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Abstract

In this paper, complete integrability and linearizability of cubic Z2 systems with two non-resonant and 
elementary singular points are investigated. First of all, four simple normal forms are obtained based on 
the coefficients and eigenvalues of cubic Z2 systems. Then, the integrable and linearizable conditions are 
classified according to the four different cases respectively, and the problem is solved thoroughly for cubic 
Z2 systems with two non-resonant singular points.
© 2020 Elsevier Inc. All rights reserved.
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1. Introduction

Hilbert’s 16th problem has been proposed for more than one century, but it is still not com-
pletely solved even for the simplest quadratic polynomial systems. As far as the number of limit 
cycles is concerned, the best results for this problem are H(2) ≥ 4 and H(3) ≥ 13, where H(n)

denotes the number of limit cycles that a planar differential system with degree n can have, see 
[1–5]. Bifurcation of limit cycles and symmetry are closely connected and symmetry plays an 
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important role in the study of Hilbert’s 16th problem. Generally speaking, the basic idea, giving 
rise to an efficient method, is to perturb the symmetric systems with maximal number of centers.

Consider the following planar system,

dx

dt
= X(x,y),

dy

dt
= Y(x, y),

which is called Zq -equivariant if it is invariant under a planar counterclockwise rotation of an-
gle 2π

q
. As a class of special symmetric systems, Zq -equivariant systems have been investigated 

intensively since they were proposed, and better results on the number of limit cycles for polyno-
mial differential systems were often obtained from Zq -equivariant vector fields, for more detail, 
see [6–10]. In fact, it is difficult to compute higher-order focal values for an isolated focus. Thus, 
it is hard to obtain more limit cycles in the neighborhood of an isolated focus based on the cal-
culation of focal values, and very few results have been achieved for higher-order polynomial 
differential systems. Bifurcation of limit cycles at nilpotent critical points in a class of quintic 
polynomial differential systems are investigated in [11]. In 2012, some new results were obtained 
for Zq -equivariant planar polynomial vector fields [12]. A planar system is Z2-equivariant if the 
following conditions hold:

X(−x,−y) = −X(x,y), Y (−x,−y) = −Y(x, y).

In other words, a Z2-equivariant planar system can always be written as

dx

dt
=

∞∑
k=0

X2k+1(x, y),
dy

dt
=

∞∑
k=0

Y2k+1(x, y).

If a Z2-equivariant planar cubic system has two isolated elementary foci at (1, 0) and (−1, 0), 
an example for this system with at least 12 small-amplitude limit cycles was first constructed by 
Yu and Han [13–15]. Liu and Huang [16] confirmed their conclusion and gave some shortened 
expressions of the Lyapunov constants for this system. Furthermore, in [17], a class of Z2 cubic-
degree systems,

dx

dt
= −(a1 + 1)y + a1x

2y + a2xy2 + a3y
3,

dy

dt
= −1

2
x − a4y + 1

2
x3 + a4x

2y + a5xy2 + a6y
3,

(1.1)

was studied, and the first six focus values at (±1, 0) of this system were obtained. Then, eleven 
center conditions were derived, and a complete study on bi-center problem was carried out. The 
necessary and sufficient conditions for the existence of bi-center were obtained. Further, study 
on this system showed H(3) ≥ 13, see [3–5]. Bi-center problem for some Z2-equivariant quintic 
systems was studied in [18], and simultaneous existence of centers for two families of planar 
Zq -equivariant systems was investigated in [19]. In 2017, the bi-isochronous center problem 
for a cubic Z2-equivariant vector field with real coefficients was considered in [20], and two 
real isochronous center conditions were obtained. For the complex isochronous center problem 
at (±1, 0) of system (1.1), there are two difficulties encountered in solving this problem: the 
first one is the computation of periodic constants, and the second one is to find all linearization
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transformations. Recently, 54 complex linearization centers for system (1.1) were obtained in 
[21].

In [22], bi-center problem and bifurcation of limit cycles from nilpotent singular points in 
Z2-equivariant cubic vector fields were studied, and sufficient and necessary conditions were ob-
tained for two nilpotent singular points of the system to be centers. Moreover, a new perturbation 
scheme was present in [22] to prove the existence of 12 small-amplitude limit cycles in cubic Z2-
equivariant vector fields, which bifurcate from two nilpotent singular points. The center problem 
for Z2-symmetric nilpotent vector fields was also studied in [23].

In this paper, integrability and linearizability of cubic Z2-equivariant systems with non-
resonant and elementary singular points will be investigated. The rest of the paper is organized 
as follows. In the next section, we present some preliminary results which will be used in the 
following sections. In Section 3, four simple normal forms are classified based on the coeffi-
cients and eigenvalues of cubic Z2 systems. Section 4 is devoted to study the integrability and 
linearizability for the four cases. At last, conclusion is drawn in Section 5.

2. Preliminary results

In this section, we present some preliminary results taken from [24], which will be used in 
next section. Consider the following system,

dz

dT
= z +

∞∑
α+β=2

aαβzαwβ = Z(z,w),

dw

dT
= −w −

∞∑
α+β=2

bαβwαzβ = −W(z,w),

(2.1)

which can be changed into

dx

dt
= −y +

∞∑
α+β=2

Aαβxαyβ = X(x,y),

dy

dt
= x +

∞∑
α+β=2

Bαβxαyβ = Y(x, y),

(2.2)

by the following complex transformation,

z = x + iy, w = x − iy, T = it, i = √−1.

Systems (2.1) and (2.2) are called adjoint systems. The origin of system (2.1) is called a weak 
saddle in complex domain, and the origin of system (2.2) is called a complex focus (center).

Moreover, with the transformation,

x = r cos θ, y = r sin θ,

system (2.1) can be transformed into
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dr

dt
= i

wZ − zW

2r
= R(r, θ),

dθ

dt
= wZ + zW

2zw
= �(r, θ), (2.3)

where

R(r, θ) = ir

2

∞∑
k=1

∞∑
α+β=k+1

[
aαβei(α−β−1)θ − bαβe−i(α−β−1)θ

]
rk,

�(r, θ) = 1 + 1

2

∞∑
k=1

∞∑
α+β=k+1

[
aαβei(α−β−1)θ + bαβe−i(α−β−1)θ

]
rk.

For sufficiently small constant h, the solution of system (2.3) with initial condition r|θ=0 = h

can be written as

r = r̃(θ, h) = h +
∞∑

k=2

νk(θ)hk,

and denote

T (ϑ,h) =
ϑ∫

0

dθ

�(r̃(θ, h), θ)
.

In [24], the definitions of complex center and isochronous center of system (2.1) were given 
as follows.

Definition 2.1. For sufficiently small constant h, if

r̃(2π,h) ≡ h,

then the origin of system (2.1) is called a complex center.
If the origin of system (2.1) is a complex center and

T (2π,h) ≡ 2π,

then the origin of system (2.1) is called a complex isochronous center.

Studying the center problem of system (2.1) is equivalent to considering the integrable prob-
lem in the neighborhood of the origin. Similarly, the isochronous center problem of system 
(2.1) is equivalent to its linearizable problem in the neighborhood of the origin. However, for 
a concrete system, it is difficult to find its first integral and the linearization transformation. An 
efficient method to prove the sufficiency of integrable and linearizable condition is to find in-
variant curves. For some special systems, the following theorems can be used to determine the 
complex isochronous center.

Theorem 2.1. If there exists a regular integral in the neighborhood of the origin of system (2.1)
and Z(z, w) = zϕ(z), where ϕ(z) is analytic in the neighborhood of z = 0 and ϕ(0) = 1, then 
the origin of system (2.1) is a complex isochronous center.
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Proof. When the conditions hold, system (2.1) can be rewritten as

dz

dT
= zϕ(z),

dw

dT
= −W(z,w). (2.4)

Because z = 0 is a solution of (2.4), in the neighborhood of the origin, system (2.4) has a first 
integral

F(z,w) = zG(z,w),

where G(z, w) = w + h.o.t. is analytic in the neighborhood of the origin. dF
dT

= 0 shows that

dG

dT
= −ϕG. (2.5)

Based on (2.5), it is easy to check that there exists a linearization transformation of system (2.4)

ξ = z exp

z∫
0

1 − ϕ(z)

zϕ(z)
dz, η = G(z,w) exp

z∫
0

ϕ(z) − 1

zϕ(z)
dz

in the neighborhood of the origin, so the conclusion holds. �
Similarly, we have

Theorem 2.2. If there exists a regular integral in the neighborhood of the origin of system (2.1)
and W(z, w) = wψ(w), where ψ(w) is analytic in the neighborhood of w = 0 and ψ(0) = 1, 
then the origin of system (2.1) is a complex isochronous center.

Theorem 2.3. Suppose that the origin of system (2.1) is a complex center and there exists an 
analytic function in the neighborhood of the origin, given by

η = ψ(z,w) = w + h.o.t.,

which satisfies

dη

dT
= −η,

then the origin of system (2.1) is a complex isochronous center.

Similarly, we have the following theorem.

Theorem 2.4. Suppose that the origin of system (2.1) is a complex center and there exists an 
analytic function in the neighborhood of the origin,

ξ = ϕ(z,w) = z + h.o.t.,
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which satisfies

dξ

dT
= ξ,

then the origin of system (2.1) is a complex isochronous center.

Now, consider the following autonomous complex systems,

dz

dT
= z + h.o.t.,

dw

dT
= −wf (w), (2.6)

and

dz

dT
= zg(z),

dw

dT
= −w + h.o.t., (2.7)

where f (w) and g(z) are power series with non-zero convergence radius and f (0) = g(0) = 1. 
The functions on the right-hand side of the above differential equations are assumed to be analytic 
in the neighborhood of the origin. Then the following results directly follow from Theorems 2.3
and 2.4.

Corollary 2.1. If the origin of system (2.6) is a complex center, then it is a complex isochronous 
center.

Corollary 2.2. If the origin of system (2.7) is a complex center, then it is a complex isochronous 
center.

3. Normal forms of Z2-equivariant cubic systems

Consider the cubic Z2-equivariant system,

dz

dT
= a10z + a01w + a30z

3 + a21z
2w + a12zw

2 + a03w
3 = Z(z,w),

dw

dT
= −b10w − b01z − b30w

3 − b21w
2z − b12wz2 − b03z

3 = −W(z,w),

(3.1)

where z, w, T are complex variables and akj , bkj are complex coefficients.
Suppose that the functions on the right-hand side of system (3.1) have no common factors. Let 

(z0, w0), which is not the origin, be an isolated singular point of system (3.1), then (−z0, −w0)

is also an isolated singular point of system because system (3.1) is Z2 equivariant.
Without loss of generality, let z0 �= 0, w0 �= 0 (otherwise, let z = z′ + w′, w = z′ − w′). 

Further, let z0 = w0 = 1 (or let z = z′z0, w = w′w0). Then,

a01 = −(a10 + a30 + a21 + a12 + a03),

b01 = −(b10 + b30 + b21 + b12 + b03).
(3.2)

The Jacobian of system (3.1) evaluated at (±1, ±1) is
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J0 =

⎛
⎜⎜⎝

∂Z

∂z

∂Z

∂w

−∂W

∂z
− ∂W

∂w

⎞
⎟⎟⎠

(±1, ±1)

=
(

a10 + 3a30 + 2a21 + a12 − a10 − a30 + a12 + 2a03

b10 + b30 − b12 − 2b03 − b10 − 3b30 − 2b21 − b12

)
.

In order to reduce the difficulties in the following analysis, we discuss how to transform 
system (3.1) to a simple new system by linear transformations. In the new system, the Jacobian 
evaluated at the two singular points become simple and the number of parameters is reduced.

Denote

A = a30 + a21 + a12 + a03,

B = b30 + b21 + b12 + b03.

Suppose the two eigenvalues of the Jacobian J0 are λ1 and λ2. The two singular points are 
elementary which yields that λ1λ2 �= 0. Then, there are four cases for system (3.1):

Case 1 : A + B �= 0, λ1 �= λ2;
Case 2 : A + B = 0, λ1 �= λ2;
Case 3 : A + B �= 0, λ1 = λ2 = λ;
Case 4 : A + B = 0, λ1 = λ2 = λ.

3.1. Case 1: A + B �= 0, λ1 �= λ2

When A + B �= 0, by using

trace(J0) = λ1 + λ2, det(J0) = λ1λ2,

we get

a10 = − (2A − λ2)(2A − λ1)

2(A + B)
+ (2a03 + a12 − a30),

b10 = − (2B + λ2)(2B + λ1)

2(A + B)
+ (2b03 + b12 − b30).

(3.3)

Then, introducing the linear transformation

u = z − 2A − λ1

2(A + B)
(z − w),

v = w + 2B + λ2

2(A + B)
(z − w),

(3.4)

into system (3.1) yields the following system,
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dz

dT
= −1

4
λ1(z + w) + 1

2
(b1 + b4 + λ1)(z − w)

+ 1

16
λ1(z + w)3 − 1

8
(b1 + b4)(z + w)2(z − w)

+ 1

8
(b2 − b5)(z + w)(z − w)2 + 1

8
(b3 + b6)(z − w)3,

dw

dT
= −1

4
λ2(z + w) + 1

2
(b1 − b4 − λ2)(z − w)

+ 1

16
λ2(z + w)3 − 1

8
(b1 − b4)(z + w)2(z − w)

+ 1

8
(b2 + b5)(z + w)(z − w)2 + 1

8
(b3 − b6)(z − w)3.

(3.5)

It is not difficult to verify that (±1, ±1) are two isolated singular points of system (3.5). Because 
the determinant of the Jacobian of transformation (3.4) is given by

det

⎡
⎢⎢⎣

∂u

∂z

∂u

∂w

∂v

∂z

∂v

∂w

⎤
⎥⎥⎦ = λ1 − λ2

2(A + B)
�= 0,

indicating that the transformation (3.4) is non-degenerate, and so the Jacobian at (±1, ±1) be-
comes

J1 =
(

λ1 0
0 λ2

)
.

Remark 3.1. When λ1 = 1, λ2 = −1, the transformation (3.4) was used in [17] and [21] where 
cubic Z2 equivariant systems with two real focus were studied.

Then we have the following result.

Lemma 3.1. Suppose (±1, ±1) are isolated singular points of system (3.1), and the two eigenval-
ues of the Jacobian evaluated at the two singular points are λ1 and λ2, and (A +B)(λ1 −λ2) �= 0. 
Then, the Jacobian J0 at the singular points (±1, ±1) is given by J1.

By (3.2) and J0 = J1, the number of parameters in (3.1) is reduced by half, from 12 to 6.
The following result directly follows from Lemma 3.1.

Theorem 3.1. Suppose (±1, ±1) are isolated singular points of system (3.1), and the two eigen-
values of the Jacobian at the two singular points are λ1 and λ2, and (A + B)(λ1 − λ2) �= 0, then 
system (3.1) can be transformed into system (3.5) which has only 6 independent parameters. (The 
variables z and w are still used for simplicity.)

In fact, system (3.5) can be further simplified.
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Theorem 3.2. By

z = x + iy, w = x − iy, T = it, (3.6)

system (3.5) can be changed into

dx

dt
= − δ

2
x − (a1 + μ)y + δ

2
x3 + a1x

2y + a2xy2 + a3y
3,

dy

dt
= −μ

2
x + (δ − a4)y + μ

2
x3 + a4x

2y + a5xy2 + a6y
3,

(3.7)

where the coefficients of system (3.5) and (3.7) have the following relations

δ = i

2
(λ1 + λ2), μ = 1

2
(λ1 − λ2),

a1 = b1, a3 = b3, a5 = b5,

a2 = −ib2, a4 = −ib4, a6 = −ib6.

The Jacobian of system (3.7) evaluated at (±1, 0) is

J ∗
1 =

(
δ −μ

μ δ

)
.

Remark 3.2. The (±1, 0) of system (3.7) are strong foci if δ �= 0, and weak foci when λ1 = −λ2. 
The integrability conditions of system (3.7) were completely obtained in [17].

3.2. Case 2: A + B = 0, λ1 �= λ2

Suppose (±1, ±1) are isolated singular points of system (3.1), and A + B = 0, λ1 �= λ2, then 
(3.2) holds. From A + B = 0 and (3.3), we have

b10 = a10 + a12 + 2a21 + 3a30 − b12 − 2b21 − 3b30 − λ1 − λ2,

b03 = 1

2
(−2b12 − 2b21 − 2b30 − λ1),

a03 = 1

2
(−2a12 − 2a21 − 2a30 + λ1).

Then, system (3.1) can be transformed into the following system,

dz

dT
= − 1

2
λ1z − a1(z − w) + 1

2
λ1z

3

+ a1z
2(z − w) + a2z(z − w)2 + a3(z − w)3,

dw

dT
= − 1

2
λ1z − (a1 − a4 + λ2)(z − w) + 1

2
λ1z

3

+ (a1 − a4)z
2(z − w) + (a2 − a5)z(z − w)2

+ (a − a )(z − w)3,

(3.8)
3 6
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by the following transformation,

u = z + a10 + a12 + 2a21 + 3a30 − λ1

λ1 − λ2
(z − w),

v = w + a10 + a12 + 2a21 + 3a30 − λ1

λ1 − λ2
(z − w).

(3.9)

Because the determinant of the Jacobian of transformation (3.9) is

det

⎡
⎢⎢⎣

∂u

∂z

∂u

∂w

∂v

∂z

∂v

∂w

⎤
⎥⎥⎦ = 1,

implying that the transformation (3.9) is non-degenerate. Obviously, (±1, ±1) are isolated ele-
mentary singular points of system (3.8), and the Jacobian of (3.8) evaluated at the singular points 
(±1, ±1) are

J2 =
(

λ1 0
λ1 − λ2 λ2

)
.

So we have

Lemma 3.2. Suppose (±1, ±1) are isolated singular points of system (3.1), and the two eigen-
values of the Jacobian of the system evaluated at the two singular points are λ1 and λ2, with 
A + B = 0, λ1 �= λ2. Then, the Jacobian J0 at singular points (±1, ±1) is given by J2.

Based on Lemma 3.2, a similar proof to that for Theorem 3.1 leads to the following theorem.

Theorem 3.3. Suppose (±1, ±1) are isolated singular points of system (3.1), and the two eigen-
values of the Jacobian evaluated at the two singular points are λ1 and λ2, with A + B = 0, 
λ1 �= λ2, then system (3.1) can be transformed into system (3.8) which has only 6 independent 
parameters.

As a matter of fact, system (3.8) can be further simplified.

Theorem 3.4. System (3.8) can be changed to

dx

dT
= −1

2
λ1x − a1y + 1

2
λ1x

3 + a1x
2y + a2xy2 + a3y

3,

dy

dT
= (λ2 − a4)y + a4x

2y + a5xy2 + a6y
3,

(3.10)

by

x = z, y = z − w. (3.11)
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The Jacobian of system (3.10) evaluated at (±1, 0) becomes

J ∗
2 =

(
λ1 0
0 λ2

)
.

3.3. Case 3: A + B �= 0, λ1 = λ2

Suppose λ1 = λ2 = λ, when A + B �= 0, (3.3) becomes

a10 = − (2A − λ)2

2(A + B)
+ (2a03 + a12 − a30),

b10 = − (2B + λ)2

2(A + B)
+ (2b03 + b12 − b30).

Consider the following transformation

u = z − 2A − λ

2(A + B)
(z − w), v = 1

2(A + B)
(z − w), (3.12)

which is non-degenerate because the determinant of the Jacobian of transformation (3.12) is

det

⎡
⎢⎢⎣

∂u

∂z

∂u

∂w

∂v

∂z

∂v

∂w

⎤
⎥⎥⎦ = −1

2(A + B)
�= 0.

It is easy to prove the following theorem.

Theorem 3.5. Suppose (±1, ±1) are isolated singular points of system (3.1), and the two eigen-
values of the Jacobian evaluated at the two singular points are λ1 = λ2 = λ, with A + B �= 0, 
then system (3.1) can be transformed into the following form,

du

dT
= −1

2
λu − a1v + 1

2
λu3 + a1u

2v + a2uv2 + a3v
3,

dv

dT
= −1

2
u + (λ − a4)v + 1

2
u3 + a4u

2v + a5uv2 + a6v
3,

(3.13)

by the transformation (3.12), which has only 6 independent parameters. Moreover, (±1, 0) are 
isolated elementary singular points of system (3.13), and the Jacobian evaluated at the two sin-
gular points (±1, 0) is

J3 =
(

λ 0
1 λ

)
.

Remark 3.3. When λ �= 0, the two singular points (±1, 0) of system (3.13) are elementary node 
points, they are integrable and linearizable. When λ = 0, system (3.13) has been studied in [22], 
with six integrability conditions obtained, three of them are center conditions of system (3.13).
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3.4. Case 4: A + B = 0, λ1 = λ2

Suppose A + B = 0, λ1 = λ2 = λ. Denote

s = −2b03 + b10 − b12 + b30,

and

trace(J0) = 2λ, det(J0) = λ2,

which yield that

a10 = −a12 − 2a21 − 3a30 + λ + s,

b10 = −b12 − 2b21 − 3b30 − λ + s,

a03 = −1

2
(2a12 + 2a21 + 2a30 − λ),

b03 = −1

2
(2b12 + 2b21 + 2b30 + λ).

So the Jacobian of system (3.1) evaluated at (±1, ±1) can be written as

J0 =
(

λ + s −s

s λ − s

)
.

Obviously, if s = 0, J0 = λE. System (3.1) is a special case of system (3.5) when λ1 = λ2 = λ. 
If s �= 0, we consider the following transformation

u = z, v = s(z − w), (3.14)

which yields the following result.

Theorem 3.6. Suppose (±1, ±1) are isolated singular points of system (3.1), and the two eigen-
values of the Jacobian evaluated at the two singular points are λ1 = λ2 = λ, with A + B = 0. 
Then, when s �= 0, system (3.1) can be transformed into the following system,

du

dT
= −1

2
λu + (1 − a1)v + 1

2
λu3 + a1u

2v + a2uv2 + a3v
3,

dv

dT
= (λ − a4)v + a4u

2v + a5uv2 + a6v
3,

(3.15)

by the transformation (3.14), which has only 6 independent parameters.

It is easy to verify that the transformation (3.14) is non-degenerate because the determinant 
of the Jacobian of transformation (3.14) is
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det

⎡
⎢⎢⎣

∂u

∂z

∂u

∂w

∂v

∂z

∂v

∂w

⎤
⎥⎥⎦ = −s �= 0.

Obviously, (±1, 0) are isolate elementary singular points of system (3.15), and the Jacobian 
evaluated at the singular points (±1, 0) is

J4 =
(

λ 1
0 λ

)
.

Remark 3.4. When λ = 0, (±1, 0) are not isolate singular points in system (3.15) which yields 
that λ �= 0 in system (3.15), so systems (3.13) and (3.15) can not be transformed with each other.

4. The integrability and linearizability of cubic Z2 systems with non-resonant singular 
points

Now, we consider the Z2-equivariant cubic system (3.1) with two finite singular points and 
the two eigenvalues of Jacobian of the system evaluated at the two singular points (±1, 0) satisfy 
λ1
λ2

= −1. Without loss of generality, let λ1 = 1, λ2 = −1. There are two types of systems: one is 
(3.5)|λ1=1,λ2=−1 and the other (3.10)|λ1=1,λ2=−1. The system (3.5)|λ1=1,λ2=−1 can be changed 
into (3.7)|δ=0,μ=1 by the transformation (3.6). The center problem of system (3.7)|δ=0,μ=1 has 
been solved completely in [17], while the linearizability problem of this system in real domain 
was investigated in [20], and two isochronous center conditions were obtained. Recently, the 
linearizability problem of system (3.7)|δ=0,μ=1 in complex domain was studied in [21], and 54
complex isochronous center conditions were obtained.

So, the integrability and linearizability problem for Cases 1 and 3 has been completely solved, 
while the problem for Cases 2 and 4 are still open. In the following, we first summarize the results 
for Cases 1 and 3 for convenience, and then study the two open cases.

Theorem 4.1. [21] The origin of system (3.5) is a complex center if and only if one of the follow-
ing 11 conditions holds:

(C1) : b1 = −b5, b4 = 0, b6 = −1

3
b2;

(C2) : b2 = 0, b4 = 0, b6 = 0;
(C3) : 3(b1 + b5)(2 + 2b1 − b3 + 2b5 + 2b1b5)

+ 2b4(2b2 + b1b2 + 2b4 + b2b5 + 2b4b5) = 0,

b6 − 1

3
(−b2 − 2b1b2 + 2b4 − 2b2b5 + 2b4b5) = 0,

2(1 + b1)(b1 + b5)
2 + b2

4(1 + 2b1 + 2b5) = 0, b1 + b5 �= 0;
(C4) : − 2b4(1 + b5) − b2(2 + b1 + b5) = 0, b3 − 2(1 + b1)(1 + b5) = 0,

b6 − 1
(−b2 − 2b1b2 + 2b4 − 2b2b5 + 2b4b5) = 0;
3
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(C5) : b1 = −1

2
(2 + 3b2

4), b2 = b4, b3 = −b2
4(1 + b2

4 + b5), b6 = b4(1 + b2
4);

(C6) : b1 = −1

8
(8 + 5b2

4), b2 = 1

2
b4, b3 = −5

32
b4

4,

b5 = 1

8
(−8 + b2

4), b6 = 1

4
b4(2 + b2

4);

(C7) : b1 = 1

32
(−32 + 15b2

4), b2 = 1

4
b4, b3 = −1

512
b2

4(64 − 15b2
4),

b5 = 1

32
(−96 + 17b2

4), b6 = −3

16
b4(4 − b2

4); (4.1)

(C8) : b1 = 1

50
(−50 + 21b2

4), b2 = 1

5
b4, b3 = −1

1250
b2

4(250 − 63b2
4),

b5 = 1

50
(−200 + 39b2

4), b6 = −1

25
b4(35 − 9b2

4);

(C9) : b1 = −1

2
(2 + 3b2

4), b2 = b4, b3 = −b2
4(1 + b2

4 + b5), b6 = b4(1 + b2
4);

(C10) : b1 = 1

8
(−8 + 3b2

4), b2 = −1

2
b4,

b3 = −3

16
b2

4(4 − b2
4 + 4b5), b6 = 1

8
b4(4 + b2

4 + 8b5);

(C11) : b1 = −1

32
(32 − 15b2

4), b2 = −1

4
b4, b3 = −1

512
b2

4(832 − 495b2
4),

b5 = 1

32
(160 − 111b2

4), b6 = 1

16
b4(76 − 45b2

4).

Theorem 4.2. The origin of system (3.5) is a real isochronous center if and only if one of the 
following two conditions holds:

L1 : b1 = −3, b2 = 0, b3 = 0, b4 = 0, b5 = −9, b6 = 0;
L2 : b1 = −3

2
, b2 = 0, b3 = 1

2
, b4 = 0, b5 = −3

2
, b6 = 0.

Furthermore, complex linearizability conditions of system (3.5) were also obtained in [21].
For Case 3, it is easy to know that the two singular points (±1, 0) are degenerate nodes if 

λ �= 0, and they are integrable and linearizable. When λ = 0, the integrability problem has been 
solved in [22], with the integrability conditions given below.

Theorem 4.3. [22] The two singular points (±1, 0) of system (3.13) are integrable if and only if 
one of the following conditions holds:
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I1 : A21 = −B12, A30 = −2

3
A12B12, A2

12 = 9

4B12(3 + 2B2
12)

;

I2 : A30 = 0, A12 = 0;

I3 : A21 = −9

4A2
12

, A30 = −3

2A12
, B12 = −4A2

12

9
;

I4 : B12 = −3A2
12

8
, A30 = −16 + 3A4

12

12A12
, A21 = −32 + 3A4

12

24A2
12

;

I5 : A21 = 2 − A4
12

2A2
12

, A30 = −A3
12, B12 = 3

2
A2

12.

For case 2, when λ1λ2 > 0, the singular points (±1, 0) are node points, they are integrable 
and linearizable. When λ1λ2 < 0 and λ1 : λ2 �= 1 : −1, the singular points (±1, 0) are strong sad-
dle points, they are also integrable and linearizable. When λ1λ2 = 0, the singular points (±1, 0)

are degenerate singular points, we do not consider them here. The difficult case about the in-
tegrability and linearizability of system (3.8) is λ1 = 1, λ2 = −1, namely, the singular points 
(±1, ±1) are weak saddle points. Now, we study the integrability and linearizability of system 
(3.8)|λ1=1,λ2=−1.

4.1. Saddle quantities of a class of Z2-equivariant cubic system with two weak saddle points

When λ1 = 1, λ2 = −1, system (3.8) becomes

dz

dT
= − 1

2
z − a1(z − w) + 1

2
z3 + a1z

2(z − w)

+ a2z(z − w)2 + a3(z − w)3,

dw

dT
= − 1

2
z − (a1 − a4 − 1)(z − w) + 1

2
z3 + (a1 − a4)z

2(z − w)

+ (a2 − a5)z(z − w)2 + (a3 − a6)(z − w)3,

which can be further transformed into the form,

dx

dT
= −1

2
x − a1y + 1

2
x3 + a1x

2y + a2xy2 + a3y
3,

dy

dT
= −(1 + a4)y + a4x

2y + a5xy2 + a6y
3,

(4.2)

by the transformation (3.11).
Next, in order to study its integrability conditions of system (4.2), we compute the saddle 

values at (±1, 0). Let

u = x − 1, v = y,

under which system (4.2) becomes
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du

dT
= u + 3

2
u2 + 2a1uv + a2v

2 + 1

2
u3 + a1u

2v + a2uv2 + a3v
3,

dv

dT
= −v + 2a4uv + a5v

2 + a4u
2v + a5uv2 + a6v

3.

(4.3)

Then the singular points (±1, 0) of system (4.2) have been shifted to the singular point (0, 0) of 
system (4.1).

Theorem 4.4. The first seven saddle values at the origin of system (4.3) are

μ1 = −2a1 + a5 + 2a4a5,

μ2 = −4

3
a4(2a2 + 2a2a4 − 3a6)g1,

μ3 = 1

24
(3a3 − 108a3a

2
4 − 7a2a5 − 10a2a4a5 − 36a2a

2
4a5

+ 72a2a
3
4a5 + 12a5a6)g1g2,

μ4 = 32

81
a4a5(3 + 4a4)g1g2g3,

μ5 = 7

419904
(1458a2 + 3662a2a4 + 24048a2a

2
4 + 17496a2

5 + 2187a6)g1g2g3,

μ6 = 0,

μ7 = 165

4096
a5(−a3 + 5a2a5)g1g2g3,

where

g1 = 1 + 2a4, g2 = 3 + 2a4, g3 = −3a3 − a2a5 + 2a2a4a5.

The following two theorems directly follow Theorem 4.4.

Theorem 4.5. The origin of system (4.3) is a seventh order weak saddle if and only if

a1 = 1

2
a5, a2 = −3

2
(8a2

5 + a6), a3 = −1

2
a5(56a2

5 + 15a6),

a4 = 0, a5(4a2
5 + a6) �= 0.

Theorem 4.6. The first seven saddle values at the origin of system (4.3) are all zero if and only 
if one of the following six conditions holds:

C1 : a1 = 0, a4 = −1

2
;

C2 : a1 = −a5, a2 = −3a6, a4 = −3

2
;

C3 : a1 = 1
(1 + 2a4)a5, a3 = −1

a2(1 − 2a4)a5, a6 = 2
a2(1 + a4);
2 3 3
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C4 : a1 = 0, a3 = 0, a4 = 0, a5 = 0;

C5 : a1 = 0, a2 = 0, a4 = 1

6
, a5 = 0, a6 = 0;

C6 : a1 = 0, a2 = 0, a4 = −1

6
, a5 = 0, a6 = 0.

4.2. Complex center conditions of system (4.3)

Theorem 4.6 implies that the origin of system (4.3) is a complex center if one of the six nec-
essary conditions in the theorem holds. Next, we prove that these conditions are also sufficient.

Theorem 4.7. The origin of system (4.3) is a complex center if and only if one of the six conditions 
in Theorem 4.6 holds.

Proof. The necessity of these conditions have been shown in Theorem 4.6. So we only need to 
prove sufficiency. First, consider the condition C1, under which system (4.3) can be rewritten as

du

dT
= u + 3

2
u2 + a2v

2 + 1

2
u3 + a2uv2 + a3v

3,

dv

dT
= −v

(
1 + u − a5v + 1

2
u2 − a5uv − a6v

2
)
,

(4.4)

which can be further transformed into

dξ

dT
= (1 + 2ξ)

[
(a2 + a3η)η2 + (1 + 2a2η

2 + 2a3η
3)ξ

]
,

dη

dT
= −(1 + 2ξ)η[1 − a5η + (a2 − a6)η

2 + a3η
3],

(4.5)

by

ξ = u
(

1 + 1

2
u
)
, η = v

1 + u
.

System (4.5) has an inverse integrating factor,

M1(ξ, η) = (1 + 2ξ) exp

η∫
0

−2a5 + (a2 − 3a6)η + 2a3η
2

1 − a5η + (a2 − a6)η2 + a3η3 dη,

which implies that the conclusion is true for the condition C1.
If the condition C2 in Theorem 4.6 holds, system (4.3) can be simplified to

du

dT
= u + 3

2
u2 − 2a5uv − 3a6v

2 + 1

2
u3 − a5u

2v − 3a6uv2 + a3v
3,

dv = −v
(

1 + 3u − a5v + 3
u2 − a5uv − a6v

2
)
,

(4.6)
dT 2
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which is a Hamilton system, having a first integral,

F1 = v
(
u + 3

2
u2 − a5uv − a6v

2 + 1

2
u3 − 1

2
a5u

2v − a6uv2 + 1

4
a3v

3
)
.

When the condition C3 holds, system (4.3) can be rewritten as

du

dT
= u + 3

2
u2 + (1 + 2a4)a5uv + a2v

2

+ 1

2
u3 + 1

2
(1 + 2a4)a5u

2v + a2uv2 + 1

3
(−1 + 2a4)a2a5v

3,

dv

dT
= − v + 2a4uv + a5v

2 + a4u
2v + a5uv2 + 2

3
(1 + 2a4)a2v

3,

(4.7)

which has a first integral

F2 = v
(
u + 1

2
u2 + 1

3
a2v

2
)
(1 + u − a5v)−2(1+a4),

and so the conclusion holds under the condition C3.
If the condition C4 holds, system (4.3) is simplified to

du

dT
= (1 + u)

(
u + 1

2
u2 + a2v

2
)
,

dv

dT
= −v(1 − a6v

2). (4.8)

By finding invariant algebraic curves of system (4.8), we get an inverse integrating factor for 
system (4.8),

M3 = (1 + u)3g
1
2 (−2a2+3a6)

1 ,

where

g1 =
⎧⎨
⎩(1 − a6v

2)
1
a6 , if a6 �= 0,

exp (−v2), if a6 = 0.

This indicates that the condition C4 is sufficient.
When the condition C5 holds, system (4.3) can be rewritten as

du

dT
= u + 3

2
u2 + 1

2
u3 + a3v

3,
dv

dT
= −v

(
1 − 1

3
u − 1

6
u2

)
, (4.9)

which admits an inverse integrating factor

M4 = g2g
−2
3 ,

where
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g2 = u + 1

2
u2 + 1

4
a3v

3 + 1

4
a3uv3 + 1

28
a2

3v6,

g3 = 1 + u + 1

3
a3v

3,

and so the conclusion is true for the condition C5.
Finally, when the condition C6 holds, system (4.3) becomes

du

dT
= u + 3

2
u2 + 1

2
u3 + a3v

3,
dv

dT
= −v

(
1 + 1

3
u + 1

6
u2

)
. (4.10)

By using the transformation,

ξ = u(2 + u)

2(1 + u)2 , η = (1 + u)
1
3 v,

system (4.10) can be brought into

dξ

dT
= ξ + a3(1 − 2ξ)2η3,

dη

dT
= −η + 1

3
a3(1 − 2ξ)η4. (4.11)

According to Theorem 2.7 in [24], the origin of system (4.11) is a complex center, so the con-
clusion is true for system (4.3) under the condition C6.

This finishes the proof of Theorem 4.7. �
4.3. Complex isochronous center conditions of system (4.3)

Having obtained the six conditions in Theorem 4.6 under which the origin of system (4.3)
is a complex center, we now consider the complex isochronous center conditions under the six 
conditions. We have the following theorem.

Theorem 4.8. The origin of system (4.3) is a complex isochronous center if and only if one of the 
following nine conditions holds:

C1, C2−1, C3−1, C3−2, C3−3, C3−4, C4, C5, C6,

where the conditions C1, C4, C5 and C6 are given in Theorem 4.6, and

C2−1 : a1 = 0, a2 = 0, a3 = 0, a4 = −3

2
, a5 = 0, a6 = 0;

C3−1 : a1 = a5, a3 = 0, a4 = 1

2
, a6 = a2;

C3−2 : a1 = 0, a2 = 0, a3 = 0, a5 = 0, a6 = 0.

Proof. First, consider the condition C1. It is easy to verify that system (4.4) has two invariant 
algebraic curves:

f1 = v,

f = (1 + u)3 − a (1 + u)2v + (a − a )(1 + u)v2 + a v3,
2 5 2 6 3
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which satisfy

df1

dT
= h1f1,

df2

dT
= h2f2,

where

h1 = −1 − u + a5v − 1

2
u2 + a5uv + a6v

2,

h2 = 3u + a5v + 3

2
u2 + a5uv + (a2 + 2a6)v

2.

Since the origin of system (4.4) is a complex center under the condition C1, there exists an 
analytic inverse integrating factor M1(u, v) in the neighborhood of the origin, which satisfies 
that

M1(0,0) = 1,
dM1

dT
= h3M1,

where

h3 = 2u + 2a5v + u2 + 2a5uv + (a2 + 3a6)v
2.

Let

ζ = f1f2M
−1
2 ,

then, it follows from above discussion that

dζ

dT
= (h1 + h2 − h3)ζ = −ζ. (4.12)

According to Theorems 2.3 and equation (4.12), we have shown that the conclusion is true for 
the condition C1.

Next, consider the condition C2. A direct computation gives the first three periodic constants 
of system (4.6) at the origin:

τ1 = 16a5, τ2|τ1=0 = 192a6, τ3|τ1=τ2=0 = 480a3.

Obviously, when the condition C2 holds, the first three periodic constants at the origin of system 
(4.3) are zero if the condition C2−1 hold. This proves the necessity.

Next, we show that the condition C2−1 is also sufficient. When the condition C2−1 holds, 
system (4.6) becomes

du

dT
= 1

2
u(1 + u)(2 + u),

dv

dT
= −1

2
(2 + 6u + 3u2)v.

Then the sufficiency directly follows Corollary 2.2.
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When the condition C3 in Theorem 4.6 holds, similarly we use system (4.7) to discuss the 
complex isochronous center at the origin. With the aid of Mathematica, it is not difficult to obtain 
the first two periodic constants of system (4.7), given by

τ1 = 2(−1 + 2a4)(1 + 2a4)a5,

τ2|τ1=0 = 16

3
a2a4(−1 + 2a4)(1 + 2a4).

It is easy to see that when the condition C3 holds, the first two periodic constants at the origin of 
system (4.7) becomes zero if and only if one of the four conditions

C3−1 : a1 = 0, a3 = −2

3
a2a5, a4 = −1

2
, a6 = 1

3
a2;

C3−2 : a1 = a5, a3 = 0, a4 = 1

2
, a6 = a2;

C3−3 : a1 = 0, a3 = 0, a4 = 0, a5 = 0, a6 = 2

3
a2;

C3−4 : a1 = 0, a2 = 0, a3 = 0, a5 = 0, a6 = 0,

holds.
Now, we prove these conditions are also sufficient. When the condition C3−1 in Theorem 4.8

holds, system (4.7) take the form of

du

dT
= u + 3

2
u2 + a2v

2 + 1

2
u3 + a2uv2 − 2

3
a2a5v

3,

dv

dT
= −v

(
1 + u − a5v + 1

2
u2 − a5uv − 1

3
a2v

2
)
,

(4.13)

which has a linearization transformation in the neighborhood of the origin of system (4.13), given 
by

ξ = f4f
−1
6 , η = vf −1

5 f6,

where

f4 = u + 1

2
u2 + 1

3
a2v

2,

f5 = 1 + u − a5v,

f6 = 1 + 2u + u2 + 2

3
a2v

2.

When the condition C3−2 in Theorem 4.8 holds, system (4.7) becomes

du

dT
= u + 3

2
u2 + 2a5uv + a2v

2 + 1

2
u3 + a5u

2v + a2uv2,

dv = −v
(

1 − u − a5v − 1
u2 − a5uv − a2v

2
)
,

(4.14)
dT 2
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which has a linearization transformation,

ξ = f4f
−2
5 , η = vf −1

5 ,

in the neighborhood of the origin of system (4.14).
When the condition C3−3 in Theorem 4.8 holds, then system (4.7) can be changed into

du

dT
= (1 + u)

(
u + 1

2
u2 + a2v

2
)
,

dv

dT
= −v

(
1 − 2

3
a2v

2
)
.

Then the conclusion for this condition follows Corollary 2.1.
When the condition C3−4 in Theorem 4.8 holds, system (4.7) can be rewritten as

du

dT
= u(1 + u)

(
1 + 1

2
u

)
,

dv

dT
= −v,

and so the conclusion is true by Corollary 2.1.
For the condition C4, we use Theorem 2.1 or Corollary 2.2 to show that the origin of system 

(4.8) is a complex isochronous center if and if it is a complex center.
Now, consider the condition C5, under which system (4.9) can be rewritten as

du

dT
= u + 3

2
u2 + 1

2
u3 + a3v

3,
dv

dT
= −v

(
1 − 1

3
u − 1

6
u2

)
,

which can be further transformed into a linear system by the linear transformation,

ξ = f7f
−2
8 , η = vf

−1
3

8 ,

where

f7 = u + 1

2
u2 + 1

4
a3v

3 + 1

4
a3uv3 + 1

28
a2

3v6,

f8 = 1 + u + 1

3
a3v

3.

Finally, when the condition C6 holds, system (4.3) becomes (4.10). By the transformation,

ξ = u(2 + u)

2(1 + u)2 , η = (1 + u)
1
3 v,

system (4.10) can be brought into

dξ

dT
= ξ + a3(1 − 2ξ)2η3,

dη

dT
= −η + 1

3
a3(1 − 2ξ)η4. (4.15)

According to Theorem 2.7 in [24], the origin of system (4.15) is a complex isochronous center, 
and so the conclusion is true for system (4.10) under the condition C6.

However, the conditions C3−3 and C3−4 were contained in condition C1 and C4 respectively. 
The proof is complete. �



9048 F. Li et al. / J. Differential Equations 269 (2020) 9026–9049
4.4. Integrability and linearizability of system (3.15)

To end this section, we consider integrability and linearizability of system (3.15), namely, the 
case 4. We point out λ �= 0 in system (3.15). Otherwise, suppose λ = 0, then system (3.15) can 
be rewritten as

du

dT
= (1 − a1)v + a1u

2v + a2uv2 + a3v
3,

dv

dT
= −a4v + a4u

2v + a5uv2 + a6v
3,

for which the two singular points (±1, 0) are not isolated singular points. So we always suppose 
λ �= 0. That is, the (±1, 0) of system (3.15) are degenerate nodes, which are integrable and 
linearizable. Namely, for Case 4, if the two singular points (±1, 0) are isolated singular points, 
they are integrable and linearizable.

5. Conclusion

In this paper, integrability and linearizability of cubic Z2 systems with non-resonant and el-
ementary singular points are investigated thoroughly. Based on the coefficients and eigenvalues 
of cubic Z2 systems, four simple norm forms are obtained. Then, for each of the cases, the in-
tegrable and linearizable conditions are classified. We briefly summarize the existing results for 
Cases 1 and 3, and then completely solved the integrable and linearizable problem for Cases 2
and 4. The integrability and linearizability of cubic Z2 systems with resonant singular points are 
left for future study.
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