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Abstract

In this paper, we study complex isochronous center problem for cubic complex planar vector fields, which 
are assumed to be Z2-equivariant with two symmetric centers. Such integrable systems can be classified as 
11 cases. A complete classification is given on the complex isochronous centers and proven to have a total 
of 54 cases. All the algebraic conditions for the 54 cases are derived and, moreover, all the corresponding 
linearization transformations are obtained. This problem for the Z2-equivariant with two symmetric centers 
has been completely solved.
© 2019 Elsevier Inc. All rights reserved.

Keywords: Center–focus problem; Isochronous center; Periodic constant; Linearization

1. Introduction

It is well known that the Hilbert’s 16th problem is far from being solved, which is consid-
ered as perhaps the most difficult problem among the 23 mathematical problems proposed by 
D. Hilbert in 1900 [18]. Many good results on this problem have been obtained in the past half 
century. As far as the maximal number of small-amplitude limit cycles is concerned, bifurcating 
from an elementary center or focus, the best known result obtained by Bautin in 1952 [2] for 
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quadratic polynomial systems is M(2) = 3. Here, M(n) denotes the maximal number of small-
amplitude limit cycles around a singular point, and n is the degree of the polynomials in the 
vector field. For n = 3, many results have also been obtained. Around an isolated focus, in 2009 
Yu and Corless [52] constructed a cubic system to prove the existence of 9 limit cycles using both 
symbolic and numerical computations. Later, Chen et al. [8] reconsidered this system and used 
purely symbolic computation (based on the regular chain technique) to find all real solutions. 
In 2012, Lloyd and Pearson [39] constructed another cubic system to show 9 limit cycles with 
purely symbolic computation. Around an isolated center, in 1995, Żoła̧dek [56] first proposed a 
rational Darboux integral, and claimed the existence of 11 small-amplitude limit cycles around 
a center, which was reinvestigated recently and proved that this system can actually have only 
9 limit cycles using up to second-order Melnikov functions [49,53]. After more than ten years, 
another two cubic-order systems were constructed to show 11 limit cycles [3,11]. Recently, the 
system considered in [11] was used by Yu and Tian [54] to show the existence of 12 small-
amplitude limit cycles around a singular point. To the best of our knowledge, this is the best 
result obtained so far for cubic polynomial systems with all limit cycles around a single singular 
point. For n ≥ 4, there are very few results because of the difficulty in computing the focal val-
ues. An example was constructed by Huang et al. [19] to show 8 limit cycles bifurcating from a 
fine focus of a quartic system. Using the inverse integrating method, the results for quartic and 
quintic systems have been improved: 11 limit cycles around a nilpotent focus of quartic system 
was given in [44] and 14 limit cycles around a nilpotent focus of quintic system was obtained in 
[24].

On the other hand, studying global bifurcation of limit cycles in planar differential systems 
is more difficult. So far the best results obtained are: H(2) ≥ 4 [10,48], H(3) ≥ 13 [22,31,51], 
and H(4) � 22 [11]. For quintic system, H(5) ≥ 28 was proved in [50]. Here, H(n) denotes the 
maximal number of limit cycles bifurcating in planar polynomial differential systems.

Noticing from the above mentioned results, better results were often obtained from Zq-equi-
variant vector fields. In fact, when an isolated focus is concerned, it is difficult to compute higher-
order focal values with simpler expression. Thus, it is hard to obtain more limit cycles based on 
the calculation of focal values, and very few results have been achieved for higher-order poly-
nomial differential systems. In 2012, some new results have been obtained for Zq-equivariant 
planar polynomial vector fields [21]. Recently, a complete classification on bi-center problem 
for Z2-equivariant cubic vector fields has been given in [30], and bi-center problem for some 
Z2-equivariant quintic systems is studied in [46].

The linearization problem, closely related to the Hilbert’s 16th problem, is to decide whether 
a given differential system can be transformed to a linear one by means of the formal change 
of the phase variables. This problem plays an important role in the study of dynamical sys-
tems, and has also been intensively investigated over the past three decades. The study on the 
isochronous center problem is also interesting, and in fact many results have been rediscovered 
several times, see for instance [15,16,55] and references therein. Several methods have been de-
veloped for deriving the necessary conditions under which a center becomes an isochronous 
center, see [5,7,25,27,28] and references therein. An efficient method for computing the pe-
riod constants of a planar vector field was proposed in [14]. There are only a few families of 
polynomial differential systems for which a complete classification on the isochronous centers 
is known, see for instance [5,7,25,40,41,43,45,47]. In particular, in 1964 Loud [40] classified 
isochronous centers of systems with homogeneous polynomials of degree two; and in 1969, 
Pleshkan [43] found all isochronous centers for cubic systems with only linear and cubic degree
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polynomials. However, the classification on isochronous centers in the form of a linear center 
perturbed by homogeneous polynomials of degree four or five turned out to be much more diffi-
cult.

A time-reversible system is invariant with respect to a line passing through the origin of 
the system. Time-reversible cubic vector fields were studied in [4,6]. In [5,7], Giné found the 
isochronous centers for time-reversible systems with a linear center and 4th- or 5th-degee poly-
nomials. More recently, all linearizable centers have been classified in [9] for time-reversible 
systems with a linear center and 4th-degee polynomials.

A complete classification on the isochronous centers for a linear center perturbed by 5th-
degree homogeneous polynomials has been obtained in [45]. However, complete classification 
on the isochronous and linearizable centers for a linear center perturbed by 4th-degree homo-
geneous polynomials is still open. The linearizability problem for the complex Lotka-Volterra 
system was solved in [13]. In 2003, a new method was developed by Liu and Huang [27] for de-
termining isochronous centers of polynomial differential systems, and later period constants and 
time-angle of isochronous centers for complex analytic systems were investigated in [29]. The 
methodology and results can also be found in the book [32]. Isochronicity and linearizability of 
planar polynomial Hamiltonian systems were studied in [34], and isochronicity for trivial quintic 
and septic planar polynomial Hamiltonian systems was discussed in [42].

If a system is not analytic, then the center and isochronous center problems become very 
difficult because the classical theorem is no longer applicable. Recently, the following sys-
tems,

ż = (λ + i)z + (zz̄)
d−5

2 (Az4+j z̄1−j + Bz3z̄2 + Cz2−j z̄3+j + Dz̄5),

(d = 2m + 1 ≥ 5),

ż = iz + (zz̄)
d−4

2 (Az3z̄ + Bz2z̄2 + Cz̄4),

(d = 2m ≥ 4),

ż = (λ + i)z + (zz̄)
d−3

2 (Az3 + Bz2z̄ + Czz̄2 + Dz̄3),

(d = 2m + 1 ≥ 3),

ż = (λ + i)z + (zz̄)
d−2

2 (Az2 + Bzz̄ + Cz̄2),

(d = 2m ≥ 2),

ż = (λ + i)z + (zz̄)
d−5

2 (Az5+Bz4z̄+Cz3z̄2+Dz2z̄3+Ez3z̄4+F z̄5),

(d = 2m + 1 ≥ 5),

(1.1)

have been investigated, see [17,35–38]. The conditions of centers and isochronous centers for 
the above systems were obtained, with a restriction on d such that the system becomes a polyno-
mial system. For the general case when the system is non-analytic, the analysis becomes much 
more difficult, and very few results have been obtained. As far as center and isochronous center 
conditions at the origin of the system are concerned, several special systems have been studied, 
see [26,32]. For non-analytic quartic and quintic systems, some results have been obtained in 
[20,23] on the conditions of center and isochronous center at the origin of the system.
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In [30], a class of Z2 cubic-degree systems,

dx

dt
= −(a1 + 1)y + a1x

2y + a2xy2 + a3y
3,

dy

dt
= −1

2
x − a4y + 1

2
x3 + a4x

2y + a5xy2 + a6y
3,

(1.2)

was studied, and the first six focus values at (±1, 0) of this system were obtained. Further, 11 cen-
ter conditions were derived, and a complete study on bi-center problem has been carried out. In 
2017, the bi-isochronous center problem for a cubic Z2-equivariant vector field with real coeffi-
cients was considered in [12], and two real isochronous center conditions are obtained. However, 
the complex isochronous center problem at (±1, 0) of system (1.2) is still open. There are two 
main difficulties in solving this problem. The first one is the computation of period constants, 
and the second one is to find all linearizability transformations. So in this paper we will study the 
linearizability problem at (±1, 0) of system (1.2) in complex domain. Necessary and sufficient 
conditions for (±1, 0) of system (1.2) to be isochronous centers are derived. A complete classifi-
cation on the bi-isochronous center problem in complex domain for Z2-equivariant cubic vector 
fields is achieved, and so this open problem is completely solved.

The rest of the paper is organized as follows. In the next section, some preliminary results are 
presented, which will be used in the following sections. In Section 3, some new methods used 
to determine complex isochronous center are described, and an example is given to illustrate the 
efficiency of our method. In Section 4, complex center conditions of (1.2) are obtained, which 
are classified into 11 cases. Then, in Section 5, the period constants at (±1, 0) of system (1.2) are 
computed, and complex isochronous center conditions are obtained for all the 11 cases. Further, 
the linearizability transformation for each of the 11 cases is obtained. Finally, conclusion is drawn 
in Section 6.

2. Preliminary results

In order to study the linearizability problem in complex domain, we present some prelimi-
nary results in this section, which will be used in the following sections. Consider the following 
complex system,

dz

dT
= z +

∞∑
α+β=2

aαβzαwβ = Z(z,w),

dw

dT
= −w −

∞∑
α+β=2

bαβwαzβ = −W(z,w),

(2.1)

where z, w, T are complex variables and aαβ, bαβ are complex coefficients, Z(z, w) and W(z, w)

are analytic functions in the neighborhood of the origin. The origin of system (2.1) is called a 
weak saddle. By transformation

z = x + iy, w = x − iy, T = it, i = √−1, (2.2)

system (2.1) can be brought to
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dx

dt
= −y +

∞∑
α+β=2

Aαβxαyβ = X(x,y),

dy

dt
= x +

∞∑
α+β=2

Bαβxαyβ = Y(x, y).

(2.3)

In the following, we give two theorems about the normal form of system (2.1), which have 
been known for a long time but explicitly formatted in [1] and [27].

Theorem 2.1. [1] For given {ck+1,k} and {dk+1,k}, by using a formal change of variables,

ξ = z +
∞∑

k+j=2

ckj z
kwj , η = w +

∞∑
k+j=2

dkjw
kzj , (2.4)

system (2.1) can be reduced to the formal form of

dξ

dT
= ξ + ξ

∞∑
k=1

pkξ
kηk,

dη

dT
= −η − η

∞∑
k=1

qkξ
kηk. (2.5)

Definition 2.1. Denote

μk = pk − qk, τk = pk + qk, k = 1, 2, · · · . (2.6)

Then μk is called the kth complex singular point value of the origin of system (2.1), and τk is 
called the kth complex periodic constant of the origin of system (2.1).

For system (2.1), we consider the two parameter transformation,

z = reiθ , w = re−iθ , T = it, (2.7)

which, with (2.2), is equivalent to

x = r cos θ, y = r sin θ. (2.8)

Then, by transformation (2.7) (or (2.8)), system (2.1) (or (2.3)) is reduced to

dr

dt
= i

wZ − zW

2r
= R(r, θ),

dθ

dt
= wZ + zW

2zw
= 	(r, θ), (2.9)

where

R(r, θ) = ir

2

∞∑
k=1

∞∑
α+β=k+1

[
aαβei(α−β−1)θ − bαβe−i(α−β−1)θ

]
rk,

	(r, θ) = 1 + 1

2

∞∑ ∞∑ [
aαβei(α−β−1)θ + bαβe−i(α−β−1)θ

]
rk.

(2.10)
k=1 α+β=k+1
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For sufficiently small h, denote r̃(θ, h) as the solution of system (2.9), satisfying the initial 
condition r|θ=0 = h,

r = r̃(θ, h) = h +
∞∑

k=2

νk(θ)hk, (2.11)

and

T (ϑ,h) =
ϑ∫

0

dθ

	(r̃(θ, h), θ)
. (2.12)

The definition of complex center and isochronous center were given in [27].

Definition 2.2. [27] For sufficiently small complex constant h, if

r̃(2π,h) ≡ h,

then the origin of system (2.1) is called a complex center. If, in addition, the following

T (2π,h) ≡ 2π

holds, then the origin of system (2.1) is called a complex isochronous center.

It is well known that the origin of system (2.1) is a complex isochronous center if and only if 
all complex singular point values μk and period constants τk are zero, namely the normal form 
(2.5) of system (2.1) is a linear system. Moreover, it is known that

Theorem 2.2. [27] The origin of system (2.1) is a complex isochronous center if and only if it 
is linearizable in the neighborhood of the origin. That is, there exist power series with non-zero 
convergence radius, given by

ϕ(z,w) = z + h.o.t., ψ(z,w) = w + h.o.t.,

where “h.o.t.” denotes higher-order terms, together with the transformation,

ξ = ϕ(z,w), η = ψ(z,w), (2.13)

such that system (2.1) can be changed into a linear one,

dξ

dT
= ξ,

dη

dT
= −η.

However, it is very difficult to find the transformation (2.13) under which the origin of the 
system becomes an isochronous center.
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3. Some new results about complex isochronous center problem

As far as we know, there are many methods for computing periodic constants. In particular, 
the so called determination methods were developed in the past three decades. However, none 
of them can be used to solve all isochronous center problems. In this section, we present a new 
determination method for determining isochronous centers.

3.1. A new determination method for determining isochronous centers

We assume that the origin of system (2.1) is a complex center. We have the following theorem.

Theorem 3.1. Suppose that the origin of system (2.1) is a complex center and there exists an 
analytic function in the neighborhood of the origin, given by

η = ψ(z,w) = w + h.o.t., (3.1)

which satisfies

dη

dT
= −η, (3.2)

then the origin of system (2.1) is a complex isochronous center.

Proof. With implicit function theorem, it follows from (3.1) that w = f (z, η) = η+h.o.t ., which 
is a power series of η and z with non-zero convergence radius. Thus, system (2.1) can be trans-
formed into

dz

dT
= Z(z,f (z, η)) = z + h.o.t.,

dη

dT
= −η. (3.3)

By the transformation,

z = z, η = ψ(z,w).

Because the origin of system (2.1) is a complex center, and so is the origin of system (3.3). 
Therefore, there exists a first integral F(z, η) = zη + h.o.t . in the neighborhood of the origin of 
system (3.3). Moreover, since η = 0 is a solution of system (3.3), F(z, η) can be rewritten as

F(z, η) = ηϕ(z, η),

where ϕ(z, η) = z + h.o.t . is a power series of η and z with non-zero convergence radius. Let 
ξ = ϕ(z, η). Then, dF

dT
= 0 and (3.2) yield

dξ

dT
= ξ. (3.4)

Obviously, (3.2) and (3.4) imply that system (2.1) is linearizable. �
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Similarly, we have the following theorem.

Theorem 3.2. Suppose that the origin of system (2.1) is a complex center and there exists an 
analytic function in the neighborhood of the origin,

ξ = ϕ(z,w) = z + h.o.t.,

which satisfies

dξ

dT
= ξ,

then the origin of system (2.1) is a complex isochronous center.

Now, consider the following autonomous complex systems,

dz

dT
= z + h.o.t.,

dw

dT
= −wf (w), (3.5)

and

dz

dT
= zg(z),

dw

dT
= −w + h.o.t., (3.6)

where f (w) and g(z) are power series with non-zero convergence radius and f (0) = g(0) =
1. The functions on the right-hand side of the above differential equations are assumed to be 
analytic in the neighborhood of the origin. Then the following corollaries directly follow from 
Theorems 3.1 and 3.2.

Corollary 3.1. If the origin of system (3.5) is a complex center, then it is a complex isochronous 
center.

Corollary 3.2. If the origin of system (3.6) is a complex center, then it is a complex isochronous 
center.

3.2. Simple integral curve and linearization transformation

For the following system,

dz

dT
=

n∑
α+β=0

aαβzαwβ,
dw

dT
=

n∑
α+β=0

bαβzαwβ, (3.7)

whose right-hand sides are polynomials, its linearizability transformation is often found from 
invariant algebraic curves. Simple integral curve is defined in [33].

Definition 3.1. [33] Suppose f (z, w) is differentiable in D. If there exists a polynomial h(z, w)

whose degree is no more than n − 1, and it satisfies
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df

dT

∣∣∣∣
(3.7)

= h(z,w)f (z,w),

in D, then f (z, w) is called a simple integral curve.

Obviously, an invariant algebraic curve is a special case of the simple integral curve. For 
example, an integrating factor of system (3.7) is a simple integral curve but not invariant algebraic 
curve. So simple integral curves can be used to construct a Darboux integral.

In the rest of this section, we give an example to illustrate the above definition. The example 
is described by the following differential equations,

dx

dT
= 1

2
(−x + x3 + 2a2xy2 + 2a3y

3),

dy

dT
= 1

2
y(−1 − x2 + 2a5xy + 2a6y

2),

(3.8)

which has weak saddles at (±1, 0). Under the transformation,

ξ = x2 − 1, η = y

x
,

dt

dτ
= 1

1 + ξ
,

system (3.8) can be changed into

dξ

dτ
= ξ + 2a2η

2 + 2a2ξη2 + 2a3η
3 + 2a3ξη3,

dη

dτ
= −η[1 − a5η + (a2 − a6)η

2 + a3η
3],

(3.9)

which has an inverse integrating factor,

M1 = e

∫ η
0

−2a5+(a2−3a6)η+2a3η2

1−a5η+(a2−a6)η2+a3η3 dη
,

so system (3.8) has complex centers at (±1, 0).
Now, introducing u = x − 1, v = y into (3.8) yields

du

dT
= u + 3

2
u2 + A2v

2 + 1

2
u3 + A2uv2 + A3v

3 ≡ U(u,v),

dv

dT
= −v

(
1 + u − A5v + 1

2
u2 − A5uv − A6v

2
)

≡ V (u, v).

(3.10)

Then, the origin of system (3.10) is a complex center. So there exists an analytic inverse integrat-
ing factor g1(u, v), satisfying the following equation,

dg1

dT
=

(
∂U

∂u
+ ∂V

∂v

)
g1, (3.11)

with g1(0, 0) = 1 in the neighborhood of the origin of (3.10).
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Further, it can be shown that system (3.10) has two simple integral curves,

g2 = v,

g3 = 1 + 3u − A5v + 3u2 − 2A5uv + (A2 − A6)v
2

+ u3 − A5u
2v + (A2 − A6)uv2 + A3v

3,

which satisfy the equations:

dg2

dT
= −

(
1 + u − A5v + 1

2
u2 − A5uv − A6v

2
)
g2,

dg3

dT
=

(
3u + A5v + 3

2
u2 + A5uv + (A2 + 2A6)v

2
)
g3.

(3.12)

Finally, let

η = vg3g
−1
1 . (3.13)

Then, equation (3.2) can be obtained from (3.11), (3.12) and (3.13). Thus, it follows from Theo-
rem 3.1 that the origin of system (3.10) is a complex isochronous center.

4. Complex center conditions for system (1.2)

By (2.2), system (1.2) can be transformed to

dz

dT
= −1

4
(z + w) + 1

2
(1 + b1 + b4)(z − w)

+ 1

16
(z + w)2

[
(z + w) − 2(b1 + b4)(z − w)

]
+1

8
(z − w)2

[
(b2 − b5)(z + w) + (b3 + b6)(z − w)

]
,

dw

dT
= 1

4
(z + w) + 1

2
(1 + b1 − b4)(z − w)

− 1

16
(z + w)2

[
(z + w) + 2(b1 − b4)(z − w)

]
+1

8
(z − w)2

[
(b2 + b5)(z + w) + (b3 − b6)(z − w)

]
,

(4.1)

where

b1 = a1, b2 = ia2, b3 = a3, b4 = ia4, b5 = a5, b6 = ia6. (4.2)

Remark 4.1. If z, w, T are real variables and bi ’s are real coefficients, then system (4.1) is a 
planar autonomous differential system with a weak saddle at the origin.

For system (4.1), replacing i by −i in (4.2) is equivalent to the coefficient transformation,

{b1, b2, b3, b4, b5, b6} −→ {b1, −b2, b3, −b4, b5, −b6}, (4.3)
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or the following transformation,

z → w, w → z, T → −T . (4.4)

Definition 4.1. The transformation (4.4) is called conjugated symmetric transformation, and the 
systems (4.1) and (4.4) are said to be conjugated symmetric systems for each other.

It is clear that the conjugated symmetric transformation does not change the isochronous 
center. In order to study the complex isochronous centers at (±1, ±1) of system (4.1), let

u = z − 1, v = w − 1, (4.5)

under which system (4.1) becomes

du

dT
= −1

4
(u + v + 2) + 1

2
(1 + b1 + b4)(u − v)

+ 1

16
(u + v + 2)2

[
(u + v + 2) − 2(b1 + b4)(u − v)

]
+1

8
(u − v)2[(b2 − b5)(u + v + 2) + (b3 + b6)(u − v)

]
,

dv

dT
= 1

4
(u + v + 2) + 1

2
(1 + b1 − b4)(u − v)

− 1

16
(u + v + 2)2

[
(u + v + 2) + 2(b1 − b4)(u − v)

]
+1

8
(u − v)2

[
(b2 + b5)(u + v + 2) + (b3 − b6)(u − v)

]
.

(4.6)

The following theorem directly follows from Theorem 11 in [30].

Theorem 4.1. The origin of system (4.6) is a complex center if and only if one of the following 
11 conditions holds:

(C1) : b1 = −b5, b4 = 0, b6 = −1

3
b2;

(C2) : b2 = 0, b4 = 0, b6 = 0;
(C3) : 3(b1 + b5)(2 + 2b1 − b3 + 2b5 + 2b1b5)

+ 2b4(2b2 + b1b2 + 2b4 + b2b5 + 2b4b5) = 0,

b6 − 1

3
(−b2 − 2b1b2 + 2b4 − 2b2b5 + 2b4b5) = 0,

2(1 + b1)(b1 + b5)
2 + b2

4(1 + 2b1 + 2b5) = 0, b1 + b5 �= 0;
(C4) : − 2b4(1 + b5) − b2(2 + b1 + b5) = 0, b3 − 2(1 + b1)(1 + b5) = 0,

b6 − 1
(−b2 − 2b1b2 + 2b4 − 2b2b5 + 2b4b5) = 0;
3
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(C5) : b1 = −1

2
(2 + 3b2

4), b2 = b4, b3 = −b2
4(1 + b2

4 + b5), b6 = b4(1 + b2
4);

(C6) : b1 = −1

8
(8 + 5b2

4), b2 = 1

2
b4, b3 = −5

32
b4

4,

b5 = 1

8
(−8 + b2

4), b6 = 1

4
b4(2 + b2

4);

(C7) : b1 = 1

32
(−32 + 15b2

4), b2 = 1

4
b4, b3 = −1

512
b2

4(64 − 15b2
4),

b5 = 1

32
(−96 + 17b2

4), b6 = −3

16
b4(4 − b2

4);

(C8) : b1 = 1

50
(−50 + 21b2

4), b2 = 1

5
b4, b3 = −1

1250
b2

4(250 − 63b2
4),

b5 = 1

50
(−200 + 39b2

4), b6 = −1

25
b4(35 − 9b2

4);

(C9) : b1 = −1

2
(2 + 3b2

4), b2 = b4, b3 = −b2
4(1 + b2

4 + b5), b6 = b4(1 + b2
4);

(C10) : b1 = 1

8
(−8 + 3b2

4), b2 = −1

2
b4,

b3 = −3

16
b2

4(4 − b2
4 + 4b5), b6 = 1

8
b4(4 + b2

4 + 8b5);

(C11) : b1 = −1

32
(32 − 15b2

4), b2 = −1

4
b4, b3 = −1

512
b2

4(832 − 495b2
4),

b5 = 1

32
(160 − 111b2

4), b6 = 1

16
b4(76 − 45b2

4).

5. Conditions for complex isochronous center

In this section, we discuss the conditions on complex isochronous center for the 11 different 
cases listed in Theorem (4.1), and obtain a total of 54 complex isochronous center conditions. 
Moreover, for each of the isochronous center conditions, its corresponding linearization transfor-
mation is given.

5.1. On complex center condition C1

Computing and analysing period constants at the origin of system (4.6), the following complex 
isochronous conditions are obtained.

Lemma 5.1. If the condition C1 in Theorem 4.1 holds, then all the first four period constants at 
the origin of system (4.6) vanish if and only if one of following two conditions holds:

L1 : b1 = −3

2
, b2 = −3, b3 = 3

2
, b4 = 0, b5 = 3

2
, b6 = 1;

L∗
1 : b1 = −3

2
, b2 = 3, b3 = 3

2
, b4 = 0, b5 = 3

2
, b6 = −1.

(5.1)
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Theorem 5.1. If the condition C1 in Theorem 4.1 holds, then the origin of system (4.6) is a 
complex isochronous center if and only if one of the conditions in Lemma 5.1 is satisfied.

Proof. When the condition L1 in Lemma 5.1 holds, system (4.6) becomes

du

dT
= u + 3uv − 3

2
v2 + 3

2
uv2 − v3,

dv

dT
= −v(1 + v)

(
1 + 1

2
v
)
.

(5.2)

There exists a linearizability transformation,

ξ = f 2
1 f5, η = vf −2

1 f3,

where

f1 = 1 + v, f3 = 1 + 1

2
v, f5 = u + uv − 1

2
v2,

in the neighborhood of the origin of system (5.2), yielding

dξ

dT
= η,

η

dT
= −ξ. (5.3)

Similarly when the condition L∗
1 in Lemma 5.1 holds, system (4.6) can be reduced to

du

dT
= u(1 + u)

(
1 + 1

2
u
)
,

dv

dT
= −v + 3

2
u2 − 3uv + u3 − 3

2
u2v.

(5.4)

There exists a linearizability transformation,

ξ = uf −2
2 f4, η = f 2

2 f6, (5.5)

where

f2 = 1 + u, f4 = 1 + 1

2
u, f6 = v − 1

2
u2 + uv,

such that system (5.4) becomes (5.3). �
Remark 5.1. (i) By using the transformation (4.3), the condition L1 can be transformed into 
L∗

1. So the two systems under the conditions L1 and L∗
1 are conjugated symmetric systems, and 

we only need to discuss one of them. Thus, in the remaining of the paper, we only discuss the 
complex isochronous center under the condition Lk, without showing the conditions L∗

k .
(ii) In fact, by Corollaries 3.1 and 3.2, it is easy to show that the origin of the system (5.2)

or (5.4) is a complex isochronous center. However, it is more intuitive to prove it by finding a 
linearizability transformation.
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Table 1
Linearizability transformations of system (5.7) and (5.8).

Linearizability transformation Integral curves

L2: ξ = f7f
−1
2

9 , η = f8f
−1
2

9 f7 = u + 3
8 (u + v)2 + 1

16 (u + v)3

f8 = v + 3
8 (u + v)2 + 1

16 (u + v)3

f9 = 1 + 9(u+v) + 9
4 (13u2−22uv+13v2)

L3: ξ = uf −2
1 f3, η = vf −2

2 f4

5.2. On complex center condition C2

For this case, we have the following result.

Lemma 5.2. If the condition C2 in Theorem 4.1 holds, then all the first four period constants at 
the origin of system (4.6) become zero if and only if one of following two conditions holds:

L2 : b1 = −3, b2 = 0, b3 = 0, b4 = 0, b5 = −9, b6 = 0;
L3 : b1 = −3

2
, b2 = 0, b3 = 1

2
, b4 = 0, b5 = −3

2
, b6 = 0.

(5.6)

When the condition L2 is satisfied, system (4.6) can be rewritten as

du

dT
= u + 3

8
(11u2 − 10uv + 3v2) + 1

16
(u + v)(25u2 − 34uv + 13v2),

dv

dT
= −v − 3

8
(3u2 − 10uv + 11v2) − 1

16
(u + v)(13u2 − 34uv + 25v2).

(5.7)

If the condition L3 holds, system (4.6) can be brought to

du

dT
= u(1 + u)

(
1 + 1

2
u
)
,

dv

dT
= v(1 + v)

(
1 + 1

2
v
)
. (5.8)

Linearizability transformations of system (5.7) and (5.8) can be obtained by finding simple 
integral curves, as listed in Table 1.

Remark 5.2. In the conditions L2 and L3, b2=b4=b6=0. So the two conditions are symmetric, 
namely, the L∗

2 and L∗
3 (which are not listed) are identical to L2 and L3, respectively. So the 

conditions L2 and L3 yield real isochronous center of system (4.6), which is the same as that 
obtained in [12].

Theorem 5.2. When the condition C2 in Theorem 4.1 holds, the origin of system (4.6) is a com-
plex isochronous center if and only if either the condition L2 or L3 in Lemma 5.2 is true.

5.3. On complex center condition C3

Lemma 5.3. If the condition C2 in Theorem 4.1 holds, then all the first four period constants at 
the origin of system (4.6) vanish if and only if one of following sixteen (eight for corresponding 
L∗) conditions holds:
k
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L4 : b2 = −2b1, b3 = −b1, b4 = −(3+2b1)
2 , b5 = −(3+4b1)

2 , b6 = 1+2b1
2 ;

L5 : b1 = − 5
2 , b2 = −3, b3 = − 27

2 , b4 = 1, b5 = 7
2 , b6 = 6;

L6 : b1 = −1
8 , b2 = 1, b3 = −17

32 , b4 = 2, b5 = −31
8 , b6 = −3

2 ;
L7 : b1 = − 1

2 , b2 = −1
3 , b3 = − 61

54 , b4 = 5
3 , b5 = −9

2 , b6 = −44
9 ;

L8 : b1 = −1, b2 = −1, b3 = −2, b4 = 1, b5 = 1
2 , b6 = 1;

L9 : b1 = 0, b2 = 0, b3 = 0, b4 = 3
2 , b5 = −3

2 , b6 = −1
2 ;

L10 : b1 = −3
4 , b2 = −3

4 , b3 = 1
8 , b4 = 3

4 , b5 = −3
4 , b6 = −3

8 ;
L11 : b1 = 1

2 , b2 = 1
3 , b3 = −1

18 , b4 = 2, b5 = −7
6 , b6 = −5

27 .

Proposition 5.1. When the condition L4 is satisfied, system (4.6) becomes

du

dT
= 1

2
u(1 + u)(2 + u),

dv

dT
= −v − 1

2
(3 + 4b1)u

2 + 2b1uv − 1

2
(1 + 2b1)u

3 + b1u
2v,

(5.9)

which has a linearizability transformation

ξ = uf −2
1 f3, η = f

−2b1
1 f −1

3 f10,

where

f10 = c2 (1 − eT +2c1)−
1
2 −b1 e− T

2 ±tanh−1
√

1−eT +2c1
,

in which c1 and c2 are arbitrary constants. f10 satisfies the differential equation,

df10

dT
= 1

2
(2 + u)(−1 + u + 2b1u)f10. (5.10)

Remark 5.3. The solution f10 obtained from equation (5.10) is a simple integral curve of system 
(5.9), but it is not an algebraic integral curve unless (1 + b1) is a positive number. When (1 + b1)

is a positive number, the degree of f10 will increase with respect to b1, which shows that there 
exist arbitrary degree algebraic polynomial solutions for the cubic-degree planar autonomous 
system (5.9).

We summarize the results for the cases L5 to L11 in the following proposition.

Proposition 5.2. Under each of the conditions L5-L11, system (4.6) respectively has a lineariz-
ability transformation Tk, k = 5, 6, . . . , 11 as follows:
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L5 :

⎧⎪⎨
⎪⎩

du

dT
= (1 + u)

(
u − 3

2
u2 + 4uv − 2v2

)
,

dv

dT
= −v + 1

2
(3u2 − 2uv − 4v2) − 1

2
(u − 2v)(4u2 − 7uv + 2v2),

T5 : ξ = f1f11f12, η = f −1
1 f6f

−1
11 ;

L6 :

⎧⎪⎨
⎪⎩

du

dT
= u+ 3

32
(7u2−18uv+27v2)+ 1

256
(u+3v)(47u2−114uv+99v2),

dv

dT
= −v− 1

32
(u2−22uv+69v2)− 1

256
(u+3v)(9u2−46uv+69v2),

T6 : ξ = f13f
−3
15 , η = f14f

−4
15 ;

L7 :

⎧⎪⎨
⎪⎩

du

dT
= u + 1

6
(5u2−8uv+12v2) − 1

54
(u−4v)(17u2−28uv+20v2),

dv

dT
= −v− 1

6
(12u2−8uv+5v2) − 1

54
(4u−v)(20u2−28uv+17v2),

T7 : ξ = f16f
−3
18 , η = f17f

−6
18 ;

L8 :

⎧⎪⎨
⎪⎩

du

dT
= u

(
1 + 1

2
u
)(

1 − 1

2
u + 3

2
v
)
,

dv

dT
= −

(
v − 1

2
u2 + uv

)(
1 − 1

2
u + 3

2
v
)
,

T8 : ξ = uf3f19, η = f −1
3 f −1

19 f20;

L9 :

⎧⎪⎨
⎪⎩

du

dT
= u + 3

2
v2 + 1

2
v3,

dv

dT
= −v(1 + v)

(
1 + 1

2
v
)
,

T9 : ξ = f −1
4 f21, η = vf −2

2 f4;

L10 :

⎧⎪⎨
⎪⎩

du

dT
= u + 3

8
(u + v)2 + 1

32
(u3 + 9u2v + 3uv2 + 3v3),

dv

dT
= −v(1 + v)

(
1 + 1

2
v
)
,

T10 : ξ = f 2
2 f −1

4 f −2
15 f22, η = vf −2

2 f4;

L11 :

⎧⎪⎨
⎪⎩

du

dT
= u − 1

2
(u − 2v)(u + 2v) − 1

54
(5u − 8v)(u + 2v)2,

dv

dT
= −v + 1

6
(u − 4v)(u + 2v) − 1

54
(2u − 5v)(u + 2v)2,

T11 : ξ = f16f
−1
24 , η = f23f

−2
24 .

Here,

f11 = 1 − u + 2v,

f12 = u+ 1
(3u2+12uv−4v2)− 1

u(3u2−11uv+4v2)− 1
u2(u−2v)(2u−v),
6 3 3
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f13 = u + 1

128
(u + 3v)2(12 + u + 3v),

f14 = v + 1

1536
(u + 3v)

[
16(u + 27v) + (u + 3v)2(16 + u + 3v)

]
,

f15 = 1 + 1

4
(u + 3v),

f16 = u + 1

54
(u + 2v)2(9 + u + 2v),

f17 = v + 1

6
(u2 + 2uv + 8v2) + 1

27
(u + 2v)2(u + 5v)

+ 1

8748
(u + 2v)3[108(u + 3v) + (u + 2v)2(18 + u + 2v)

]
,

f18 = 1 + 1

3
(u + 2v),

f19 = 1 − 1

2
(u − 3v),

f20 = v − 1

6
u(u − 3v),

f21 = u + 1

2
v(u + v),

f22 = u + 1

8
(u2 + 6uv + v2),

f23 = v − 1

18
u(u + 6v) − 1

243
(u + 2v)2[18v − u(u + 2v)

]
+ 1

26244
(u + 2v)5(18 + u + 2v),

f24 = 1 − 1

3
(u − 2v) − 1

81
(u + 2v)2(9 + u + 2v).

We have the following theorem.

Theorem 5.3. When the condition C3 in Theorem 4.1 holds, the origin of system (4.6) is a com-
plex isochronous center if and only if one of the 16 conditions in Lemma 5.3 is satisfied.

5.4. On complex center condition C4

Lemma 5.4. If the condition C4 in Theorem 4.1 holds, then all the first four period constants at 
the origin of system (4.6) vanish if and only if one of following ten (five for corresponding L∗

k) 
conditions holds:

L12 : b1 = 1

2
, b2 = 0, b3 = 0, b4 = 2, b5 = −1, b6 = 0;

L13 : b1 = −1
, b2 = 0, b3 = 0, b4 = 4

, b5 = −1, b6 = 0;

3 3
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L14 : b1 = b5, b2 = −1

2
(3 + 2b5), b3 = 2(1 + b5)

2, b4 = 1

2
(3 + 2b5),

b6 = 1

2
(1 + 2b5)(3 + 2b5);

L15 : b2 = 1, b3 = 1 + b1, b4 = −1

2
(3+2b1), b5 = −1

2
, b6 = −1

2
(1+2b1);

L16 : b1 = −1

2
(2 + 2b2 + b2

2), b3 = −1

2
b3

2(2 + b2), b4 = 1,

b5 = −1

2
(2 − b2

2), b6 = b2(1 + b2).

For the above conditions, we have the following result.

Proposition 5.3. Under each of the conditions L12-L16, system (4.6) respectively has a lineariz-
ability transformation Tk, k = 12, 13, . . . , 16 as follows:

L12 :

⎧⎪⎨
⎪⎩

du

dT
= u − 1

8
(5u2 − 2uv − 15v2) − 1

8
(u + v)(u2 + uv − 4v2),

dv

dT
= −(1 + v)

(
v − 1

8
u2 + 1

4
uv + 3

8
v2

)
,

T12 : ξ = f −1
2 f −1

25 f26, η = f −2
2 f −1

25 f27;

L13 :

⎧⎪⎨
⎪⎩

du

dT
= u + 1

16

[
2(u2 + 2uv + 9v2) + (u + v)(u2 − 2uv + 5v2)

]
,

dv

dT
= −v + 1

48

[
2(5u2 − 6uv − 35v2) + (u + v)(u2 + 6uv − 19v2)

]
,

T13 : ξ = f
1
2

19f
−3
2

28 f7, η = f
−1
2

19 f
−3
2

28 f29;

L14 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du

dT
=u − 1

4

[
3(1 + 2b5)u

2 − 2(3 + 2b5)uv − (3 + 2b5)v
2
]

+1

8
u2

[
(1 + 2b5)

2u − 3(1 + 2b5)(3 + 2b5)v
]

+1

8
v2

[
(3 + 2b5)(5 + 6b5)u − (1 + 2b5)(3 + 2b5)v

]
,

dv

dT
=−v(1 + v)

(
1 + 1

2
v
)
,

T14 : ξ = f
−2(1+2b5)
2 f −1

4 f −1
30 f31, η = vf −2

2 f4;

L15 :

⎧⎪⎨
⎪⎩

du

dT
= u(1 + u)

(
1 + 1

2
u
)
,

dv

dT
= −v − uv − (1 + b1)u

2(1 + v) + 1

2
(1 + 2b1)v

2(1 + u),

T15 : ξ = uf −2
1 f3, η = f 2

1 f −1
3 f32;
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L16 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du

dT
= u + 1

8

[
(1+b2)(5+b2)u

2 + 2(1−b2)
2uv + (1−b2)(5+3b2)v

2
]

+ 1

16
u2

[
(1 + b2)

2(3 − b2
2)u + (1 − b2

2)(1 − 6b2 − 3b2
2)v

]
+ 1

16
v2(1 − b2)

[
(1 + 3b2 + 9b2

2 + 3b3
2)u + (1 − b2

2)(3 + b2)v
]
,

dv

dT
= −v + 1

8

[
3(1 + b2)

2u2 − 2(1 + b2)
2uv − (13 + 2b2 + b2

2)v
2
]

+ 1

16
u2(1 + b2)

2
[
(1 − b2

2)u + 3(1 + b2
2)v

]
− 1

16
v2

[
(1 + b2)

2(5 + 3b2
2)u − (1 − b2)(7 + 5b2 + 3b2

2 + b3
2)v

]
,

T16 : ξ = f33f34f36, η = f −1
33 f −1

34 f35.

Here,

f25 = 1 − 1

8
(u + v)(4 + u + v),

f26 = u + 1

8
(u + v)

[
(u + 5v) + v(u + v)

]
,

f27 =v − 1

24
(u2 + 6uv − 3v2) − 1

24
v(u + v)

[
2(u + 3v) + v(u + v)

]
,

f28 =1 + 1

6
(u + 5v),

f29 =v − 1

72
(u2 − 18uv − 39v2) − 1

288
(u + v)2[4(u − 5v) + (u − 3v)(u + v)

]
,

f30 =1 − (1 + 2b5)(u + v) + 1

4
(1 + 2b5)

[
(1 + 2b5)(u

2 + v2) − 2(3 + 2b5)uv
]
,

f31 =−(1 + 2b5)e
T + (1 + 2b5)e

2c1 − (3 + 2b5)
√

eT (eT − e2c1)

(1 + 2b5)(eT − e2c1)

± e(1+b5)T (eT − e2c1)− 3
2 −b5√

c2 + (1+2b5)
2e2(T +b5T −c1)(eT −e2c1 )−2(1+b5)

8(1+b5)

,

f32 =c2

√
1 − eT +2c1 e− T

2 ±tanh
√

1−eT +2c1
,

f33 =1 + 1

2

[
(1 + b2)u + (1 − b2)v

]
,

f34 =1 − 1

2

[
(1 + b2)u − (3 + b2)v

]
,

f35 =v − 1

8

[
(1 + b2)

2u2 − 2(1 + b2)
2uv − (1 − b2)(3 + b2)v

2],
f36 = ln (1 + 2f35)

2(1 + b2)f35
− ln (f 2

33 + 2b2f35) − 2 lnf33

2b2(1 + b2)f35
+ · · · ,

where c1, c2 are arbitrary constants.
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Remark 5.4. (i) For system L14, f31 satisfies

df31

dT
= h31f31,

where

h31 =1 − (1 + 2b5)u − 1

2
(3 + 4b5)v + 1

2
(1 + 2b5)

2u2

− 1

2
(1 + 2b5)(3 + 2b5)uv − 1

4
(1 − 4b5 − 4b2

5)v
2.

(ii) For system L15, f32 satisfies

df32

dT
= −1

2
(1 + u)(2 + u)f32.

(iii) f36 = u + h.o.t . is a power series of u, v with non-zero convergence radius, with co-
efficients being polynomials in b2. f36 is a simple integral curve of the system with L16 and 
satisfy

df36

dT
= f33f34f36.

To sum up, we have

Theorem 5.4. When the condition C4 in Theorem 4.1 holds, the origin of system (4.6) is a com-
plex isochronous center if and only if one of the ten conditions in Lemma 5.4 is satisfied.

5.5. On complex center condition C5

Lemma 5.5. If the condition C5 in Theorem 4.1 is satisfied, then all the first four period constants 
at the origin of system (4.6) are zero if and only if one of following four (two for corresponding 
L∗

k ) conditions holds:

L17 : b1 = −5

2
, b2 = 1, b3 = −3

2
, b4 = 1, b5 = −1

2
, b6 = 2;

L18 : b1 = −5

2
, b2 = 1, b3 = 9

2
, b4 = 1, b5 = −13

2
, b6 = 2.

Similarly we have the following result.
When the condition L17 is satisfied, system (4.6) can be rewritten as

du

dT
= u(1 + u)

(
1 + 1

2
u
)
,

dv = −v + 1
(3u2 − 2uv − 4v2) + 1

uv(3u − 4v).

(5.11)
dT 2 2
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Table 2
Linearizability transformations of system (5.11) and (5.12).

Linearizability Transformation Integral curves

L17: ξ = uf −2
1 f3, η = f 2

1 f6f −1
37 f37 = 1 + 2u + 2v + 2uv

L18: ξ = f1f −2
37 f38, η = vf 2

1 f4f −2
37 f38 = u + uv + 1

2 v2 + 1
2 uv2

When the condition L18 holds, system (4.6) is reduced to

du

dT
= (1 + u)

(
u + 2u2 − 3uv + 3

2
v2

)
,

dv

dT
= −v

(
1 + 1

2
v
)
(1 − 2u + 3v),

(5.12)

Linearization transformations of systems (5.11) and (5.12) are given in Table 2.
Then, we have the following theorem.

Theorem 5.5. When the condition C5 in Theorem 4.1 holds, the origin of system (4.6) is a com-
plex isochronous center if and only if one of the four conditions in Lemma 5.5 is satisfied.

5.6. On complex center condition C6

Lemma 5.6. If the condition C6 in Theorem 4.1 is satisfied, then all the first four period constants 
at the origin of system (4.6) vanish if and only if one of following four (two for corresponding 
L∗

k ) conditions holds:

L19 : b1 = −13

8
, b2 = 1

2
, b3 = −5

32
, b4 = 1, b5 = −7

8
, b6 = 3

4
;

L20 : b1 = −7

2
, b2 = 1, b3 = −5

2
, b4 = 2, b5 = −1

2
, b6 = 3.

Under each of the conditions L19-L20, system (4.6) becomes

L19 :

⎧⎪⎨
⎪⎩

du

dT
= u + 1

32 (33u2 + 2uv + 13v2) + 1

256
(3u + v)(33u2 − 22uv + 21v2),

dv

dT
= −v + 3

32
(9u2 − 6uv − 19v2) + 1

256
(3u + v)(9u2 + 42uv − 83v2),

L20 :

⎧⎪⎨
⎪⎩

du

dT
= u(1 + u)

(
1 + 1

2
u
)
,

dv

dT
= −v + 1

2
(5u2 − 2uv − 6v2) + 1

2
uv(5u − 6v).

When one of the conditions L19 and L20 holds, the linearization transformations of system (4.6)
are obtained, as listed in Table 3.

Then, we have the following result.

Theorem 5.6. When the condition C6 in Theorem 4.1 holds, the origin of system (4.6) is a com-
plex isochronous center if and only if one of the four conditions in Lemma 5.6 is satisfied.
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Table 3
Linearizability transformations of system (4.6).

Linearizability Transformation Integral curves

L19 ξ = f −4
15 f40, η = f −1

15 f −1
39 f41 f39 = 1 − 3

4 u + 7
4 v

f40 = u + 1
96 (3u + v)(63u + 13v) + 1

24 (3u + v)3 + 1
384 (3u + v)4

f41 = v − 1
32 (3u − 7v)(3u + v)

L20 ξ = uf −2
1 f3, η = f −3

1 f −1
42 f43 f42 = 1 − 2u + 3v

f43 = v − 1
6 u(5u − 12v) − 1

6 u2(5u − 9v) − 1
6 u3(2u − 3v)

Table 4
Linearization transformation of system (5.13).

Linearization Transformation Integral curves

L21 ξ = f −1
44 f45, η = vf4f

−2
3

44 f44 = 1 − 6u − 3v − 15v2 − 5v3

f45 = u − 3
2 v2 + 1

2 v3

5.7. On complex center condition C7

Lemma 5.7. If the condition C7 in Theorem 4.1 is satisfied, then the first two period constants 
at the origin of system (4.6) are zero if and only if one of following two (one for L∗

21) conditions 
holds:

L21 : b1 = 13

2
, b2 = 1, b3 = 11

2
, b4 = 4, b5 = 11

2
, b6 = 9.

When the condition L21 holds, system (4.6) becomes

du

dT
= u − 3

2
(4u2 − 2uv − 3v2) − 1

2
v(12u2 − 15uv + 2v2),

dv

dT
= −v

(
1 + 1

2
v
)
(1 + 4u − 3v).

(5.13)

A linearization transformation of system (5.13) is given in Table 4.
Then, the following result is obtained.

Theorem 5.7. When the condition C7 in Theorem 4.1 holds, the origin of system (4.6) is a com-
plex isochronous center if and only if one of the two conditions in Lemma 5.7 is satisfied.

5.8. On complex center condition C8

Lemma 5.8. If the condition C8 in Theorem 4.1 is satisfied, then the first two period constants at 
the origin of system (4.6) equal zero if and only if one of following two (one for L∗

22 ) conditions 
holds:

L22 : b1 = 1

6
, b2 = 1

3
, b3 = −1

6
, b4 = 5

3
, b5 = −11

6
, b6 = −2

3
.
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Table 5
Linearization transformation of system (5.14).

Linearization transformation Integral curves

L22 ξ = f −5
2 f46, η = vf4f 2

2 f46 = u + 1
18 (84u + 11v)v

+ 1
18 (8u2 + 154uv + 47v2)v

+ 1
54 (68u2 + 440uv + 227v2)v2

+ 1
486 (32u3 + 588u2v + 2184uv2

+1543v3)v2 + 4
243 (u + 2v)2

×(4u + 17v)v3 + 4
243 (u + 2v)3v4

When the condition L22 holds, system (4.6) can be rewritten as

du

dT
= u − 1

6
(2u − 11v)v − 1

6
(u − 4v)v2,

dv

dT
= −v

(
1 + 1

2
v
)
(1 + v).

(5.14)

When the condition L22 holds, the linearization transformations of system (5.14) is obtained, 
as listed in Table 5.

Summarizing the above results gives the following theorem.

Theorem 5.8. When the condition C8 in Theorem 4.1 holds, the origin of system (4.6) is a com-
plex isochronous center if and only if one of the two conditions in Lemma 5.8 is satisfied.

5.9. On complex center condition C9

Similarly, we have the following lemma.

Lemma 5.9. If the condition C9 in Theorem 4.1 holds, then all the first four period constants at 
the origin of system (4.6) are zero if and only if one of following two (one for L∗

23) conditions 
holds:

L23 : b1 = 3, b2 = b3 = 0, b4 = 3, b5 = 3, b6 = 8.

Proposition 5.4. When the condition L23 holds, system (4.6) can be rewritten as

du

dT
= u − 3

8
(9u2 − 6uv − 7v2) − 1

16
(u3 + 51u2v − 69uv2 + 9v3),

dv

dT
= −v + 3

8
(u2 − 6uv + v2) − 1

16
(11u3 − 39u2v + 57uv2 − 21v3),

(5.15)

which becomes (5.3) under the transformation,

ξ = f −1f −1f48, η = f −1f
−1
2 f49,
20 47 20 47
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where

f47 = 1 − 3

4
(u + v)(4 + u + v),

f48 = u − 1

16
(u + v)

[
2(u − 7v) + (u − 3v)(u + v)

]
,

f49 = v − 1

8
(u − 3v)(u + v).

Then, we have the following theorem.

Theorem 5.9. When the condition C9 in Theorem 4.1 is satisfied, the origin of system (4.6) is a 
complex isochronous center if and only if one of the two conditions in Lemma 5.9 holds.

5.10. On complex center condition C10

Lemma 5.10. If the condition C10 in Theorem 4.1 holds, then all the first four period constants 
at the origin of system (4.6) vanish if and only if one of following eight (four for corresponding 
L∗

k ) conditions is satisfied:

L24 : b1 = −5
8 , b2 = −1

2 , b3 = 3
32 , b4 = 1, b5 = −7

8 , b6 = −1
4 ;

L25 : b1 = 1
2 , b2 = −1, b3 = 3

2 , b4 = 2, b5 = −1
2 , b6 = 1;

L26 : b1 = 1
2 , b2 = −1, b3 = −33

2 , b4 = 2, b5 = 11
2 , b6 = 13;

L27 : b1 = −5
6 , b2 = −1

3 , b3 = 5
54 , b4 = 2

3 , b5 = −7
6 , b6 = −11

27 .

Under each of the conditions L24-L27, system (4.6) can be reduced into one of the following 
systems:

L24 :

⎧⎪⎨
⎪⎩

du

dT
= u + 3

32
(3u2 + 6uv + 7v2) + 1

256
(u + 3v)(11u2 + 6uv + 15v2),

dv

dT
= −v + 1

32
(3u2 − 2uv − 49v2) + 1

256
(u + 3v)(3u2 + 6uv − 41v2),

L25 :

⎧⎪⎨
⎪⎩

du

dT
= u − 1

2
(2u2 − 2uv − 3v2) − 1

2
uv(2u − 3v),

dv

dT
= −v(1 + v)

(
1 + 1

2
v
)
,

L26 :

⎧⎪⎨
⎪⎩

du

dT
= u(1 − 3u + 4v)

(
1 + 1

2
u
)
,

dv

dT
= −v + 3

2
u(u − 2v) − 1

2
(6u3 − 21u2v + 24uv2 − 8v3),

L27 :

⎧⎪⎨
⎪⎩

du

dT
= u + 1

6
(4u2 + 2uv + 3v2) + 1

54
(u + 2v)(8u2 − 4uv + 5v2),

dv

dT
= −v(1 + v)

(
1 + 1

2
v
)
.

Their linearization transformations can be summarized in Table 6.



F. Li et al. / J. Differential Equations 268 (2020) 3819–3847 3843
Table 6
Linearization transformations of system (4.6).

Linearization Transformation Integral curves

L24 ξ = f −2
15 f50f51, η = f −1

15 f −1
50 f52 f50 = 1 − 1

4 u + 5
4 v

f51 = u + 1
32 (3u + v)(5u + 7v) + 1

128 (3u + v)2(u + 3v)

f52 = v − 1
32 (u − 5v)(u + 3v)

L25 ξ = f 2
2 f −1

11 f38, η = vf −2
2 f4

L26 ξ = uf3f11f −1
53 , η = f6f

−1
2

11 f
−1
2

53 f53 = 1 − (3u + 2v) + 3u(u − 4v) + 3u2(u − 2v)

L27 ξ = f 2
2 f54f

−3
2

55 f
−3
2

56 f
−√

3
57 f

−√
3

58 ,

η = vf −2
2 f4

f54 = u + 1
6 (2u + v)2 + 1

54 (2u + v)3

f55 = 1
27 (3 + 2u + v)2 + 1

9 (3 + 2u + v)(1 + v)
1
3 + 1

3 (1 + v)
2
3

f56 = 1
3

[
1 + (1 + v)

1
3 + v(1 + v)

1
3 + (1 + v)

2
3
]

f57 = e

tan−1

[
3+2u+v−3(1+v)1/3

√
3
(

3+2u+v+3(1+v)1/3
)
]

f58 = e

tan−1

[
(1+v)2/3−1√

3
(
(1+v)2/3+1

)
]

Remark 5.5. Let

x1 = 1

6

[
3 + 2u + v + 3(1 + v)

1
3
]
,

y1 = 1

6
√

3

[
3 + 2u + v − 3(1 + v)

1
3
]
,

x2 = 1

2

[
1 + (1 + v)

2
3
]
,

y2 = − 1

2
√

3

[
1 − (1 + v)

2
3
]
,

(5.16)

and

G1 = (x1 + iy1)(x1 − iy1)(x2 + iy2)(x2 − iy2) = (x2
1 + y2

1)(x2
2 + y2

2),

G2 =
(

(x1 + iy1)(x2 + iy2)

(x1 − iy1)(x2 − iy2)

)−i
2 = e

tan−1
(

x2y1+x1y2
x1x2+y1y2

)
.

Then,

f55f56 = G1, f57f58 = G2,

and (5.16) becomes

ξ = f 2
2 f54G

−3
2

1 G
−√

3
2 , η = vf −2

2 f4,

where
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G = G
−3
2

1 G
−√

3
2

is a simple integral curve of system (5.16) and satisfies

dG

dT
= 1

18
(−24u + 42v − 8u2 − 8uv + 25v2)G.

The above results yield the following theorem.

Theorem 5.10. When the condition C10 in Theorem 4.1 holds, then the origin of system (4.6) is a 
complex isochronous center if and only if one of the eight conditions in Lemma 5.10 is satisfied.

5.11. On complex center condition C11

Lemma 5.11. If the condition C11 in Theorem 4.1 is satisfied, then both the first two period 
constants at the origin of system (4.6) equal zero if and only if one of following two (one for L∗

28) 
conditions holds:

L28 : b1 = −1

6
, b2 = −1

3
, b3 = 1

6
, b4 = 4

3
, b5 = −7

6
, b6 = −1

3
.

Proposition 5.5. When the condition L28 holds, system (4.6) can be rewritten as

du

dT
= u + 1

6
(2u + 7v)v + 1

6
(u + 2v)v2,

dv

dT
= −v(1 + v)

(
1 + 1

2
v
)
,

which has a linearization transformation,

ξ = f −3
2 f59, η = vf −2

2 f4,

where

f59 = u + 1

18
(60u + 7v)v + 1

18
(8u2 + 70uv + 19v2)v

+ 1

27
(26u2 + 56uv + 23v2)v2 + 1

243
(2u + v)(8u2 + 71uv + 47v2)v2

+ 1

486
(2u + v)2v3[(8u + 13v) + (2u + v)v

]
.

The following theorem directly follows from Proposition 5.5.

Theorem 5.11. When the condition C11 in Theorem 4.1 is satisfied, the origin of system (4.6) is 
a complex isochronous center if and only if one of the two conditions in Lemma 5.11 holds.



F. Li et al. / J. Differential Equations 268 (2020) 3819–3847 3845
6. Conclusion

In this paper, we have studied complex isochronous center problem for cubic complex planar 
vector fields, which has Z2-equivariant property with two symmetric centers. Such integrable 
systems have been classified into 11 cases in previous work. We have obtained a total of 54
complex isochronous center conditions in two categories:

L1 ∼ L28, L∗
1, L∗

4 ∼ L∗
28,

as well as all corresponding linearization transformations given explicitly in terms of system 
parameters. When the system coefficients take real values, there are only two real isochronous 
center conditions L2 and L3, which are the same as that given in [12].

It has been noted that commutating the periodic constant at the origin of system (4.6) is a very 
tedious work, and deriving the linearization transformation for each case is not easy, some of the 
cases are actually difficult. The methodology developed in this paper can be extended to consider 
other dynamical systems.
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