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Abstract
A susceptible-infectious-recovered (SIRS) epidemic model with a generalized nonmono-
tone incidence rate kIS

1+�I+�I2
 ( 𝛽 > −2

√

𝛼 such that 1 + 𝛽I + 𝛼I2 > 0 for all I ≥ 0 ) is consid-
ered in this paper. It is shown that the basic reproduction number R0 does not act as a 
threshold value for the disease spread anymore, and there exists a sub-threshold value 
R∗(< 1) such that: (i) if R0 < R∗ , then the disease-free equilibrium is globally asymptoti-
cally stable; (ii) if R0 = R∗ , then there is a unique endemic equilibrium which is a nilpotent 
cusp of codimension at most three; (iii) if R∗ < R0 < 1 , then there are two endemic equilib-
ria, one is a weak focus of multiplicity at least three, the other is a saddle; (iv) if R0 ≥ 1 , 
then there is again a unique endemic equilibrium which is a weak focus of multiplicity at 
least three. As parameters vary, the model undergoes saddle-node bifurcation, backward 
bifurcation, Bogdanov–Takens bifurcation of codimension three, Hopf bifurcation, and 
degenerate Hopf bifurcation of codimension three. Moreover, it is shown that there exists a 
critical value �0 for the psychological effect � , a critical value k0 for the infection rate k, and 
two critical values 𝛽0, 𝛽1(𝛽1 < 𝛽0) for � that will determine whether the disease dies out or 
persists in the form of positive periodic coexistent oscillations or coexistent steady states 
under different initial populations. Numerical simulations are given to demonstrate the 
existence of one, two or three limit cycles.
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1 Introduction

Consider an infectious disease being transmitted person to person by direct or indirect con-
tact in a population. The host population is divided into three classes S(t), I(t) and R(t), 
where S(t) denotes the number of individuals who are susceptible to the disease, that is, 
who are not yet infected at time t, I(t) denotes the number of infectious individuals at time 
t who have been infected and are able to spread the disease by contact with susceptible 
individuals, R(t) denotes the number of individuals who have been recovered from the 
infection and removed from the possibility of being infected again or of spreading at time 
t. Bifurcations in susceptible-infectious-recovered (SIRS) epidemic models with various 
incidence rates have been studied by many researchers, see for example, Alexander and 
Moghadas [1, 2], Capasso and Serio [4], Derrick and van den Driessche [7], Hethcote and 
van den Driessche [11], Hu et al. [12], Liu et al. [18], Li et al. [17], Ruan and Wang [22], 
Tang et al. [24], Xiao and Ruan [26], Xiao and Zhou [27], Zhou et al. [30]. In this paper we 
consider the following SIRS model with a generalized nonmonotone incidence rate:

under the initial conditions S(0) ≥ 0 , I(0) ≥ 0 , R(0) ≥ 0 , where S(t), I(t) and R(t) denote 
the numbers of susceptible, infective, and recovered individuals at time t,   respectively, 
b > 0 is the recruitment rate of the population, d > 0 is the natural death rate of the popula-
tion, 𝜇 > 0 is the natural recovery rate of the infected individuals, 𝛿 > 0 is the rate at which 
recovered individuals lose immunity and return to the susceptible class. In the incidence 
rate function kIS

1+�I+�I2
 , k > 0 is the infection rate and kI measures the infection force of dis-

ease, 1

1+�I+�I2
 describes the inhibit effect from the behavioral change of the susceptible indi-

viduals when the number of infectious individuals increases, 𝛼 > 0 is a parameter which 
measures the psychological or inhibitory effect, and � is a parameter satisfying 𝛽 > −2

√

𝛼 
such that 1 + 𝛽I + 𝛼I2 > 0 for all I ≥ 0.

When studying the data on the cholera epidemic spread in Bari, Italy, in 1973, Capasso 
et al. [3] and Capasso and Serio [4] proposed a nonlinear incidence rate function taking 
psychological effects into account, which exhibits patterns showing in Fig. 1b, where the 
infection rate increases firstly and then decreases as the number of infected individuals 
increases. In fact, when a new infectious disease emerges, both the contact rate and the 
infection probability increase since people have very little knowledge about the disease. 
However, when number of infected individuals is getting larger and the disease becomes 
more serious, psychological factor leads people to modify their behavior and imple-
ment measures to reduce the opportunities of contact and the probability of infection. 
For instance, after the outbreaks of the avian influenza A (H5N1) virus, to determine the 
knowledge, attitudes and practices relating to avian influenza in the general populations, 
cross-sectional surveys conducted in Thailand and China show a high degree of awareness 
of human avian influenza in both urban and rural populations and a higher level of proper 
hygienic practice among urban residents by reducing their visits to live markets [19]. Also, 
during the outbreak of coronavirus disease 2019 (COVID-19), the aggressive measures and 
policies, such as border screening, mask wearing, quarantine, and isolation, were proved to 

(1.1)

dS

dt
= b − dS −

kIS

1 + �I + �I2
+ �R,

dI

dt
=

kIS

1 + �I + �I2
− (d + �)I,

dR

dt
= �I − (d + �)R,
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be very effective in reducing the further transmission of the disease. So with these behavio-
ral changes the infection force decreases when the number of infected individuals becomes 
larger. But Capasso and Serio [4] did not give any specific function to describe such an 
incidence. Some scholars have proposed some functions to describe this kind of incidence 
rate, for example, Xiao and Ruan [26] proposed a nonmonotone incidence rate kIS

1+�I2
 to take 

psychological effects into account.
The special case of model (1.1) when � = 0 was proposed and studied by Xiao and 

Ruan [26] who found that system (1.1) with � = 0 has an important threshold, i.e., the 
basic reproduction number R0 , such that the disease-free equilibrium is globally asymptoti-
cally stable if R0 ≤ 1 , and the unique endemic equilibrium is globally asymptotically stable 
if R0 > 1 . Tang et al. [24] conjectured that system (1.1) with � = 0 does not exhibit com-
plex dynamics and bifurcations.

Model (1.1) with � ≠ 0 was first considered by Xiao and Zhou [27]. Comparing the 
nonmonotone infection force g1(I) =

kI

1+�I2
 (Fig.  1a) with the generalized nonmonotone 

infection force g2(I) =
kI

1+�I+�I2
 (Fig.  1b) we can see that, when the infection number is 

small, g2(I) increases faster when 𝛽 < 0 than when � = 0 (see Fig. 1). Moreover, for the 
same values of k and � , the maximum of g2(I) is bigger when 𝛽 < 0 than when � = 0 . We 
can also see that the infection force g2(I) is stronger when 𝛽 < 0 . Xiao and Zhou [27] pre-
sented qualitative analysis of model (1.1) and showed the existence of a cusp of codimen-
sion two, bistable phenomenon and periodic oscillations. Later, Zhou et  al. [30] further 
studied the existence of different kinds of bifurcations in model (1.1), such as Bogda-
nov–Takens bifurcation of codimension two and Hopf bifurcation of codimension one, by 
choosing several sets of specific parameter values. Their results showed that model (1.1) 
with a generalized nonmonotone incidence rate can exhibit complex dynamics and bifurca-
tions. However, several sets of parameter values that they chose to unfold the bifurcations 
may be not biologically meaningful.

In this paper, we continue to consider model (1.1) with a generalized nonmonotone 
incidence rate function. By considering general parameter conditions, not specific param-
eter values as chosen in Zhou et  al. [30], we show that the basic reproduction number 
R0 in model (1.1) does not act as a threshold value for the disease spread anymore, and 
there exists a sub-threshold value R∗ (< 1) such that: (i) if R0 < R∗ , then the disease-free 

(a) (b)

Fig. 1  a The graph of the nonmonotone infection force g1(I) =
kI

1+�I2
 ; b the graphs of the generalized non-

monotone infection force g2(I) =
kI

1+�I+�I2
 when � = 3 × 10−10 , k = 1 × 10−8
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equilibrium is globally asymptotically stable; (ii) if R0 = R∗ , then there is a unique endemic 
equilibrium which is a nilpotent cusp of codimension at most three; (iii) if R∗ < R0 < 1 , 
then there are two endemic equilibria, one is a weak focus of multiplicity at least three, the 
other is a saddle; (iv) if R0 ≥ 1 , then there is again a unique endemic equilibrium which a 
weak focus of multiplicity at least three. In case (iv), sufficient conditions to guarantee the 
globally asymptotically stability or the uniqueness of a limit cycle for the model are given. 
As the parameters vary, the model undergoes a sequence of bifurcations including sad-
dle-node bifurcation, backward bifurcation, Bogdanov–Takens bifurcation of codimension 
three, Hopf bifurcation, and degenerate Hopf bifurcation of codimension three. Moreover, 
it is shown that there exists a critical value �0 for the psychological effect � , a critical value 
k0 for the infection rate k, and two critical values 𝛽0, 𝛽1 (𝛽1 < 𝛽0) for � that will determine 
whether the disease dies out or persists in the form of positive periodic coexistent oscilla-
tions or coexistent steady states under different initial populations. More specifically, it is 
shown that: (i) when 𝛼 > 𝛼0 , or � ≤ �0 , k < k0 and � ≥ �0 , or k = k0 and � ≥ �0 , the disease 
will die out for all positive initial populations; (ii) when � = �0 and 𝛽1 ≤ 𝛽 < 𝛽0 , the dis-
ease will die out for almost all positive initial populations; (iii) when � = �0 and 𝛽 < 𝛽1 , the 
disease will persist in the form of a positive coexistent steady state for some positive initial 
populations; and (iv) when 𝛼 < 𝛼0 , k < k0 and 𝛽 < 𝛽0 , or k = k0 and 𝛽 < 𝛽0 , or k > k0 , the 
disease will persist in the form of multiple positive periodic coexistent oscillations and 
coexistent steady states for some positive initial populations. Numerical simulations are 
presented to illustrate the theoretical results, including the existence of one, two or three 
limit cycles, bifurcation diagrams and corresponding phase portraits.

The rest of the paper is organized as follows. In Sect. 2, we summarize the qualitative 
analysis of the model, including the types and stability of equilibria. In Sect. 3, we pre-
sent sufficient conditions to guarantee the nonexistence, existence and uniqueness of limit 
cycles of the model. In Sect. 4, we show that the model undergoes saddle-node bifurcation, 
backward bifurcation, Bogdanov–Takens bifurcation of codimensions two and three, Hopf 
bifurcation and degenerate Hopf bifurcation of codimension three. Numerical simulations 
are given to demonstrate the existence of one, two or three limit cycles in Sect. 5. A brief 
discussion is given in the last section.

2  Basic Properties of the Model

Adding up the three equations of (1.1), we have the following lemma.

Lemma 2.1 The plane S + I + R =
b

d
 is an invariant manifold of system (1.1) which is 

attracting in the first octant.

The limit set of system (1.1) is on the plane S + I + R =
b

d
 on which model (1.1) can be 

reduced to a two-dimensional system:

(2.1)

dI

dt
=

kI

1 + �I + �I2

(

b

d
− I − R

)

− (d + �)I,

dR

dt
= �I − (d + �)R.
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Letting

then system (2.1) can be rescaled as follows (we still denote � by t)

where

Moreover, �, �, k, �, � can be expressed by A, m, p, q, n, b and d as follow

Denote

We can see that

is a positively invariant and bounded region for system (2.2) when (A,m, p, q, n) ∈ Γ1.
System (2.2) always has an equilibrium E0 = (0, 0) which corresponds to the disease-

free equilibrium ( b
d
, 0, 0) of system (1.1). To find the endemic equilibria, we set

which yield

The discriminant of (2.7) is

We can see that (2.7) has at most two roots x− and x+ , which may coalesce into a unique 
root x1 , where

By using the procedure in van den Driessche and Watmough [25] and the existence of posi-
tive equilibria, we find the basic reproduction number and a sub-threshold value as follows:

I =
d + �

k
x, R =

d + �

k
y, t =

1

d + �
�,

(2.2)

dx

dt
=

x

1 + mx + nx2
(A − x − y) − px ≜ P(x, y),

dy

dt
= qx − y ≜ Q(x, y),

(2.3)m =
�(d + �)

k
, n =

�(d + �)2

k2
, A =

bk

d(d + �)
, p =

d + �

d + �
, q =

�

d + �
.

(2.4)� =
dq

p − q
, � =

d(1 − p + q)

p − q
, k =

Ad2

b(p − q)
, � =

A2d2n

b2
, � =

Adm

b
.

(2.5)Γ1 = {(A,m, p, q, n) ∶ q < p < q + 1, m > −2
√

n, A, p, q, n > 0}.

Ω =
{

(x, y)|0 ≤ x ≤ A, 0 ≤ y ≤ qA
}

(2.6)
x

1 + mx + nx2
(A − x − y) − px = 0, qx − y = 0,

(2.7)pnx2 + (1 + q + pm)x + p − A = 0.

Δ = (1 + q + pm)2 − 4pn(p − A).

(2.8)

x− =
−(1 + q + pm) −

√

Δ

2pn
, x+ =

−(1 + q + pm) +
√

Δ

2pn
, x1 = −

1 + q + pm

2pn
.
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Clearly, R∗ < 1 and Δ ≥ 0 is equivalent to R0 ≥ R∗.
By analyzing the existence of positive roots to (2.7), we obtain the following results.

Theorem 2.2 Model (2.2) always has a boundary equilibrium E0(0, 0) . Moreover, 

(I) when R0 < 1 , we have 

 (i.1) if R0 < R∗ , then system (2.2) has no positive equilibria;
 (i.2) if R0 = R∗ and m < −

1+q

p
 , then system (2.2) has a unique positive equilibrium 

E1(x1, y1) , where y1 = qx1;

 (i.3) if R0 > R∗ and m < −
1+q

p
 , then system (2.2) has two positive equilibria E2(x2, y2) and 

E3(x3, y3) , where x2 = x− , y2 = qx2; x3 = x+, y3 = qx3;

(II) when R0 = 1 and m < −
1+q

p
 , then system (2.2) has a unique positive equilibrium 

E4(x4, y4) , where x4 = x+ , y4 = qx4;

(III) when R0 > 1 , then system (2.2) has a unique positive equilibrium E5(x5, y5) , where 
x5 = x+ , y5 = qx5.

Next we study the locally stability of equilibria of system (2.2). Combining the 
results in Xiao and Zhou [27], we have the following lemma.

Lemma 2.3 The boundary equilibrium E0(0, 0) of system (2.2) is 

 (i.1) a hyperbolic stable node if R0 < 1;
 (i.2) a saddle-node if R0 = 1 and m ≠ −

1+q

p
 . Moreover, a stable parabolic sector lies in 

the right (or left) half plane of ℝ2 if m > −
1+q

p
 (or m < −

1+q

p
);

 (i.3) a degenerate stable node if R0 = 1 and m = −
1+q

p
;

 (i.4) a hyperbolic saddle if R0 > 1.

To determine when the disease cannot persist, we have to study the global stability of 
the equilibrium ( d

b
, 0, 0) . Next, we improve Theorem 2.5 in Xiao and Zhou [27] for the 

global stability of ( d
b
, 0, 0) in the interior ℝ3

+
.

Theorem  2.4 The disease-free equilibrium ( d
b
, 0, 0) of model (1.1) is globally asymptoti-

cally stable in the interior ℝ3
+
 , and the disease cannot invade the population if one of the 

following conditions holds: 

 (i.1) R0 < R∗;
 (i.2) R∗ ≤ R0 < 1 and m ≥ −

1+q

p
;

 (i.3) R0 = 1 and m ≥ −
1+q

p
.

(2.9)R0 =
A

p
, R∗ = 1 −

(1 + q + pm)2

4np2
.
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Proof Since Lemma 2.1 implies that the stability of the disease-free equilibrium ( d
b
, 0, 0) of 

system (1.1) in the interior ℝ3
+
 is equivalent to that of equilibrium E0(0, 0) of system (2.2) 

in ℝ2
+
 , we only discuss the stability of equilibrium E0(0, 0) of system (2.2) in ℝ2

+
 . The phase 

portraits are shown in Fig. 2.
Since Ω is a positively invariant region, x = 0 is an invariant line and by index theory, 

we can obtain that system (2.2) has no nontrivial periodic orbits in ℝ2
+
 when system (2.2) 

has no positive equilibria. From Theorem 2.2 and Lemma 2.3, we know that system (2.2) 
only has a hyperbolic stable node E0(0, 0) in ℝ2

+
 when the condition (i.1) or (i.2) is satisfied 

(see Fig. 2a). Thus, E0(0, 0) is a global attractor in ℝ2
+
 . Hence, the condition (i.1) or (i.2) 

guarantees that ( d
b
, 0, 0) of model (1.1) is globally asymptotically stable in the interior ℝ3

+
.

When R0 = 1 and m = −
1+q

p
 , from Theorem 2.2 and Lemma 2.3, we know that system 

(2.2) only has a degenerate stable node E0(0, 0) in ℝ2
+
 . When R0 = 1 and m > −

1+q

p
 , it fol-

lows from Theorem 2.2 and Lemma 2.3 that system (2.2) has a unique equilibrium E0(0, 0) 
in ℝ2

+
 , and E0(0, 0) is a saddle-node, which has a stable parabolic sector in the right half 

plane of ℝ2 (see Fig. 2b). We obtain the conclusion by the same arguments as above.   ◻

Remark 2.5 We can see that R0 ≤ 1 is equivalent to k ≤ k0 , m ≥ −
1+q

p
 is equivalent to 

� ≥ �0 , and R0 ≤ R∗ is equivalent to � ≥ �0 , where

Lemma 2.3 and Theorem 2.4 indicate that the disease will die out for all positive initial 
populations if one of the following cases holds 

(2.10)

k0 ≜
d(� + d)

b
,

�0 ≜ −k
� + d + �

(d + �)(d + �)
,

�0 ≜
d
[

k(� + � + d) + �(d + �)(d + �)
]2

4(d + �)2(d + �)(d(d + �) − bk)
=

d(� − �0)
2(d + �)

4b(k0 − k)
.

m = − 1/10
n = 1

q = 2
A = 2

p = 5/2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

x

y

m = − 1/10
n = 1

q = 2
A = 5/2

p = 5/2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

x

y

(a) (b)

Fig. 2  The phase portraits of system (2.2) with no positive equilibria. a A hyperbolic stable node E0(0, 0) 
when R∗ < R0 < 1 and m > −

1+q

p
 ; b a saddle-node E0(0, 0) with a stable parabolic sector in the right half 

plane when R0 = 1 and m > −
1+q

p
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 (i.1) 𝛼 > 𝛼0 , i.e., the psychological or inhibitory effect � is greater than a critical value �0;
 (i.2) � ≤ �0 , k < k0 , � ≥ �0 , i.e., the infection rate k is smaller than the critical value k0 

and the psychological effect � is smaller than or equal to the critical value �0 , but � 
is greater than or equal to a critical value �0;

 (i.3) k = k0 , � ≥ �0 , i.e., the infection rate k is equal to the critical value k0 , but � is greater 
than or equal to the critical value �0.

Next we consider the stability of the positive equilibria of system (2.2). The Jacobian 
matrix of system (2.2) at a positive equilibria E(x, y) is given by

The determinant of J(E) is

its sign is determined by

The trace of J(E) is

its sign is determined by

In the following, we classify topological types of the positive equilibria of system (2.2). 
Define

Theorem 2.6 When (A,m, p, q, n) ∈ Γ1 , R0 = R∗ and m < −
1+q

p
 , system (2.2) has a unique 

positive equilibrium E1(x1, y1) and no closed orbits in Ω . Moreover, 

 (I) if A ≠ A∗ , then E1(x1, y1) is a saddle-node, which includes a stable parabolic sector 
(or an unstable parabolic sector) if A > A∗ (or A < A∗);

 (II) if A = A∗ , then E1(x1, y1) is a cusp. Moreover, 

 (i.1) if m ≠ m∗ , then E1(x1, y1) is a cusp of codimension two;
 (i.2) if m = m∗ , then E1(x1, y1) is a cusp of codimension three.

The phase portraits are shown in Fig.  3.
Proof Substituting the value of x1 and R0 = R∗ into SD and ST , which are given in (2.11) 
and (2.12), respectively, then by a direct calculation, we can deduce that SD(x1) = 0 , and

J(E) =

(

−
x(1+(m+2nx)p)

1+mx+nx2
−x

1+mx+nx2

q − 1

)

.

det(J(E)) =
x(1 + q + pm + 2npx)

1 + mx + nx2
,

(2.11)SD = 1 + q + pm + 2npx.

tr(J(E)) =
−n(1 + 2p)x2 − (1 + m + mp)x − 1

1 + mx + nx2
,

(2.12)ST = −n(1 + 2p)x2 − (1 + m + mp)x − 1.

(2.13)A∗ =
2p(1 + q + pq)

1 − mp + q + 2pq
, m∗ = −

1 + p + q + 2pq

p2
.
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Letting ST (x1) = 0 , we have

The assertions (I) and (i.1) of (II) are proved in [27] (see Lemma 2.7).
Next we prove the assertion (i.2) of (II). Let X = x − x1, Y = y − y1 , and use Taylor 

expansion, system (2.2) can be rewritten as (for simplicity, we still denote X, Y by x, y, 
respectively)

ST (x1) =
−2p(1 + q + pq) + A(1 − mp + q + 2pq)

p(1 + q + pm))
.

A =
2p(1 + q + pq)

1 − mp + q + 2pq
.

m = − 3
n = 3321/700

q = 2
A = 85/41

p = 5/2

0 0.05 0.1 0.15 0.2 0.25

0

0.05

0.1
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0.3
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0.7

x

y

(c) (d)

Fig. 3  Types of the unique positive equilibrium E1(x1, y1) of system (2.2): a A saddle-node with a stable 
parabolic sector when A > A∗ ; b a saddle-node with an unstable parabolic sector when A < A∗ ; c a cusp of 
codimension two when A = A∗ and m ≠ m∗ ; d a cusp of codimension three when A = A∗ and m = m∗
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where

where A, n and m have been eliminated by using the equations A = A∗ , R0 = R∗ and 
m = m∗ , respectively.

The following transformation

brings (2.14) into (we still denote X, Y by x, y, respectively)

where

In addition, let dt = (1 − b02x)d� . Then system (2.15) becomes (we still denote � by t)

(2.14)

dx

dt
= x −

1

q
y + a20x

2 + a11xy + a30x
3 + a21x

2y + a40x
4 + a31x

3y + o(|x, y|4),

dy

dt
= qx − y,

a20 =
(1 + 2p)(1 + q + pq)2

4p3q
, a11 = −

(1 + 2p)(1 + q + pq)2

2p3q2
,

a30 = −
(1 + 2p)2(pq − 1)(1 + q + pq)3

8p6q2
, a21 = −

(1 + 2p)2(2 + q)(1 + q + pq)3

8p6q3
,

a40 = −
(1 + 2p)3(1 + q + pq)4

[

− 2 + (−1 + 2p)q + (1 + 3p)q2
]

32p9q3
,

a31 =
(1 + 2p)3(1 + q + pq)4(−2 − 2q + pq2)

16p9q4
,

X = x,

Y = x −
1

q
y + a20x

2 + a11xy + a30x
3 + a21x

2y

+ a40x
4 + a31x

3y + o(|x, y|4),

(2.15)

dx

dt
= y,

dy

dt
= b20x

2 + b02y
2 + b30x

3 + b21x
2y

+ b12xy
2 + b40x

4 + b31x
3y + b22x

2y2 + o(|x, y|4),

b20 = −
(1 + 2p)(1 + q + pq)2

4p3q
, b02 =

(1 + 2p)(1 + q + pq)2

2p3q
,

b30 = −
(1 + 2p)2(1 + q + pq)4

8p6q2
,

b21 = −
(1 + 2p)3(1 + q + pq)3

8p6q
, b12 = −

(1 + 2p)2(pq − 1)(1 + q + pq)3

4p6q2
,

b40 = −
(1 + 2p)3(2 + q)(1 + q + pq)5

32p9q3
, b31 = −

(1 + 2p)4(1 + q)(1 + q + pq)4

16p9q2
,

b22 =
(1 + 2p)3(1 + q + pq)4

[

2 + q − 2pq + (−1 − 2p + 2p2)q2
]

16p9q3
.
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Next let X = x , Y = y(1 − b02x) . Then system (2.16) is transformed into (we still denote X, 
Y by x, y, respectively)

Finally, noticing b20 < 0 and letting X = −x , Y = −
y

√

−b20
 and � =

√

−b20t, we obtain (we 
still denote X, Y and � by x, y and t, respectively)

By Proposition 5.3 in Lamontagne et al. [16] (see also Lemma 2 in Huang et al. [13]), we 
obtain the equivalent system of (2.18) as follows:

where

Because p, q > 0 , we have G > 0 . So E1(x1, y1) is a cusp of codimension three.
Nonexistence of limit cycles in Ω comes from the index theory. More precisely, from the 

previous arguments, system (2.2) has a unique equilibrium E1(x1, y1) in Ω which is a sad-
dle-node or a cusp whose index is not one. Hence, it is impossible to have any limit cycle 
in Ω when (A,m, p, q, n) ∈ Γ1 and R0 = R∗ , m < −

1+q

p
 . This completes the proof.   ◻

Remark 2.7 Zhou et al. [30] showed that system (2.2) has a cusp of codimension three by 
choosing a set of specific parameter values, but their chosen parameter values are not bio-
logically meaningful since they do not satisfy p > q.

(2.16)

dx

dt
= y(1 − b02x),

dy

dt
= (1 − b02x)(b20x

2 + b02y
2 + b30x

3 + b21x
2y + b12xy

2 + b40x
4 + b31x

3y + b22x
2y2

+ o(|x, y|4)).

(2.17)

dx

dt
= y,

dy

dt
= b20x

2 + (b30 − 2b20b02)x
3 + (b20b

2
02
− 2b02b30 + b40)x

4 + b21x
2y

+ (b31 − b02b21)x
3y + (b12 − b2

02
)xy2 + (b22 − b3

02
)x2y2 + o(|x, y|4).

(2.18)

dx

dt
= y,

dy

dt
= x2 −

b30 − 2b20b02

b20
x3 +

b20b
2
02
− 2b02b30 + b40

b20
x4 + y

� b21
√

−b20

x2 −
b31 − b02b21

√

−b20

x3
�

+ y2
�

(b12 − b2
02
)x − (b22 − b3

02
)x2

�

+ o(�x, y�4).

(2.19)

dx

dt
= y,

dy

dt
= x2 + Gx3y + o(|x, y|4).

G =
(1 + 2p)3(1 + q)(1 + q + pq)3

√

(1 + 2p)pq

8p8q2
.
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Remark 2.8 When the psychological effect � is equal to �0 given by (2.10), Theorem 2.6 
implies that whether the disease persists or dies out will depend on � and the initial popula-
tions. More precisely, when � = �0 and 𝛽 < 𝛽0 given by (2.10), i.e., R0 = R∗ and m < −

1+q

p
 , 

then system (1.1) has two equilibria, a disease-free equilibrium and an endemic equilib-
rium. Moreover, the disease will persist in the form of a positive steady state for some posi-
tive initial populations if � is smaller than a smaller critical value ( 𝛽 < 𝛽1, i.e. A > A∗ ), 
given by

(see Fig. 3a). Otherwise, the disease will die out for almost all positive initial populations if 
� ≥ �1 (i.e., A ≤ A∗ ) (see Fig. 3b–d).

Let

Theorem 2.9 If equilibria Ei(xi, yi) (i=2,3,4,5) exist, then E2(x2, y2) is a hyperbolic saddle. 
Moreover, 

 (i.1) Ei(xi, yi) (i=3,4,5) is a hyperbolic unstable node or focus if A < Ai;
 (i.2) Ei(xi, yi) (i=3,4,5) is a hyperbolic stable node or focus if A > Ai;
 (i.3) Ei(xi, yi) (i=3,4,5) is a weak focus or center if A = Ai.

Proof To investigate the type of Ei(xi, yi) , it suffices to consider the signs of SD and ST , 
where SD and ST are given in (2.11) and (2.12), respectively, from which we have

Since x− is the smaller root of (2.7), x+ is the larger root of (2.7), we obtain

Then it is easy to get SD(x2) < 0 , SD(xi) > 0, i = 3, 4, 5 . On the other hand,

it is easy to see that ST (xi) > 0 , ST (xi) = 0 and ST (xi) < 0 if A < Ai , A = Ai, and A > Ai , 
respectively, leading to the conclusions.   ◻

(2.20)�1 ≜ �0 −
2(k0 − k)

[

(d + �)2 + �(� + � + 2d)
]

(d + �)2(d + �)
,

(2.21)Ai =
2p2 + (1 + p + mp2 + q + 2pq)xi

1 + 2p
(i = 2, 3, 4, 5).

SD(xi) = 1 + q + pm + 2npxi.

2pnx− + 1 + q + pm < 0, 2pnx+ + 1 + q + pm > 0.

ST (xi) = − n(1 + 2p)x2
i
− (1 + m + mp)xi − 1

=
2p2 − (1 + 2p)A + (1 + p + mp2 + q + 2pq)xi

p
,
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3  Nonexistence, Existence and Uniqueness of Limit Cycles

Now we consider the nonexistence, existence and uniqueness of limit cycles of system 
(2.2).

Theorem 3.1 Suppose (A,m, n, p, q) ∈ Γ1 and m > m1 , then system (2.2) does not have non-
trivial periodic orbits in the interior of ℝ2

+
 , where

Proof Taking a Dulac function

we have

and the discriminant for −n(1 + 2p)x2 − (1 + m + mp)x − 1 is

The discriminant for Δ1 = 0 is

Clearly, Δ2 > 0 , and Δ1 < 0 if m1 < m < m2 , where

The above discussions imply that

for x > 0 if

that is, m > m1 since m1 < −
1

1+p
< m2 .   ◻

Remark 3.2 When m = 0 in system (2.2) (i.e., � = 0 in system (2.1)), from Theo-
rems  2.2,  2.4 and 3.1, we can see that: (I) if R0 ≤ 1 , then system (2.2) has no positive 
equilibria, and the unique boundary equilibrium E0(0, 0) (i.e., the disease-free equilibrium 
( d
b
, 0, 0 ) of system (1.1)) is globally asymptotically stable (by Theorem 2.4); (II) if R0 > 1 , 

then system (2.2) has a unique positive equilibrium E5 which is globally asymptotically sta-
ble (by Theorem 3.1) since the unique boundary equilibrium E0 is a hyperbolic saddle. The 
above two results when � = 0 in system (1.1) are shown in Xiao and Ruan [26], thus our 

(3.1)m1 =
−1 − 2

√

n(1 + 2p)

1 + p
.

D(x, y) =
1 + mx + nx2

x
,

�(DP)

�x
+

�(DQ)

�x
=

−n(1 + 2p)x2 − (1 + m + mp)x − 1

x
,

Δ1 = (1 + m + mp)2 − 4n(1 + 2p) = m2(1 + p)2 + 2m(1 + p) + 1 − 4n(1 + 2p).

Δ2 = 16n(1 + 2p)(1 + p)2.

m1 =
−1 − 2

√

n(1 + 2p)

1 + p
, m2 =

−1 + 2
√

n(1 + 2p)

1 + p
.

𝜕(DP)

𝜕x
+

𝜕(DQ)

𝜕x
< 0

m ≥ −
1

1 + p
or m1 < m < m2,
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results when 𝛽 > −2
√

𝛼 in system (1.1) can be seen as a generalization of those in Xiao 
and Ruan [26] by considering a more general system.

Remark 3.3 From Theorems 2.2, 3.1 and Lemma 2.3, we can also see that: (I) if R0 = 1 and 
m1 < m < −

1+q

p
 , then the unique positive equilibrium E4 of system (2.2) is globally asymp-

totically stable since the unique boundary equilibrium E0 is a saddle-node with a stable 
parabolic sector lies in the left half plane of ℝ2 and Ω is a positive invariant and bounded 
region; (II) if R0 > 1 and m > m1 , then the unique positive equilibrium E5 is globally 
asymptotically stable since the unique boundary equilibrium E0 is a hyperbolic saddle and 
Ω is a positive invariant and bounded region. We use simulations to illustrate the results. 
We take a set of parameters values: p =

5

2
 , A =

5

2
 , q = 2 , n = 3 , m = −2 so that R0 = 1 and 

m > m1 for case (I), as shown in Fig.  4a: E4 is globally asymptotically stable; we take 
another set of parameters values: p =

5

2
 , A = 3 , q = 2 , n = 3 , m = −2 so that R0 > 1 and 

m > m1 for case (II), as shown in Fig. 4b: E5 is globally asymptotically stable.

We next investigate the existence and uniqueness of a limit cycle of system (2.2). Our 
method is to convert system (2.2) into a Liénard system and then apply Theorem 1.1 in Kooij 
and Zegeling [15], which is a modification of Z.-F. Zhang’s Theorem [28]. Firstly, we rewrite 
system (2.2) as

where

Note that g1(x) > 0 for all x > 0 . Let dt = −
1

g1(x)
d� (we still denote � by t). Then system 

(3.2) can be rewritten as

(3.2)dx

dt
= g0(x) − g1(x)y,

dy

dt
= qx − y,

(3.3)g0(x) =
x(A − p − (1 + mp)x − npx2)

1 + mx + nx2
, g1(x) =

x

1 + mx + nx2
.

m = − 2
n = 3

q = 2
A = 5/2

p = 5/2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

m = − 2
n = 3

q = 2
A = 3

p = 5/2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

x

y

(a) (b)

Fig. 4  Global stability of system (2.2): a a unique positive equilibrium E4 is globally asymptotically stable 
if R0 = 1 and m1 < m < −

1+q

p
 ; b a unique positive equilibrium E5 is globally asymptotically stable if R0 > 1 

and m1 < m < −
1+q

p
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System (3.4) has the same qualitative properties as that of system (3.2) except the direc-
tions of trajectories. With the following transformation,

system (3.4) is reduced to the following Liénard system (we still denote X, Y as x, y, 
respectively)

where

in which

Now we state and prove the existence and uniqueness of a limit cycle in system (2.2).

Theorem 3.4 Suppose that (A,m, p, q, n) ∈ Γ1 and m ≤ m1 . Then system (2.2) has at most 
one closed orbit in ℝ2

+
 if ST (x+)h(x) < 0 (i.e., f (x+)

( f (x)

g(x)

)�
< 0 ) for x ≠ x+ . Moreover, the 

closed orbit is hyperbolic if it exists. Here, ST (x) , x− and x+ are given in (2.12) and (2.8), 
respectively.

Proof By Theorem 2.2, we only need to consider the following two cases: (i) 1 > R0 > R∗ 
and m < −

1+q

p
 ; (ii) R0 ≥ 1.

When 1 > R0 > R∗ and m < −
1+q

p
 , the limit cycles of system (2.2) (if exist) must lie in 

the stripe region between the vertical lines x = x− and x = A , since on x = x− the 
derivative

(3.4)
dx

dt
= y −

g0(x)

g1(x)
,

dy

dt
=

y − qx

g1(x)
.

(3.5)X = x, Y = y −
∫

x

x+

1

g1(u)
du,

(3.6)dx

dt
= y − F(x),

dy

dt
= −g(x),

(3.7)

F(x) =
g0(x)

g1(x)
−
∫

x

x+

1

g1(u)
du, f (x) = F�(x) =

−n(1 + 2p)x2 − (1 + m + mp)x − 1

x
,

g(x) =
qxg1(x) − g0(x)

g2
1
(x)

=
1 + mx + nx2

x

[

npx2 + (1 + q + mp)x + p − A
]

,

( f (x)

g(x)

)�

=
h(x)

[

npx2 + (1 + q + mp)x + p − A
]2
(1 + mx + nx2)2

,

(3.8)

h(x) = l0 + l1x + l2x
2 + l3x

3 + l4x
4 + l5x

5,

l0 = 1 + q + mp + (1 + mp)(A − p),

l1 = 4np(A − p) + 2m(1 + q + mp) + 2np,

l2 = (1 + q + 2mp)
[

m(1 + m + mp) + n(2 − p)
]

+ n
[

mp(A − p + 4) + p − A − pq
]

,

l3 = 2n(1 + q + mp)(1 + m + mp) + 4n2p,

l4 = n2
[

(2p + 1)(1 + q + mp) + 3p(1 + m + mp) + mp(1 + 2p)
]

,

l5 = 2n3p(1 + 2p).
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except at the saddle E2(x2, y2) = E2(x
−, qx−) , and the positive invariant region is 

Ω =
{

(x, y) | 0 ≤ x ≤ A, 0 ≤ y ≤ qA
}

 . Let S(x−,A) denote the stripe region, since the trans-
formation between (3.4) and (3.6) does not change x, it suffices to discuss (3.6) in S(x−,A) 
(i.e., x− < x < A).

Transformation (3.5) is one-to-one for (x, y) ∈ ℝ
2
+
 , so it is equivalent to discuss the 

uniqueness of closed orbits for system (3.6) where x > 0 . Corresponding to equilibrium 
E(x+, qx+) (i.e., Ei(xi, yi) , i = 3, 4, 5, of system (2.2)), system (3.6) has an equilibrium 
(x+, qx+) . It is easy to see that

in S(x−,A) . The other conditions given in Kooij and Zegeling [15] (see Theorem 1.1) can 
be directly verified.

When R0 ≥ 1 , we simply replace x = x− by x = 0 and then use a similar argument. The 
proof is complete.   ◻

Remark 3.5 From Theorems 2.2 and 3.4, we can see that system (2.2) has a unique limit 
cycle if one of the following conditions holds: (i) R0 = 1 , m < max{m1,−

1+q

p
} , ST (x+) > 0 

and h(x) < 0 for 0 < x < A ; (ii) R0 > 1 , ST (x+) > 0 , m ≤ m1 and h(x) < 0 for 0 < x < A.

4  Bifurcation Analysis

From Theorems 2.2, 2.6 and 2.9, we know that system (2.2) may exhibit saddle-node bifurca-
tion, backward bifurcation, Bogdanov–Takens bifurcation around E1(x1, y1) , and Hopf bifur-
cation around Ei(xi, yi) ( i = 3, 4, 5 ). In this section, we investigate various possible bifurca-
tions in system (2.2).

4.1  Saddle‑Node Bifurcation

From Theorems 2.2, 2.6 and 2.9, we know that the surface

is the saddle-node bifurcation surface. When the parameters are varied to cross the surface 
from one side to the other side, the number of positive equilibria of system (2.2) changes 
from zero to two and the saddle-node bifurcation yields two positive equilibria. This 
implies that there exists a critical psychological effect value �0 such that the disease can-
not invade the population when 𝛼 > 𝛼0 (i.e., R0 < R∗ ), and the disease will persist for some 
positive initial populations when � ≤ �0 (i.e., R0 ≥ R∗).

dx

dt

|

|

|

|x=x−
=

x−

1 + mx− + n(x−)2

[

(A − p − (1 + mp)x− − npx−2) − y
]

=
x−

1 + mx− + n(x−)2
(qx− − y) ≠ 0

g(x+) =
1 + mx+ + nx+

2

x+

[

npx+
2
+ (1 + q + mp)x+ + p − A

]

= 0, (x − x+)g(x) > 0

SN =

�

(A,m, n, p, q) ∶ R0 = R∗, A ≠ A∗, q < p < q + 1, −2
√

n < m < −
1 + q

p
, A, n, p, q > 0

�

,
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4.2  Backward Bifurcation

The basic reproduction number R0 is an expected average number of new infected indi-
viduals produced by a single infective individual in a completely susceptible population. 
In most classic epidemic models, the disease-free equilibrium loses its stability when R0 
crosses one, which results in a bifurcation where a curve of endemic equilibria emerges. 
The direction of this bifurcation is forward if the bifurcating equilibrium occurs when R0 
is slightly above 1 and there is no positive equilibria near the disease-free equilibrium for 
R0 < 1 . In contrast, this bifurcation is backward if the endemic curve occurs when R0 < 1 
(see Dushoff et al. [9]), then R0 does not act as a threshold value of disease invasion any-
more. In order to control the disease, one must further reduce R0 so that it passes a sub-
threshold value R∗(< 1) , where a saddle-node bifurcation occurs, no endemic equilibrium 
exists and the disease-free equilibrium is globally asymptotically stable when R0 < R∗ . By 
Theorem 2.2, we can see that system (2.2) exhibits a backward bifurcation.

Theorem 4.1 If (A,m, p, q, n) ∈ Γ1 , then system (2.2) admits a backward bifurcation as R0 
crosses one if

and admits a forward bifurcation if

The bifurcation diagrams are shown in Fig. 5.

m < −
1 + q

p
,

m ≥ −
1 + q

p
.
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Fig. 5  a Backward bifurcation diagram in (R0, x)−plane for system (2.2) when p =
3

2
 , q = 1 , n =

3

2
 , m = −2 , 

where R∗ =
25

27
 ; b forward bifurcation diagram in (R0, x)−plane for system (2.2) when p =

3

2
 , q = 1 , n =

3

2
 , 

m = 0
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Remark 4.2 Theorem 4.1 implies that there exists a critical value �0 given by (2.10) such 
that when 𝛽 < 𝛽0, (i.e., m < −

1+q

p
 ) system (2.2) exhibits backward bifurcation with rich 

dynamics.

4.3  Bogdanov–Takens Bifurcation of Codimension Three

From Theorem 2.6, we can see that system (2.2) may undergo Bogdanov–Takens bifurca-
tion of codimension three around E1(x1, y1) if the bifurcation parameters are chosen appro-
priately. Let

where R∗ and A∗ are given in (2.9) and (2.13), respectively. To explore the existence of 
Bogdanov–Takens bifurcation of codimension three, we first take the definition from Perko 
[21, pages 484–485] (see also Huang et al. [14]) for Bogdanov–Takens bifurcation of codi-
mension three as follows.

Definition 4.3 The bifurcation that results from unfolding the following normal form of a 
cusp of codimension three,

is called a Bogdanov–Takens bifurcation of codimension three or a cusp bifurcation of 
codimension three. A universal unfolding of the above normal form is given by

Theorem 2.6 indicates that system (2.2) may exhibit a Bogdanov–Takens bifurcation of 
codimension three. In order to make sure if such a bifurcation can be fully unfolded inside 
the class of system (2.2), we choose A, p and q as bifurcation parameters and obtain the fol-
lowing unfolding system

where (A,m, p, q, n) ∈ Γ2 and (r1, r2, r3) ∼ (0, 0, 0). If we can transform the unfolding sys-
tem (4.4) into the following versal unfolding of a Bogdanov–Takens singularity (cusp case) 
of codimension three by a series of near-identity transformations,

where

(4.1)

Γ2 = {(A,m, p, q, n)∶

R0 = R∗, A = A∗,m = m∗, q < p < q + 1,−2
√

n < m < −
1 + q

p
, A, p, q, n > 0},

(4.2)dx

dt
= y,

dy

dt
= x2 ± x3y,

(4.3)dx

dt
= y,

dy

dt
= �1 + �2y + �3xy + x2 ± x3y.

(4.4)

dx

dt
=

x

1 + mx + nx2
(A + r1 − x − y) − (p + r2)x,

dy

dt
= (q + r3)x − y,

(4.5)

dx

dt
= y,

dy

dt
= �1 + �2y + �3xy + x2 + x3y + R(x, y, r),
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and ||
|

�(�1,�2,�3)

�(r1,r2,r3)

|

|

|r=0
≠ 0 , then we can claim that system (4.4) (i.e., system (2.2)) undergoes a 

Bogdanov–Takens bifurcation of codimension three (see the works of Dumortier et al. [8], 
and Chow et al. [5]). In fact, we have the following theorem.

Theorem 4.4 When (A,m, p, q, n) ∈ Γ2 , system (2.2) has a nilpotent cusp E1(x1, y1) of codi-
mension three. If we choose A, p and q as bifurcation parameters, then system (2.2) under-
goes a Bogdanov–Takens bifurcation of codimension three in a small neighborhood of E1 . 
Hence, system (2.2) exhibits the coexistence of an unstable homoclinic loop and a stable 
limit cycle, coexistence of two limit cycles (the inner one stable and the outer unstable), 
and a semi-stable limit cycle for different sets of parameters.

Proof Firstly, we translate the equilibrium E1(x1, y1) of system (4.4) when r = 0 into the 
origin. Let X = x − x1, Y = y − y1 and use Taylor expansion. Then system (4.4) becomes 
(we still denote X, Y by x, y, respectively)

where

(4.6)
R(x, y, r) = y2O(|x, y|2) + O(|x, y|5) + O(r)(O(y2) + O(|x, y|3)) + O(r2)O(|x, y|),

(4.7)

dx

dt
= a00 + a10x + a01y + a20x

2 + a11xy + a30x
3 + a21x

2y + a40x
4 + a31x

3y

+ O(|x, y|5),

dy

dt
= r3x1 + (q + r3)x − y,

a00 =
r1

q
−

2p2r2

(1 + 2p)q(1 + p + pq)
, a10 = 1 − r2 +

(1 + 2p)(1 + q + pq)2r1

2p3q2
,

a01 = −
1

q
,

a20 =
(1 + 2p)(1 + q + pq)2

8p6q3
(2p3q2 + (1 + 2p)(2 + q)(1 + q + pq)r1),

a11 = −
(1 + 2p)(1 + q + pq)2

2p3q2
,

a30 = −
(1 + 2p)2(1 + q + pq)3

16p9q4

{

2p3q2(pq − 1) +
[

2p3q3 − 2(1 + q)2 + p2q(−4 − 2q + 3q2)

+ p(−4 − 10q − 5q2 + q3)
]

r1
}

,

a21 = −
(2 + q)(1 + 2p)2(1 + q + pq)3

8p6q3
,

a40 = −
(1 + 2p)3(1 + q + pq)4

64p12q5

{

2p3q2
[

− 2 + (−1 + 2p)q + (1 + 3p)q2
]

+
[

2p3q3(4 + 3q)

+ (1 + q)2(−4 − 2q + q2) + p2q(−8 − 4q + 16q2 + 11q3)

+ 2p(−4 − 12q − 8q2 + 3q3 + 3q4)
]

r1
}

,

a31 =
(1 + 2p)3(1 + q + pq)4(−2 − 2q + pq2)

16p9q4
,
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in which A, n and m have been eliminated by using the equations: A = A∗ , R0 = R∗ and 
m = m∗ , respectively. Note that system (4.7) is reduced to system (2.14) when r = 0.

Next let

Then system (4.7) can be put in the form of (we still denote X, Y by x, y, respectively)

where

Again note that system (4.8) is reduced to system (2.15) when r = 0.

X = x,

Y = a00 + a10x + a01y + a20x
2 + a11xy + a30x

3

+ a21x
2y + a40x

4 + a31x
3y + O(|x, y|5).

(4.8)

dx

dt
= y,

dy

dt
= b00 + b10x + b01y + b20x

2 + b11xy

+ b02y
2 + b30x

3 + b21x
2y + b12xy

2 + b40x
4

+ b31x
3y + b22x

2y2 + O(|x, y|5),

b00 = a00 + a01r3x1, b10 = a10 + a01(q + r3) + a11r3x1, b01 =
a01(a10 − 1) − a00a11

a01
,

b20 = a20 + a11(q + r3) + a21r3x1, b11 =
a00a

2
11
+ 2a2

01
a20 − a01a10a11 − 2a00a01a21

a2
01

,

b02 =
a11

a01
,

b30 =
1

a4
01

{

a2
00
(a4

11
− 4a01a

2
11
a21 + 2a2

01
a2
21
+ 4a2

01
a11a31)

+ a4
01

[

a30 + a21(q + r3) + a31r3x1
]}

,

b21 =
1

a3
01

[

a01a11(a10a11 + 3a00a21) + 3a3
01
a30 − a00a

3
11
− a2

01
(a11a20

+ 2a10a21 + 3a00a31)
]

,

b12 =
2a01a21 − a2

11

a2
01

, b22 =
a3
11
− 3a01a11a21 + 3a2

01
a31

a3
01

,

b40 =
1

a4
01

{

a00
[

a10(a
4
11
− 4a01a

2
11
a21 + 2a2

01
a2
21
+ 4a2

01
a11a31) − a01

(

a3
11
a20 − a01a

2
11
a30

+ a2
01
(2a21a30 + 3a20a31) + a01a11(−3a20a21 + a01a40)

)]

+ a4
01

[

a40 + a31(q + r3)
]}

,

b31 =
1

a4
01

[

− a00a
4
11
+ a01a

2
11
(4a00a21 − a10a11)

− a3
01
(2a20a21 + a11a30 + 3a10a31) + a2

01
(a2

11
a20

+ 3a10a11a21 − 2a00a
2
21
− 4a00a11a31) + 4a4

01
a40

]

.
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Secondly, following the procedure given by Li et al. [17] (see also [14]), we use seven 
steps to transform system (4.8) to the versal unfolding of the Bogdanov–Takens singularity 
(cusp case) of codimension three, that is system (4.5).

(I) Re moving the y2-term from system (4.8). In order to remove the y2-term, we let 
x = X +

b02

2
X2, y = Y + b02XY , which is a near-identity transformation for (x,  y) near 

(0, 0). Then system (4.8) is changed into (we still denote X, Y by x, y, respectively)

where

Note that c00 = c10 = c01 = c11 = 0 when r = 0.

(II) Eliminating the xy2-term in system (4.9). Let x = X +
c12

6
X3, y = Y +

c12

2
X2Y  . 

Then we obtain the following system (we still denote X, Y by x, y, respectively)

where

Note that d00 = d10 = d01 = d11 = 0 when r = 0.

(4.9)

dx

dt
= y,

dy

dt
= c00 + c10x + c01y + c20x

2 + c11xy + c30x
3 + c21x

2y + c12xy
2 + c40x

4 + c31x
3y

+ c22x
2y2 + O(|x, y|5),

c00 = b00, c10 = −b00b02 + b10, c01 = b01,

c20 =
1

2
(2b00b

2

02
− b02b10 + 2b20), c11 = b11,

c30 =
1

2
(−2b00b

3

02
+ b

2

02
b10 + 2b30),

c21 =
1

2
(b02b11 + 2b21), c12 = 2b

2

02
+ b12,

c31 = b02b21 + b31,

c40 =
1

4
(4b00b

4

02
− 2b

3

02
b10 + b

2

02
b20 + 2b02b30 + 4b40),

c22 =
1

2
(−2b3

02
+ 3b02b12 + 2b22).

(4.10)

dx

dt
= y,

dy

dt
= d00 + d10x + d01y + d20x

2 + d11xy + d30x
3 + d21x

2y + d40x
4 + d31x

3y + d22x
2y2

+ O(|x, y|5),

d00 = c00, d10 = c10, d01 = c01, d20 = c20 −
c12c00

2
, d11 = c11, d30 = c30 −

c12c10

3
,

d21 = c21, d40 = c40 +
c00c

2
12

4
−

c12c20

6
, d31 = c31 +

c11c12

6
, d22 = c22.
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(III) Removing the x2y2-term in system (4.10). Let x = X +
d22

12
X4, y = Y +

d22

3
X3Y  . 

Then we have the following system (we still denote X, Y by x, y, respectively)

where

Note that e00 = e10 = e01 = e11 = 0 when r = 0.

(IV) Removing the x3 and x4-terms in system (4.11). Note that 
e20 = −

(1+2p)(1+q+pq)2

4p3q
+ O(r), e20 ≠ 0 for small r since p, q > 0 . We let

and then obtain the following system from system (4.11) (we still denote X, Y, � by x, y, t, 
respectively)

where

Note that f00 = f10 = f01 = f11 = f30 = f40 = 0 when r = 0.

(4.11)

dx

dt
= y,

dy

dt
= e00 + e10x + e01y + e20x

2 + e11xy

+ e30x
3 + e21x

2y + e40x
4 + e31x

3y + O(|x, y|5),

e00 = d00, e10 = d10, e01 = d01, e20 = d20, e11 = d11, e30 = d30 −
d22d00

3
,

e21 = d21, e40 = d40 −
d22d10

4
, e31 = d31.

x = X −
e30

4e20
X2 +

15e2
30
− 16e20e40

80e2
20

X3, y = Y , t =

(

1 −
e30

2e20
X +

45e2
30
− 48e20e40

80e2
20

X2

)

�,

(4.12)

dx

dt
= y,

dy

dt
= f00 + f10x + f01y + f20x

2 + f11xy

+ f30x
3 + f21x

2y + f40x
4 + f31x

3y + O(|x, y|5),

f00 = e00, f10 = e10 −
e00e30

2e20
, f01 = e01,

f20 = e20 −
60e10e20e30 − 45e00e

2
30
+ 48e00e20e40

80e2
20

,

f11 = e11 −
e01e30

2e20
, f30 =

e10(35e
2
30
− 32e20e40)

40e2
20

,

f21 = e21 −
60e11e20e30 − 45e01e

2
30
+ 48e01e20e40

80e2
20

,

f40 =
e10(−15e

3
30
+ 16e20e40e40)

64e3
20

, f31 = e31 +
7e11e

2
30

8e2
20

−
5e21e30 + 4e11e40

5e20
.
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(V) Removing the x2y-term in system (4.12). Since f20 = −
(1+2p)(1+q+pq)2

4p3q
+ O(r) , 

f20 ≠ 0 for small r because p, q > 0 , we can make the following transformation

under which system (4.12) becomes (we still denote X, Y, � by x, y, t, respectively)

where

Note that g00 = g10 = g01 = g11 = 0 when r = 0 , and R1(x, y, r) has the property of (4.6).

(VI) Changing g20 and g31 to 1 in system (4.13). It is seen that 
g20 = −

(1+2p)(1+p+pq)2

4p3q
+ O(r) < 0 and g31 = −

(1+2p)4(1+p+pq)4(1+q)

16p9q2
+ O(r) < 0 for small r 

since p, q > 0 . By making the following changes of variables and time rescaling:

we can transform system (4.13) to (we still denote X, Y, � by x, y, t, respectively)

where

Note that h00 = h10 = h01 = h11 = 0 , when r = 0 and R2(x, y, r) has the property of (4.6).

(VII) Removing the x10-term in system (4.14). Finally, let x = X −
h10

2
, , y = Y  . Then 

system (4.14) becomes (we still denote X, Y by x, y, respectively)

where �1 = h00 −
1

4
h2
10
, �2 = h01 −

1

8
(h3

10
+ 4h10h11), �3 = h11 +

3

4
h2
10
, and R3(x, y, r) has 

the property of (4.6).
A direct computation with the help of Mathematica shows that

x = X, y = Y +
f21

3f20
Y2 +

f 2
21

36f 2
20

Y3, � =

(

1 +
f21

3f20
Y +

f 2
21

36f 2
20

Y2
)

t,

(4.13)

dx

dt
= y,

dy

dt
= g00 + g10x + g01y + g20x

2 + g11xy

+ g31x
3y + R1(x, y, r),

g00 = f00, g10 = f10, g01 = f01 −
f00f21

f20
, g11 = f11 −

f10f21

f20
, g20 = f20, g31 = f31 −

f21f30

f20
.

x = g
1

5

20
g
−

2

5

31
X, y = g

4

5

20
g
−

3

5

31
Y , t = g

−
3

5

20
g

1

5

31
�,

(4.14)

dx

dt
= y,

dy

dt
= h00 + h10x + h01y + x2 + h11xy + x3y + R2(x, y, r),

h00 = g00g
4

5

31
g
−

7

5

20
, h10 = g10g

2

5

31
g
−

6

5

20
, h01 = g01g

1

5

31
g
−

3

5

20
, h11 = g11g

−
1

5

31
g
−

2

5

20
.

(4.15)

dx

d�
= y,

dy

dt
= �1 + �2y + �3xy + x2 + x3y + R3(x, y, r),
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due to p, q > 0 . System (4.15) is exactly in the form of system (4.5). Therefore, by the 
results of Dumortier et al. [8] and Chow et al. [5], we know that system (4.15) is the versal 
unfolding of Bogdanov–Takens singularity (cusp case) of codimension three. The remain-
der term R3(x3, y3, r) with the property (4.6) has no influence on the bifurcation analysis.  
 ◻

Now we describe the bifurcation diagram of system (4.15) following the bifurcation dia-
gram given in Figure 4.2 of Dumortier et al. [8] (see also [14]). System (4.15) has no equi-
libria for 𝛾1 > 0 . �1 = 0 is a saddle-node bifurcation plane in a neighborhood of the origin. 
Crossing this plane in the direction of decreasing �1 results in two equilibria: a saddle and 
a node or focus. The other surfaces of bifurcations are located in the half space 𝛾1 < 0 . The 
bifurcation diagram has the conical structure in ℝ3 , starting from (�1, �2, �3) = (0, 0, 0) . It 
can be best shown by drawing its intersection with the half sphere

To clearly see the traces of the intersections, we draw the projections of traces onto the 
(�2, �3) plane, as shown in Fig. 6.

In the following, we summarize the bifurcation phenomena of system (4.15), which 
are equivalent to that of the original system (2.2). There are three bifurcation curves on 
S as shown in Fig. 6:

The curve L is tangent to H at a point h2 and tangent to C at a point c2 . The curves H and C 
have first order contact with the boundary of S at the points b1 and b2 . In the neighborhoods 
of b1 and b2 , system (4.15) is an unfolding of the cusp singularity of codimension two.

Along the curve C, except at the point c2 , a homoclinic bifurcation of codimension 
one occurs. When crossing the arc b1c2 of C from left to right, the two separatrices of 
the saddle point coincide and an unstable limit cycle appears. A similar phenomenon 
gives rise to a stable limit cycle when crossing the arc c2b2 of C from right to left. The 
point c2 corresponds to a homoclinic bifurcation of codimension two.

Along the arc b1h2 of the curve H, a subcritical Hopf bifurcation occurs with an 
unstable limit cycle appearing when crossing the arc b1h2 of H from right to left. Along 
the arc h2b2 of the curve H, a supercritical Hopf bifurcation occurs with a stable limit 
cycle appearing when crossing the arc h2b2 of H from left to right. The point h2 is a 
degenerate Hopf bifurcation point, i.e., a Hopf bifurcation point of codimension two.

The curves H and C intersect transversally at a unique point d representing a param-
eter value of simultaneous Hopf bifurcation and homoclinic bifurcation.

For parameter values in the triangle dh2c2 , there exist exactly two limit cycles: the inner 
one is stable and the outer one is unstable. These two limit cycles coalesce in a generic way 
in a saddle-node bifurcation of limit cycles when the curve L is crossed from right to left. 
On the arc L itself, there exists a unique semistable limit cycle.

|

|

|

|

𝜕(𝛾1, 𝛾2, 𝛾3)

𝜕(r1, r2, r3)

|

|

|

|r=0

=
2

3

5 (1 + q)
9

5 (1 + 2p)
14

5

p4q
11

5 (1 + q + pq)
3

5

> 0

S = {(𝛾1, 𝛾2, 𝛾3)|𝛾
2
1
+ 𝛾2

2
+ 𝛾2

3
= 𝜆2, 𝛾1 ≤ 0, 𝜆 > 0, sufficiently small}.

C ∶ homoclinic bifurcation curve;

H ∶ Hopf bifurcation curve;

L ∶ saddle-node bifurcation curve of limit cycles.
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Remark 4.5 Zhou et  al. [30] showed that system (2.2) exhibits an attracting Bogdanov–
Takens bifurcation of codimension two by unfolding a set of specific parameter values, but 
their chosen parameter values do not satisfy p > q . Our results obtained in this paper about 
the existence of a Bogdanov–Takens bifurcation of codimension three imply the existence 
of repelling and attracting Bogdanov–Takens bifurcation of codimension two for general 
parameter conditions.

4.4  Hopf Bifurcation of Codimension Three

From Theorem  2.9, we can see that system (2.2) may exhibit Hopf bifurcation around 
Ei(xi, yi) ( i = 3, 4, 5) . In this section we discuss Hopf bifurcation around Ei(xi, yi) 
( i = 3, 4, 5).

Firstly, letting dt = (1 + mx + nx2)d� , we obtain (we still denote � by t)

Obviously, system (4.16) has the same topological structure as that of system (2.2), since 
we consider system (2.2) in ℝ+

2
= {(x, y) ∶ x ≥ 0, y ≥ 0} and 1 + mx + nx2 > 0 holds for all 

x ≥ 0.
Following the technique in Dai et  al. [6] and noticing that xi = x+ and yi = qx+ 

( i = 3, 4, 5 ), where x+ is given in (2.8), we use the following scalings of the coordinates,

(4.16)

dx

dt
= x(A − x − y) − p(1 + mx + nx2)x,

dy

dt
= (qx − y)(1 + mx + nx2).

Fig. 6  Bifurcation diagram for system (4.15) on S
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to transform system (4.16) to an equivalent polynomial differential system (we still denote 
� by t)

Further, leting

in system (4.18) and dropping the bars, we obtain a new system,

Since system (4.20) has an equilibrium Ẽ(1, 1) (corresponding to Ei(xi, yi) in system (2.2), 
i = 3, 4, 5 ), we have

which is then substituted into (4.20) to finally yield the following system

where the parameters satisfy the following conditions:

Since the transformation (4.17) is a linear sign-reserving transformation, system (4.21) and 
system (2.2) have the same qualitative property. In order to get the necessary conditions for 
Hopf bifurcation around Ẽ(1, 1) , we firstly let

and have the following results.

Theorem 4.6 When the conditions in (4.22) are satisfied, system (4.21) has an equilibrium 
at Ẽ(1, 1) . Moreover, 

(I) when a < a∗ , Ẽ(1, 1) is an unstable hyperbolic node or focus;
(II) when a > a∗ , Ẽ(1, 1) is a stable hyperbolic node or focus;
(III) when a = a∗ , Ẽ(1, 1) is a weak focus or center.

(4.17)x =
x

x+
, y =

y

qx+
, � = x+t,

(4.18)

dx

dt
= x

(

A

x+
− x − qy

)

−
p

x+
(1 + mx+x + nx+

2
x
2
)x,

dy

dt
=

1

x+
(x − y)(1 + mx+x + nx+

2
x
2
).

(4.19)A =
A

x+
, m = mx+, n = nx+

2
, p =

p

x+
, q = q, a =

1

x+
,

(4.20)

dx

dt
= x(A − x − qy) − px(1 + mx + nx2),

dy

dt
= a(x − y)(1 + mx + nx2).

A = p(1 + m + n) + q + 1,

(4.21)

dx

dt
= x

(

p(1 + m + n) + q + 1 − x − qy
)

− px(1 + mx + nx2),

dy

dt
= a(x − y)(1 + mx + nx2),

(4.22)p, q, n, a > 0, m > −2
√

n, aq < p < a(q + 1).

(4.23)a* =
− (mp + 2np + 1)

m + n + 1
,
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Proof The Jacobian matrix of system (4.21) at Ẽ(1, 1) is

then the determinant of J(Ẽi(1, 1)) is

and the trace of J(Ẽi(1, 1)) is

Since m + n + 1 > 0 , and 2npx+ + 1 + q + mp > 0 in system (2.3) 
⟺ 1 + q + mp + 2np > 0 , we can see that det(J(Ẽ)) > 0 , and tr(J(Ẽ)) = 0 (> 0,< 0) if 
a = a∗ (a < a∗, a > a∗) , then the conclusions hold.   ◻

Next we continue to consider the case (III) of Theorem 4.6 and study the existence of Hopf 
bifurcation around Ẽ(1, 1) of system (4.21), which corresponds the Hopf bifurcation around 
Ei(xi, yi) ( i = 3, 4, 5 ) of system (2.2), respectively. We shall investigate the nondegenerate con-
dition and stability of the bifurcating periodic orbits at the positive equilibrium Ẽ(1, 1) of sys-
tem (4.21) by calculating the first Lyapunov coefficient.

Let X = x − 1 , Y = y − 1 , and a = a∗ , system (4.21) can be written as (we still denote X, Y 
by x, y, respectively)

where b̃ = −(1 + mp + 2np) > 0 since a∗ > 0 . Let 𝜔 =
√

b̃q − b̃2 and make a transforma-
tion of x = qX , y = b̃X − 𝜔Y  and dt = 1

�
d� , system (4.24) becomes (we still denote X, Y, � 

by x, y, t, respectively)

where

and

J(Ẽ(1, 1)) =

(

−1 − mp − 2np − q

a(m + n + 1) − a(m + n + 1)

)

,

det(J(Ẽ)) = a(m + n + 1)(1 + q + mp + 2np),

tr(J(Ẽ)) = −1 − mp − 2np − a(m + n + 1).

(4.24)

dx

dt
= b̃x − qy + (b̃ − np)x2 − qxy − npx3,

dy

dt
= b̃x − b̃y + a∗(m + 2n)x2 − a∗(m + 2n)xy + a∗nx

3 − a∗nx
2y,

(4.25)

dx

dt
= y + f (x, y),

dy

dt
= −x + g(x, y),

f (x, y) = a20x
2 + a11xy + a02y

2 + a30x
3 + a21x

2y + a12xy
2 + a03y

3,

g(x, y) = b20x
2 + b11xy + b02y

2 + b30x
3 + b21x

2y + b12xy
2 + b03y

3,

a20 = −
npq

𝜔
, a11 = q, a02 = 0, a30 = −

npq2

𝜔
, a21 = 0, a12 = 0, a03 = 0,

b20 = −
q

𝜔2
(nb̃p + a∗(m + 2n)(q − b̃)), b11 =

q(b̃ − a∗(m + 2n))

𝜔
, b02 = 0,

b30 = −
nq2

𝜔2
(b̃p + a∗(q − b̃)), b21 =

−naq2

𝜔
, b12 = 0, b03 = 0.
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Using the formula in Zhang et al. [29] and carrying out lengthy calculations by MATLAB, 
we obtain the first Lyapunov coefficient as follows

where

Since 1 + q + mp + 2np > 0 , 1 + mp + 2np < 0 , and 1 + m + n > 0 , the sign of �1 is same 
as

Thus we have the following results.

Theorem 4.7 When a = a∗ and the conditions in (4.22) are satisfied, we have 

(I) if 𝜎11 < 0 , then Ẽ(1, 1) is a stable weak focus with multiplicity one and one stable limit 
cycle bifurcates from Ẽ(1, 1) by the supercritical Hopf bifurcation;

(II) if 𝜎11 > 0 , then Ẽ(1, 1) is an unstable weak focus with multiplicity one and one unstable 
limit cycle bifurcates from Ẽ(1, 1) by the subcritical Hopf bifurcation;

(III) if �11 = 0 , then Ẽ(1, 1) is a weak focus with multiplicity at least two and system (4.21) 
may exhibit degenerate Hopf bifurcation.

Next we continue to consider the case (III) in Theorem 4.7, in fact, we can see that 
�11 = 0 if b0 + b1p + b2p

2 = c0 + c1p = 0 , or (c0 + c1p) ≠ 0 and q = −
b0+b1p+b2p

2

c0+c1p
.

Define

From the case (III) of Theorem 4.7, we know that system (4.21) may exhibit degenerate 
Hopf bifurcation (i.e., Hopf bifurcation of codimension 2) when q = q1 , a = a∗ and the 
conditions in (4.22) are satisfied. Using the formal series method in [29] and MATLAB 
software, we get the second Lyapunov coefficient as follows

where

�1 =
q2
�

(b0 + b1p + b2p
2) + (c0 + c1p)q

�

4(1 + m + n)2(1 + q + mp + 2np)
√

−(1 + mp + 2np)(1 + q + mp + 2np)
,

b0 = c0 = m + 3n − n2, b1 = 2m2 + n(9 − n)m − n(3n2 − 12n + 1),

b2 = m3 + m2n(6 + 2n) + mn(3n2 + 18n − 1) + 16n3, c1 = m2 + mn(3 + n) + 2n(3n − 1).

(4.26)�11 = (b0 + b1p + b2p
2) + (c0 + c1p)q.

(4.27)q1 = −
b0 + b1p + b2p

2

c0 + c1p
.

�2 =
q4
1
(1 + mp + 2np)(e0 + e1p + e2p

2)

24(m + n + 1)
7

2

(

1 − n + (m + mn + 4n)p
)

√

np(1+mp+2np)(1−n+(m+mn+4n)p)

c0+c1p

,

e0 = −(2 + 3n)m2 − n(11 + 9n)m + 2n(1 − 9n − 2n2),

e1 = −4m3 − 20nm2 + 8n(1 − 5n)m + 4n2(5 − 10n + n2),

e2 = (m + 2n)[(3n − 2)m3 + n(3n − 5)m2 − 2n(n2 + 12n − 3)m − 4n2(7n − 1)].
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Since 1 + mp + 2np < 0 , 1 + m + n > 0 and 1−n+(m+mn+4n)p
c0+c1p

< 0 , the sign of �2 is determined 
by

Summarizing the above analysis, we have the following results.

Theorem 4.8 When a = a∗ , q = q1, and the conditions in (4.22) are satisfied, we have 

(I) if 𝜎22 > 0 , then Ẽ(1, 1) is an unstable weak focus with multiplicity 2, system (4.21) 
exhibits a degenerate Hopf bifurcation of codimension 2 and there are two limit cycles 
surrounding Ẽ(1, 1) , the outer one is unstable;

(II) if 𝜎22 < 0 , then Ẽ(1, 1) is a stable weak focus with multiplicity 2, system (4.21) exhibits 
a degenerate Hopf bifurcation of codimension 2 and there are two limit cycle surround-
ing Ẽ(1, 1) , the outer one is stable;

(III) if �22 = 0 , then Ẽ(1, 1) is a weak focus with multiplicity at least 3, and system (4.21) 
may exhibit degenerate Hopf bifurcations of codimension at least 3.

When �2 = 0 (or �22 = 0 ), i.e.,

system (4.21) may exhibit degenerate Hopf bifurcations of codimension at least 3. In order to 
understand the exact codimension of the Hopf bifurcation around Ẽ(1, 1) , we need to calcu-
late the third Lyapunov coefficient, which has a very lengthy expression about m and n. For 
simplification, we first let m = −

3

20
 and n =

3

500
 , and get p = p+ =

20(7860009+214
√

574600561)

8474511
 

from �2 = 0 ; then get q = q1 =
611412311729+25777159

√

574600561

169631461850
 from �1 = 0 ; finally get 

a = a∗ =
10(22381+

√

574600561)

122819
 from tr(J(Ẽ)) = 0 . With this set of parameters values, we 

obtain the value of the third Lyapunov coefficient as follows:

Thus, Ẽ(1, 1) is a stable weak focus with multiplicity 3 and system (4.21) exhibits degener-
ate Hopf bifurcation of codimension 3.

Theorem 4.9 If

then Ẽ(1, 1) is a stable weak focus with multiplicity 3, system (4.21) exhibits a degenerate 
Hopf bifurcation of codimension 3, and three small amplitude limit cycles bifurcate from 
Ẽ(1, 1) when the bifurcation parameters p, q and a are chosen properly.

(4.28)�22 = e0 + e1p + e2p
2.

(4.29)p = p± ≜

−e1 ±

√

e2
1
− 4e0e2

2e2
,

�3 ≈ −3.726014431455.

m = −
3

20
, n =

3

500
, p =

20(7860009 + 214
√

574600561)

8474511
,

a =
10(22381 +

√

574600561)

122819
, q =

611412311729 + 25777159
√

574600561

169631461850
,
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Remark 4.10 From Theorem  4.9 we can see that system (4.21) may exhibit degenerate 
Hopf bifurcations of codimension larger than 3 if m and n are arbitrary parameters.

5  Numerical Simulations

In this section, we present simulations to illustrate the existence of one, two and three limit 
cycles arising from the subcritical and supercritical Hopf bifurcations, Hopf bifurcation 
of codimension two, and Hopf bifurcation of codimension three around Ẽ(1, 1) in system 
(4.21), respectively, which correspond to the Hopf bifurcation around Ei(xi, yi) ( i = 3, 4, 5) 
in system (2.2) for the following five classes:

(i) Hopf bifurcation of codimension one around E3(x3, y3) for R∗ < R0 < 1 . The exist-
ence of one stable (or unstable) limit cycle arising from the supercritical (or subcriti-
cal) Hopf bifurcation around Ẽ(1, 1) in system (4.21) is given in Fig. 7a (or b), which 
corresponds to the supercritical (or subcritical) Hopf bifurcation around E3(x3, y3) for 
R∗ < R0 < 1 in system (2.2). Moreover, from the following parameter values for system 
(4.21)

in Fig. 7a, we can get the original parameter values for system (1.1)

by (4.19) and (2.3). On the other hand, we select

following our previous study Lu et al. [20]. Then the original parameter values for system 
(1.1) are as follows

Similarly, from the following parameter values for system (4.21)

in Fig. 7b, we obtain the original parameter values for system (1.1)

(ii) Hopf bifurcation of codimension one around E4(x4, y4) for R0 = 1 . The existence 
of one stable limit cycle arising from the supercritical Hopf bifurcation around Ẽ(1, 1) in 
system (4.21) is given in Fig. 7c, which corresponds to the supercritical Hopf bifurcation 
around E4(x4, y4) for R0 = 1 in system (2.2). Moreover, as in case (i), from the following 
parameter values for system (4.21)

(n,m, p, q, a) =
(

1

2
,−

6

5
,
17

2
,
20837

6550
,
7

3
− 0.02

)

(�, �, k, �, �) =

(

7230439d

1120811
,
11520392d

1120811
,
6613425d2

1120811b
,
7775536041d2

343220000b2
,−

264537d

32750b

)

b = 1.64 × 107, d = 0.006988

(�, �, k, �, �) = (0.0450801, 0.0071827, 1.75694 × 10−11, 4.11316 × 10−18,−3.44179 × 10−9).

(n,m, p, q, a) =
(

1

2
,−

6

5
,
17

2
,
3591

1310
,
7

3
+ 0.05

)

(�, �, k, �, �) = (0.023213, 0.00148013, 9.52459 × 10−12, 3.59301 × 10−18,−3.21681 × 10−9).
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in Fig. 7c, we obtain the original parameter values for system (1.1)

(iii) Hopf bifurcation of codimension one around E5(x5, y5) for R0 > 1 . The existence 
of one stable limit cycle arising from the supercritical Hopf bifurcation around Ẽ(1, 1) in 
system (4.21) is given in Fig. 7d, which corresponds to the supercritical Hopf bifurcation 
around E5(x5, y5) for R0 > 1 in system (2.2). Moreover, as in case (i), from the following 
parameter values for system (4.21)

in Fig. 7d, we get the original parameter values for system (1.1)

(n,m, p, q, a) =
(

1

2
,−

6

5
,
15

2
,
17

4
,
5

3
− 0.1

)

(�, �, k, �, �) = (0.0552813, 0.00601937, 2.65328 × 10−11, 5.10635 × 10−18,−3.83488 × 10−9).

(n,m, p, q, a) =
(

1

2
,−

6

5
,
15

2
,
22

5
,
5

3
− 0.1

)

p = 17/2
a = 7/3 − 0.02

m = − 6/5
q = 20837/6550

n = 1/2

0 0.5 1 1.5

0

0.2

0.4

0.6

0.8

1

x

y

p = 17/2
a = 7/3 + 0.05

m = − 6/5
q = 3591/1310

n = 1/2

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.2

0.4

0.6

0.8

1

x

y

(a) (b)
p = 15/2
a = 5/3 − 0.1

m = − 6/5
q = 17/4

n = 1/2
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y

p = 15/2
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q = 22/5

n = 1/2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
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0.8

1
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y

(c) (d)

Fig. 7  Hopf bifurcations of codimension one around Ẽ(1, 1) for system (4.21) corresponds to: a super-
critical Hopf bifurcation around E3(x3, y3) for R∗ < R0 < 1 in system (2.2); b subcritical Hopf bifurcation 
around E3(x3, y3) for R∗ < R0 < 1 in system (2.2); c supercritical Hopf bifurcation around E4(x4, y4) for 
R0 = 1 in system (2.2); d supercritical Hopf bifurcation around E4(x4, y4) for R0 > 1 in system (2.2)
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Remark 5.1 When R∗ < R0 < 1 or R0 > 1 , Zhou et al. [30] showed that system (2.2) exhib-
its subcritical Hopf bifurcation around E3 or E5 by choosing several sets of specific param-
eter values, but their chosen parameter values do not satisfy p > q.

Remark 5.2 In Fig. 7a, model (4.21) has three equilibria, a disease-free equilibrium which 
is a stable hyperbolic node, two endemic equilibria (a hyperbolic saddle and an unstable 
focus), and a stable limit cycle. If the initial populations lie in the right side of the two sta-
ble manifolds of the saddle, then the disease will tend to periodic fluctuations. If the initial 
populations lie in the left side of the two stable manifolds of the saddle, then the disease 
will die out.

Remark 5.3 In Fig. 7b, model (4.21) has three equilibria, a disease-free equilibrium which 
is a stable hyperbolic node, two endemic equilibria (a hyperbolic saddle and a stable 
focus), and an unstable limit cycle. If the initial populations lie on the limit cycle, then the 
disease will persist in the form of periodic oscillations. If the initial populations lie inside 
the limit cycle, then the disease will tend to a positive coexistence steady state. If the initial 
populations lie outside the limit cycle, the disease will die out for almost all positive initial 
populations.

Remark 5.4 When k > k0 , or k = k0 and 𝛽 < 𝛽0 (i.e., R0 > 1 , or R0 = 1 and m < −
1+q

p
 ), 

model (4.21) has only two equilibria. In Fig. 7c, d, there exist a disease-free equilibrium 
which is a saddle, one endemic equilibrium which is an unstable focus, and a stable limit 
cycle. We can see that the disease will tend to periodic outbreaks or persist in the form of a 
positive coexistent steady state for all positive initial populations.

(iv) Hopf bifurcation of codimension two around E3(x3, y3) for R∗ < R0 < 1 . The 
existence of two limit cycles arising from the Hopf bifurcation of codimension two 
around Ẽ(1, 1) in system (4.21) is given in Fig.  8, which corresponds to the Hopf 
bifurcation of codimension two around E3(x3, y3) for R∗ < R0 < 1 in system (2.2). We 
firstly fix n =

1

2
 , m = −

6

5
 and p =

17

2
 , then get q =

1861

655
 from �1 = 0 , and get a =

7

3
 from 

tr(J(Ẽ)) = 0 , finally get �2 = 135.766 . For this set of parameter values, Ẽ(1, 1) is an 
unstable multiple focus with multiplicity 2. Next we first perturb q such that it increases 
to 1861

655
+ 0.15 , then Ẽ(1, 1) becomes a stable multiple focus with multiplicity 1, an unsta-

ble limit cycle occurs around Ẽ(1, 1) which is the outer limit cycle in Fig. 8. Secondly, 
we perturb a such that it reduces to 7

3
− 0.005 , then Ẽ(1, 1) becomes an unstable hyper-

bolic focus, another stable limit cycle occurs around Ẽ(1, 1) , which is the inner limit 
cycle in Fig. 8. Moreover, as in case (i), from the following parameter values for system 
(4.21)

in Fig. 8, we obtain the original parameter values for system (1.1)

(�, �, k, �, �) = (0.0794021, 0.0110579, 3.75468 × 10−11, 5.31265 × 10−18,−3.91158 × 10−9).

(n,m, p, q, a) =
(

1

2
,−

6

5
,
17

2
,
1861

655
+ 0.15,

7

3
− 0.005

)
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Remark 5.5 From Fig. 8, we can see the existence of two periodic coexistent oscillations 
and coexistence steady states when the infection rate k is smaller than the critical value k0 
given by (2.10), the psychological effect � is smaller than the critical value �0 , and � is 
smaller than the critical value �0 , i.e., k < k0, 𝛼 < 𝛼0 and 𝛽 < 𝛽0 (corresponding to 
R∗ < R0 < 1 and m < −

1+q

p
 ). The disease will die out for almost all positive initial popula-

tions outside the outer unstable periodic orbit, will tend to periodic outbreaks for almost all 
positive initial populations on or inside the outer unstable periodic orbit, and will persist in 
the form of positive steady states when the initial populations lie on the positive equilibria 
or their stable manifolds.

(v) Hopf bifurcation of codimension three around E5(x5, y5) for R0 > 1 . The simulation 
of three limit cycles arising from the Hopf bifurcation of codimension three around Ẽ(1, 1) 
in system (4.21) is shown in Fig. 9, which corresponds to the Hopf bifurcation of codimen-
sion three around E5(x5, y5) for R0 > 1 in system (2.2). In order to numerically simulate 
the three limit cycles in system (4.21), we use the normal form to determine the parameter 
values. We take (m, n) = (−0.15, 0.006) and obtain the critical values p = 36.65608396⋯ 
and q = 7.24695834⋯ from (4.29) and (4.27), respectively. At these critical values, 
tr(J(Ẽ)) = 𝜎1 = 𝜎2 = 0 but �3 = −3.72601443 . Next, we perturb the parameters p, q and 
a such that 0 < tr(J(Ẽ)) ≪ −𝜎1 ≪ 𝜎2 ≪ −𝜎3 , yielding three small-amplitude limit cycles 
around Ẽ(1, 1) . We apply the 4th-order Runge–Kutta method to run the simulations on a 

(�, �, k, �, �) = (0.0316967, 0.00360857, 1.26849 × 10−11, 3.70814 × 10−18,−3.26794 × 10−9).

p = 17/2
a = 7/3 − 0.005

m = − 6/5
q = 1861/655 + 0.15

n = 1/2
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0.6

0.8

1
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y

Fig. 8  Two limit cycles enclosing an unstable hyperbolic focus Ẽ(1, 1) for system (4.21), which corresponds 
to two limit cycles around E3(x3, y3) for R∗ < R0 < 1 in system (2.2)
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PC machine. Since the model is a two-dimensional differential system, we can use negative 
time steps in the integration scheme to simulate the unstable limit cycle. Since −𝜎1 < 0 , 
𝜎2 > 0, and 𝜎3 < 0 , the innermost and outermost limit cycles are stable while the middle 
one is unstable. All the three limit cycles enclose the equilibrium Ẽ(1, 1) which is an unsta-
ble hyperbolic focus since tr(J(Ẽ)) > 0 . Our simulations show that the convergent speed is 
extremely slow and the process is very time consuming. For each limit cycle, we choose 
two initial points, one lying outside the limit cycle and one lying inside the cycle, and have 
trajectories initiated from both points converging to the limit cycle. (Note that convergence 
also appears for the unstable limit cycle since negative time steps are used.) The simula-
tions of three limit cycles are shown in Fig. 9, where we only present the very last portion 
of each trajectory in order to avoid massive data plotting. The red and blue curves represent 
stable and unstable limit cycles, respectively.

Remark 5.6 When the infection rate k is larger than the critical value k0 given by (2.10), 
i.e., k > k0 (corresponding to R0 > 1 ), we can see that the existence of three periodic coex-
istent solutions and a coexistence steady state from Fig. 9, where model (4.21) has only two 
equilibria: a disease-free equilibrium which is a saddle and an endemic equilibrium which 
is an unstable hyperbolic focus. The disease will tend to periodic outbreaks for almost all 
positive initial populations outside or inside the outermost stable periodic orbit, and will 
persist in the form of positive steady states or unstable periodic solutions when the initial 
populations lie on the unique positive equilibrium or the middle unstable periodic orbit.

6  Discussion

In this paper, we studied the global dynamics of the SIRS model (1.1) with a generalized 
nonmonotone incidence rate. By considering general parameter conditions, instead of spe-
cific parameter values as in Zhou et al. [30], we have shown that the basic reproduction 
number R0 in model (1.1) does not act as a threshold value for disease spread anymore, 
and there exists a sub-threshold value R∗(< 1) such that: (i) if R0 < R∗ , then the disease-
free equilibrium is globally asymptotically stable; (ii) if R0 = R∗ , then the model has a 

Fig. 9  Three limit cycles enclos-
ing an unstable hyperbolic focus 
Ẽ(1, 1) for system (4.21), which 
corresponds to three limit cycles 
around E5(x5, y5) for R0 > 1 in 
system (2.2). The innermost and 
outermost limit cycles are stable 
and the middle limit cycle is 
unstable. The initial points for 
the simulation are also shown 
with positive time steps for 
convergence to the stable limit 
cycle (in red color) and negative 
time steps for convergence to 
the unstable limit cycles (in blue 
color) (Color figure online)  0.6  0.8  1  1.2  1.4  1.6

y

x

 0.6

 0.8

 1
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unique endemic equilibrium which is a nilpotent cusp of codimension at most three; (iii) if 
R∗ < R0 < 1 , then the model has two endemic equilibria, one is a weak focus of multiplic-
ity at least three and the other is a saddle; (iv) if R0 ≥ 1 , then the unique endemic equilib-
rium is a weak focus of multiplicity at least three. As parameters vary, the model undergoes 
a sequence of bifurcations, including saddle-node bifurcation, backward bifurcation, Bog-
danov–Takens bifurcation of codimension three, Hopf bifurcation, and degenerate Hopf 
bifurcation of codimension three.

Moreover, it is shown that there exist a critical value � = �0 for the psychological effect, 
a critical value k = k0 for the infection rate, and two critical values 𝛽 = 𝛽0, 𝛽1 (𝛽1 < 𝛽0) 
such that: (i) when 𝛼 > 𝛼0 , or � ≤ �0 , k < k0 and � ≥ �0 , or k = k0 and � ≥ �0 , the disease 
will die out for all positive initial populations; (ii) when � = �0 and 𝛽1 ≤ 𝛽 < 𝛽0 , the dis-
ease will die out for almost all positive initial populations; (iii) when � = �0 and 𝛽 < 𝛽1 , the 
disease will persist in the form of a positive coexistent steady state for some positive initial 
populations; and (iv) when 𝛼 < 𝛼0 , k < k0 and 𝛽 < 𝛽0 , or k = k0 and 𝛽 < 𝛽0 , or k > k0 , the 
disease will persist in the form of multiple positive periodic coexistent oscillations and 
coexistent steady states for some positive initial populations. With different choices of 
parameter values, numerical simulations demonstrate that model (1.1) has one, two or three 
limit cycles due to these bifurcations.

The existence of limit cycles (isolated periodic orbits) for epidemic models is inter-
esting and significant both in mathematics and applications since the existence of stable 
limit cycles provides a satisfactory explanation for disease recurrence and break out in a 
rather reproducible periodic manner, which may have profound implications for the con-
trol, prevention and prediction of disease transmission. For example, from the data of 
some diseases such as measles, researchers observed some complex periodic patterns, 
see Stone et al. [23].

On the other hand, the existence of multiple limit cycles implies diseases establish 
or break out in different periodic manners with different periods. Pattern changes of 
epidemics have been observed in some childhood infectious diseases such as measles, 
the major transitions are between regular cycles and irregular cycles, and from region-
ally synchronized oscillations to complex, spatially incoherent epidemics, etc. Measles 
is a natural ecological system that exhibits different dynamical transitions at different 
times and places, yet all of these transitions can be predicted as bifurcations of a single 
nonlinear model ([10]).

Notice that in a recent paper, we (Lu et al. [20]) studied model (1.1) with a different 
incidence rate

in which the infection function first increases to a maximum when a new infectious disease 
emerges, then decreases due to psychological effect, and eventually tends to a saturation 
level due to crowding effect. Recall that the incidence rate considered in this paper takes 
the following form:

which first increases to a maximum, then decreases and tends to zero when the number 
of infectious individuals become larger and larger. These two functions are certainly dif-
ferent (see Fig. 1.2 in [20] and Fig. 1b). Then it is necessary and interesting to compare 

(6.1)
kI2S

1 + �I + �I2
,

(6.2)
kIS

1 + �I + �I2
,
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the dynamics of these two cases. In [20] we found that model (1.1) with incidence rate 
(6.1) has a weak focus of multiplicity at most two and a cusp of codimension at most two, 
undergoes saddle-node bifurcation, Bogdanov–Takens bifurcation of codimension two, 
Hopf bifurcation, and degenerate Hopf bifurcation of codimension two, and possesses one 
or two limit cycles for various parameter values. In this paper we showed that model (1.1) 
with incidence rate (6.2) has a weak focus of multiplicity at least three and a nilpotent cusp 
of codimension at most three, exhibits saddle-node bifurcation, backward bifurcation, Bog-
danov–Takens bifurcation of codimension three, Hopf bifurcation, and degenerate Hopf 
bifurcation of codimension three, and has one, two or three limit cycles as parameters vary. 
This demonstrates that the dynamics of model (1.1) with incidence rate (6.2) are much 
more complex than that of model (1.1) with incidence rate (6.1).

From Theorem 4.9, we can see that system (4.21) may exhibit degenerate Hopf bifur-
cations of codimension larger than three if we let m and n be arbitrary parameters. It will 
be very interesting to study these bifurcations and we leave it for future consideration.
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