
Available online at www.sciencedirect.com
ScienceDirect

J. Differential Equations 265 (2018) 4965–4992

www.elsevier.com/locate/jde

Bi-center problem and bifurcation of limit cycles 

from nilpotent singular points in Z2-equivariant cubic 

vector fields

Feng Li a,∗, Yirong Liu b, Yuanyuan Liu a, Pei Yu c,∗

a School of Mathematics and Statistics, Linyi University, Linyi, Shandong 276005, PR China
b School of Mathematics and Statistics, Central South University, Changsha, Hunan 410065, PR China

c Department of Applied Mathematics, Western University, London, Ontario, N6A 5B7, Canada

Received 6 November 2017; revised 8 June 2018
Available online 27 June 2018

Abstract

In this paper, bi-center problem and bifurcation of limit cycles from nilpotent singular points in 
Z2-equivariant cubic vector fields are studied. First, the system is simplified by using some proper trans-
formations and the first five Lyapunov constants at a nilpotent singular point are calculated by applying the 
inverse integrating factor method. Then, sufficient and necessary conditions are obtained for two nilpotent 
singular points of the system being centers. A new perturbation scheme is present to prove the existence of 
12 small-amplitude limit cycles in cubic Z2-equivariant vector fields, which bifurcate from two nilpotent 
singular points. This is a new lower bound of the number of limit cycles bifurcating in such systems.
© 2018 Elsevier Inc. All rights reserved.
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1. Introduction

In qualitative theory of planar vector fields, the analysis on the existence, number and distri-
bution of limit cycles for planar polynomial differential systems,
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dx

dt
= P(x, y),

dy

dt
= Q(x,y), (1.1)

is closely related to the second part of Hilbert’s 16th problem.
Let M(n) denote the maximal number of small-amplitude limit cycles bifurcating from either 

an elementary focus or a center. There have been many results in the literature. M(2) = 3 was ob-
tained by Bautin in 1952 [6]. For n = 3, Yu and Tian [40] proved existence of 12 small-amplitude 
limit cycles around a singular point, which is the best result so far for cubic systems. The cen-
ter problem which is closely related to Hopf bifurcation has also been intensively studied. The 
study started from the quadratic polynomial differential systems with linear type singular points, 
for example, Dulac [12], Bautin [7], and Żoła̧dek [51]; see also Schlomiuk [36] for an update 
of these works. But the center–focus problem for polynomial differential systems with degree 
larger than two remains open.

It is well known that when the origin of a dynamical system is a degenerate critical point, the 
center problem becomes more difficult. However, for nilpotent critical point, some methods have 
been developed to investigate the center problem. The origin of a system is called a nilpotent 
critical point if it is an isolated critical point, and the linear part of the system has a double zero 
eigenvalue but the matrix of the linearized system at the origin is not identically null. There 
are many different kinds of topological phase constructions around a nilpotent critical point, for 
example, see [49]. Early results can be found in Sections 17–19 of [4]. Recently, more and more 
attentions have been paid to the center problem and bifurcation of limit cycles in systems with 
a nilpotent critical point, which is more challenging compared to the study for systems with an 
element critical point.

With a proper linear transformation, planar autonomous analytic systems with a nilpotent 
critical point can always be given in the form of

dx

dt
= �(x,y) = y +

∞∑
k+j=2

akj x
kyj ,

dy

dt
= �(x,y) =

∞∑
k+j=2

bkj x
kyj ,

(1.2)

where �(x, y), �(x, y) are analytic in the neighborhood of the origin.
The results given in [4] show that the origin of system (1.2) is a monodromic critical point if 

the following conditions hold:

�(x,f (x)) = αx2n−1 + o(x2n−1), α �= 0,[
∂�

∂x
+ ∂�

∂y

]
y=f (x)

= βxn−1 + o(xn−1),

β2 + 4nα < 0,

(1.3)

where n is a positive integer.
Suppose that the conditions in (1.3) are satisfied. The authors of [4] introduced a transforma-

tion,

x = (−α)
−1

2n−2 x1, y = (−α)
−1

2n−2 y1 + f (x), (1.4)
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into system (1.2), which, with the Lyapunov polar coordinates

x1 = rCs ϑ, y1 = −rnSn ϑ, (1.5)

leads to that the solution of the system, satisfying r|ϑ=0 = h, can be written as

r = r̃(ϑ,h) =
∞∑

k=1

νk(ϑ)hk. (1.6)

Here,

Cs ϑ = cosϕ,

Sn ϑ = sinϕ√
n

√
1 + cos2 ϕ + · · · + cos2n−2 ϕ,

ν1(ϑ) = exp

ϑ∫
0

βSn2 ϑCsn−1 ϑ

1 + βSn ϑCsn ϑ
dϑ.

(1.7)

Consequently, the successor function, focal values and kth-order focus value were defined by the 
author in [4] because every νk(ϑ) could be solved, and a method was developed to compute the 
focal values in order to solve the center–focus problem. Therefore, the related theory of successor 
function may be considered as a basic theory to solve the center–focus problem associated with 
the nilpotent critical point and bifurcation of limit circle of (1.2). However, unfortunately, it is 
difficult to use this method to solve every νk(ϑ) for a given polynomial system.

In fact, Theorem 19.10 in [4] shows that when the conditions in (1.3) hold, there exist the 
following formal transformations,

u = x +
∞∑

k+j=2

a′
kj x

kyj ,

v = y +
∞∑

k+j=2

b′
kj x

kyj ,

dt

dτ
= 1 +

∞∑
k+j=1

c′
kj x

kyj ,

(1.8)

such that (1.2) becomes the Liénard equation,

du

dτ
= v + F(u),

dv

dτ
= αu2n−1, (1.9)

where

F(u) = 1
βun + o(un). (1.10)
n
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Furthermore, if conditions in (1.3) are satisfied, there exist analytic transformations in the 
neighborhood of the origin of (1.8), which change (1.2) into a Liénard equation,

du

dτ
= v,

dv

dτ
= αu2n−1 + v

∞∑
k=n−1

Bku
k, Bn−1 = β. (1.11)

Thus, B2k can be considered as Lyapunov constants of (1.2).
For a special case, assume system (1.2) is symmetric with the origin. Then (1.2) can be written 

as

dx

dt
= y +

∞∑
k=1

X2k+1(x, y),
dy

dt
=

∞∑
k=1

Y2k+1(x, y), (1.12)

where X2k+1(x, y) and Y2k+1(x, y) are homogeneous polynomials of degree 2k + 1 in x and y. 
Amelikin has claimed (see [4]) that if the conditions in (1.3) hold for system (1.12), one can 
construct successively a positive formal power series F(x, y) in the neighborhood of the origin, 
satisfying

dF

dt

∣∣∣∣
(1.12)

=
∞∑

k=[ 3n+1
2 ]

Vkx
2k. (1.13)

From then, normal form theory was also applied to solve the center–focus problem for mon-
odromic planar nilpotent singularities. In [4,39,38,34,2], by considering the normal forms of 
(1.2), the authors tried to study the computation problem of focal values. In [14], the authors 
obtained the expressions of the coefficients of normal forms and investigated the possibilities of 
simplifying classical normal forms by means of a recursive algorithm well suited to symbolic 
computation, leading to the simpler and higher order normal forms. Furthermore, it is clear as 
shown in [3] that the method of normal forms can also be applied to study bifurcation of limit 
cycles around nilpotent singularities. In [9], Hamiltonian linear type centers and nilpotent centers 
of the linear and cubic polynomial terms were considered. Twelve normal forms were obtained 
for all the Hamiltonian planar polynomial vector fields with linear and cubic homogeneous terms, 
which possess either a linear type center or a nilpotent center at the origin. Moreover, the global 
phase portraits were present on the Poincaré disk.

For cubic-order nilpotent critical points of planar dynamical systems, the center–focus prob-
lem was solved by using the integral factor method in [27,28] where the quasi-Lyapunov con-
stants were defined and their computation method was developed. For a class of cubic systems, 
under small perturbations, existence of 8 small-amplitude limit cycles bifurcating from a nilpo-
tent critical point was proved in [29]. Furthermore, a new kind of bifurcation phenomena was 
discussed in [26], showing that a cubic-order nilpotent focus of planar dynamical systems can 
be broken into two element foci and an element saddle, yielding limit cycles bifurcating from 
the two element foci. As an example, a class of cubic systems with 3-multiple nilpotent foci 
was investigated to show that nine limit cycles can bifurcate from the origin when the origin is 
a weak focus of order 8. For cubic-order nilpotent critical points of planar dynamical systems, 
the analytic center problem was completely solved by using the integrating factor method [33]. 
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By using this method, some special systems were investigated in [19,21]. In [16], local behav-
ior of an isolated nilpotent critical point for polynomial Hamiltonian systems was investigated, 
proving that there are exact three cases: a center, a cusp or a saddle. Then for quadratic and cubic 
Hamiltonian systems, necessary and sufficient conditions were obtained for classifying a nilpo-
tent critical point as a center, a cusp or a saddle. Some special systems were studied in [18,43] by 
using this method. Furthermore, limit cycle bifurcation near a double homoclinic loop passing 
through a nilpotent saddle was studied in [17] by applying the analytical property of the first 
order Melnikov functions to general near-Hamiltonian systems and the conditions were obtained 
for the perturbed system to have 8, 10 or 12 limit cycles in a neighborhood of the loop with seven 
different distributions.

Recently, explicit expansion of the first Melnikov function was obtained [5] by perturbing 
an integrable and reversible system with a homoclinic loop passing through a nilpotent singular 
point, and the first three coefficients of the expansion were obtained. Zhao [45] studied the limit 
cycles of a class of cubic Hamiltonian systems under polynomial perturbations, with the assump-
tion that the corresponding Hamiltonian system has finite singular points with at least one center 
and is symmetric with respect to both the x- and y-axes, and the origin is a nilpotent singular 
point. In [11], the authors provide normal forms and the global phase portraits in the Poincaré 
disk for all Hamiltonian planar polynomial vector fields of degree 3, symmetric with respect to 
the x-axis, having a nilpotent center at the origin. Llibre [10] studied bifurcation diagrams for 
Hamiltonian nilpotent centers of polynomial vector fields with linear and cubic terms. Normal 
form theory was also applied to compute the generalized Lyapunov constants and to prove the 
existence of at least 9 and 10 small-amplitude limit cycles in the neighborhood of a nilpotent 
critical point in [44] and [48], respectively. The research in this direction attracts more and more 
researchers.

Some other methods or systems were also considered recently. For example, it was proved in 
[15] that all the nilpotent centers are limit of linear type centers and consequently the Poincaré-
Liapunov method to study linear type centers can be also used to consider nilpotent centers. 
A quasi-homogeneous vector field with a nilpotent and monodromic isolated singular point was 
investigated in [1] to prove the existence of a Lyapunov function and to theoretically solve the 
center problem.

As far as limit cycles are concerned, there have been many results obtained in the last decade. 
Let H(n) be the maximal number of limit cycles of (1.1) when P and Q are polynomials of 
degree at most n. The best results published so far are as follows: In [37,8], it was shown that 
H(2) � 4. H(3) � 13 was proved in [22,23] and H(4) � 16 was obtained in [41,42]. In addition, 
a study was given in [47] on the limit cycle bifurcation of Zq -equivariant polynomial vector fields 
with degrees 3 and 4. The Z2-equivariant system with degree 3 and its bifurcation problem were 
studied in [46,25]. Furthermore, Liu and Li [27,28] obtained 13 limit cycles in Z2-equivariant 
systems with degree 3. It has been noticed from the above results that better results were often 
obtained from Zn-equivariant vector fields. In fact, as far as an isolated focus is concerned, it 
is difficult to compute higher-order focal values with simpler expression. Thus, it is difficult to 
obtain more limit cycles by calculating the focal values of a single focus and very few results 
have been achieved for higher-order polynomial differential systems. Recently, a complete study 
on bi-center problem for Z2-equivariant cubic vector fields has been given in [32] and bi-center 
problem for some Z2-equivariant quintic systems was studied in [35].

It is even more difficult to analyze non-analytic systems. As far as bifurcation of limit cycles 
and conditions of centers at the origin are concerned, the following Z2-equivariant polynomial 
vector field,
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dx

dt
= −y + (x2 + y2)

d−3
2 (3x2y − 12B03xy2 − 4B12xy2

− y3 − 4A03y
3 − 4A12y

3),

dy

dt
= x + (x2 + y2)

d−3
2 (−x3 + 3xy2 + 12A03xy2 + 4A12xy2

− 4B03y
3 − 4B12y

3),

(1.14)

was investigated in [20]
Note that the origin of system (1.14) is either an elementary focus or a center. For degenerate 

singular points, because of the difficulty, there are very few results obtained for Z2-equivalent 
system of degree 3 with two nilpotent singular points. Hence, in this paper, we study bifurcation 
of limit circles in a class of Z2-equivalent cubic planar differential systems with two nilpotent 
singular points, described by

dx

dt
= A10x + A01y + A30x

3 + A21x
2y + A12xy2 + A03y

3 = X(x,y),

dy

dt
= B10x + B01y + B30x

3 + B21x
2y + B12xy2 + B03y

3 = Y(x, y).

(1.15)

Sufficient and necessary conditions for the critical points of system (1.15) to be centers are de-
rived. In addition, the existence of 12 small-amplitude limit cycles bifurcating from the critical 
points is proved.

The rest of the paper is organized as follows. In the next section, we simplify system (1.15) for 
the convenience of analysis. In Section 3, the first five Lyapunov constants at a nilpotent singular 
point are computed by using the inverse integrating factor method or the method of normal 
forms. Section 4 is devoted to discuss the integrability and center condition in Z2-equivariant 
vector fields, with five possible integral conditions obtained, three of them are proved true center 
conditions. Furthermore, bifurcation of limit cycles will be discussed in Section 5, and a new 
perturbation scheme is present to obtain 12 limit cycles. Finally, conclusion is drawn in Section 6.

2. Simplification of system (1.15)

Suppose (0, ±1) are singular points of system (1.15). Then,

A01 = −A03, B01 = −B03, (2.1)

and the Jacobin matrix of system (1.15) at (0, ±1) is given by

J0 =

⎡
⎢⎢⎣

∂X

∂x
,

∂X

∂y

∂Y

∂x
,

∂Y

∂y

⎤
⎥⎥⎦

(0, ±1)

=
[

A10 + A12, 2A03
B10 + B12, 2B03

]
. (2.2)

We have the following result.
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Lemma 2.1. The necessary condition for (0, ±1) being isolated nilpotent singular points 
of (1.15) is

A03 �= 0.

Proof. Suppose A03 = 0, then J0 is a triangular matrix, having two characteristic roots, given by

λ1 = A10 + A12, λ2 = 2B03.

Since (0, ±1) are nilpotent singular points, we have

λ1 = λ2 = 0, (2.3)

under which together with (2.1), system (1.15) can be rewritten as

dx

dt
= x(−A12 + A30x

2 + A21xy + A12y
2),

dy

dt
= x(B10 + B30x

2 + B21xy + B12y
2),

(2.4)

which has a common factor x in the two equations, implying that (0, ±1) are not isolated singular 
points, and so Lemma 2.1 is proved. �

Now suppose (0, ±1) are isolated nilpotent singular points of system (1.15). Consider the 
following transformation,

x = 2A03ξ, y = 2B03ξ + η. (2.5)

It is obvious that transformation (2.5) is not degenerate since A03 �= 0, and (0, 0) and (0, ±1) are 
fixed points of (2.5). By applying transformation (2.5), it is easy to find that the Jacobin matrix 
of system (1.15) evaluated at (0, ±1) is given by

J1 =
[

Tr(J0) 1
−Det(J0) 0

]
. (2.6)

Because (0, ±1) are nilpotent singular points of system (1.15), we have

Tr(J0) = Det(J0) = 0,

under which (2.6) becomes

J1 =
[

0 1
0 0

]
.

One immediate consequence is given below.
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Lemma 2.2. Suppose (0, ±1) are nilpotent singular points of system (1.15). Without loss of 
generality, let

J0 =
[

0 1
0 0

]
,

which yields

A10 = −A12, A03 = 1

2
,

B10 = −B12, B03 = 0.

(2.7)

The following result directly follows from Lemma 2.2.

Lemma 2.3. If (0, ±1) are nilpotent singular points of system (1.15), for simplicity, system (1.15)
can be written as

dx

dt
= −1

2
y + 1

2
y3 − A12x + A30x

3 + A21x
2y + A12xy2,

dy

dt
= −B12x + B30x

3 + B21x
2y + B12xy2.

(2.8)

Remark 2.1. In fact, for any nonzero constant r , by the transformation,

x = rx′, y = y′, t = rt ′,

system (2.8) can be changed to

dx′

dt ′
= −1

2
y′ + 1

2
y′ 3 − A′

12x
′ + A′

30x
′ 3 + A′

21x
′ 2y′ + A′

12x
′y′ 2,

dy′

dt ′
= −B ′

12x
′ + B ′

30x
′ 3 + B ′

21x
′ 2y′ + B ′

12x
′y′ 2,

where

A′
12 = rA12, A′

21 = r2A21, A′
30 = r3A30,

B ′
12 = r2B12, B ′

21 = r3B21, B ′
30 = r4B30.

In other words, system (2.8) is invariant under the following transformation:

(x, y, t,A12,A21,A30,B12,B21,B30) → (x′, y′, t ′,A′
12,A

′
21,A

′
30,B

′
12,B

′
21,B

′
30). (2.9)

Now we discuss the multiplicity of nilpotent singular points (0, ±1) of system (2.8). System 
(2.8) can be transformed into
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dξ

dt
= 1

2
η(1 + η)(2 + η) + A30ξ

3 + A21ξ
2(1 + η) + A12ξη(2 + η) = �(ξ,η),

dη

dt
= B30ξ

3 + B21ξ
2(1 + η) + B12ξη(2 + η) = �(ξ,η),

(2.10)

via

ξ = ±x, η = ±y − 1.

Suppose

η = f (ξ) =
∞∑

k=2

ckξ
k

is the only solution of the implicit function equation,

�(ξ,η) = 0, η|ξ=0 = 0.

Denote

�(ξ,f (ξ)) =
∞∑

k=2

αkξ
k,

[
∂�

∂ξ
+ ∂�

∂η

]
(ξ,f (ξ)

=
∞∑

k=1

βkξ
k.

(2.11)

It is easy to get

β1 = 2(A21 + B12),

α2 = B21, α3 = B30 − 2A21B12,

α4|α2=α3=0 = 2(2A12A21 − A30)B12.

(2.12)

Proposition 2.1. The nilpotent singular points (0, ±1) of (2.8) are degenerate singular points 
when α2 = B21 �= 0.

Proof. Theorems 7.2 and 7.3 in [50] show that the types of the origin of system (2.10) can be 
determined as follows.

When k = 2m, αk �= 0,

⎧⎪⎨
⎪⎩

βn = 0, degenerate point,

βn �= 0

{
n ≥ m, degenerate point,
n < m, saddle-node point.
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Fig. 1. Phase portrait of system (2.8) for A30 = A21 = A12 = B30 = B21 = B12 = 1, showing that (0, ±1) are degenerate 
nilpotent singular points.

When k = 2m + 1, λ = β2
n + 4(m + 1)α2m+1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

α2m+1 > 0, saddle,

α2m+1 < 0,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

βn = 0, center or focus,

βn �= 0

⎧⎪⎪⎨
⎪⎪⎩

n > m,

or n = m, λ < 0,
center or focus,

n < m,

or n = m, λ ≥ 0,

{
n even, node,
n odd, degenerate point.

So if α2 = B21 �= 0, m = 1 and n ≥ 1, the origin of system (2.9) is degenerate, namely, the 
nilpotent singular points (0, ±1) of (2.8) are degenerate singular points. �

With the help of Maple, phase portraits of some cases were given in [13]. In the following, we 
give more examples to illustrate different situations.

Example 2.1. When A30 = A21 = A12 = B30 = B21 = B12 = 1, obviously α2 = B21 = 1 �= 0, so 
(0, ±1) are degenerate singular points, see Fig. 1.

The multiple number of a critical point of system (1.2) has been defined by using the in-
tersection number of algebraic curves (see [24]). According to the definition of the multiple 
number given in [24], the multiple number of element critical points is 1, and a non-element 
critical point can be broken into several complex critical points with lower multiple number. 
For nilpotent singular point, Definition 2.1 in [30] indicates that for any positive integer k, if 
α2 = α3 = · · · = αk−1 = 0, αk �= 0, the multiplicity of the nilpotent singular point is exactly k.

Proposition 2.2. The multiplicity of nilpotent singular points (0, ±1) of (2.8) is 4 at most.

Proof. In (2.12), if α2 = α3 = 0, then

B21 = 0, B30 = 2A21B12,

�(ξ, η) = B12ξ(2A21ξ
2 + 2η + η2).

When α4 = 0, there are two cases.
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Fig. 2. Phase portrait of system (2.8) for B21 = 0, A21 = B12 = A12 = A30 = 1, B30 = 2, showing that (0, ±) are 
saddle-node nilpotent singular points.

If B12 = 0, �(ξ, η) ≡ 0, (0, ±1) are not isolated singular points.
If 2A12A21 − A30 = 0, �(ξ, η) = 1

2 (1 + 2A12ξ + η)(2A21ξ
2 + 2η + η2), so there exists a 

common factor 2A21ξ
2 + 2η + η2 in �(ξ, η) and �(ξ, η), implying that (0, ±1) are not isolated 

singular points. �
Remark 2.2. It follows from the Bezout theorem in Algebraic curve theory that the sum of 
numbers of all intersections of two cubic-degree polynomials in complex projective plane is 
exactly 32 = 9. So the sum of multiplicity of all finite singular points of system (2.8) (real or 
complex) is not more than 9, and the multiplicity of nilpotent singular points (0, ±1) of (2.8) is 
4 at most.

Proposition 2.3. The nilpotent singular points (0, ±1) of (2.8) are saddle-node points if α2 =
α3 = 0, α4β1 �= 0, degenerate singular points if β1 = α2 = α3 = 0, α4 �= 0, and saddle points if 
α2 = 0, α3 > 0.

Example 2.2. When B21 = 0, A21 = B12 = A12 = A30 = 1, B30 = 2, obviously α2 = α3 = 0, 
α4β1 �= 0, so (0, ±1) are saddle-node points, see Fig. 2. When B21 = 0, A21 = A12 = A30 = 1, 
B12 = −1, B30 = −2, obviously α2 = α3 = β1 = 0, α4 �= 0, so (0, ±1) are degenerate singular 
points, see Fig. 3.

Because the multiplicity of a nilpotent focus or center is an odd positive integer which is 
greater than 1, Proposition 2.2 indicates that the multiplicity of (0, ±1) is 3 if (0, ±1) are nilpo-
tent foci or centers of system (2.8). More precisely, we have the following result: (0, ±1) are 
nilpotent foci or centers with multiplicity 3 of system (2.8) if and only if

α2 = 0, α3 < 0, � = β2
1 + 8α3 < 0,

namely

B21 = 0, B30 − 2A21B12 < 0, 4(A21 − B12)
2 + 8B30 < 0.
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Fig. 3. Phase portrait of system (2.8) for B21 = 0, A21 = A12 = A30 = 1, B12 = −1, B30 = −2, showing that (0, ±) are 
degenerate nilpotent singular points.

Otherwise, (0, ±1) are degenerate points with multiplicity 3 of system (2.8) if

B21 = 0, B30 − 2A21B12 < 0, 4(A21 − B12)
2 + 8B30 ≥ 0.

Remark 2.1 tells us that we can always choose proper r to satisfy that α3 = −2, yielding 
B30 = −2 + 2A21B12. Now, summarizing the above results, we have our first main theorem.

Theorem 2.1. Suppose (0, ±1) are nilpotent foci or centers of system (1.15) with multiplicity 3. 
By proper linear state variable transformation and time rescaling, system (1.15) can be trans-
formed to

dx

dt
= −1

2
y + 1

2
y3 − A12x + A30x

3 + A21x
2y + A12xy2,

dy

dt
= −B12x + (−2 + 2A21B12)x

3 + B12xy2,

(2.13)

and (0, ±1) are nilpotent foci or centers of system (2.13) with multiplicity 3 if and only if

� = 4(A21 + B12)
2 − 16 < 0. (2.14)

3. Lyapunov constants

Consider the following system,

dx

dt
= y + a20x

2 +
∞∑

k+2j=3

akj x
kyj = X(x,y),

dy

dt
= b11xy + b30x

3 +
∞∑

k+2j=4

bkj x
kyj = Y(x, y),

(3.1)

where X(x, y) and Y(x, y) are power series in x, y with nonzero radius. The origin of system 
(3.1) is a nilpotent singular point with multiplicity 3 if and only if b30 − a20b11 �= 0. When b30 −
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a20b11 < 0, the origin of system (3.1) is a nilpotent focus or center if (2a20 − b11)
2 + 8b30 < 0, 

and a degenerate singular point if (2a20 − b11)
2 + 8b30 > 0.

For system (3.1) with a nilpotent focus or center, Liu and Li [31] developed an inverse in-
tegrating factor method for computing the Lyapunov constants of the system, as stated in the 
following theorem.

Theorem 3.1. For system (3.1), a power series can be obtained as

M(x,y) =
[
y2 + 1

2
(2a20 − b11)x

2y − 1

2
b30x

4
]
+

∞∑
k+2j=5

ckj x
kyj ,

which satisfies

∂

∂x

(
X

Ms+1

)
+ ∂

∂y

(
Y

Ms+1

)
= 1

Ms+2

∞∑
m=1

νm(2m − 4s − 3)x2m+4,

where s is an integer.

The recursive formulas for computing ckj and νm can be found in Theorem 4.5 in [31], νm is 
the mth Lyapunov constant of system (3.1) at the origin.

Now we compute the first five Lyapunov constants at (0, ±1) of system (2.13). Denote

A21 = 2μ − B12 (3.2)

Theorem 2.1 shows that the singular points (0, ±1) of system (2.13) are foci or centers if μ2 < 1
and degenerate singular points if μ2 > 1.

There are two cases in the calculations of the Lyapunov constants: μ = 0 and μ �= 0.

3.1. μ = 0

When μ = 0, system (2.13) becomes

dx

dt
= −1

2
y + 1

2
y3 − A12x + A30x

3 − B12x
2y + A12xy2,

dy

dt
= −B12x − (2 + 2B2

12)x
3 + B12xy2.

(3.3)

Theorem 3.2. The first two Lyapunov constants at (0, ±1) of system (3.3) are

ν1 = 1

3
(3A30 + 2A12B12),

ν2 = 4

45
A12(−9 + 12A2

12B12 + 8A2
12B

3
12).

Then, we have the following result.
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Theorem 3.3. The first two Lyapunov constants at (0, ±1) of system (3.3) are zero if and only if 
one of the following conditions holds:

A30 = A12 = 0; (3.4)

A30 = −2

3
A12B12, A2

12 = 9

4B12(3 + 2B2
12)

. (3.5)

In Section 4, we will prove that the two conditions (3.4) and (3.5) are actually the conditions 
for (0, ±1) of system (3.3) to be centers.

3.2. μ �= 0

In this case, the computation and simplification of Lyapunov constants at (0, ±1) of system 
(2.13) can be done in several steps.

Step 1. By applying Theorem 3.1, we can get the Lyapunov constants as given below.

Proposition 3.1. When μ �= 0, the first five Lyapunov constants at (0, ±1) of system (2.13) are

ν1 = H1

15
,

ν2 = 2H2

1575(9 − 8μ2)
,

ν3 = H3

330750μ(4 − 3μ2)(9 − 8μ2)
,

ν4 = 2H4

1031443875μ(25 − 16μ2)(9 − 8μ2)(4 − 3μ2)(1 + 8μ2)
,

ν5 = H5

424789845480000μ2(25 − 16μ2)(4 − 3μ2)(1 + 3μ2)(9 − 5μ2)(9 − 8μ2)(1 + 8μ2)
,

where

H1 = 3A30(5 − 4B12μ) + 2A12(5B12 − 18μ − 12B2
12μ + 24B12μ

2), (3.6)

and H2, H3, H4 and H5 are polynomials in A30, A12, B12 and μ, and contains respectively 
54, 259, 908, and 2445 terms.

Step 2. Computing the resultants of H1 respectively with H2, H3 and H4 about A12 yields

Res(H1,H2,A12) = 360A30(9 − 8μ2)R1,

Res(H1,H3,A12) = 80640A30μ(4 − 3μ2)R2,

Res(H1,H4,A12) = 816480A30(25 − 16μ2)(1 + 8μ2)R3,

where R1, R2 and R3 are polynomials in B12, A2
30 and μ, and have 30, 149 and 428 terms, 

respectively.
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Step 3. Computing the resultants of R1 respectively with R2 and R3 about A30, we obtain

Res(R1,R2,A30) = 4200h4
0h1h2h3μ(9 − 8μ2)G1,

Res(R1,R3,A30) = 201600h6
0h1h2h3μ

2(4 − 3μ2)G2,

where G1 and G2 are polynomials in B12 and μ, and have 22 and 82 terms, respectively, and

h0 = 5B12 − 18μ − 12B2
12μ + 24B12μ

2,

h1 = 1 + B2
12 − 2B12μ,

h2 = 3 + 8B2
12 − 12B12μ,

h3 = 9 + 4B2
12 − 12B12μ.

(3.7)

Remark 3.1. Since

Res(5 − 4B12μ,h0,B12) = μ(25 − 24μ2),

5 − 4B12μ and h0 can not equal zero simultaneously when 0 �= μ2 < 1. Therefore, (3.6) yields 
A30 = 0 when ν1 = h0 = 0.

Finally, we have

Res(G1,G2,B12) = μ18(16 + 15μ2)(6 − 5μ2)2(9 − 8μ2)14(16 − 15μ2)2

× (25 − 21μ2)(25 − 24μ2)28(49 − 40μ2)4g(μ),

where

g(μ) = −104976 + 288265μ2 − 253200μ4 + 72000μ6.

Above discussions lead to the following results.

Proposition 3.2. If A30h1h2h3 �= 0 and 0 �= μ2 < 1, then g(μ) = 0 when ν1 = ν2 = ν3 = ν4 = 0.

Proposition 3.3. g(μ) = ν1 = ν2 = ν3 = ν4 = 0 if and only if

g(μ) = 0,

B12 = μ

6480
(161791 − 323760μ2 + 158400μ4),

A12 = −A30μ

1456110
(41268311 − 86087760μ2 + 40190400μ4),

A2
30 = μ

105336450
(−27228293 − 878342520μ2 + 660556800μ4).

(3.8)
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g(μ) = 0 has six real solutions μ±
1 , μ±

2 , μ±
3 :

μ±
1 = ±

√
211
180 +

√
205
36 cos

(
1
3 arctan 6

√
2319

511

)
= ±0.88337 · · · ,

μ±
2 = ±

√
211
180 +

√
205
36 cos

(
1
3 arctan 6

√
2319

511 + π
3

)
= ±1.14428 · · · ,

μ±
3 = ±

√
211
180 +

√
205
36 cos

(
1
3 arctan 6

√
2319

511 − π
3

)
= ±1.19455 · · · .

(3.9)

So only μ±
1 satisfy |μ±

1 | < 1. When μ = 0.88337 · · · , A2
30 < 0, and so it is not a solution. For the 

unique solution μ = −0.88337 · · · , (3.8) yields that

μ = −0.88337 · · · , B12 = −0.7638 · · · ,

A30 = ±1.6134 · · · , A12 = ∓1.4058 · · · ,
(3.10)

under which we obtain

ν5 = ∓0.015 · · · �= 0.

This clearly shows that

Theorem 3.4. The two singular points (0, ±1) of system (2.13) are 5th weak foci for the solutions 
given in (3.10).

Remark 3.2. Normal form theory and the method of computation developed in [48] can be also 
applied to compute the Lyapunov constants at (0, ±1) of system (2.13). A cross check using 
other computation method has verified the above obtained first five Lyapunov constants.

4. Integrability and center conditions

In this section, we are devoted to study the integrability of system (2.13) by using the inverse 
integrating factor method. First of all, regarding the integrability of system (2.13), we apply 
Theorem 3.3 and Proposition 3.2 to obtain the following result.

Theorem 4.1. The first five Lyapunov constants at the two singular points (0, ±1) of system 
(2.13) are all zero if and only if one of the following conditions holds:
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I1 : A21 = −B12, A30 = −2

3
A12B12, A2

12 = 9

4B12(3 + 2B2
12)

;

I2 : A30 = 0, A12 = 0;

I3 : A21 = −9

4A2
12

, A30 = −3

2A12
, B12 = −4A2

12

9
;

I4 : B12 = −3A2
12

8
, A30 = −16 + 3A4

12

12A12
, A21 = −32 + 3A4

12

24A2
12

;

I5 : A21 = 2 − A4
12

2A2
12

, A30 = −A3
12, B12 = 3

2
A2

12.

(4.1)

If the condition I1 in Theorem 4.1 holds, system (2.13) can be rewritten as

dx

dt
= 1

6
(−6A12x − 4A12B12x

3 − 3y − 6B12x
2y + 6A12xy2 + 3y3),

dy

dt
= −B12x − 2(1 + B2

12)x
3 + B12xy2,

(4.2)

where

A2
12 = 9

4B12(3 + 2B2
12)

. (4.3)

Proposition 4.1. System (4.2) has the algebraic integral curve,

f1 = 3(9 + 8B2
12)(2B12x

2 − 2A12xy − y2)

+ (3 + 4B2
12)(12x4 + 12B2

12x
4 − 4A12B12x

3y − 12B12x
2y2 + 6A12xy3 + 3y4),

and an inverse integrating factor

M1 = f1.

It is easy to obtain the following result from Proposition 4.1.

Lemma 4.1. (0, ±1) are centers of system (2.13) when the condition I1 holds.

Proof. When the condition I1 is satisfied, A21 +B12 = 0, which implies that (2.14) holds, and so 
(0, ±1) are monodromic critical points. Then it follows from Proposition 4.1 that system (2.13)
has an inverse integrating factor. Thus, (0, ±1) are centers of system (2.13). �
Example 4.1. An example, as depicted in Fig. 4, shows that (0, ±1) are centers of (2.13) when 
the condition I1 holds.
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Fig. 4. Phase portrait of system (2.13), showing that (0,±1) are centers when the condition I1 holds.

If the condition I2 in Theorem 4.1 is satisfied, system (2.13) is reduced to

dx

dt
= −y

2
+ A21x

2y + y3

2
,

dy

dt
= −B12x

2 − 2(1 + A21B12)x
3 + B12xy2.

(4.4)

For system (4.4), we have the following result.

Proposition 4.2. System (4.2) has two algebraic integral curves:

f2 = 1 − 2(A21 − B12)x
2 + 4(1 − A21B12)x

4 − 2y2 + 2(A21 − B12)x
2y2 + y4,

f3 = exp arctan
√

4−(A21+B12)
2x2

1−(A21−B12)x
2−y2 .

Moreover, system (4.4) has an inverse integrating factor

M2 = f2,

and a first integral

F1 = f

√
4−(A21+B12)

2

2 f
2(A21+B12)
3 . (4.5)

One immediate consequence is obtained below.

Lemma 4.2. (0, ±1) are centers of (2.14) if both the conditions I2 and |A21 + B12| < 2 hold.

Proof. When the condition I2 holds, system (4.4) has the first integral F1 given in (4.5), which 
exists for |A21 + B12| < 2. Hence, (0, ±1) are centers of (2.14) if and only if both the conditions 
I2 and |A21 + B12| < 2 hold. �
Example 4.2. Two cases are illustrated in Fig. 5, showing that (0, ±1) are centers of (2.13) when 
both conditions I2 and |A21 + B12| < 2 are satisfied.
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Fig. 5. Phase portraits of system (2.13), showing that (0, ±1) are centers when both the conditions I2 and |A21 +B12| < 2
hold: (a) A21 = 1, B12 = −1; and (b) A21 = 0, B12 = 1.

Fig. 6. Phase portraits of system (2.13), showing that (0, ±1) are not centers when the condition I2 holds but the condition 
|A21 + B12| < 2 is not satisfied: (a) A21 = 0, B12 = 2; and (b) A21 = 0, B12 = 3.

Example 4.3. Two cases are depicted in Fig. 6, indicating that (0, ±1) are not centers of (2.13)
if the condition I2 is satisfied, but the condition |A21 + B12| < 2 does not hold.

If the condition I3 in Theorem 4.1 holds, system (2.13) becomes

dx

dt
= −A12x − 3x3

2A12
− y

2
− 9x2y

4A2
12

+ A12xy2 + y3

2
,

dy

dt
= 4

9
A2

12x(1 − y)(1 + y).

(4.6)

Proposition 4.3. System (4.6) has algebraic integral curves:

f4 = 2A12x + 3y, f5 = 1 − y, f6 = 1 + y, (4.7)
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Fig. 7. Phase portrait of system (2.13), showing that (0,±1) are not centers when the condition I3 holds.

which allow to construct an inverse integrating factor,

M3 = f 3
4 (f5f6)

81+16A4
12

16A4
12 ,

and a first integral,

F2 = (4A12x + 3y)

9(2A12x + 3y)2 (1 − y2)

−81
16A4

12 − 3

8A4
12

∫
(1 − y2)

−(81+16A4
12)

16A4
12 dy.

Remark 4.1. It follows from (4.7) that there are two straight line solutions y = ±1 which pass 
through (0, ±1), so (0, ±1) are not centers of system (4.6).

Example 4.4. An example, shown in Fig. 7, indicates that (0, ±1) are not centers of (2.13) when 
the condition I3 holds.

In fact, if the condition I3 in Theorem 4.1 holds, it is easy to get that A21 + B12 = −( 9
4A2

12
+

4A2
12

9 ) ≤ −2 and � = 4(A21 + B12)
2 − 16 > 0. So (0, ±1) are not centers or foci, but degenerate 

singular points.
If the condition I4 in Theorem 4.1 holds, system (2.13) takes the form:

dx

dt
= −A12x − (16 + 3A4

12)x
3

12A12
− y

2
− (32 + 3A4

12)x
2y

24A2
12

+ A12xy2 + y3

2
,

dy

dt
= 3A2

12x

8
+ (−32 + 3A4

12)x
3

32
− 3

8
A2

12xy2.

(4.8)

Proposition 4.4. The two singular points (0, ±1) are centers of (4.8) if � = 4(A21 + B12)
2 −

16 < 0 with

A12 ∈ (−1.77615 · · · , −0.919402 · · · )
⋃

(0.919402 · · · , 1.77615 · · · ).
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Proof. Consider the following transformations,

u = 2A12x

A12x + 2y
,

v =
[

3A4
12 − 3A4

12u − 3

4
A4

12(A12x − 2y)2 + 2u2(A12x − 2y)2
]

h(u),

dt

dτ
= 6A3

12(1 − u)

1 + u
h(u),

(4.9)

where

h(u) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1 + u)

(
1 − 8u2

3A4
12

)−(16+3A4
12)

2(8−3A4
12)

(1 − u2)

−2(2−3A4
12)

8−3A4
12 , if 8 − 3A4

12 �= 0,

1 + u

(1 − u2)
3
2

exp
3u2

2(1 − u2)
, if 8 − 3A4

12 = 0,

satisfying

h′(u) = 3A4
12 + (16 + 9A4

12)u − 8u2 − 16u3

(1 − u)(1 + u)(3A4
12 − 8u2)

h(u), h(0) = 1.

Under the transformation (4.9), the nilpotent singular points (0, ±1) of system (4.8) in the 
x–y plane are transformed to the origin in the u–v plane, and system (4.8) becomes a Liénard 
system,

du

dτ
= −v,

dv

dτ
= f (u)v + g(u),

(4.10)

where

f (u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2(8 + 3A4
12)u

(
1 + 8u2

8+3A4
12

)
(

1 − 8u2

3A4
12

) 32−3A4
12

2(8−3A4
12)

(1 − u2)

2(2−3A4
12)

8−3A4
12

, if 8 − 3A4
12 �= 0,

−16u(2 + u2)

(1 − u2)
5
2

exp
3u2

2(1 − u2)
, if 8 − 3A4

12 = 0,

g(u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

72A4
12u

3

(
1 − 8u2

3A4
12

) −24
8−3A4

12
(1 − u2)

9A4
12

8−3A4
12 , if 8 − 3A4

12 �= 0,

192u3

2 3 exp
3u2

2 , if 8 − 3A4
12 = 0.
(1 − u ) 1 − u
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Since f (u) and g(u) are odd functions, system (4.10) is symmetric with the v-axis, implying 
that the origin of system (4.10) is a nilpotent center [30]. That is, the singular points (0, ±1) are 
nilpotent centers of (4.8). �

If the condition I5 in Theorem 4.1 holds, system (2.13) is reduced to

dx

dt
= x2y

A2
12

− 1

2
(2A12x + y)(1 + A2

12x
2 − y2),

dy

dt
= x3 − 3

2
A2

12x(1 + A2
12x

2 − y2).

(4.11)

Proposition 4.5. System (4.11) has three algebraic integral curves,

f7 = A12x − y,

f8 = 1 + A2
12x

2 − y2,

f9 = A6
12 + A2

12(A
2
12x

2 − y2)

+ (1 − A4
12)(A12x − y)2(2x2 − 3A4

12x
2 + 2A3

12xy + A2
12y

2),

yielding an inverse integrating factor,

M4 = f −2
7 f8f9, (4.12)

and a first integral,

F3 = f −1
8 f

A4
12

9 .

In fact, if the condition I5 in Theorem 4.1 holds, it is easy to obtain that

A21 + B12 = −(
9

4A2
12

+ 4A2
12

9
) ≤ −2, � = 4(A21 + B12)

2 − 16 > 0,

which clearly indicates that (0, ±1) are not centers or foci, but degenerate singular points.

Remark 4.2. It follows from (4.12) that there are one straight line solution y = A12x and one 
hyperbola solution 1 + A2

12x
2 − y2 = 0 which pass through (0, ±1), so (0, ±1) are not centers 

of system (4.11).

Example 4.5. An example, as depicted in Fig. 8, shows that (0, ±1) are not centers of (2.13)
when the condition I5 holds.

Summarizing the above discussions and results, we obtain the following theorem.
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Fig. 8. Phase portrait of system (2.13), showing that (0,±1) are not centers when the condition I5 holds.

Theorem 4.2. The nilpotent singular points (0, ±1) of system (2.13) are centers if one of the 
following conditions holds:

C1 : A12 = A30 = 0, |A21 + B12| < 2;
C2 : A21 + B12 = 3A30 + 2A12B12 = 8A2

12B
3
12 + 12A2

12B12 − 9 = 0;
C3 : B12 = −3A2

12

8
, A30 = −16 + 3A4

12

12A12
, A21 = −32 + 3A4

12

24A2
12

,

A12 ∈ (−1.77615 · · · , −0.919402 · · · )⋃
(0.919402 · · · , 1.77615 · · · ).

5. A new perturbation scheme for bifurcation of limit cycles from multiple nilpotent 
critical points

In [31], bifurcation of limit cycles from multiple nilpotent critical points of planar dynamical 
systems was discussed, and limit cycles were obtained by changing the stability of the multiple 
nilpotent critical points. In [26], an interesting bifurcation phenomenon was found, showing that 
a nilpotent focus of planar dynamical systems can be broken into two elementary weak foci and 
a saddle, and limit cycles can then bifurcate from the two weak foci. This bifurcation method 
was called double bifurcation. In this section, we generalize the double bifurcation method and 
introduce a new bifurcation scheme to obtain more limit cycles from multiple nilpotent critical 
points of system (2.13).

Under the condition (3.2), H1 given in (3.6) is reduced to

H1 = 3A30(5 − 2A21B12 − 2B2
12)

− 2A12(9A21 + 4B12 − 6A2
21B12 − 6A21B

2
12).

(5.1)

Suppose the singular points (0, ±1) of system (2.13) are first order nilpotent foci. Then

(A21 + B12)
2 < 4 and H1 �= 0. (5.2)

Further, assume that

A21 + B12 �= 0, (5.3)
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and consider a perturbed system of (2.13),

dx

dt
= −1

2
y + 1

2
y3 − A12x + A30x

3 + A21x
2y + A12xy2 + σ 2ϕ(x, y),

dy

dt
= −B12x + (−2 + 2A21B12)x

3 + B12xy2 + σ 2ψ(x, y),

(5.4)

where

ϕ(x, y) = 2ε1x,

ψ(x, y) = −(1 + σ 2ε2
1)x + (2A12A21 − 3A30 − ε2)

2(A21 + B12)
x2y,

in which σ, ε1 and ε2 are small perturbation parameters.
The new bifurcation scheme can be divided into two steps. In the first step, let σ = 0, and 

suppose that the conditions given in (3.10) hold. Then, the two singular points (0, ±1) of system 
(2.13) are 5th-order weak foci, and so four limit cycles can be obtained by changing the stability 
of the multiple nilpotent critical points with appropriate perturbations on the system coefficients.

In the second step, when 0 < |σ | 
 1, (0, ±1) are element weak foci of system (5.4). There 
are four complex singular points (±x0, ±y0) of system (5.4) in the neighborhood of (0, ±1) with

x0 = iσ√
2

+ o(σ ), y0 = 1 − A21

2
σ 2 + o(σ 2).

We introduce a change of state variables and a time rescaling,

x = σξ, y = 1 − σ 3ε1ξ − σ 2η, t = τ

σ
, (5.5)

into system (5.4) to obtain

dξ

dτ
=

7∑
k=0

�k(ξ, η)σ k = �(ξ,η),

dη

dτ
=

8∑
k=0

�k(ξ, η)σ k = �(ξ,η),

(5.6)

where �k(ξ, η), �k(ξ, η) are polynomials in ξ, η, ε1 and ε2. In particular,

�0(ξ, η) = A21ξ
2 − η,

�0(ξ, η) = ξ + 2(1 − A21B12)ξ
3 + 2B12ξη,

�1(ξ, η) = ξ(ε1 − 2A12η + A30ξ
2),

�1(ξ, η) = (3A30 − 2A12A21 + ε2)ξ
2

− ε1(A21 − 2B12)ξ
2 + ε1η.
2(A21 + B12)
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The linearized system of (5.6) in the neighborhood of the origin is given by

dξ

dτ
= −η + σε1ξ,

dη

dτ
= ξ + σε1η. (5.7)

Consequently, when 0 < |σ | 
 1, the nilpotent singular point (0, 1) of system (5.4) is changed 
to the origin of system (5.6) by the transformation (5.5), and it is a strong focus when ε1 �= 0. 
The divergence of the origin of system (5.6) is

V0 = 2σε1, (5.8)

showing that the origin of (5.6) is an elementary weak focus when ε1 = 0.

Proposition 5.1. The origin of system (5.6) is a center when σ = 0.

Proof. As a matter of fact, when σ = 0, system (5.6) can be written as

dξ

dτ
= �0(ξ, η),

dη

dτ
= �0(ξ, η),

which is symmetric with the η-axis, and so the origin of system (5.6) is a symmetric center when 
σ = 0. �

Now we consider the first order approximation system of (5.6), given by

dξ

dτ
= �0(ξ, η) + �1(ξ, η)σ,

dη

dτ
= �0(ξ, η) + �1(ξ, η)σ. (5.9)

It is easy to obtain the following result.

Proposition 5.2. When ε1 = 0, the first two focus values at the origin of system (5.9) are

V1 = −1

4
ε2σ + o(σ ),

V2|V1=0 = 1

12
H1σ + o(σ ).

(5.10)

The following theorem follows from (5.8) and (5.10).

Theorem 5.1. Suppose o < |σ | 
 1. The origin of system (5.6) is a second-order weak focus 
when ε1 = ε2 = 0, and there can have two limit cycles bifurcating in the neighborhood of the 
origin of system (5.6) for

0 <
ε1

H1

 ε2

H1

 1.
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Fig. 9. Distribution of 12 limit cycles of system (5.4) when A21 + B12 �= 0.

Summarizing the above results we conclude that for the 5th-order nilpotent foci (0, ±1), four 
limit cycles can bifurcate around each of (0, ±1) by changing their stability. Then, the first order 
nilpotent focus can be broken into an elementary second-order focus and two complex singular 
points. Two limit cycles can bifurcate from the elementary second order focus. Therefore, a total 
of six limit cycles can be obtained in each neighborhood of (0, ±1), yielding a total of 12 small-
amplitude limit cycles in such a Z2-equivariant vector field by applying our new perturbation 
scheme which is different from that used for the case of elementary focus, see Fig. 9.

6. Conclusion

In this paper, we have studied a cubic Z2-equivariant vector field with two isolated nilpotent 
singular points. We first introduce some transformations to simplify this system, and get a gen-
eral form of the system which has two isolated nilpotent foci or centers at (0, ±1). Then, we 
compute the first five Lyapunov constants of the system by using the inverse integrating factor 
method. Furthermore, the integrability of the system is discussed, and five conditions of inte-
grability are obtained by using different approaches. Especially for the condition I4, a technical 
transformation is developed to transform the system to a symmetric Liénard system. Among 
the five conditions, three of them are proved to be true center conditions for system (2.13). We 
present several examples for the other two conditions to illustrate that those two conditions are 
not sufficient for the two singular points to be centers. Finally, a new perturbation scheme is 
present to get two more limit cycles bifurcating from the elementary second-order focus. With 
the new method, 12 small-amplitude limit cycles are obtained for a cubic Z2-equivariant vector 
field with isolated nilpotent singular points. This is a new lower bound obtained for such cubic 
systems.
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