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Abstract

In this paper, complex integrability and linearizability of cubic Z2-equivariant systems with two 1:q res-
onant singular points are investigated, and the necessary and sufficient conditions on complex integrability 
and linearizability of the systems with two 1:(−q) resonant saddles are obtained for q = 1, 2, 3, 4. More-
over, for general positive integer q, the complex integrability and linearizability conditions are classified, 
and the sufficiency of the conditions is proved. Further, the linearizability conditions of cubic Z2-equivariant 
systems with two 1:q resonant node points are also classified.
© 2021 Elsevier Inc. All rights reserved.
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1. Introduction

The Hilbert’s 16th problem is far from being solved after one hundred years since it was pro-
posed by Hilbert in the Second World Congress of Mathematicians, which has attracted many 
mathematicians and promoted great progress of mathematics in the 20th century. As far as the 
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lower bound of limit cycles is concerned, the best results obtained so far are H(2) ≥ 4 and 
H(3) ≥ 13, where H(n) denotes the number of limit cycles bifurcating in planar systems with 
degree n, see [3,13,14,27,30,33]. The symmetry property of vector fields of planar systems plays 
an important role in studying the Hilbert’s 16th problem. Generally speaking, an efficient ap-
proach to obtain more limit cycles is to perturb symmetric systems which have centers as many 
as possible.

If a system

dx

dt
= X(x,y),

dy

dt
= Y(x, y), (1.1)

is invariant under a real planar counter-clockwise rotation with angle 2π
q

, it is called Zq -
equivariant. The Zq -equivariant system has been investigated intensively, and many significant 
results on the number of limit cycles of polynomial differential systems were obtained, see for 
instance [8,9,18–23]. In particular, the system (1.1) is Z2-equivariant if the following conditions 
on the vector field hold:

X(−x,−y) = −X(x,y), Y (−x,−y) = −Y(x, y),

under which (1.1) can be rewritten as (if it is of C∞)

dx

dt
=

∞∑
k=0

X2k+1(x, y),
dy

dt
=

∞∑
k=0

Y2k+1(x, y). (1.2)

For cubic Z2-equivariant systems with two non-resonant singular points, there are four classes 
of normal forms, see [17]. The first case of the systems has two elementary foci, and its bi-center 
and bi-isochronous center problems have been considered in [6,26]. When the systems have two 
isolated elementary foci at (1, 0) and (−1, 0), an example was first constructed by Yu and Han 
[34–36] to obtain at least 12 small-amplitude limit cycles. Then, Liu and Huang [25] confirmed 
the result with simpler expressions of the Lyapunov constants. Furthermore, in [26], a class of 
Z2-equivariant cubic systems given in the form of

dx

dt
= −(a21 + 1)y + a21x

2y + a12xy2 + a03y
3,

dy

dt
= −1

2
x − b21y + 1

2
x3 + b21x

2y + b12xy2 + b03y
3,

(1.3)

was studied, and the first six focus values at (±1, 0) of this system were obtained. Then, 11
center conditions were derived, and a complete study on bi-center problem was carried out to 
obtain the necessary and sufficient conditions for the existence of the two centers. The bi-center 
problem for some Z2-equivariant quintic systems was studied in [29], and the simultaneous exis-
tence of centers for two families of planar Zq -equivariant systems was investigated in [10]. The 
isochronous bi-center problem for a cubic Z2-equivariant vector field with real coefficients was 
considered in [6], and two real isochronous center conditions were obtained. For the complex 
isochronous center problem of system (1.3) with two centers at (±1, 0), there exist two difficul-
ties: the first one is related to the computation of periodic constants, and the second one is in 
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finding all linearizability transformations. In [16], these two difficulties were overcome and the 
problem was completely solved, with 54 complex linearization centers being identified.

For the second and third cases, system (1.1) can be simplified to

du

dt
= −1

2
λu − a21v + 1

2
λu3 + a21u

2v + a12uv2 + a03v
3,

dv

dt
= −1

2
u + (λ − b21)v + 1

2
u3 + b21u

2v + b12uv2 + b03v
3,

(1.4)

and

du

dt
= −1

2
λu + (1 − a21)v + 1

2
λu3 + a21u

2v + a12uv2 + a03v
3,

dv

dt
= (λ − b21)v + b21u

2v + b12uv2 + b03v
3,

(1.5)

respectively, which have two nilpotent singular points when λ = 0. For the above two systems, 
the integrability problem has been completely solved in [15] in which the bi-center problem and 
bifurcation of limit cycles from the two nilpotent singular points were also studied. Moreover, a 
new perturbation scheme was presented in [1] to prove the existence of 12 small-amplitude limit 
cycles, which bifurcate from the two nilpotent singular points, and the center problem was also 
studied.

For the last case, the cubic system can be written as

dx

dt
= −1

2
λ1x − a21y + 1

2
λ1x

3 + a21x
2y + a12xy2 + a03y

3,

dy

dt
= (λ2 − b21)y + b21x

2y + b12xy2 + b03y
3.

(1.6)

System (1.6) with λ1 = 1 and λ2 = −1 has been investigated in [17], where sufficient and nec-
essary conditions on complex center and complex isochronous center were obtained. However, 
some open problems still exist, for example, when (±1, 0) of system (1.6) are 1:q resonant sin-
gular points, namely, λ1 = 1, λ2 = q , the conditions on integrability and linearizability have 
not been obtained due to the difficulty of computing the saddle values and periodic constants 
associated with 1:q resonant saddle points.

In this paper, we will focus on the integrability and linearizability problems of the cubic Z2-
equivariant systems with 1:q resonant singular points at (±1, 0), namely, λ1 = 1, λ2 = q , where 
q is an integer. Both cases for positive q , yielding two nodes at (±1, 0), and for negative q , 
giving two saddle points at (±1, 0), will be discussed.

The rest of the paper is organized as follows. In the next section, we present some definitions 
and lemmas which are needed to prove our main results in following sections. In section 3, the 
cubic Z2-equivariant systems with 1:(−q) (q = 2, 3, 4) resonant singular points are studied, and 
the integrability and linearization conditions are derived. Section 4 is devoted to studying the 
integrability and linearization conditions for general integer q � 5, and a fairly general set of 
sufficient conditions for the cubic Z2-equivariant systems with 1:q resonant singular points are 
obtained. Finally, in Section 5, the linearization conditions for the cubic Z2-equivariant systems 
with 1:q resonant node are completely solved.
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2. Preliminary

A polynomial differential system with its linear part in the form of the p:(−q) resonant saddle 
point can be expressed in the form of

dz

dt
= pz + P(z,w),

dw

dt
= −qw + Q(z,w), (2.1)

where p, q ∈ Z+, z, w, t ∈ R, P(z, w) and Q(z, w) are polynomials. By a time scaling t →
p−1t , system (2.1) can be rewritten as

dz

dt
= z + P(z,w),

dw

dt
= −λw + Q(z,w), (2.2)

where λ = q
p

∈ Q+. Related to the integrability problem, the only approach of finding the nec-
essary conditions of the integrability for system (2.1) or (2.2) is to compute the p:(−q) saddle 
values, which is a natural generalization of the focal value computation [37].

Several classes of the system (2.1) or (2.2) have been studied. For the 1:(−2) quadratic 
polynomial systems, the integrability problem was completely solved in [5,7,37]. For the Lotka-
Volterra systems, necessary and sufficient conditions for the integrability of the case λ ∈N , that 
is, the 1:(−n) resonant cases, were obtained in [5,37]. Some sufficient conditions were given 
in [11] for general λ, where the necessary and sufficient conditions for integrable systems were 
derived for λ = p

2 and 2
p

with p ∈ Z+. In [24], some sufficient conditions for the integrable 
Lotka-Volterra systems with 3:(−q) resonance were given, and the integrability problem was in-
vestigated for the two particular cases, 3:(−4) and 3:(−5). The 1:(−q) resonant center problem 
for certain cubic Lotka-Volterra systems was considered in [4].

In [2,11], for the complex polynomial differential system given in the form of

dz

dT
= pz +

∞∑
α+β=2

aαβzαwβ,
dw

dT
= −qw −

∞∑
α+β=2

bαβwαzβ, (2.3)

the saddle quantity and generalized period constant were defined and a computation method was 
also provided.

Lemma 2.1. [2,28] System (2.3) can be transformed into the normal form,

dξ

dT
= pξ

∞∑
i=0

pi(ξ
qηp)i,

dη

dT
= −qη

∞∑
i=0

qi(ξ
qηp)i, (2.4)

by the unique formal series,

ξ = z +
∞∑

k+j=2

ckj z
kwj , η = w +

∞∑
k+j=2

dkjw
kzj , (2.5)

where p0 = q0 = 1, ck+1,k = dk+1,k = 0, k = 1, 2, · · · .
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Let μ0 = τ0 = 0, μk = pk − qk , τk = pk + qk, k = 1, 2, · · · . Then, the saddle quantity and 
generalized period constant are defined below [31,32].

Definition 2.1. For any positive integer k, μk is called the kth singular point quantity of the 
origin of system (2.3). If system (2.3) is a real planar differential system, then μk is the kth 
saddle quantity. Moreover, the origin of system (2.3) is called a generalized complex center if 
μk = 0, k = 1, 2, · · · .

Definition 2.2. For any positive integer k, τk is called the kth generalized period constant of the 
origin of system (2.3), and the origin of system (2.3) is called a generalized complex isochronous 
center if μk = τk = 0, k = 1, 2, · · · .

Remark 2.1. If system (2.3) is a real system, then the μk defined in Definition 2.1 is the “saddle 
quantity of order k”, as defined in [37].

Integrability and linearizability were also discussed in [32]. Using the results given in [32] we 
have the following lemma.

Lemma 2.2. System (2.3) is integrable at the origin if and only if the origin is a generalized 
complex center, namely μk = 0, k = 1, 2, · · · . System (2.3) is linearizable at the origin if and 
only if the origin is a generalized complex isochronous center, namely μk = τk = 0, k = 1, 2, · · · .

The normal form (2.4) can be simplified further when the origin of system (2.3) is a gener-
alized complex center or complex isochronous center. In particular, we have the following two 
lemmas.

Lemma 2.3. The origin of system (2.3) is a generalized complex center if and only if there exists 
a unique formal series (2.5) such that pi = qi (i = 1, 2, · · · ) in (2.4).

Lemma 2.4. System (2.3) is linearizable at the origin if and only if there exists the unique formal 
series (2.5) such that

dξ

dT
= pξ,

dη

dT
= −qη,

namely, pi = qi = 0 (i = 1, 2, · · · ) in (2.4).

A new method for computing the singular point quantity was also presented in [32], which is 
given below for convenience.

Lemma 2.5. For system (2.3), the following successive formal series holds:

F(z,w) =
∞∑

α+β=p+q

cαβzαwβ = zqwp + h.o.t.,

where cqp = 1, ckq,kp = 0, k = 2, 3, · · · , h.o.t. stands for high order terms satisfying
790
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dF

dT

∣∣∣∣
(2.3)

=
∞∑

m=1

λm(zqwp)m+1.

If λ1 = λ2 = · · · = λm−1 = 0, λm �= 0, then μ1 = μ2 = · · · = μm−1 = 0, μm �= 0, and λm ∼
pqμm, m = 1, 2, · · · , where ∼ represents algebraic equivalence.

In order to study linearizability, many methods were developed, for example, see [12]. Espe-
cially, the following result has been obtained for p = q = 1 [28].

Theorem 2.1. [28] The origin of following complex analytic system,

dz

dT
= z + a11zw +

∞∑
k=2

fk(z)w
k,

dw

dT
= −w −

∞∑
k=2

gk(z)w
k,

or its symmetric system,

dz

dT
= z +

∞∑
k=2

gk(w)zk,
dw

dT
= −w − b11zw +

∞∑
k=2

fk(w)zk,

is a complex isochronous center if

deg(fk) ≤ k and deg(gk) ≤ k − 2. (2.6)

3. Integrability and linearizability conditions for cubic Z2-equivariant systems with 
1:(−q) (q = 2, 3, 4) resonant saddles

In this section, we consider the integrability and linearizability conditions for cubic Z2-
equivariant systems with 1:(−q) resonant saddles when q = 2, 3, 4. The case q = 1 (i.e., λ1 = 1, 
λ2 = −1), which is called 1:(−1) weak saddle, has been solved [17], and the results are summa-
rized in the following two theorems.

Theorem 3.1. [17] When λ1 = 1, λ2 = −1, system (1.6) is integrable at (±1, 0) if and only if 
one of the following five conditions holds:

C̃1 : a21 = 0, b21 = −1

2
;

C̃2 : a21 = −b12, a12 = −3b03, b21 = −3

2
;

C̃3 : a21 = 1

2
(1 + 2b21)b12, a03 = −1

3
a12(1 − 2b21)b12, b03 = 2

3
a12(1 + b21);

C̃4 : a21 = 0, a03 = 0, b21 = 0, b12 = 0;

C̃5 : a21 = 0, a12 = 0, b12 = 0, b03 = 0, b2
21 = 1

.

36
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Theorem 3.2. [17] When λ1 = 1, λ2 = −1, system (1.6) is linearizable at (±1, 0) if and only if 
one of the following six conditions is satisfied:

C̃1, C̃4, C̃5, (given in Theorem 3.1); and

C̃∗
2 : a21 = 0, a12 = 0, a03 = 0, b21 = −3

2
, b12 = 0, b03 = 0;

C̃∗
3 : a21 = b12, a03 = 0, b21 = 1

2
, b03 = a12;

C̃∗∗
3 : a21 = 0, a12 = 0, a03 = 0, b12 = 0, b03 = 0.

Now, we consider the case q = 2. We first derive the necessary integrability conditions based 
on the computation of saddle quantities, and then prove that they are also sufficient. Further, 
the necessary linearization conditions are derived by computing the periodic constants, and then 
their sufficiency is also proved by using various different approaches.

3.1. Saddle quantities for a class of Z2-equivariant cubic systems with 1:(−2) resonant saddles

When λ1 = 1, λ2 = −2, system (1.6) becomes

dx

dt
= −1

2
x − a21y + 1

2
x3 + a21x

2y + a12xy2 + a03y
3,

dy

dt
= (−2 − b21)y + b21x

2y + b12xy2 + b03y
3.

(3.1)

To compute the saddle quantities of system (3.1) at (±1, 0), introducing the transformation, 
z = ±x − 1, into system (3.1) yields

dz

dt
= z + 3

2
z2 + 2a21zy + a12y

2 + 1

2
z3 + a21z

2y + a12zy
2 + a03y

3,

dy

dt
= −2y + 2b21zy + b12y

2 + b21z
2y + b12zy

2 + b03y
3,

(3.2)

with the singular point (±1, 0) of (3.1) shifted to the origin (0, 0) of (3.2).

Theorem 3.3. The first seven saddle quantities at the origin of system (3.2) are given as follows:

μ1 = −1

2
(4a21 − 3b12 − 2b12b21)g1,

μ2 = − 8

15
b21(1 + b21)(4a12 − 5b03 + 2a12b21)g1g2,

(3.3)

and if b21(1 + b21) �= 0,

μ3 = − 1

2800
(−1 + 6b21)(1 + 6b21)(5 + 6b21)(7 + 6b21)g1g2g3,

μ4 = − 128
b12(7 + 4b21)(10 + 189b21 + 189b2

21)g1g2g3,

295245
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μ5 = 32

4428675
a12(17 + 10b21)(367 + 1500b21 + 1500b2

21)g1g2g3,

or if b21 = 0,

μ3 = − 1

32
(12a03 − 38a12b12 + 49b03b12)g1g2,

μ4 = 0,

μ5 = − 221

3072
(4a12 − 5b03)b12(4a12 + 7b03 + 63b2

12)g1g2,

μ6 = 0,

μ7 = 2860165

49152
(4a12 − 5b03)b

5
12g1g2,

or if b21 = −1,

μ3 = − 1

32
(8a03 − 6a12b12 + 21b03b12)g1g2,

μ4 = 0,

μ5 = − 91

2048
(2a12 − 5b03)b12(2a12 + 3b03 + 8b2

12)g1g2,

μ6 = 0,

μ7 = 10659

16384
(2a12 − 5b03)b

5
12g1g2.

Here, the polynomials g1, g2 and g3 are given by

g1 = 1 + 2b21, g2 = 3 + 2b21, g3 = (10a03 + a12b12 − 2a12b12b21)(3 + b21).

The following result directly follows Theorem 3.1.

Theorem 3.4. All the first seven saddle quantities at the origin of system (3.2) vanish if and only 
if one of the following six conditions holds:

C1 : b21 = −1

2
;

C2 : a21 = 0, b21 = −3

2
;

C3 : a21 = 1

4
b12(3 + 2b21), b03 = 2

5
a12(2 + b21), b21 = −3;

C4 : a21 = 1

4
b12(3 + 2b21), b03 = 2

5
a12(2 + b21), a03 = 1

10
a12b12(2b21 − 1);

C5 : a21 = b03 = a12 = b12 = 0, (6b21 − 1)(6b21 + 1)(5 + 6b21)(7 + 6b21) = 0;
C : a = 0, a = 0, b = 0, b (b + 1) = 0.
6 21 03 12 21 21
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3.2. Generalized complex center of system (3.2)

Theorem 3.3 implies that any of the six conditions in this theorem is necessary for the origin 
of system (3.2) to be a generalized complex center. Next, we will show that these six conditions 
are also sufficient.

3.2.1. Sufficiency of C1, C2, C3 and C4

Proposition 3.1. If one of the conditions C1, C2, C3 and C4 in Theorem 3.4 holds, then (±1, 0)

of system (3.1) are generalized complex centers.

Proof. When the condition C1 is satisfied, system (3.1) can be rewritten as

dx

dt
= 1

2

(
−x + x3 − 2a21y + 2a21x

2y + 2a12xy2 + 2a03y
3
)

,

dy

dt
= 1

2
y

(
−3 − x2 + 2b12xy + 2b03y

2
)

,

(3.4)

which can be transformed to

du

dt
= u + 2a21uv − 2a21u

2v + 2a12v
2 − 4a12uv2 + 2a12u

2v2

+ 2a03v
3 − 6a03uv3 + 6a03u

2v3 − 2a03u
3v3,

dv

dt
= v(−2 + b12v + a21uv + a12v

2 + b03v
2 − a12uv2 − b03uv2

+ a03v
3 − 2a03uv3 + a03u

2v3),

(3.5)

by

u = x2 − 1

x2 , v = xy.

Further, introducing v = z2 into system (3.5) we obtain

du

dt
= u − 2a21(u

2 − u)z2 + 2a12(u − 1)2z4 − 2a03(u − 1)3z6


= u +
∑
k=2

fk(u)zk,

dz

dt
= − z + 1

2
(b12 + A21u)z3 − 1

2
(b12 + b03)(u − 1)z5 + 1

2
a03(u − 1)2z7


= − z +
∑
k=2

gk(u)zk.

(3.6)

It is easy to verify that deg(fk) � k, deg(gk) � k − 2. So according to Theorem 2.1, the origin of 
system (3.6) is a complex isochronous center, which implies that the singular points (±1, 0) of 
system (3.1) are generalized complex isochronous centers when the condition C1 holds.
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If the condition C2 in Theorem 3.4 holds, system (3.1) can be simplified as

dx

dt
= 1

2

(
−x + x3 + 2a12xy2 + 2a03y

3
)

,

dy

dt
= 1

2
y

(
−1 − 3x2 + 2b12xy + 2b03y

2
)

.

(3.7)

System (3.7) can be transformed into

du

dT
= u + 2a12v

2 + 2a12uv2 + 2a03v
3 + 2a03uv3,

dv

dT
= −v(2 − b12v + a12v

2 − b03v
2 + a03v

3),

(3.8)

by

u = x2 − 1, v = y

x
, t = (1 + u)T .

Further, under the transformation v = z2, system (3.8) is changed to

du

dT
= u + 2a12(1 + u)z4 + 2a03(1 + u)z6,

dz

dT
= −z + 1

2
b12z

3 − 1

2
(a12 − b03)z

5 − 1

2
a03z

7.

(3.9)

According to Theorem 2.1, the origin of system (3.9) is a complex isochronous center, and so are 
the (±1, 0) of system (3.1).

If the condition C3 in Theorem 3.4 holds, system (3.1) can be reduced to

dx

dt
= 1

4

(
−2x + 2x3 + 3b12y − 3b12x

2y + 4a12xy2 + 4a03y
3
)

,

dy

dt
= −1

5
y

(
−5 + 15x2 − 5b12xy + 2a12y

2
)

,

(3.10)

which has an invariant curve, f1 = y, admitting an integrating factor, F = y− 1
2 , and hence the 

origin of system (3.10) is a complex center, implying that (±1, 0) of system (3.1) are generalized 
complex centers.

If the condition C4 in Theorem 3.4 holds, system (3.1) can be rewritten as

dx

dt
= 1

20
(−10x + 10x3 − 15b12y − 10b12b21y + 15b12x

2y

+ 10b12b21x
2y + 20a12xy2 − 2a12b12y

3 + 4a12b12b21y
3),

dy

dt
= − 1

5
y(−10 − 5b21 + 5b21x

2 + 5b12xy + 4a12y
2 + 2a12b21y

2).

(3.11)

By computing the invariant algebraic curves of system (3.11), we get a first integral of the system, 
given by
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M3 = f1f
−2(2+b21)
2 f 2

3 ,

where

f1 = y, f2 = 2x − b12y, f3 = −2 + 2x2 + 4

5
a12y

2.

Hence, the singular points (±1, 0) of system (3.11), i.e., the system (3.1), are generalized com-
plex centers. �
3.2.2. Sufficiency of C5

Proposition 3.2. If the condition C5 holds, then the singular points (±1, 0) of system (3.1) are 
generalized complex centers.

Proof. When the condition C5 in Theorem 3.4 holds, there exist four sub-cases, as listed below.

C1
5 : a21 = b03 = a12 = b12 = 0, b21 = 1

6
;

C2
5 : a21 = b03 = a12 = b12 = 0, b21 = −1

6
;

C3
5 : a21 = b03 = a12 = b12 = 0, b21 = −5

6
;

C4
5 : a21 = b03 = a12 = b12 = 0, b21 = −7

6
.

(3.12)

When the condition C1
5 holds, system (3.1) can be rewritten as

dx

dt
= 1

2
(−x + x3 + 2a03y

3),
dy

dt
= 1

6
y(−13 + x2), (3.13)

which admits a first integral M4 = f 3
1 f −13

4 f 6
5 , where

f4 = 6x + a03y
3, f5 = −91 + 91x2 + 26a03xy3 + 2a2

03y
6.

Thus, according to Theorem 2.1, (±1, 0) of the system (3.13) are generalized complex centers, 
and so (±1, 0) of system (3.1).

When the condition C2
5 holds, system (3.2) becomes

dz

dt
= 1

2
(2z + 3z2 + z3 + 2a03y

3),
dy

dt
= −1

6
y(12 + 2z + z2),

which can be transformed to

dz

dt
= 1

2
(2z + 3z2 + z3 + 2a03w

6),
dw

dt
= − 1

12
(12 + 2z + z2)w, (3.14)

by y = w2. Further, with another transformation,
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x̃ = z(2 + z)

2(1 + z)2 , ỹ = (1 + z)
1
6 w,

system (3.14) can be brought into

dx̃

dt
= x̃ + a03(1 − 4x̃ + 4x̃2)ỹ6,

dỹ

dt
= −ỹ + 1

6
a03(2x̃ − 1)ỹ7, (3.15)

which has a complex isochronous center at the origin by Theorem 2.1, and so the origin of system 
(3.2) is a generalized complex isochronous center, namely, the two singular points (±1, 0) of the 
system (3.1) are generalized complex isochronous centers.

When the condition C3
5 holds, system (3.2) can be rewritten as

dz

dt
= 1

2
(2z + 3z2 + z3 + 2a03y

3),
dy

dt
= −1

6
y(12 + 14z + 7z2),

which can be transformed to

dz

dt
= 1

2
(2z + 3z2 + z3 + 2a03w

6),
dw

dt
= − 1

12
(12 + 14z + 7z2)w,

by y = w2. Further, the above system is changed to

dx̃

dt
= x̃ − a03(2x̃ − 1)5ỹ6,

dỹ

dt
= −ỹ + 7

6
a03(2x̃ − 1)4ỹ7,

under the transformation,

x̃ = z(z + 2)

2(1 + z)2 , ỹ = w(1 + z)
7
6 .

Thus, according to Theorem 2.1, the origin of above system is a complex isochronous center, 
implying that (±1, 0) of system (3.1) are generalized complex isochronous centers.

When the condition C4
5 holds, system (3.2) can be rewritten as

dz

dt
= 1

2
(2z + 3z2 + z3 + 2a03y

3),
dy

dt
= −1

6
y(12 + 10z + 5z2), (3.16)

which can be transformed to

dz

dt
= 1

2
(2z + 3z2 + z3 + 2a03w

6),
dw

dt
= − 1

12
(12 + 10z + 5z2)w,

by y = w2, and can be further changed to

dx̃

dt
= x̃ − a03(2x̃ − 1)4ỹ6,

dỹ

dt
= −ỹ − 5

6
a03(2x̃ − 1)3ỹ7,

by the transformation,
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x̃ = z(z + 2)

2(1 + z)2 , ỹ = w(1 + z)
5
6 .

Therefore, the origin of above system is a complex isochronous center by Theorem 2.1, that is, 
(±1, 0) of system (3.1) are generalized complex isochronous centers. �
3.2.3. Sufficiency of C6

Proposition 3.3. If the condition C6 is satisfied, then (±1, 0) of system (3.1) are generalized 
complex centers.

Proof. When the condition C6 in Theorem 3.4 holds, there are two sub-cases, namely,

C1
6 : a21 = 0, a03 = 0, b12 = 0, b21 = 0;

C2
6 : a21 = 0, a03 = 0, b12 = 0, b21 = −1.

(3.17)

When the condition C1
6 holds, system (3.2) is simplified to

dz

dt
= (1 + z)

(
z + 1

2
z2 + a12y

2
)
,

dy

dt
= −y(2 − b03y

2). (3.18)

It can be shown by finding the invariant algebraic curves of system (3.18) that there exists an 
inverse integrating factor for the system,

M3 = y
1
2 (1 + z)3g

1
4 (−4a12+5b03)

1 ,

where

g1 =
⎧⎨
⎩

(1 − b03y
2)

1
b03 , if b03 �= 0,

exp (−y2), if b03 = 0.

This indicates that the origin of system (3.18) is a complex center under the condition C1
6 , and 

so (±1, 0) of system (3.1) are generalized complex centers.
When the condition C2

6 holds, system (3.2) can be rewritten as

dz

dt
= 1

2
(1 + z)(2z + z2 + 2a12y

2),

dy

dt
= y(−2 + b03y

2 − 2z − z2),

which can be transformed to

dz

dt
= z + 1

2
(3z + z2)z + a12(1 + z)w4,

dw = −w − 1
w(2z + z2) + b03

w5,

dt 2 2
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by y = w2. Further, the above system can be changed to

dx̃

dt
= x̃ − a12(2x̃ − 1)3ỹ4,

dỹ

dt
= −ỹ + 1

2
(2a12 + b03)(−1 + 2x̃)2ỹ5,

(3.19)

by the transformation,

x̃ = z(z + 2)

2(1 + z)2 , ỹ = w(1 + z).

Therefore, according to Theorem 2.1, the origin of system (3.19) is a complex isochronous center, 
and so is the origin of system (3.2), which means that (±1, 0) of system (3.1) are generalized 
complex isochronous centers. �

Summarizing the above results we have the following theorem.

Theorem 3.5. The origin of system (3.2) is a generalized complex center if and only if one of the 
six conditions in Theorem 3.4 holds. Namely, (±1, 0) of system (3.1) are generalized complex 
centers if and only if one of the six conditions in Theorem 3.4 holds.

3.3. Generalized complex isochronous center conditions for system (3.2)

We have shown that the origin of system (3.2) is a generalized complex center if and only 
if one of the six conditions in Theorem 3.4 holds. In the following, we study the generalized 
complex isochronous center problem of system (3.2) by considering the six complex center con-
ditions one by one. Namely, the linearizable problem of system (3.2) will be considered.

3.3.1. Conditions C1 and C2
When the conditions C1 and C2 in Theorem 3.4 hold, we have shown in the above proof for 

Proposition 3.1 that the origin of system (3.2) is a generalized complex isochronous center, that 
is,

Proposition 3.4. If the conditions C1 and C2 in Theorem 3.4 are satisfied, then the origin of 
system (3.2) is a generalized complex isochronous center.

Now, we consider other conditions in Theorem 3.4.

3.3.2. Condition C3
When the condition C3 in Theorem 3.4 holds, a direct computation shows that the first three 

periodic constants at the origin of system (3.2) are given by

τ1 = −105

2
b12, τ2|τ1=0 = −1344a12, τ3|τ1=τ2=0 = 415701

8
a03. (3.20)

It is easy to see that when the condition C3 holds, the first three periodic constants at the origin 
of system (3.2) are zero if and only if the following conditions hold:
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C3−1 : a21 = a12 = a03 = b12 = b03 = 0, b21 = −3. (3.21)

This leads to the following proposition.

Proposition 3.5. The origin of system (3.2) is a generalized complex isochronous center if and 
only if the condition C3−1 in (3.21) holds.

Proof. The necessity has been proved. To prove the sufficiency, we note that when the condition 
C3−1 holds, the system (3.2) is reduced to

dz

dt
= 1

2
z(1 + z)(2 + z),

dy

dt
= −y(2 + 6z + 3z2),

which has a linearization transformation,

ξ = yz3(2 + z)3, η = yz(1 + z)4(2 + z),

and hence the conclusion is true. �
3.3.3. Condition C4

When the condition C4 in Theorem 3.4 holds, we can similarly discuss the generalized com-
plex isochronous center at the origin of system (3.2). With the aid of computer algebraic system 
Mathematica, it is not difficult to get the first two periodic constants at the origin of system (3.2), 
given by

τ1 = 1

2
b12(−1 + 2b21)(1 + 2b21)(3 + 2b21),

τ2|τ1=0 = 32

15
a12b21(1 + b21)(−1 + 2b21)(1 + 2b21)(3 + 2b21).

Thus, under the condition C4, the first two periodic constants given above become zero if and 
only if one of the following six conditions is satisfied:

C4−1 : a21 = b12, a03 = 0, b03 = a12, b21 = 1

2
;

C4−2 : a21 = 0, a03 = 0, b03 = 0, a12 = 0, b12 = 0;

C4−3 : a21 = 1

2
b12, a03 = 3

5
a12, b03 = −1

5
a12b12, b21 = −1

2
;

C4−4 : a21 = 0, a03 = −2

5
a12b12, b03 = −1

5
a12, b21 = −3

2
;

C4−5 : a21 = 0, a03 = 0, b03 = 4

5
a12, b12 = 0, b21 = 0;

C4−6 : a21 = 0, a03 = 0, b03 = 2

5
a12, b12 = 0, b21 = −1.

(3.22)

Obviously, the conditions C4−3, C4−4, C4−5 and C4−6 are contained in the conditions C1, C2, 
C1 and C2, respectively. When one of the conditions C1, C2 and C2 holds, we have proved that 
6 6 6
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(±1, 0) of system (3.1) are generalized complex isochronous centers. So we only need to prove 
the sufficiency for the conditions C4−1, C4−2 and C4−5.

Proposition 3.6. The origin of system (3.2) is a generalized complex isochronous center if one of 
the conditions C4−1, C4−2 and C4−5 holds.

Proof. When the condition C4−1 holds, system (3.2) becomes

dz

dt
= z + 1

2
(2a12y

2 + 4b12yz + 2a12y
2z + 3z2 + 2b12yz2 + z3),

dy

dt
= −2y + 1

2
y(2b12y + 2a12y

2 + 2z + 2b12yz + z2),

(3.23)

which has a linearization transformation,

ξ = f7f
−2
6 , η = w

2
5 f

− 1
5

7

in the neighborhood of the origin of system (3.23), where

f6 = 2 − b12y + 2z, and f7 = 2a12y
2 + 10z + 5z2.

So the origin of system (3.2) is a generalized complex isochronous center under the condition 
C4−1.

When the condition C4−2 holds, system (3.2) can be rewritten as

dz

dt
= 1

2
z(1 + z)(2 + z),

dy

dt
= y(−2 + 2b21z + b21z

2),

which can be transformed to

dz

dt
= z + 3

2
z2 + 1

2
z3,

dw

dt
= −w + 1

2
(2b21z + b21z

2)w,

by y = w2. Thus, by Theorem 2.1, the origin of above system is a complex isochronous center, 
and so the origin of system (3.2) is a generalized complex isochronous center if the condition 
C4−2 holds.

When the condition C4−5 is satisfied, system (3.2) can be rewritten as

dz

dt
= z + 1

2
(3z2 + z3 + 2a12y

2 + 2a12zy
2),

dy

dt
= −2y + 4

5
a12y

3,

(3.24)

which can be transformed to

dz

dt
= z + 1

2
(3z2 + z3 + 2a12w

4 + 2a12zw
4),

dw = −w + 2
a12w

5,

dt 5
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by y = w2, and can be further changed to

dx̃

dt
= x̃ − a12(2x − 1)w4,

dw

dt
= −w + 2

5
a12w

5,

under the transformation,

x̃ = z(z + 2)

2(1 + z)2 .

Thus, according to the Theorem 2.1, the origin of above system is a complex isochronous center, 
implying that the origin of system (3.2) is a generalized complex isochronous center under the 
condition C4−5. �

For the condition C4−4, we have an alternative to prove the sufficiency. When the condition 
C4−4 holds, system (3.2) can be written as

dz

dt
= z + 1

2
(2a12y

2 − 4

5
a12b12y

3 + 2a12y
2z + 3z2 + z3),

dy

dt
= −y + y(b12y + a12

5
y2 − 3z + b12yz − 3

2
z2),

(3.25)

which has a linearization transformation,

ξ = f7f
−1
8 , η = −wf7f8f

−1
9

in the neighborhood of the origin, where

f7 = 2a12y
2 + 10z + 5z2,

f8 = 5 + 2a12y
2 + 10z + 5z2,

f9 = 2 − b12y + 2z,

(3.26)

and so the origin of above system is a generalized complex isochronous center.

3.3.4. Condition C5

Proposition 3.7. The origin of system (3.2) is a generalized complex isochronous center if the 
condition C5 in (3.12) holds.

Proof. There are four subcases: Ck
5 , k = 1, 2, 3, 4. The proofs for the three subcases Ck

5 , k =
2, 3, 4 have been given in the proof for Proposition 3.2. So we only need to prove the case C1

5 .
When the condition C1

5 holds, system (3.2) can be rewritten as

dz

dt
= 1

2
(2z + 3z2 + z3 + 2a03y

3),

dy = 1
y(−12 + 2z + z2),
dt 6
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which can be transformed to

dz

dt
= 1

2
(2z + 3z2 + z3 + 2a03w

6),

dw

dt
= 1

12
(−12 + 2z + z2)w,

by y = w2. Further, the above system can be changed to

dx̃

dt
= x̃ − a03ỹ

6 − 2a03x̃ỹ6,
dỹ

dt
= −ỹ + 1

6
a03ỹ

7,

by the transformation,

x̃ = z(z + 2)

2(1 + z)2 , ỹ = w(1 + z)−
1
6 .

Hence, according to Theorem 2.1, the origin of the above system is a complex isochronous center, 
and so the origin of system (3.2) is a generalized complex isochronous center. �
3.3.5. Condition C6

Proposition 3.8. The origin of system (3.2) is a generalized complex isochronous center if the 
condition C6 in (3.12) holds.

Proof. There are two subcases C1
6 and C2

6 . The proof for the case C2
6 has been given in the proof 

for Proposition 3.3.
When the condition C1

6 holds, system (3.2) can be rewritten as

dz

dt
= (1 + z)

(
z + 1

2
z2 + a12y

2
)
,

dy

dt
= −y(2 − b03y

2),

which can be transformed to

dz

dt
= 1

2
(2z + 3z2 + z3) + 2a12(1 + z)w4,

dw

dt
= −w − b03

2
w5,

by y = w2, and can be further changed to

dx̃

dt
= x̃ − a12(2x̃ − 1)w4,

dw

dt
= −w − b03

2
w5,

by
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x̃ = z(z + 2)

2(1 + z)2 .

So according to Theorem 2.1, the conclusion is true. �
Since the conditions C4−3, C4−4 and C4−5 and C4−6 are contained in C1, C5 and C6, respec-

tively, we directly have the following theorem.

Theorem 3.6. The origin of system (3.2) is a generalized complex isochronous center if and only 
if one of the following conditions holds:

C1, C2−1, C3−1, C4−1, C4−2, C5, C6.

3.4. Integrability and linearization conditions for cubic Z2-equivariant systems with 1:(−3)

and 1:(−4) resonant saddles

In this subsection, we present the results for the 1:(−3) and 1:(−4) cases without proofs for 
brevity, since the proofs are similar to that for the 1:2 case.

When λ1 = 1, λ2 = −3, system (1.6) becomes

dx

dT
= −1

2
x − a21y + 1

2
x3 + a21x

2y + a12xy2 + a03y
3,

dy

dT
= (−3 − b21)y + b21x

2y + b12xy2 + b03y
3.

(3.27)

Theorem 3.7. The two singular points (±1, 0) of system (3.27) are generalized complex centers 
if and only if one of the following six conditions holds:

D1 :
(
b21 + 1

2

)(
b21 + 3

2

)
= 0;

D2 : a21 = 0, b21 = −5

2
;

D3 : a21 = −1

6
b12(5 + 2b21), b03 = 2

7
a12(3 + b21), b21 = −9

2
;

D4 : a21 = −1

6
b12(5 + 2b21), b03 = 2

7
a12(3 + b21), a03 = 1

21
a12b12(2b21 − 1);

D5 : a21 = b03 = a12 = b12 = 0,

(−1 + 6b21)(1 + 6b21)(5 + 6b21)(7 + 6b21)(11 + 6b21)(13 + 6b21) = 0,

D6 : a21 = 0, a03 = 0, b12 = 0, b21(b21 + 1)(b21 + 2) = 0.

Theorem 3.8. The two singular points (±1, 0) of system (3.27) are generalized complex 
isochronous centers if and only if one of the following seven conditions holds:
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D1, D2, D5, D6 (in Theorem 3.7), and

D3−1 : a21 = b12 = b03 = a12 = a03 = 0, b21 = −9

2
;

D4−1 : a21 = b12, a03 = 0, b03 = a12, b21 = 1

2
;

D4−2 : a21 = 0, a03 = 0, b03 = 0, a12 = 0, b12 = 0.

(3.28)

When λ1 = 1, λ2 = −4, system (1.6) becomes

dx

dT
= −1

2
x − a21y + 1

2
x3 + a21x

2y + a12xy2 + a03y
3,

dy

dT
= (−4 − b21)y + b21x

2y + b12xy2 + b03y
3.

(3.29)

For system (3.29), we have the following two theorems.

Theorem 3.9. The two singular points (±1, 0) of system (3.29) are generalized complex centers 
if and only if one of the following six conditions holds:

E1 :
(
b21 + 1

2

)(
b21 + 3

2

)(
b21 + 5

2

)
= 0;

E2 : a21 = 0, b21 = −7

2
;

E3 : a21 = 1

8
b12(7 + 2b21), b03 = 2

9
a12(4 + b21), b21 = −6;

E4 : a21 = 1

8
b12(7 + 2b21), b03 = 2

9
a12(4 + b21), a03 = 1

36
a12b12(2b21 − 1);

E5 : a21 = b03 = a12 = b12 = 0,

(−1 + 6b21)(1 + 6b21)(5 + 6b21)(7 + 6b21)(11 + 6b21)

× (13 + 6b21)(17 + 6b21)(19 + 6b21) = 0;
E6 : a21 = 0, a03 = 0, b12 = 0, b21(b21 + 1)(b21 + 2)(b21 + 3) = 0.

Theorem 3.10. The two singular points (±1, 0) of system (3.29) are generalized complex 
isochronous centers if and only if one of the following six conditions holds:

E1, E2, E5, E6 (in Theorem 3.9), and

E3−1 : a21 = b12 = b03 = a12 = a03 = 0, b21 = −6;

E4−1 : a21 = b12, a03 = 0, b03 = a12, b21 = 1

2
;

E : a = 0, a = 0, b = 0, a = 0, b = 0.

(3.30)
4−2 21 03 03 12 12
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4. Integrability and linearizability conditions for cubic Z2-equivariant systems with 
1:(−q) (q � 5) resonant saddles

Finally, for general positive integer q � 5, we consider the integrability and linearizability 
conditions for cubic Z2-equivariant systems with 1:(−q) resonant saddles. When λ1 = 1, λ2 =
−q (q � 5), system (1.6) becomes

dx

dt
= −1

2
x − a21y + 1

2
x3 + a21x

2y + a12xy2 + a03y
3,

dy

dt
= y(−q + b12y + b03y

2 + 2b21z + b12yz + b21z
2),

(4.1)

which can be transformed into

dz

dt
= z + 1

2
(2a12y

2 + 2a03y
3 + 4a21yz + 2a12y

2z + 3z2 + 2a21yz2 + z3),

dy

dt
= (−q − b21)y + b21x

2y + b12xy2 + b03y
3,

(4.2)

by x = ±z + 1.
For a concrete q , we can compute the saddle values and periodic constants, from which the 

necessary conditions for integrability and linearizability may be obtained. However, for general 
positive integer q , it is difficult to obtain a consistent formula for the saddle values and periodic 
constants. Therefore, necessary conditions for general integer q are difficult to derive. The fol-
lowing slightly general sufficient conditions for arbitrary integer q � 5 are obtained following 
the pattern of the results given in Section 3.

Theorem 4.1. The two singular points (±1, 0) of system (4.1) are generalized complex centers if 
one of the following six conditions holds:

G1 :
(
b21 + 1

2

)(
b21 + 3

2

)(
b21 + 5

2

)
· · ·

(
b21 + 2q − 3

2

)
= 0;

G2 : a21 = 0, b21 = −2q − 1

2
;

G3 : a21 = 1

2q
b12((2q − 1) + 2b21), b03 = 2

2q + 1
a12(q + b21), b21 = −3q

2
;

G4 : a21 = 1

2q
b12((2q − 1) + 2b21), b03 = 2

2q + 1
a12(q + b21),

a03 = 1

q(2q + 1)
a12b12(2b21 − 1);

G5 : a21 = b03 = a12 = b12 = 0, (−1 + 6b21)(1 + 6b21)

× (5 + 6b21) · · · (11 + 6b21)(13 + 6b21)(17 + 6b21)[(4q + 3) + 6b21] = 0;
G6 : a21 = 0, a03 = 0, b12 = 0,
b21(b21 + 1)(b21 + 2)(b21 + 3) · · · [b21 + (q − 1)] = 0.
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Proof. To prove this theorem, we will apply either Theorem 2.1 for some conditions or other 
approaches such as finding invariant algebraic curves for other conditions. Although Theorem 2.1
can be used to prove complex isochronous centers, we in general can only claim complex center 
since some of the conditions are proved not using Theorem 2.1.

When the condition G1 in Theorem 4.1 holds, let b21 = − 2k−1
2 , k = 1 · · ·q − 1. Then, system 

(4.1) can be rewritten as

dx

dt
= 1

2

(
−x + x3 − 2a21y + 2a21x

2y + 2a12xy2 + 2a03y
3
)

,

dy

dt
= 1

2
y

(
1 − 2k + 2q − x2 + kx2 + 2b12xy + 2b03y

2
)

,

which can be transformed into

du

dt
= u + 2a21(1 − u)kuv + 2(a12 + a03(1 − u)kv)(1 − u)2kv2,

dv

dt
= − qv + v

{
(1 − u)k−1v

[
b12 + a21(−1 + 2k)u

+ (1 − u)kv(b03 + a12(−1 + 2k) + a03(−1 + 2k)(1 − u)kv)
]}

,

by

u = x2 − 1

x2 , v = x2k−1y.

Further, introducing v = zq into the above system we obtain

du

dt
= u + 2a21(1 − u)kuzq + 2(1 − u)2kz2q(a12 + a03(1 − u)kzq),

dz

dt
= − z + 1

q
z
{
(1 − u)k−1zq

[
b12 + a21(−1 + 2k)u + (1 − u)kzq(b03

+ a12(−1 + 2k) + a03(−1 + 2k)(1 − u)kzq)
]}

.

Since for a fixed k (1 ≤ k ≤ q − 1) it is easy to verify that the condition (2.6) in Theorem 2.1
is true under the condition G1, the origin of above system is a complex isochronous center, 
implying that (±1, 0) of system (4.1) are generalized complex isochronous centers under the 
condition G1.

When the condition G2 in Theorem 4.1 holds, system (4.1) can be rewritten as

dx

dt
= 1

2

(
−x + x3 + 2a12xy2 + 2a03y

3
)

,

dy

dt
= −1

2
y

(
1 − x2 + 2qx2 − 2b12xy − 2b03y

2
)

,

which can be transformed to
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du

dT
= u + 2(a12 + a03v)(1 + u)v2,

dv

dT
= −qv − v(−b12v + a12v

2 − b03v
2 + a03v

3),

(4.3)

by

u = x2 − 1, v = y

x
, t = (u + 1)T .

Further, introducing v = zq into system (4.3) yields

du

dT
= u + 2a12(1 + u)z2q + 2a03(1 + u)z3q,

dz

dT
= −z + 1

q
z(b12z

q − (a12 − b03)z
2q − a03z

3q).

(4.4)

Thus, according to Theorem 2.1, the origin of system (4.4) is complex isochronous center when 
the condition G2 is satisfied, implying that the conclusion holds.

If the condition G3 in Theorem 4.1 holds, system (4.1) can be simplified to

dx

dt
= 1

4

(
−2x + 2x3 + 3b12y − 3b12x

2y + 4a12xy2 + 4a03y
3
)

,

dy

dt
= −1

5
y

(
−5 + 15x2 − 5b12xy + 2a12y

2
)

.

(4.5)

It can be shown that system (4.5) has an invariant curve f1 = y, which admits an integrating 

factor, F1 = y
− 1

q . So the origin of system (4.5) is a generalized complex center.
When the condition G4 in Theorem 4.1 holds, system (4.1) becomes

dx

dt
= 1

2q(2q + 1)

( − qx − 2q2x + qx3 + 2q2x3 + b12y + 3b12qy

+ 2b12q
2y − b12x

2y − 3b12qx2y − 2b12q
2x2y

+ 2a12qxy2 + 4a12q
2xy2 − 2a12b12y

3 − 6a12b12qy3),
dy

dt
= − 1

2(2q + 1)
y

( − q − 2q2 + 3qx2 + 6q2x2 − 2b12xy

− 4b12qxy + 2a12qy2).

(4.6)

By computing the invariant algebraic curves of system (4.6), we obtain a first integral for system 
(4.6), given by

M3 = f1f
−2(q+b21)
10 f

q
11,

where

f1 = y, f10 = qx − b12y, f11 = −1 − 2q + x2 + 2qx2 + 2a12y
2,
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which indicates that the origin of system (4.6) is a generalized complex center under the condition 
G4.

When the condition G5 in Theorem 4.1 holds, we let b21 = − 2k−1
6 , k = 1 · · ·q − 1. Then, 

system (4.2) can be rewritten as

dz

dt
= 1

2

(
2z + 3z2 + z3 + 2a03y

2
)

,

dy

dt
= −1

6
y

(
6q − 2z + 4kz − z2 + 2kz2

)
,

which can be transformed to

dz

dt
= 1

2

(
2z + 3z2 + z3 + 2a03w

3q
)

,

dw

dt
= − 1

6q
w

(
6q − 2z + 4kz − z2 + 2kz2

)
,

(4.7)

by y = wq . Further, with the transformation,

u = z(2 + z)

2(1 + z)2 , v = w(1 + z)
2k−1

3q ,

system (4.7) can be changed to

du

dt
= u + a03(1 − 2u)k+1v3q,

dv

dt
= −v − a03(1 − 2k)

3q
(1 − 2u)kv3q+1,

(4.8)

which shows that the origin of the above system is integrable according to Theorem 2.1, implying 
that the origin of system (4.8) is a complex isochronous center and so the conclusion is true.

When the condition G6 in Theorem 4.1 holds, let b21 = −(m − 1), m = 1 · · ·q . Then, system 
(4.2) can be rewritten as

dz

dt
= 1

2
(z + 1)

(
2z + z2 + 2a12y

2
)

,

dy

dt
= −y

(
q − 2z + 2mz − z2 + mz2 − b03y

2
)

,

which can be transformed to

dz

dt
= 1

2
(1 + z)(2z + z2 + 2a12w

2q),

dw

dt
= −w + 1

q
w(2z − 2mz + z2 − mz2 + b03w

2q),

by y = wq , and can be further changed to
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du

dt
= u + a12(1 − 2u)2m−1v2q,

dv

dt
= −v − 2a12 − b03 − 2a12m

q
(1 − 2u)2m−2v2q+1,

(4.9)

under the transformation,

u = z(2 + z)

2(1 + z)2 , v = w(1 + z)
2(m−1)

q .

This shows that the origin of system (4.9) is a complex isochronous center according to Theo-
rem 2.1, and so the conclusion is true. �

Furthermore, we also have

Theorem 4.2. The two singular points (±1, 0) of system (4.1) are generalized complex 
isochronous centers if one of the following seven conditions holds:

G1, G2, G5, G6 (in Theorem 4.1) and

G3−1 : a21 = b12 = b03 = a12 = a03 = 0, b21 = −6, b21 = −3q

2
;

G4−1 : a21 = b12, a03 = 0, b03 = a12, b21 = 1

2
;

G4−2 : a21 = 0, a03 = 0, b03 = 0, a12 = 0, b12 = 0.

(4.10)

Proof. According to Theorem 2.1, as one of the conditions G1, G2, G5 and G6 holds, the origin 
of system (4.2) is a generalized complex isochronous center. So any of the conditions G1, G2, 
G5 and G6 is sufficient such that (±1, 0) of system (4.1) are generalized complex isochronous 
centers.

When the condition G3−1 in Theorem 4.2 holds, system (4.2) can be rewritten as

dz

dt
= 1

2
z(z + 1)(z + 2),

dy

dt
= −q

2
y

(
2 + 6z + 3z2

)
,

which can be transformed to

dz

dt
= 1

2
z(1 + z)(2 + z),

dw

dt
= −w − 1

2
w(6z + 3z2),

by y = wq . Further, introducing the transformation,

u = z(2 + z)

2(1 + z)2 , v = w(1 + z)3,

into the above system yields

du = u,
dv = −v, (4.11)
dt dt
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which implies that the origin of the above system is linearizable.
When the condition G4−1 in Theorem 4.2 holds, system (4.2) becomes

dz

dt
= 1

2
(2a12w

2 + 2z + 4b12wz + 2a12w
2z + 3z2 + 2b12wz2 + z3),

dy

dt
= 1

2
y

(
−2q + 2b12y + 2a12y

2 + 2z + 2b12yz + z2
)

.

(4.12)

It can be shown that system (4.12) has three invariant algebraic curves:

f1 = y, f12 = q − b12w + qz, f13 = 2a12y
2 + 2(1 + 2q)z + (1 + 2q)z2,

which admit a first integral F = f 2
1 f

−2−4q
12 f

2q
13 , and a linearization transformation,

ξ = f12f
−2
13 , η = w

− 1
q f

− 1
q

12 .

When the condition G4−2 in Theorem 4.2 holds, system (4.2) can be rewritten as

dz

dt
= 1

2
z(z + 1)(z + 2),

dy

dt
= y

(
−q + 2b21z + b21z

2
)

,

which can be transformed to

dz

dt
= 1

2
z(1 + z)(2 + z),

dw

dt
= −w + 1

q
w(2b21z + b21z

2), (4.13)

by y = wq . Further, with the transformation

u = z(2 + z)

2(1 + z)2 , v = w(1 + z)
− 2b21

q ,

system (4.13) can be changed to the linear system (4.11).
The proof is complete. �
Although we cannot prove that the conditions given in Theorems 4.1 and 4.2 are necessary, 

we have the following Conjecture, based on the results for the cases q = 1, 2, 3, 4.

Conjecture 4.1. The two singular points (±1, 0) of system (4.1) are integrable if and only if one 
of the six conditions in Theorem 4.1 holds, and moreover, they are linearizable if and only if one 
of the seven conditions in Theorem 4.2 holds.
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5. Integrability and linearizability conditions for cubic Z2-equivariant systems with 1:q
resonant nodes

Cubic Z2-equivariant systems with two λ1:(nλ1) resonant nodes can always be written as

dx

dt
= −1

2
λ1x − a21y + 1

2
λ1x

3 + a21x
2y + a12xy2 + a03y

3,

dy

dt
= (nλ1 − b21)y + b21x

2y + b12xy2 + b03y
3,

(5.1)

which can be further changed to

dz

dt
= 1

2
(2λ1z + 4a21zy + 2a21z

2y + 2a12y
2

+ 2a12zy
2 + 2a03y

3 + 3λ1z
2 + λ1z

3),

dy

dt
= y(nλ1 + 2b21z + b21z

2 + b12y + b12zy + b03y
2

(5.2)

by z = ±x − 1.
The following theorem directly follows Corollary 1.6.1 in [28].

Theorem 5.1. The origin of system (5.2) is linearizable, and therefore if a cubic Z2-equivariant 
system has two resonant nodes, it is linearizable.
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