr [-3,-2] [L2] [0, 1] Vi 0

% = |[-2,—1] [-4-1] [-L1] |[|» |+ 0 |f(m) (22)
dys [-1,0]  [-L1] [-3,-21] \»s [~1, -]

dr

where f(0) € F.
Construct the positive definite and radially unbounded Lyapunov function:
V =307+ +3)

Then, we obtain

dv
qrl =3 =20+ =4 =13+ 23,225 + 1,2y + [=2, = 1o
22)

+ [0, 1y1ys 4+ [—1,0lysy1 + [—1, 1yays + [— 1, Hyays + [ 1, =3va/(73)

IA

— 297 — ¥3 = 203 + Iyl + sl + 20yaysl = braf ()

T

n\ [-2 3 31(»
=|»n -1 1 y2 | —=3f(r3)<0  when [y|#0
V3 o1 =20 \»n

Thus, the zero solution of system (22) is absolutely robust stable.
For simulation, we consider two particular systems associated with system (22), given
below:

dn
di -2 2 1 i 0
Dal=|-t =t ||| 0 |row (23)
dys 0 I =2 \y —%
dt
Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2007; 17:1669—1689
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and
dn
di -2 1 0 i 0
% =2 =1 —1|{m]|+]| 0 |fon (24)
1
% -1 -1 =2 V3 -3
ds

where f(y3) is taken as f(y3) = y% for system (23) and f(y3) = yg for system (24), respectively, in
simulation. Two initial points are chosen as

W1,32,¥3) =(0.5,-2.0,1.5) and (y1,y2,y3) = (=25.0,10.0,20) (25)

The simulation results for system (23) and (24) are shown, respectively, in Figures 3 and 4. These
two figures again show that all the trajectories converge to the origin, as expected.

1 15
ol
0
= =5
-1
0
-2 -5
06 -03 0 0.3 06 25 20 -15 10 -5 0 5
(a) Y (b) Y,

Figure 3. Simulated trajectories of system (23) for Example 3, projected on the y;—y, plane, converge to
the origin, with the initial points: (a) (y1,y2,3) = (0.5, —2.0, 1.5) and (b) (31,2, y3) = (=28, 20, 20).

1 15'/
10
0
= =5
-1
0
P -5 N
06 -03 0 03 06 25 20 -15 -10 -5 0 5
(a) Y, (b) Y,

Figure 4. Simulated trajectories of system (24) for Example 3, projected on the y;—y, plane, converge to
the origin, with the initial points: (a) (y1,y2,3) = (0.5, —2.0, 1.5) and (b) (31,2, y3) = (=28, 20, 20).
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Example 4
Finally, we consider the following system which describes the motion of an aircraft in the
longitudinal direction [17, 20, 23, 24]:
dxi
dt

=—pXito

4
= Z pixi—rp—f(o) (26)
i=1

where p; € [p,, i1, B; € B, Bil, rp € [rp,7p], and p; > p; > 0, —00 < f; SO B; < + 00, 7p > rp > 0.

Note that if p, = p;, p; = B;, rp = 7P, then the absolute stability of system (26) has been
studied by many authors (e.g. see [17, 23, 25]). However, strictly speaking, it is more practical to
allow the coefficients to take values in intervals.

In the following, we shall show that for the system’s coefficient taking interval values, the zero
solution of system (26) is absolutely robust stable if

> Z 1+ s1gn ﬂl ﬁl 27)

Proof
For any values of the system coefficients p; € [p;,p;], B; € [ﬁ,,ﬂ] and rp € [rp,7p], we can
construct the positive definite and radially unbounded Lyapunov function:

4
V(x,0) = Z c,-xf + o? (28)
i=1
where ¢; is defined as
—p; when ;<0
i =X € when f;, =0 (0<¢ < 1) (29)

p;  when ;>0
Differentiating V" with respect to ¢ along the trajectory of (26) and simplifying the result yields

CL—IZ/ =2 24: CciXiX; + 200
(26) i=1
v\ " [ —2c1py 0 0 0 i+ By [ x
X2 0 —2¢2p5 0 0 e+ By X3
=] x3 0 0 —2¢3p5 0 c3+ B x3 | —2raf(o)
X4 0 0 0 —2capy Cca+ Py X4
g lci+pB aa+pfy aa+p;s a+py —2rp | \o
=(x1 X2 x3 x4 0)D(x] x2 x3 x4 0)! — 2raf(o) (30)
Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2007; 17:1669—-1689
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Thus, if we can prove that the first term of (30) is negative semi-definite, then (30) is negative
definite about the variable . Therefore, we only need to prove that D<0.
It is easy to see that D <O if and only if

(+ﬁ)
31
Z e, (31
Further, we can show that the condition
4 .
1 + sign f; B;
>y L 32)
i=1 i

implies that (31) holds. We only need to compare (c; + f,)*/2¢;p; with (1 + sign f8;)B;/p;-
By the definition of ¢; given in (29), we see that when ¢; = f8,, 0 = (¢; + /3,-)2/2cip,~ = (1 +sign ;)
Bi/p; =0; when ¢; = B; >0, (c; + B)*/2cip; = 2Bip; = (1 + sign )B;/p;. For B; =0, we have
(ci+ B,)?/2cip; = €:/2p;. Since rp >0 is a constant, rp can be chosen such that rp>¢;/2p; due
to ¢; being arbitrarily small.

On the other hand, it follows from condition (27) that

’p>’p> Z 1 + Slgnﬁl ﬁl/ Z 1 + Slgnﬁl ﬁl
- Pi Pi
which indicates that (27) is a sufficient condition for (32) to hold. This shows that the first term
of (30) is negative semi-definite, and so dV'/dt|( is negative definite about o.
Let f(0) = . Then (26) becomes a linear system with interval coefficients:

dxi

a - e

do 4

4= 2 Bxi—(p+ Do (33)
i=1

Again using the Lyanpunov function (28), we can show that the zero solution of system (33) is
globally asymptotically stable. Thus, the coefficient matrix of system (33) is an Hurwitz matrix.
Hence, by Theorem 1 we know that the zero solution of system (26) is absolutely robust stable.

In particular, when p; = p;, B; = B;, yp = 7p, the results given above recover the existing
results obtained in [17,24], and also recover the results of [20, 23] as special cases. This shows
that the theorems given in this paper generalize the existing results in the literature.

6. CONCLUSION

In this paper, we have considered robust absolute stability of Lurie interval control systems. We
presented a number of sufficient and necessary conditions under which a Lurie system with
interval feedback controls can be robustly absolutely stabilized. Besides, we have also provided
several algebraic sufficient and necessary conditions for the robust absolute stability of Lurie
interval control systems. These algebraic conditions can be easily verified and are thus
convenient to be used in applications. Four examples including a practical engineering problem,
with numerical simulations, are presented to verify analytical predictions.
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