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SUMMARY

This paper considers robust absolute stability of Lurie control systems. Particular attention is given to the
systems with parameters having uncertain, but bounded values. Such so-called Lurie interval control
systems have wide applications in practice. In this paper, a number of sufficient and necessary conditions
are derived by using the theories of Hurwitz matrix, M matrix and partial variable absolute stability.
Moreover, several algebraic sufficient and necessary conditions are provided for the robust absolute
stability of Lurie interval control systems. These algebraic conditions are easy to be verified and convenient
to be used in applications. Three mathematical examples and a practical engineering problem are presented
to show the applicability of theoretical results. Numerical simulation results are also given to verify the
analytical predictions. Copyright # 2007 John Wiley & Sons, Ltd.

Received 6 October 2005; Revised 10 January 2007; Accepted 25 January 2007

KEY WORDS: Lurie control system; robust absolute stability; interval control; Lyapunov function;
M matrix

1. INTRODUCTION

In modelling a physical or an engineering problem, strictly speaking, a mathematical model is
only an approximate description of a real system since the available information of the system
coefficients are usually the upper and lower bounds, not the exact values [1, 2]. In the past two
decades, the study on the stability of linear control systems with parameters varied in finite
closed intervals has received considerable attention in control society, and some results are
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obtained [3–6]. However, not many results have been given to consider the stability of nonlinear
control systems with varying parameters in intervals. In this paper, we will introduce robust
stability of control systems with parameters varied in intervals. In fact, such idea and
methodology can be generalized to consider other Lurie control systems. Due to the importance
in both theoretical development and applications, the research of the absolute stability of Lurie
control systems [7, 8] is expected to be continuously active in future [9–14].

In [15–17], we have used a linear transform to change a general Lurie control system
(including direct, indirect and critical controls) into two types of nonlinear control systems with
separable variables in which feedback states become state variables. Therefore, without loss of
generality, here we assume that the system is given in a standard form after the transformation.

Consider the following Lurie interval control system:

dx

dt
¼ AIxþ hI f ðxnÞ ð1Þ

and a simpler system:

dy

dt
¼ BIyþ rI f ðynÞ ð2Þ

where x; y and f are n-dimensional vectors, and

f ð�Þ 2 F :¼fxnj05xnf ðxnÞ4þ1 when xn=0; f ð0Þ ¼ 0; f ðxnÞ 2 Cð�1;þ1Þg

AI :¼fAðaijÞn�n :
%
A4A4 %A; i:e: aij4aij4aij ; i; j ¼ 1; 2; . . . ; ng

hI :¼fh :
%
h4h4%h; i:e: hi4hi4hi; i ¼ 1; 2; . . . ; ng

BI :¼fBðbijÞn�n :
%
B4B4 %B; i:e: bij4bij4bij ; i; j ¼ 1; 2; . . . ; ng

rI :¼fr :
%
r4r4%r; i:e: ri4ri4ri; i ¼ 1; . . . ; n;

%
ri ¼ %ri ¼ 0; i ¼ 1; . . . ; n� 1g

in which
%
A; %A;

%
B; %B are known n� n matrices,

%
h; %h;

%
r; %r are known n-dimensional vectors, while

A;B; h and r are not precisely known. It is easy to see that system (2) is a special case of system
(1). Since many practical problems are described by the form of (2), we list this system explicitly
for convenience. However, we do not need to discuss this system in detail since all the results for
system (2) can be directly deduced from that of system (1) (given as corollaries).

Then, 8A 2 AI ; 8h 2 hI (8B 2 BI ; 8r 2 rI ), the corresponding Lurie systems of (1) and (2)
are given, respectively, by

dx

dt
¼ Axþ hf ðxnÞ ð1Þ0

dy

dt
¼ Byþ rf ðynÞ ð2Þ0

Definition 1
If 8A 2 AI ; 8h 2 hI ð8B 2 BI ; 8r 2 rI Þ; the zero solutions of the corresponding systems ð1Þ0 and
ð2Þ0 are absolutely stable, i.e. 8f ð�Þ 2 F ; the zero solutions of the systems ð1Þ0 and ð2Þ0 are globally
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asymptotically stable, then it is said that the zero solutions of the Lurie interval control systems
(1) and (2) are absolutely robust stable.

Definition 2
If 8A 2 AI ; 8h 2 hI ð8B 2 BI ; 8r 2 rI Þ; the zero solutions of the corresponding systems ð1Þ0 and
ð2Þ0 are absolutely stable with respect to the partial variables xjþ1; xjþ2; . . . ;xn (yjþ1; yjþ2; . . . ; yn),
i.e. 8f ð�Þ 2 F ; the zero solutions of the systems ð1Þ0 and ð2Þ0 are globally asymptotically stable
with respect to the partial variables xjþ1;xjþ2; . . . ;xn (yjþ1; yjþ2; . . . ; yn), then it is said that the
zero solutions of the Lurie interval control systems (1) and (2) are absolutely robust stable with
respect to the partial variables xjþ1; xjþ2; . . . ;xn (yjþ1; yjþ2; . . . ; yn).

Definition 3
If 8A 2 AI ; ð8B 2 BI Þ; AðBÞ is an Hurwitz matrix, then AI ðBI Þ is called an interval Hurwitz
matrix [18].

2. SUFFICIENT AND NECESSARY CONDITIONS FOR ROBUST ABSOLUTE
STABILITY OF LURIE INTERVAL CONTROL SYSTEMS

Since system (2) is a special case of system (1), we only discuss system (1), and the results for
system (2) can be directly obtained from the results of system (1), listed as the corollaries of the
theorems obtained from system (1).

Theorem 1
The sufficient and necessary conditions for the robust absolute stability of the zero solution of
the Lurie interval control system (1) are the following:

(1) AI þ ðOn�ðn�1Þ; hIyÞ is an interval Hurwitz matrix, where y ¼ 0 or 1, and On�ðn�1Þ is an
n� ðn� 1Þ zero matrix, i.e.

ðOn�ðn�1Þ; hIyÞ ¼

0 � � � 0 h1y

..

. ..
. ..

.

0 � � � 0 hny

2
6664

3
7775
n�n

; hi 2 ½ hi; hi �; i ¼ 1; 2; . . . ; n

(2) the zero solution of system (1) is absolutely robust stable with respect to the partial
variable xn:

Proof (Necessity)
When the Lurie interval control system (1) is a direct control system, i.e. AI is an Hurwitz
matrix, we take y ¼ 0; otherwise, choose f ðxnÞ ¼ xn; y ¼ 1: Thus, AI þ ðOn�ðn�1Þ; hIyÞ is an
Hurwitz matrix, implying that condition (1) holds. Condition (2) is obvious since the robust
absolute stability of the zero solution of system (1) implies that the zero solution is absolutely
robust stable with respect to (w.r.t.) the partial variable xn:
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Sufficiency. Let W ¼ Aþ ðOn�ðn�1Þ; hyÞ: Then, the zero solution of ð1Þ0 can be expressed as

xðt; t0; x0Þ ¼ eWðt�t0Þxðt0Þ þ

Z t

t0

eWðt�tÞh½ f ðxnðtÞÞ � yxnðtÞ� dt ð3Þ

Since W is an Hurwitz matrix, there exists M51 and a > 0 such that

jjeWðt�t0Þjj4Me�aðt�t0Þ for all t5t0

In addition, since f ðxnðtÞÞ ! 0 as t!þ1; xnðtÞ continuously depends on x0; and f ðxnðtÞÞ is a
continuous function of x0; 8e > 0; there exists d1ðeÞ > 0 and t1 > t0 such thatZ t1

t0

Me�aðt�tÞ½jjhf ðxnðtÞÞjj þ jjhyxnðtÞjj� dt5
e
3Z t

t1

Me�aðt�tÞ½jjhf ðxnðtÞÞjj þ jjhyxnðtÞjj� dt5
e
3

for all t5t1

jjeWðt�t0Þjj4Me�aðt�t0Þ5
e

3d1ðeÞ
for all t5t0

provided jjx0jj5d1ðeÞ:
Thus, it follows that

jjxðtÞjj4 jjeWðt�t0Þx0jj þ
Z t

t0

eWðt�tÞ½jjhf ðxnðtÞÞjj þ jjhyxnðtÞjj� dt

4Me�aðt�t0Þjjx0jj þ

Z t1

t0

Me�aðt�tÞ½jjhf ðxnðtÞÞjj þ jjhyxnðtÞjj� dt

þ

Z t

t1

Me�aðt�tÞ½jjhf ðxnðtÞÞjj þ jjhyxnðtÞjj� dt

5
e

3d1ðeÞ
d1ðeÞ þ

e
3
þ

e
3
¼ e for all t5t0

for any x0 2 R
n: Then applying the L’Hospital rule to the above inequality yields

04 lim
t!þ1

jjxðtÞjj

4 lim
t!þ1

Me�aðt�t0Þjjx0jj þ lim
t!þ1

Z t

t0

Me�aðt�tÞ½jjhf ðxnðtÞÞjj þ jjhyxnðtÞjj� dt

¼ 0þM lim
t!þ1

R t
t0
eat½jjhf ðxnðtÞÞjj þ jjhyxnðtÞjj� dt

eat

¼M lim
t!þ1

eat

aeat
½jjhf ðxnðtÞÞjj þ jjhyxnðtÞjj� ðby the L0Hospital ruleÞ

¼
M

a
lim

t!þ1
½jjhf ðxnðtÞÞjj þ jjhyxnðtÞjj�

¼ 0
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which clearly shows that limt!þ1 jjxðtÞjj ¼ 0: Therefore, the zero solution of system ð1Þ0 is
globally asymptotically stable. So the zero solution of system (1) is absolutely robust stable. This
completes the proof. &

Corollary 1
The sufficient and necessary conditions for the robust absolute stability of the zero solution of
the Lurie interval control system (2) are given by the following:

(1) BI þ ðOn�ðn�1Þ; rIyÞ is an interval Hurwitz matrix, where y ¼ 0 or 1;
(2) the zero solution of system (2) is absolutely robust stable with respect to the partial

variable yn:

Since in system (2),
%
ri ¼ %ri ¼ 0 ði ¼ 1; 2; . . . ; n� 1Þ; (2) is a special case of system (1).

Theorem 2
The sufficient and necessary conditions for the robust absolute stability of the zero solution of
the Lurie interval control system (1) are the following:

(1) there exists an n-dimensional interval vector ZI such that AI þ ðOn�ðn�1Þ; ZI Þ is an interval
Hurwitz matrix;

(2) the zero solution of system (1) is absolutely robust stable with respect to the partial variable xn:

Proof (Necessity)
The existence of condition (1) is obvious. When AI is an Hurwitz matrix, we can choose
ZI ¼ ð0; 0; . . . ; 0Þ

T; otherwise, take ZI ¼ hi; f ðxnÞ ¼ xn: It is easy to check under these choices
that condition (1) holds. Condition (2) is obviously true.

Sufficiency. 8A 2 AI ; let *W ¼ Aþ ðOn�ðn�1Þ; ZÞ: Then, rewrite ð1Þ
0 as

dx

dt
¼ *Wxþ hf ðxnÞ � Zxn ð4Þ

Now for system (4), applying the method of constant variation yields

xðt; t0; x0Þ ¼ e
*Wðt�t0Þxðt0Þ þ

Z t

t0

e
*Wðt�tÞ½hf ðxnðtÞÞ � ZxnðtÞ� dt:

The remaining part of the proof can follow Theorem 2. This completes the proof. &

Corollary 2
The zero solution of the Lurie interval control system (2) is absolutely robust stable if and only if
the following conditions are satisfied:

(1) there exists an n-dimensional interval vector ZI such that BI þ ðOn�ðn�1Þ; ZI Þ is an interval
Hurwitz matrix;

(2) the zero solution of system (2) is absolutely robust stable with respect to the partial variable yn:

Remark
Compared to the constructive conditions in Theorem 1 and Corollary 1, the existence conditions
in Theorem 2 and Corollary 2 are not so convenient in applications. However, if they are chosen
properly, sometimes the verification of these conditions can be simplified.
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Similar to Theorems 1 and 2, we can prove the following results.

Theorem 3
The zero solution of the Lurie interval control system (1) is absolutely robust stable if and only if

(1) condition (1) in Theorem 1 or condition (1) in Theorem 2 holds;
(2) the zero solution of system (1) is absolutely robust stable w.r.t. the partial variables

xjþ1;xjþ2; . . . ;xn:

Corollary 3
The zero solution of the Lurie interval control system (2) is absolutely robust stable if and
only if

(1) condition (1) in Corollary 1 or condition (1) in Corollary 2 holds;
(2) the zero solution of system (2) is absolutely robust stable w.r.t. the partial variables

yjþ1; yjþ2; . . . ; yn:

3. SUFFICIENT CONDITIONS FOR ROBUST ABSOLUTE STABILITY OF LURIE
INTERVAL CONTROL SYSTEMS

In the previous section, we have used the absolute stability with respect to the partial variable xn
and the Hurwitz stability of the linearized part of the system to obtain the sufficient and
necessary conditions of the robust absolute stability of the whole system. In this section, we
strength the condition on the partial variable xn to partial variables xj ; . . . ;xn; but weaken the
condition of Hurwitz stability of linearized system with respect to x1;x2; . . . ; xn to partial
variables x1; . . . ;xj while the terms associated with the remaining variables are non-
homogeneous terms. We will obtain absolute stability criteria which are different from that
given in Section 2. This increases possibility of our results in applications.

First, we introduce the following notations:

A
ðj0Þ
I ¼

a11 � � � a1j0

..

. ..
.

aj01 � � � aj0j0

2
6664

3
7775; A

ðj0ÞC
I ¼

a1ðj0þ1Þ � � � a1n

..

. ..
.

aj0ðj0þ1Þ � � � aj0n

2
6664

3
7775; 14j05n

Similarly we define B
ðj0Þ
I and B

ðj0ÞC
I :

Theorem 4
If the following conditions:

(1) A
ðj0Þ
I is an interval Hurwitz matrix;

(2) the zero solution of system (1) is absolutely robust stable w.r.t. partial variables xj0þ1;
xj0þ2; . . . ;xn;

are satisfied, then the zero solution of system (1) is absolutely robust stable w.r.t. all the state
variables.
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Proof
8A 2 AI ; h 2 hI ; let xðj0ÞðtÞ :¼ xðj0Þðt; t0; x0Þ ¼ ðx1ðt; t0; x0Þ; . . . ;xj0ðt; t0; x0ÞÞ

T; xðj0ÞCðtÞ :¼
ðxj0þ1ðt; t0; x0Þ; . . . ;xnðt; t0; x0ÞÞ

T; hðj0ÞðtÞ :¼ ðh1; . . . ; hj0Þ
T: Thus, the first j0 solutions, xðj0ÞðtÞ; of

system ð1Þ0 can be expressed as

xðj0ÞðtÞ ¼ eA
ðj0 Þðt�t0Þxðj0Þðt0Þ þ

Z t

t0

eA
ðj0 Þðt�tÞAðj0ÞCxðj0ÞCðtÞ dtþ

Z t

t0

eA
ðj0 Þðt�tÞhðj0Þf ðxnðtÞÞ dt

Since jjxðj0Þðt0Þjj4jjxðt0Þjj; the zero solution of ð1Þ0 is absolutely robust stable w.r.t. xðj0Þ: In fact,
we may follow the proof for the sufficiency of Theorem 1 to show that 8e > 0; there exists dðeÞ
such that when jjxðj0Þðt0Þjj5jjxðt0Þjj5d; we have jjxðj0ÞðtÞjj5e; and 8x0 2 Rn; limt!þ1 xðj0ÞðtÞ ¼ 0:
Thus, the zero solution of system (1) is absolutely robust stable w.r.t. xðj0ÞðtÞ; and thus also
absolutely robust stable w.r.t. all the state variables. &

Corollary 4
If the following conditions:

(1) B
ðj0Þ
I is an interval Hurwitz matrix;

(2) the zero solution of system (2) is absolutely robust stable w.r.t. partial variables yj0þ1;
yj0þ2; . . . ; yn;

hold, then the zero solution of system (2) is absolutely robust stable w.r.t. all the state variables.

Theorem 5
If there exists constants ci > 0 ði ¼ 1; 2; . . . ; nÞ such that

�cjajj >
Xn

i¼1;i=j

cia
ðmÞ
ij ; j ¼ 1; 2; . . . ; n� 1

�cnann5
Xn�1
i¼1

cia
ðmÞ
in

�cnhn5
Xn�1
i¼1

cih
ðmÞ
i ð5Þ

and at least one of the last two inequalities in (5) is a strict inequality. Then, the zero solution
of system (1) is absolutely robust stable. Here, a

ðmÞ
ij :¼ maxi;j¼1;2;...;n fjaijj; jaijjg and

h
ðmÞ
i :¼ maxi¼1;2;...;n�1 fjhij; jhijg:

Proof
8A 2 AI ; h 2 hI ; construct the positive definite and radially unbounded Lyapunov function:

V ¼
Xn
i¼1

cijxij

Note here that V is not a smooth function which does not have conventional derivative.
However, one can find Dini derivative function which is a standard formulation for non-smooth
functions (e.g. see [17,19,20]). Using the definition of Dini derivative, differentiating V with
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respect to time t along the trajectory of ð1Þ0 yields

DþVjð1Þ0 ¼
Xn
i¼1

ci ’xi signðxiðtÞÞ

¼
Xn
i¼1

ci
Xn
j¼1

aijxjðtÞ þ hif ðxnðtÞÞ

" #
signðxiðtÞÞ

¼
Xn
i¼1

ciaiijxiðtÞj þ
Xn
i¼1

Xn
j¼1;j=i

aijxj signðxiðtÞÞ þ
Xn
i¼1

hif ðxnðtÞÞ signðxiðtÞÞ

4
Xn
j¼1

cjajjjxjðtÞj
Xn
j¼1

Xn
i¼1;i=j

jaijj jxjðtÞj þ
Xn�1
j¼1

cijhij jf ðxnðtÞÞj þ cnhnjf ðxnðtÞÞj

4
Xn
j¼1

cjajj þ
Xn

i¼1;i=j

cijaijj

" #
jxjðtÞj þ cnhn þ

Xn�1
j¼1

cijhij

" #
jf ðxnðtÞÞj

4
Xn
j¼1

cjajj þ
X

i¼1;i=j

cia
ðmÞ
ij

" #
jxjðtÞj þ cnhn þ

Xn�1
j¼1

cih
ðmÞ
i

" #
jf ðxnðtÞÞj

5 0 when x=0

due to arbitrary of A 2 AI :
Therefore, the zero solution of system (1) is absolutely robust stable. &

Corollary 5
When rn50; if there exists constants ci > 0 ði ¼ 1; 2; . . . ; nÞ such that

�cjbjj >
Xn

i¼1;i=j

cib
ðmÞ
ij ; j ¼ 1; 2; . . . ; n� 1

�cnbnn5
Xn�1
i¼1

cib
ðmÞ
in ð6Þ

while when rn40; the last inequality in (6) is a strict inequality, then the zero solution of system
(2) is absolutely robust stable.

Theorem 6
If the following conditions are satisfied:

(1) A
ðj0Þ
I is an interval Hurwitz matrix;
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(2) if there exists constants ci50 ði ¼ 1; 2; . . . ; j0Þ; cj > 0; j ¼ j0 þ 1; . . . ; n and e > 0 such that

jx1j

..

.

jxnj

jf ðxnÞj

0
BBBBBB@

1
CCCCCCA

T
2c1a11 m12 � � � m1n m1ðnþ1Þ

m21 2c2a22 � � � m2n m2ðnþ1Þ

..

. ..
. . .

. ..
. ..

.

mn1 mn2 � � � 2cnann mnðnþ1Þ

mðnþ1Þ1 mðnþ1Þ2 � � � mðnþ1Þn 2 hn

2
6666666664

3
7777777775

jx1j

..

.

jxnj

jf ðxnÞj

0
BBBBBB@

1
CCCCCCA

4

�e
Pn

i¼j0þ1
x2i or

�e
Pn�1

i¼j0þ1
x2i � ef 2ðxnÞ or

�e
Pn�1

i¼j0þ1
x2i � exnf ðxnÞ

8>>><
>>>:

where

mij ¼ mji ¼ max
aij4aij4aij

½jci aij þ cj ajij�; i=j; 14i; j4n

mðnþ1Þi ¼ miðnþ1Þ ¼ max
ani4ani4ani

hi4hi4hi

½jcihi þ anij�; 14i4n

then the zero solution of the Lurie interval control system (1) is absolutely robust stable.

Proof
For the variables xj0þ1; . . . ;xn; construct the positive definite and radially unbounded Lyapunov
function:

VðxÞ ¼
Xn
i¼1

cix
2
i þ 2

Z xn

0

f ðxnÞ dxn

Then

dV

dt

����
ð1Þ0

¼

x1

..

.

xn

f ðxnÞ

0
BBBBBB@

1
CCCCCCA

T 2c1a11 c1a12 þ c2a21 � � � c1a1n þ c2an1 c1b1 þ an1

c1a21 þ c2a12 2c2a22 � � � c1a2n þ c2an2 c1b2 þ an2

..

.
� � � . .

. ..
. ..

.

c1an1 þ c2a1n c1an2 þ c2a2n � � � 2cnann c1bn þ an2

c1b1 þ an1 c1b2 þ an2 � � � c1bn þ an2 2hn

2
6666666664

3
7777777775

x1

..

.

xn

f ðxnÞ

0
BBBBBB@

1
CCCCCCA
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4

jx1j

..

.

jxnj

jf ðxnÞj

0
BBBBBB@

1
CCCCCCA

T
2c1a11 m12 � � � m1n m1ðnþ1Þ

m21 2c2a22 � � � m2n m2ðnþ1Þ

..

. ..
. . .

. ..
. ..

.

mn1 mn2 � � � 2cnann mnðnþ1Þ

mðnþ1Þ1 mðnþ1Þ2 � � � mðnþ1Þn 2hn

2
6666666664

3
7777777775

jx1j

..

.

jxnj

jf ðxnÞj

0
BBBBBB@

1
CCCCCCA

4

�e
Pn

i¼j0þ1
x2i or

�e
Pn�1

i¼j0þ1
x2i � ef 2ðxnÞ or

�e
Pn�1

i¼j0þ1
x2i � exnf ðxnÞ

8>>><
>>>:

ð7Þ

Therefore, the zero solution of ð1Þ0 is globally asymptotically stable w.r.t. the partial variables
xj0þ1; . . . ; xn: So the zero solution of (1) is absolutely robust stable w.r.t. the partial variables
xj0þ1; . . . ; xn: Further due to condition (1) in Theorem 6, we know by Theorem 4 that the
conclusion of Theorem 6 is true. &

Theorem 7
If the following conditions are satisfied: for rn40;

(1) B
ðj0Þ
I is an interval Hurwitz matrix;

(2) if there exists constants ci50; i ¼ 1; 2; . . . ; j0; cj > 0; j ¼ j0 þ 1; . . . ; n; and e > 0 such that

jy1j

..

.

jynj

0
BBB@

1
CCCA

T
2c1b11 m12 � � � m1n

m21 2c2b22 � � � m2n

..

. ..
. . .

. ..
.

mn1 mn2 � � � 2cnbnn

2
66666664

3
77777775

jy1j

..

.

jynj

0
BBB@

1
CCCA � �e

Xn
i¼j0þ1

y2i

and for rn50;

(1) BI is an interval Hurwitz matrix;
(2) if there exists constants ci50; i ¼ 1; 2; . . . ; n� 1; and cn > 0 such that

2c1b11 m12 � � � m1n

m21 2c2b22 � � � m2n

..

. ..
. . .

. ..
.

mn1 mn2 � � � 2cnbnn

2
66666664

3
77777775
40

then the zero solution of system (2) is absolutely robust stable. Here, mij ¼ mji ¼

max
bij4bij4bij

½jcibij þ cjbjij�; i=j; 14i; j4n:
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Proof
When rn40; for the variables yj0þ1; . . . ; yn; construct the positive definite and radially
unbounded Lyapunov function:

VðyÞ ¼
Xn
i¼1

ciy
2
i

Then

dV

dt

����
ð2Þ0

4

jy1j

..

.

jynj

0
BBB@

1
CCCA

T
2c1b11 m12 � � � m1n

m21 2c2b22 � � � m2n

..

. ..
. . .

. ..
.

mn1 mn2 � � � 2cnbnn

2
66666664

3
77777775

jy1j

..

.

jynj

0
BBB@

1
CCCA4� e

Xn
i¼j0þ1

y2i ð8Þ

Equation (8) indicates that the zero solution of ð2Þ0 is globally asymptotically stable w.r.t. the
partial variables yj0þ1; . . . ; yn: Further following the proof of Theorem 4 for the robust absolute
stability w.r.t. yðj0Þ; we can show that the zero solution of ð2Þ0 is also absolutely stable w.r.t. the
partial variables y1; . . . ; yj0 :

Next, consider rn50: For variable yn; construct the positive definite and radially unbounded
Lyapunov function:

VðyÞ ¼
Xn
i¼1

ciy
2
i

Then, differentiating V w.r.t. time t along the trajectory of system ð2Þ0 yields

dV

dt

����
ð2Þ0

4

jy1j

..

.

jynj

0
BBB@

1
CCCA

T
2c1b11 m12 � � � m1n

m21 2c2b22 � � � m2n

..

. ..
. . .

. ..
.

mn1 mn2 � � � 2cnbnn

2
66666664

3
77777775

jy1j

..

.

jynj

0
BBB@

1
CCCAþ 2cnrnynf ðynÞ

4 2cnrnynf ðynÞ50 when yn=0 ð9Þ

Further, use the method of constant variation to express yðtÞ in form of

yðt; t0; y0Þ ¼ eBðt�t0Þy0 þ

Z t

t0

eBðt�tÞrnf ðynðtÞÞ dt

and follow Theorem 1 to finish the proof. &

4. ALGEBRAIC SUFFICIENT AND NECESSARY CONDITIONS FOR ROBUST
ABSOLUTE STABILITY OF SPECIAL LURIE INTERVAL CONTROL SYSTEMS

For an interval matrix, it is difficult to verify if it is an Hurwitz matrix. Although we have
applied finite cover theorem to show that the Hurwitz stability of an infinite number of interval

ROBUST ABSOLUTE STABILITY OF LURIE INTERVAL CONTROL SYSTEMS 1679

Copyright # 2007 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2007; 17:1669–1689

DOI: 10.1002/rnc



matrices can be found from the Hurwitz stability of a finite number of interval matrices [21],
determining these finite number of matrices are very difficult.

In this section, we will consider some special Lurie interval control systems and derive several
very simple algebraic sufficient and necessary conditions for the robust absolute stability of these
special systems.

Again consider system (1), but now assume that �aij ¼ aij ; i=j; i; j ¼ 1; 2; . . . ; n; aii50;
i ¼ 1; 2; . . . ; n; hn50; � hi ¼ hi; i ¼ 1; 2; . . . ; n� 1; and lhi ¼ ain; i ¼ 1; 2; . . . ; n; l > 0:
Then, we have the following theorem.

Theorem 8
The sufficient and necessary condition for the zero solution of the Lurie interval control system
(1) being absolutely robust stable is that � %A is an M matrix.

(The definition of M matrix can be found, say, in [22] or [17, pp. 7–8].)

Proof (Necessity)
Take %A 2 AI ; %h 2 hI ; f ðxnÞ ¼ xn: Substituting these expressions into system (1) yields

dx

dt
¼ %Axþ %hxn ¼ ½ %Aþ ðOn�ðn�1Þ; %hÞ�x ð10Þ

Since (10) is a linear system with constant coefficient, its coefficient matrix, ½ %Aþ ðOn�ðn�1Þ; %hÞ�;
must be an Hurwitz matrix. The diagonal elements of this matrix are negative, and non-diagonal
elements are non-negative. Thus, the matrix �½ %Aþ ðOn�ðn�1Þ; %hÞ� is an M matrix. Hence, there
exists constants ci > 0; i ¼ 1; 2; . . . ; n such that

�cjajj >
Xn

i¼1;i=j

ciaij ; j ¼ 1; 2; . . . ; n� 1 ð11Þ

and

�cnðann þ hnÞ >
Xn�1
i¼1

ciðain þ hiÞ ð12Þ

Equation (12) can be rewritten as �cnð1þ
1
lÞann >

Pn�1
i¼1 cið1þ 1=lÞain; i.e.

�cnann >
Xn�1
i¼1

ciain ð13Þ

Equations (12) and (13) imply that � %A is an M matrix.
Sufficiency. 8A 2 AI ; h 2 hI ; for system ð1Þ0; choose the positive definite and radially

unbounded Lyapunov function:

VðxÞ ¼
Xn
i¼1

cijxij

where ci’s are determined by Equations (11) and (12). It follows from

�cnann >
Xn�1
i¼1

ciain and lhi ¼ ain ði ¼ 1; 2; . . . ; nÞ
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that

�cnhn >
Xn�1
i¼1

cihi

Now, we compute the Dini derivative of V along the trajectory of ð1Þ0 to obtain

DþVðxÞjð1Þ0 ¼
Xn
i¼1

ci ’xi signðxiðtÞÞ

¼
Xn
i¼1

ci
Xn
j¼1

aijxjðtÞ þ hif ðxnðtÞÞ

" #
signðxiðtÞÞ

4
Xn
j¼1

cjajjjxjðtÞj þ
Xn
j¼1

Xn
i¼1;i=j

jaijj jxjðtÞj þ cnhn þ
Xn�1
i¼1

cijhij

" #
jf ðxnðtÞÞj

4
Xn
j¼1

cjajj þ
Xn

i¼1;i=j

ciaij

" #
jxjj þ cnhn þ

Xn�1
i¼1

cihi

" #
jf ðxnÞj

5 0 when x=0 ð14Þ

Because of arbitrary of A 2 AI and h 2 hI ; the zero solution of system (1) is absolutely robust
stable. The proof is complete. &

Next, consider system (2). Assume that bii50; i ¼ 1; 2; . . . ; n; �bij ¼ bij ; i=j; i; j ¼ 1; 2; . . . ; n;
�ri ¼ ri; i ¼ 1; 2; . . . ; n� 1 and rn50:

Theorem 9
The sufficient and necessary conditions for the zero solution of the Lurie interval control system
(2) being absolutely robust stable are the following:

(1) the zero solution of system (2) is absolutely robust stable w.r.t. the partial variable yn;
(2)

�Bðn�1Þ :¼

b11 � � � b1ðn�1Þ

..

.
� � � ..

.

bðn�1Þ1 � � � bðn�1Þðn�1Þ

2
66664

3
77775

is an M matrix.

Proof (Necessity)
(1) The robust absolute stability w.r.t. yn is obvious. For (2), substituting f ðynÞ ¼ yn into (2)
results in an interval system:

dy

dt
¼ ½BI þ ðOn�ðn�1Þ; rI Þ�y

So ½BI þ ðOn�ðn�1Þ; rI Þ� is an interval Hurwitz matrix. Thus, ½ %Bþ ðOn�ðn�1Þ; %rÞ� is an Hurwitz
matrix, indicating that �½ %Bþ ðOn�ðn�1Þ; %rÞ� is anM matrix. In particular, � %Bðn�1Þ is anM matrix.
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Sufficiency. Let

Bðn�1Þ :¼

b11 � � � b1ðn�1Þ

..

. ..
.

aðn�1Þ1 � � � aðn�1Þðn�1Þ

2
6664

3
7775

Bðn�1ÞC :¼ ðb1n; b2n; . . . ; bðn�1ÞnÞ
T

rðn�1Þ :¼ ðr1; r2; . . . ; rn�1Þ
T
¼ ð0; . . . ; 0ÞTðn�1Þ�1

and yðn�1ÞðtÞ :¼ ðy1ðtÞ; y2ðtÞ; . . . ; yn�1ðtÞÞ
T: Then, the first n� 1 solutions of system ð2Þ0 can be

expressed as

yðn�1ÞðtÞ ¼ eB
ðn�1Þðt�t0Þyðn�1Þðt0Þ þ

Z t

t0

eB
ðn�1Þðt�tÞBðn�1ÞCynðtÞ dt

þ

Z t

t0

eB
ðn�1Þðt�tÞrðn�1Þf ðynðtÞÞ dt

Re lmaxðB
ðn�1ÞÞ4Re lmaxð %B

ðn�1ÞÞ ð15Þ

where Re lmax denotes the largest real part of the eigenvalues of the corresponding matrix. There
exists constants M51 and a > 0 such that

jjeB
ðn�1Þðt�t0Þjj4jje %B

ðn�1Þðt�t0Þjj4MeRe lmaxð %B
ðn�1ÞÞðt�t0Þ4Me�aðt�t0Þ

Hence,

jjyðn�1ÞðtÞjj4MeRe lmaxð %B
ðn�1ÞÞðt�t0Þjjyðn�1Þðt0Þjj þ

Z t

t0

MeRe lmaxð %B
ðn�1ÞÞðt�tÞjj %Bðn�1ÞCjj jjynðtÞjj dt

4Me�aðt�t0Þjjyðn�1Þðt0Þjj þ

Z t

t0

Me�aðt�tÞjj %Bðn�1ÞCjj jjynðtÞjj dt

Due to condition (1), ynðtÞ ! 0 as t!þ1; we can follow the proof of Theorem 1 to show that
the zero solution of (2) is absolutely robust stable w.r.t. the partial variable yðn�1ÞðtÞ: &

Remark
Although the conditions given in Theorems 8 and 9 are obtained in special cases, they are quite
useful in realizing robust absolute stability via feedback controls.

5. APPLICATIONS

In this section, we present several examples to demonstrate the applicability of theorems given in
the previous two sections. The first three systems are mathematical examples with numerical
simulation results to verify the analytical predictions. The last example is a practical engineering
system for which we employ the theorems presented in this paper to obtain stronger conclusions
than the existing results.
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Example 1
The first example is to consider the robust absolute stability of the zero solution of the following
Lurie interval control system:

dx1

dt

dx2

dt

0
BB@

1
CCA ¼ ½�1:2;�1� ½�0:5; 1:5�

½�2; 2� ½�5;�4�

" #
x1

x2

 !
þ

½�2; 2�

½�4:5;�4:2�

 !
f ðx2Þ ð16Þ

where f ð�Þ 2 F :

It is easy to verify that the conditions in Theorem 5 are satisfied: a11 ¼ �1; a22 ¼ �4; a
ðmÞ
12 ¼

3
2
;

a
ðmÞ
21 ¼ 2; hðmÞ1 ¼ 2; h2 ¼ �4:2: Take c1 ¼ 2:1 and c2 ¼ 1: Then, we construct the positive definite

and radially unbounded Lyapunov function:

V ¼ c1jx1j þ c2jx2j

and find that

DþV jð16Þ4 ðc1a11 þ c2a
ðmÞ
21 Þjx1j þ ðc2a22 þ c1a

ðmÞ
12 Þjx2j þ ðc2b2 þ c1b

ðmÞ
1 Þjf ðx2Þj

¼ ð�2:1þ 2Þjx1j þ ð�4þ 2:1� 3
2
Þjx2j þ ð�4:2þ 4:2Þjf ðx2Þj

4 � 0:1jx1j � 0:85jx2j

5 0 when jx1j þ jx2j=0

Thus, all the conditions in Theorem 5 are satisfied. Hence, the zero solution of system (16) is
absolutely robust stable.

To simulate this example, we take the upper bounds of the system coefficients to obtain

dx1

dt
¼ � x1 þ 1:5x2 þ 2f ðx2Þ

dx2

dt
¼ 2x1 � 4x2 � 4:2f ðx2Þ ð17Þ

and, for definiteness, take f ðx2Þ ¼ x32: The simulation results are depicted in Figure 1, where two
different initial conditions are chosen, given by

ðx1;x2Þ ¼ ð0:5;�2:0Þ and ðx1;x2Þ ¼ ð�28:0; 20:0Þ ð18Þ

It is seen from Figures 1(a) and (b) that the two trajectories starting from different initial points
converge to the same equilibrium point}the origin.

Example 2
Analyse the stability of the zero solution of the following Lurie interval control system:

dx1

dt

dx2

dt

0
BB@

1
CCA ¼ ½�5;�4� ½�3; 3�

½�2; 2� ½�4;�3�

" #
x1

x2

 !
þ

½�2; 2�

½�3;�2�

 !
f ðx2Þ ð19Þ

where f ðx2Þ 2 F :
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Since

%A ¼
�4 3

2 �3

" #

it is obvious to see that � %A is an M matrix. Further, from h1 ¼ 2; h2 ¼ �2; a12 ¼ 3; a22 ¼ �3;
and taking l ¼ 3

2
yields lhi ¼ ai2; i ¼ 1; 2: So all the conditions in Theorem 8 are satisfied. Thus,

the zero solution of system (19) is absolutely robust stable.
For simulation, we consider

dx1

dt
¼ � 4x1 þ 3x2 þ 2f ðx2Þ

dx2

dt
¼ 2x1 � 3x2 � 2f ðx2Þ ð20Þ

and choose f ðx2Þ ¼ x52: The simulation results are given in Figure 2 which again shows that
trajectories from difference initial points converge to the origin. The two initial points are

-2

-1

0

1

-0.6 -0.3 0 0.3 0.6
(a) (b)

-5

0

 5

10

15

20

-30 -25 -20 -15 -10 -5  0 5

Figure 1. Simulated trajectories of system (17) for Example 1 converge to the origin, with the initial points:
(a) ðx1; x2Þ ¼ ð0:5;�2:0Þ and (b) ðx1; x2Þ ¼ ð�28; 20Þ:

-2

-1

0

1

-0.6 -0.3 0 0.3 0.6
(a) (b)

-5

0

 5

10

15

-25 -20 -15 -10 -5  0 5

Figure 2. Simulated trajectories of system (20) for Example 2 converge to the origin, with the initial points:
(a) ðx1; x2Þ ¼ ð0:5;�2:0Þ and (b) ðx1; x2Þ ¼ ð�25; 10Þ:
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chosen as

ðx1;x2Þ ¼ ð0:5;�2:0Þ and ðx1;x2Þ ¼ ð�25:0; 10:0Þ ð21Þ

respectively.

Example 3
Consider the stability of the zero solution of a 3-D simplified Lurie interval control system,
described by

dy1

dt

dy2

dt

dy3

dt

0
BBBBBBB@

1
CCCCCCCA
¼

½�3;�2� ½1; 2� ½0; 1�

½�2;�1� ½�4;�1� ½�1; 1�

½�1; 0� ½�1; 1� ½�3;�2�

2
664

3
775

y1

y2

y3

0
BB@

1
CCAþ

0

0

½�1;�1
2
�

0
BB@

1
CCAf ðy3Þ ð22Þ

where f ðsÞ 2 F :

Construct the positive definite and radially unbounded Lyapunov function:

V ¼ 1
2
ðy21 þ y22 þ y23Þ

Then, we obtain

dV

dt

����
ð22Þ

¼ ½�3;�2�y21 þ ½�4;�1�y
2
2 þ ½�3;�2�y

2
3 þ ½1; 2�y1y2 þ ½�2;�1�y2y1

þ ½0; 1�y1y3 þ ½�1; 0�y3y1 þ ½�1; 1�y2y3 þ ½�1; 1�y3y2 þ ½�1;�1
2
�y3f ðy3Þ

� � 2y21 � y22 � 2y23 þ jy1y2j þ jy1y3j þ 2jy2y3j �
1
2
y3f ðy3Þ

¼

y1

y2

y3

0
BB@

1
CCA

T
�2 1

2
1
2

1
2
�1 1

1
2

1 �2

2
664

3
775

y1

y2

y3

0
BB@

1
CCA� 1

2
y3f ðy3Þ50 when jyj=0

Thus, the zero solution of system (22) is absolutely robust stable.
For simulation, we consider two particular systems associated with system (22), given

below:

dy1

dt

dy2

dt

dy3

dt

0
BBBBBBB@

1
CCCCCCCA
¼

�2 2 1

�1 �1 1

0 1 �2

2
664

3
775

y1

y2

y3

0
BB@

1
CCAþ

0

0

�1
2

0
BB@

1
CCAf ðy3Þ ð23Þ
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and

dy1

dt

dy2

dt

dy3

dt

0
BBBBBBB@

1
CCCCCCCA
¼

�2 1 0

�2 �1 �1

�1 �1 �2

2
664

3
775

y1

y2

y3

0
BB@

1
CCAþ

0

0

�1
2

0
BB@

1
CCAf ðy3Þ ð24Þ

where f ðy3Þ is taken as f ðy3Þ ¼ y33 for system (23) and f ðy3Þ ¼ y53 for system (24), respectively, in
simulation. Two initial points are chosen as

ðy1; y2; y3Þ ¼ ð0:5;�2:0; 1:5Þ and ðy1; y2; y3Þ ¼ ð�25:0; 10:0; 20Þ ð25Þ

The simulation results for system (23) and (24) are shown, respectively, in Figures 3 and 4. These
two figures again show that all the trajectories converge to the origin, as expected.

-2

-1

0

1

-0.6 -0.3 0 0.3 0.6
(a) (b)

-5

0

 5
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15

-25 -20 -15 -10 -5  0 5

Figure 3. Simulated trajectories of system (23) for Example 3, projected on the y1–y2 plane, converge to
the origin, with the initial points: (a) ðy1; y2; y3Þ ¼ ð0:5;�2:0; 1:5Þ and (b) ðy1; y2; y3Þ ¼ ð�28; 20; 20Þ:

-2

-1

0

1

-0.6 -0.3 0 0.3 0.6
(a) (b)

-5

0

 5

10

15

-25 -20 -15 -10 -5  0 5

Figure 4. Simulated trajectories of system (24) for Example 3, projected on the y1–y2 plane, converge to
the origin, with the initial points: (a) ðy1; y2; y3Þ ¼ ð0:5;�2:0; 1:5Þ and (b) ðy1; y2; y3Þ ¼ ð�28; 20; 20Þ:
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Example 4
Finally, we consider the following system which describes the motion of an aircraft in the
longitudinal direction [17, 20, 23, 24]:

dxi

dt
¼ � rixi þ s

ds
dt
¼
X4
i¼1

bixi � rp� f ðsÞ ð26Þ

where ri 2 ½ri; ri�; bi 2 ½bi;bi�; rp 2 ½rp; rp�; and ri > ri > 0; �15bi404bi5þ1; rp > rp > 0:

Note that if ri ¼ ri; bi ¼ bi; rp ¼ rp; then the absolute stability of system (26) has been
studied by many authors (e.g. see [17, 23, 25]). However, strictly speaking, it is more practical to
allow the coefficients to take values in intervals.

In the following, we shall show that for the system’s coefficient taking interval values, the zero
solution of system (26) is absolutely robust stable if

rp5
X4
i¼1

1þ sign bi
2

bi
ri

ð27Þ

Proof
For any values of the system coefficients ri 2 ½ri;ri�; bi 2 ½bi; bi� and rp 2 ½rp; rp�; we can
construct the positive definite and radially unbounded Lyapunov function:

Vðx;sÞ ¼
X4
i¼1

cix
2
i þ s2 ð28Þ

where ci is defined as

ci ¼

�bi when bi50

Ei when bi ¼ 0 ð05Ei{1Þ

bi when bi > 0

8>><
>>: ð29Þ

Differentiating V with respect to t along the trajectory of (26) and simplifying the result yields

dV

dt

����
ð26Þ

¼ 2
X4
i¼1

cixi ’xi þ 2s ’s

¼

x1

x2

x3

x4

s

0
BBBBBBBB@

1
CCCCCCCCA

T
�2c1r1 0 0 0 c1 þ b1

0 �2c2r2 0 0 c2 þ b2

0 0 �2c3r3 0 c3 þ b3

0 0 0 �2c4r4 c4 þ b4

c1 þ b1 c2 þ b2 c3 þ b3 c4 þ b4 �2rp

2
666666664

3
777777775

x1

x2

x3

x4

s

0
BBBBBBBB@

1
CCCCCCCCA
� 2rsf ðsÞ

� ðx1 x2 x3 x4 sÞDðx1 x2 x3 x4 sÞT � 2rsf ðsÞ ð30Þ
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Thus, if we can prove that the first term of (30) is negative semi-definite, then (30) is negative
definite about the variable s: Therefore, we only need to prove that D40:

It is easy to see that D40 if and only if

2rp�
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ðci þ biÞ
2

2ciri
50 ð31Þ

Further, we can show that the condition

rp5
X4
i¼1

1þ sign bi
2

bi
ri

ð32Þ

implies that (31) holds. We only need to compare ðci þ biÞ
2=2ciri with ð1þ sign biÞbi=ri:

By the definition of ci given in (29), we see that when ci ¼ bi; 0 ¼ ðci þ biÞ
2=2ciri ¼ ð1þ sign biÞ

bi=ri ¼ 0; when ci ¼ bi > 0; ðci þ biÞ
2=2ciri ¼ 2biri ¼ ð1þ sign biÞbi=ri: For bi ¼ 0; we have

ðci þ biÞ
2=2ciri ¼ Ei=2ri: Since rp > 0 is a constant, rp can be chosen such that rp5Ei=2ri due

to Ei being arbitrarily small.
On the other hand, it follows from condition (27) that
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which indicates that (27) is a sufficient condition for (32) to hold. This shows that the first term
of (30) is negative semi-definite, and so dV=dtjð26Þ is negative definite about s:

Let f ðsÞ ¼ s: Then (26) becomes a linear system with interval coefficients:

dxi

dt
¼ � rixi þ s

ds
dt
¼
X4
i¼1

bixi � ðrpþ 1Þs ð33Þ

Again using the Lyanpunov function (28), we can show that the zero solution of system (33) is
globally asymptotically stable. Thus, the coefficient matrix of system (33) is an Hurwitz matrix.
Hence, by Theorem 1 we know that the zero solution of system (26) is absolutely robust stable.

In particular, when ri ¼ ri; bi ¼ bi; gr ¼ gr; the results given above recover the existing
results obtained in [17, 24], and also recover the results of [20, 23] as special cases. This shows
that the theorems given in this paper generalize the existing results in the literature.

6. CONCLUSION

In this paper, we have considered robust absolute stability of Lurie interval control systems. We
presented a number of sufficient and necessary conditions under which a Lurie system with
interval feedback controls can be robustly absolutely stabilized. Besides, we have also provided
several algebraic sufficient and necessary conditions for the robust absolute stability of Lurie
interval control systems. These algebraic conditions can be easily verified and are thus
convenient to be used in applications. Four examples including a practical engineering problem,
with numerical simulations, are presented to verify analytical predictions.
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