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a b s t r a c t 

Calcium ions are important in cell process, which control cell functions. Many models on 

calcium oscillation have been proposed. Most of existing literature analyzed calcium os- 

cillations using numerical methods, and found rich dynamical behaviours. In this paper, 

we explore a further study on an established three-store model, which contains endoplas- 

mic reticulum (ER), mitochondria and calcium binding proteins. We conduct bifurcation 

analysis to identify two Hopf bifurcations, and apply normal form theory to study their 

stability and show that one of them is supercritical while the other is subcritical. Further, 

we transform the model into a slow-fast system, and then apply the geometrical singu- 

lar perturbation theory to investigate the mechanism of generating slow-fast motions. The 

study reveals that the mechanism of generating the slow-fast oscillating behaviour in the 

three-store calcium model for certain parameter values is due to the relative fast change 

in the free calcium in cytosol, and relative slow changes in the free calcium in mitochon- 

dria and in the bounded Ca 2+ binding sites on the cytosolic proteins. A further parametric 

study may provide some useful information for controlling harmful effect, by adjusting the 

amount of calcium in a human body. Numerical simulations are present to demonstrate 

the correct analytical predictions. 

© 2017 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

1. Introduction 

Calcium ions are very important and essential substance in cells, one of the main second messengers in the intracel-

lular signalling process [1] . Calcium ions control many cellular functions, such as neuronal differentiation [2] , muscle cell

contraction [3] , egg activation [4] and so on. The common changes of calcium ions concentration in cells are related to

oscillations [5] , which has been found in experiments since 1980s [6] . After then many biologists continued experimental

studies in order to explain how the oscillations occur, while applied mathematicians paid attention to theoretical studies of

this phenomenon. 

To understand the calcium oscillation, we first give a brief description of this phenomenon. There are several intracellular

compartments involved in the general scheme of oscillation process, such as endoplasmic reticulum (ER), mitochondria,

calcium binding sites, etc [7,8] . We call the ER, mitochondria and calcium binding sites as calcium stores in cell, among

which the ER is the largest one. Suppose one intracellular signal molecule is moving to the membrane of the cell. Then,
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G-protein coupled receptors (GPCR) on the cell membrane will combine with the signal molecule to activate a kind of G-

proteins called phospholipase C (PLC), and the PLC decomposes phosphatidyl inositol 4,5-bisphosphate (PIP 2 ) into inositol

1,4,5-trisphosphate (IP 3 ) and diacylglycerol (DAG) [9] . The IP 3 is a vital substance in calcium oscillations, because the main

oscillation process is the release of calcium ions from the ER into cytosol, which is sensitive to IP 3 [10] . Moreover, the

IP 3 can activate IP 3 receptors (IP 3 R) on the membrane of ER leading to the calcium release [11] . Besides the IP 3 release

channel on the membrane of ER, another release channel is controlled by ryanodine receptor (RyR) [12] , which is activated

by cyclic ADP ribose. Opening of IP 3 R and RyR is also stimulated by calcium-induced calcium release scheme (CICR) [13] ,

implying that the changes of calcium concentration in cytosol leads to calcium release from ER. The process described above

is the release from ER. The efflux pumping from cytosol to ER is activated through the sarco-endoplasmic reticulum ATPase

(SERCA) [14] , which is a substance on the membrane of ER and uses ATP hydrolysis to pump calcium into ER. 

The uniporter on the membrane of mitochondria is a mechanism that responds to either membrane potential, stress or

ligand binding, and uptakes calcium into mitochondria [15] . The efflux channel from mitochondria is through Na + / Ca 2+ and

H 

+ / Ca 2+ exchangers, combined with a flux through the mitochondrial permeability transition pores (PTPs) [16] . 

Based on the general schemes discussed above, many mathematical models have been established, which can be classi-

fied into two types: either or not including the concentration of IP 3 as a state variable in the model [17–20] . We may also

categorize them according to the number of calcium stores involved, yielding two calcium stores models [20–22] and three

calcium stores models [23–25] . Since different cells have different calcium oscillations, it is hard to determine which one is

better. In most of existing publications, numerical simulations are used to show rich dynamical behaviours such as regular

bursting, spiking, quasi-periodic bursting and chaotic bursting [26] . However, the general mechanism underlying these rich

dynamical behaviours remains open. This study will focus on two typical regular bursting oscillations: point-point bursting ,

denoted as 1 0 (one large-amplitude oscillation without small-amplitude oscillation) mixed-mode oscillation, and point-cycle

bursting , denoted as 1 s (s ∈ Z 

+ ) (one large-amplitude oscillation with s small-amplitude oscillations between) mixed-mode

oscillation. Both the two regular bursting types contain slow-fast oscillations. The motivation of this study is to use bifurca-

tion analysis and geometric singular perturbation method to find out the mechanism of generating these two typical calcium

oscillations. 

In particular, we modify a three-store calcium oscillation model to exclude possibility of chaos. We apply bifurcation

theory to show that the only possible bifurcation arising from the positive equilibrium of the system is Hopf bifurcation and

identify two Hopf critical points. Then we apply normal form theory to study the stability of limit cycles, indicating that

Hopf bifurcation is a source of the oscillation behaviour. In order to provide a further theoretical study on the oscillation

induced by Hopf bifurcation, we carefully compare the order of parameters and choose an appropriate parameter as a small

perturbation parameter so that the geometric singular perturbation method (GSPM) can be applied to investigate the slow-

fast motions, with the fast variable representing the free calcium concentration in cytosol, and the slow variable describing

the free calcium concentration in mitochondria and the bounded Ca 2+ binding sites concentration in cytosolic proteins. We

identify folded singularities and singular orbits, which can be classified as either folded saddle or folded focus depending

upon the eigenvalues at the singular points. The former can cause many small-amplitude oscillations travelling on a large-

amplitude oscillation, while the latter has only large-amplitude oscillation. Two examples are given to illustrate these slow-

fast motions. 

The rest of paper is organized as follows. In Section 2 , we present an established three-store model describing calcium

oscillations, and prove that the solutions of the model are well-posed and bounded. In Section 3 , we analyze Hopf bifurcation

by using normal form theory and show some numerical verification. In Section 4 , we first derive a dimensionless model and

then give a complete singular perturbation analysis to explain the mechanism of calcium oscillation. Moreover, we present

two examples to demonstrate the theoretical results. Finally, conclusion is drawn in Section 5 . 

2. Mathematical model and well-posedness of solutions 

2.1. Mathematical model 

In this paper, we consider a three-store calcium oscillation model, which was developed and studied numerically in [23] .

As shown in Fig. 1 , this model consists of three different calcium stores, the ER, the mitochondria and the calcium binding

proteins in cytosol. The ER has tree flux channels: J pump , J ch and J leak . The J pump denotes the transport of Ca 2+ into the ER

by SERCA, the J ch represents the Ca 2+ release from the ER to cytosol following the CICR, and the J leak denotes an additional

efflux channel from the ER to cytosol which is sensitive to IP 3 . For the mitochondria, there exist two exchange channels

between mitochondria and cytosol: J in and J out . The J in describes active transport of Ca 2+ from cytosol to mitochondria

through a specific uniporter, and the J out represents the Ca 2+ release from mitochondria to cytosol through Na + / Ca 2+ and

H 

+ / Ca 2+ exchangers, combined with a flux through the mitochondrial PTPs. 

Thus, we have the following equations for the exchange channels: 

J pump = k pump Ca Cyt , 

J ch = k ch 

Ca 2 Cyt 

K 

2 
1 

+ Ca 2 
Cyt 

(C a ER − C a Cyt ) , 
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Fig. 1. Schematic presentation of the model (2.2) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

J leak = k leak (C a ER − C a Cyt ) , 

J in = k in 
Ca 8 Cyt 

K 

8 
2 

+ Ca 8 
Cyt 

, 

J out = k out 
Ca Mit 

K 3 + Ca Mit 

. (2.1) 

Note that in model (2.1) , except for J out , all expressions are taken from [23] , while J out is chosen from [24] , which is based

on experimental results in [27] . There are five state variables involved in model (2.1) : the free calcium concentration in

cytosol ( Ca Cyt ), the free calcium concentration in the ER ( Ca ER ), the free calcium concentration in mitochondria ( Ca Mit ), the

concentration of free Ca 2+ binding sites on the cytosolic proteins ( Pr ), and the concentration of bounded Ca 2+ binding

sites on the cytosolic proteins ( CaPr ). Consequently, we obtain a set of ordinary differential equations (ODEs) describing the

model: 

d Ca Cyt 

d t 
= J ch + J leak − J pump + J out − J in + k −CaP r − k + Ca Cyt P r, 

d Ca ER 

d t 
= 

βER 

ρER 

(J pump − J ch − J leak ) , 

d Ca Mit 

d t 
= 

βMit 

ρMit 

(J in − J out ) , 

d CaP r 

d t 
= k + Ca Cyt P r − k −CaP r, 

d P r 

d t 
= −k + Ca Cyt P r + k −CaP r, (2.2) 

where ρER and ρMit are the volume ratios between the ER and cytosol, and between mitochondria and cytosol, respectively.

βER and βMit represent the ratios of the concentrations of free calcium in the ER and mitochondria to the respective total

concentration of calcium, k + and k − denote average kinetic constants of Ca 2+ binding to the buffer proteins and the reverse

process. 

For model (2.2) , in genearl we may assume the following two conditions hold. 

A1 . There is no calcium exchange between intracellular and extracellular, which means that the total calcium concentra-

tion Ca tot remains a constant, i.e., 

C a tot = C a Cyt + 

ρER 

βER 

C a ER + 

ρMit 

βMit 

C a Mit + C aP r. (2.3)

A2 . There is no protein binding site exchange between intracellular and extracellular, implying that the total concentra-

tion of bounded and unbounded proteins Pr tot is a constant, namely, 

P r tot = P r + CaP r. (2.4) 

These two assumptions are reasonable since the calcium and protein binding sites transport across membrane is much

slower than the intracellular transport process [24] . Under (2.3) and (2.4) , the five differential equations in (2.2) can be

reduced to three. In this paper, we select Ca Cyt , Ca Mit and CaPr as state variables, and for convenience, introduce the new

variables: 

X = Ca Cyt , Y = Ca Mit , Z = CaP r. 
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Table 1 

Parameter values for model (2.2) [23,24] . 

Parameter Definition Value 

Ca tot Total concentration of calcium 90 μM 

Pr tot Total concentration of binding sites 120 μM 

k ch The maximal permeability of the CICR channels 4200 s −1 

k pump The rate constant of the pump 20 s −1 

k leak The rate constant for Ca 2+ leakage through The membrane of ER 0 . 05 s −1 

k in The maximal permeability of the uniporters in the mitochondrial membrane μMs −1 

k + The average kinetic constant of Ca 2+ binding to the buffer proteins 0 . 1 μMs −1 

k − The average kinetic constant of Ca 2+ unbinding from the buffer proteins 0 . 01 s −1 

k out The maximal rate of calcium flow through Na + / Ca 2+ and H 

+ / Ca 2+ exchangers 1 . 9 μMs −1 

ρER The volume ration between the ER and the cytosol 0.01 

ρMit The volume ration between the mitochondria the mitochondria and the cytosol 0.01 

βER The constant for relating the concentrations of free calcium in the ER to the total concentrations 0.0025 

βMit The constant for relating the concentrations of free calcium in the mitochondria to the total concentrations 0.0025 

K 1 The half-activation constant 5 μM 

K 2 The half-activation constant 0.8 μM 

K 3 The half-activation constant 3.1 μM 
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Fig. 2. Simulated time history for system (2.5) for (a) k ch = 1200 ; and (b) k ch = 4200 . 

 

 

 

 

 

 

 

Solving Ca ER from (2.3) , Pr from (2.4) , and substituting them into the first, third and fourth equations in (2.2) , we obtain the

following 3-D ODE system: 

d X 

d t 
= k ch 

X 

2 

K 

2 
1 

+ X 

2 

[
βER 

ρER 

(Ca tot − X − ρMit 

βMit 

Y − Z) − X 

]
+ k leak 

[
βER 

ρER 

(Ca tot − X − ρMit 

βMit 

Y − Z) − X 

]
− k pump X 

+ k out 
Y 

K 3 + Y 
− k in 

X 

8 

K 

8 
2 

+ X 

8 
+ k −Z − k + X (P r tot − Z) 

≡ f 1 (X, Y, Z) , 

d Y 

d t 
= 

βMit 

ρMit 

(k in 
X 

8 

K 

8 
2 

+ X 

8 
− k out 

Y 

K 3 + Y 
) ≡ f 2 (X, Y ) , 

d Z 

d t 
= −k −Z + k + X (P r tot − Z) ≡ f 3 (X, Z) . (2.5)

All the parameter values listed in Table 1 , except k out , are taken from [23] , while k out is chosen from [24] . These parameters

vary depending on the types of cells. To study the complex intracellular Ca 2+ behavior, the parameter k ch is usually taken as

a bifurcation parameter, because the change of k ch corresponds to the change of inhibitor (i.e., Mg 2+ ) and potentiator (i.e.,

ATP and caffeine) in cell, which can be changed by external stimuli [28,29] . 

In Fig. 2 , two simulations are given to illustrate two typical oscillations for model (2.5) , with k ch = 1200 for Fig. 2 (a) and

k ch = 4200 for Fig. 2 (b). Clearly, Fig. 2 (a) exhibits a relaxation oscillation, while Fig. 2 (b) shows a motion involving many

small-amplitude oscillations between large-amplitude oscillations. 
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2.2. Positivity and boundness of solutions 

Physically meaningful solutions must be non-negative and bounded. We have the following theorem for model (2.5) , 

Theorem 2.1. All solutions of the calcium oscillation model (2.5) are non-negative provided the initial conditions are taken non-

negative, and bounded. 

To prove the above theorem, we need the following lemma. 

Lemma 2.1. (Lemma 1 in [24] ) The cone R 

N + is invariant for the flow generated by the equation, 

d u 

d t 
= f (u ) 

if and only if the function f(u) is quasi-positive, i.e. for every i = 1 , . . . , N the function 

f i (u 1 , . . . , 0 , . . . , u N ) ≥ 0 , 

where 0 stands at the i-th position and u j ≥ 0 for j � = i. 

Proof. Applying Lemma 2.1 to model (2.5) , we have N = 3 and 

f 1 (0 , Y, Z) = k leak 

βER 

ρER 

(
Ca tot − ρMit 

βMit 

Y − Z 

)
+ k out 

Y 

K 3 + Y 
+ k −Z 

f 2 (X, 0 , Z) = k in 
βMit 

ρMit 

X 

8 

K 

8 
2 

+ X 

8 

f 3 (X, Y, 0) = k + X P r tot 

It is seen from Table 1 that all parameter values are positive. For the first equation, since (2.3) holds, yielding Ca tot −
ρMit 
βMit 

Y − Z = 

ρER 
βER 

Ca ER + X ≥ 0 , implying that f 1 (0, Y, Z ) ≥ 0. It is easy to see that f 2 ( X , 0, Z ) ≥ 0 and f 3 ( X, Y , 0) ≥ 0 for non-

negative initial conditions. Thus by Lemma 2.1 , the positivity of solutions of model (2.5) is proved. 

It remains to prove that the non-negative solutions of (2.5) are bounded. Let ( X ( t ), Y ( t ), Z ( t )) be a non-negative solution

and consider 

V = X (t) + 

ρMit 

βMit 

Y (t) + Z(t) . 

Then, differentiating V with repsect to t and evaluating it along the trajectory of (2.5) yields 

d V 

d t 
= 

( k leak + k ch ) Ca tot βER 

ρER 

− V 1 = 

⎧ ⎪ ⎨ ⎪ ⎩ 

< 0 if V 1 > 

( k leak + k ch ) Ca tot βER 

ρER 

, 

> 0 if V 1 < 

( k leak + k ch ) Ca tot βER 

ρER 

, 

where V 1 is given by 

V 1 = k pump X + 

(
k ch 

X 

2 

K 

2 
1 

+ X 

2 
+ k leak 

)[ βER 

ρER 

(X + 

ρMit 

βMit 

Y + Z) + X 

] 
+ 

k ch Ca tot βER 

ρER 

K 

2 
1 

K 

2 
1 

+ X 

2 
, 

which defines a surface in the R 3 + space. Therefore, all positive solutions are attracted into the trapping region �, defined

by 

� = { (X, Y, Z) | X ≥ 0 , Y ≥ 0 , Z ≥ 0 , V 1 ≤ 0 } . 
This implies that all solutions are bounded. 

The proof of Theorem 2.1 is complete. �

3. Stability and bifurcation analysis 

In this section, we choose parameter values from Table 1 except the bifurcation parameter k ch . To facilitate symbolic

computation, we transform all the values in rational numbers. For convenience, we denote k ch as α. Letting f 1 (X, Y, Z) =
f 2 (X, Y ) = f 3 (X, Z) = 0 , we get the equilibrium, denoted as E = (X 0 , Y 0 , Z 0 ) . Solving Y 0 from f 2 (X 0 , Y 0 ) = 0 yields Y 0 = Y (X 0 ) ,

and Z 0 from f 3 (X 0 , Z 0 ) = 0 gives Z 0 = Z(X 0 ) , and then substituting these two solutions into f 3 (X 0 , Y 0 , Z 0 ) = 0 we obtain a

polynomial equation in X 0 and α as follows: 

f (α, X 0 ) = 560332800 − 11860377600 X 0 − 3997040640 X 

4 
0 

+ 3737894531250 X 

12 
0 + 2328906250 0 0 αX 

12 
0 − 24 9036 800 αX 

4 
0 

+ 10364853515625 X 

9 
0 + 934234968750 0 0 X 

10 
0 − 474415104 X 

3 
0 

+ 414594140625 X 

11 
0 − 99903602688 X 

2 
0 + 448266240 αX 

2 
0 
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Fig. 3. Bifurcation diagram for system (2.5) projected on the α − X plane, with the solid and dotted curves to denote stable and unstable equilibria, 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

− 4773281250 0 0 αX 

10 
0 − 1519124480 αX 

3 
0 

+ 839382812500 αX 

11 
0 − 596 6 60156250 X 

8 
0 

= 0 . (3.1)

Note that in the above calculation, we only take the numerator part of the expression, since the denominator is non-zero.

The bifurcation diagram based on (3.1) is shown in Fig. 3 . To find stability of the equilibrium E , we calculate the Jacobian of

system (2.5) at E to obtain 

J| (X 0 ,Y 0 ,Z 0 ) = 

[ 

f 1 x f 1 y f 1 z 
f 2 x f 2 y 0 

f 3 x 0 f 3 z 

] 

, (3.2)

which in turn generates the characteristic polynomial P (λ, α) = det (λI − J| E ) = 0 , where 

P (λ, α) = λ3 + a 1 (α) λ2 + a 2 (α) λ + a 3 (α) . (3.3)

According to Hurwitz Criterion [30] , the equilibrium E is asymptotically stable if and only if all the roots of P ( λ, α) have

negative real part, or equivalently, if and only if all the Hurwitz arrangements �i (α) , (i = 1 , 2 , 3) are positive, where 

�1 (α) = a 1 (α) , �2 (α) = a 1 (α) a 2 (α) − a 3 (α) , �3 (α) = a 3 (α)�2 (α) 

Based on Hurwitz Criterion, we know that the conditions for a static bifurcation to occur from the equilibrium E are a 3 (α) =
0 , a 1 ( α) > 0 and �2 ( α) > 0. To examine if a static bifurcation may arise from equilibrium E , we substitute Y 0 = Y (X 0 ) and

Z 0 = Z(X 0 ) into a 3 ( α) to get a polynomial function of a 3 (α, X 0 ) = 0 . Now combined with f (α, X 0 ) = 0 , we eliminate α from

two polynomial equations to obtain a function α( X 0 ) and a resultant function S(X 0 ) = 0 . Then, solving S(X 0 ) = 0 yields a

solution X 0 = 17 . 14789348 , which is substituted into α(X 0 ) = 0 to obtain a solution α = −14 . 56 6 68978 < 0 . Therefore, for

the parameter values given in Table 1 , there does not exist physically meaningful static bifurcation from E . 

To identify a Hopf bifurcation in general n -dimensional dynamical systems, the following theorem provides sufficient and

necessary conditions. 

Theorem 3.1. (Theorem 2.2.1 in [31] ) The necessary and sufficient conditions for a Hopf bifurcation to occur from an equilibrium

of general n-dimensional dynamical systems are �n −1 = 0 , a n > 0 and �i > 0 ( 1 ≤ i ≤ n − 2 ). 

To examine if a Hopf bifurcation may arise from the equilibrium E , we substitute Y 0 = Y (X 0 ) and Z 0 = Z(X 0 ) into �2 (α) =
a 1 (α) a 2 (α) − a 3 (α) to get a polynomial function �2 (α, X 0 ) = 0 . Then combined with f (α, X 0 ) = 0 , we eliminate α from the

two polynomial equations to obtain the solution α = α(X 0 ) , and a resultant function H(X 0 ) = 0 . Solving H(X 0 ) = 0 we obtain

solutions for X 0 , which are substituted into α( X 0 ) to obtain solutions for α. Using Theorem 3.1 , we have identified two Hopf

bifurcation points (αH 1 
, X H 1 ) = (473 . 83509348 , 0 . 07443800) and (αH 2 

, X H 2 ) = (4459 . 36206111 , 0 . 26063065) , both of which

are indicated in Fig. 3 . 

Moreover, we have the following result. 

Theorem 3.2. The Hopf bifurcation corresponding to (αH 1 
, X H 1 ) is subcritical, while the one corresponding to (αH 2 

, X H 2 ) is su-

percritical. 
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Proof. We apply center manifold theory and normal form theory, and the Maple program developed by Yu [32] to system

(2.5) to analyze the Hopf bifurcations which occur at the two critical points. Suppose that the Jacobian matrix of a general

dynamical system, described by ˙ x = f (x, α) , x ∈ R 

n , α ∈ R , evaluated on an equilibrium at a critical point α = αc , contains

a pair of purely imaginary eigenvalues ± i ω c , and all other eigenvalues have negative real part. Then, the normal form

associated with a Hopf bifurcation, describing the dynamics on a 2-dimensional center manifold near the critical point, can

be written in polar coordinates as 

d r 

d t 
= r (v 0 μ + v 1 r 2 + . . . ) , 

d θ

d t 
= ω c + τ0 μ + τ1 r 

2 + . . . 

where μ = α − αc . The coefficient v 1 is called the first-order focus value, which determines the stability of bifurcating limit

cycles: when v 1 < 0 ( > 0), the Hopf bifurcation is called supercritical (subcritical), and the bifurcating limit cycles are stable

(unstable). 

Before applying the Maple program [32] to system (2.5) , we need to transfer the equilibria to the origin and make the

Jacobian of the system in the Jordan canonical form. For the first bifurcation point (αH 1 
, X H 1 ) , we introduce the transfor-

mations: X 1 =X − 0 . 07443800 , Y 1 =Y − 0 . 0 0 0 0 0750 , Z 1 =Z − 51 . 20765088 , μ=α − 473 . 83509348 . Then at (0, 0, 0), using the

Taylor expansion of the transformed system up to third order, and further introducing the following linear transformation, [ 

X 1 

Y 1 
Z 1 

] 

= 

[ 

0 . 05597993 − 0 . 01515741 − 0 . 0 0 036637 

0 . 0 0 0 0 0 042 − 0 . 0 0 0 0 0633 0 . 0 010 0 010 

− 0 . 22625777 − 1 . 01732823 0 . 01855946 

] [ 

X 2 

Y 2 
Z 2 

] 

, 

into system (2.5) yields, ⎡ ⎣ 

˙ X 2 

˙ Y 2 
˙ Z 2 

⎤ ⎦ = 

[ 

f 1 (X 2 , Y 2 , Z 2 , μ) 
f 2 (X 2 , Y 2 , Z 2 , μ) 
f 3 (X 2 , Y 2 , Z 2 , μ) 

] 

, (3.4) 

where f i , i = 1 , 2 , 3 are lengthy polynomials up to third order, omitted here for brevity. 

Now, the Jacobian of system (3.4) evaluated at the origin is in Jordan canonical form: 

J| (0 , 0 , 0) = 

[ 

0 ω c 1 0 

−ω c 1 0 0 

0 0 − 0 . 15324213 

] 

, 

in which ω c 1 = 0 . 38241922 . The coefficients v 0 and τ 0 can be obtained by using the formulas given in [33] : 

v 0 = 

1 

2 

(
∂ f 1 

∂ X 2 ∂ μ
+ 

∂ f 2 
∂ Y 2 ∂ μ

)
= 0 . 02844762 , 

τ0 = 

1 

2 

(
∂ f 1 

∂ Y 2 ∂ μ
− ∂ f 2 

∂ X 2 ∂ μ

)
= − 0 . 0 0 079828 . 

Now applying the Maple program [32] to system (3.4) (setting μ = 0 ) results in v 1 = 1 . 01766511 and τ1 = −121 . 369686 6 6 .

Therefore, the normal form associated with the first Hopf bifurcation up to third order is given by, 

d r 

d t 
= r (0 . 02844762 μ + 1 . 01766511 r 2 + · · · ) , 

d θ

d t 
= 0 . 38241922 − 0 . 0 0 079828 μ − 121 . 369686 6 6 r 2 + . . . , (3.5) 

which shows v 1 > 0, indicating that the first Hopf bifurcation associated with the critical point H 1 (αH 1 
, X H 1 ) is subcritical. 

For the second Hopf bifurcation point, similarly we apply the same procedure. Let X 1 =X − 0 . 260 630 65 , Y 1 =Y −
0 . 0 0 0 0 0 0 06 , Z 1 =Z − 86 . 72495839 , μ=α − 4459 . 36206111 . Then, introducing the following linear transformation, [ 

X 1 

Y 1 
Z 1 

] 

= 

[ 

1 . 02526315 − 0 . 35477053 0 . 71822809 

− 0 . 02502722 − 0 . 82998987 0 . 74825735 

− 0 . 31396442 − 0 . 93717881 − 0 . 28777169 

] [ 

X 2 

Y 2 
Z 2 

] 

, 

into the system (2.5) yields ⎡ ⎣ 

˙ X 2 

˙ Y 2 
˙ Z 2 

⎤ ⎦ = 

[ 

F 1 (X 2 , Y 2 , Z 2 , μ) 
F 2 (X 2 , Y 2 , Z 2 , μ) 
F 3 (X 2 , Y 2 , Z 2 , μ) 

] 

, (3.6) 

where the lengthy functions f , i = 1 , 2 , 3 are omitted here. 
i 
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Fig. 4. (a) Numerical bifurcation diagram of system (2.5) ; and (b) Simulated time history of system (2.5) for k ch = 473 . 7 , converging to the equilibrium E . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Jacobian of system (3.6) evaluated at the origin is in the Jordan canonical form, 

J| (0 , 0 , 0) = 

[ 

0 ω c 2 0 

−ω c 2 0 0 

0 0 − 0 . 11911178 

] 

, 

in which ω c 2 = 3 . 65233388 . Then, similarly we obtain v 0 , τ 0 , v 1 and τ 1 for the second Hopf bifurcation, yielding the follow-

ing normal form up to third order, 

d r 

d t 
= r (−0 . 00276114 μ − 137 . 30341233 r 2 + · · · ) , 

d θ

d t 
= 3 . 65233388 − 0 . 0 0 036851 μ − 32 . 28641861 r 2 + · · · , (3.7)

which shows v 1 < 0, indicates that the second Hopf bifurcation associated with the critical point H 2 (αH 2 
, X H 2 ) is supercriti-

cal. 

This completes the proof of Theorem 3.2 . �

To this end, we present some simulations to verify the analytical predictions. We use model (2.5) to perform the simu-

lations with the parameter values taken from Table 1 , except k ch ( α). To study dynamical behaviours, we show a numerical

bifurcation diagram in Fig. 4 (a) from which we can see that oscillation amplitude jumps up around the subcritical Hopf

bifurcation point as α increases to cross the critical point, and disappears around the supercritcal Hopf bifurcation point.

For the supercritical Hopf bifurcation (consider it from larger values of k ch decreased to smaller values of k ch ), when k ch

passes the Hopf critical point, small oscillation happens, then with further decrease of k ch , the amplitude of oscillation sud-

denly jumps up. The mechanism of this “jump” phenomenon may be related to canard explosion which we will discuss in

next section. For the subcritical Hopf bifurcation, the trajectory solution converges to a stable oscillating motion due to the

boundedness. 

Now, we vary k ch from small values to large ones, taken as k ch = 473 . 7 , 473, 84, 4459 and 4460, with the corresponding

simulations shown in Fig. 4 (b), Figs. 5 , 6 and 7 , respectively. When k ch = 473 . 7 < αH 1 
= 473 . 83509348 , the solution trajec-

tories converge to the equilibrium E , as shown in Fig. 4 (b), while when k ch = 473 . 84 > αH 1 
= 473 . 83509348 , it becomes

unstable, and converge to a stable oscillating motion due to the boundedness of solutions (see Fig. 5 ). Fig. 6 shows simula-

tion for k ch = 4459 < αc 2 = 4459 . 36206111 , indicating that solution trajectories converge to a stable limit cycle. The radius

of the limit cycle can be estimated from (3.7) as r ≈ 0.00269833, which agrees well with that observed from Fig. 6 (b). When

k ch = 4460 > αH 2 
= 4459 . 36206111 , the solution trajectory converges to the equilibrium E . These simulations clearly verify

the theoretical results obtained in previous sections. 

4. Geometric singular perturbation analysis 

In the previous section, simulations have shown that near the two Hopf critical points, there exist fast-slow motions.

In this section, we apply the Geometric Singular Perturbation Method (GSPM) (e.g. see [34–37] ) to give a more rigorous

analysis on model (2.5) . The GSPM is now widely used on studying fast-slow motions, which combines theory of canard

cycles with a suitable global returning mechanism [38] . 
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Fig. 5. Simulation of system (2.5) for k ch = 473 . 84 , converging to a stable oscillating motion due to boundedness: (a) time history; and (b) phase portrait. 

Fig. 6. Simulation of system (2.5) for k ch = 4459 , converging to a stable limit cycle: (a) time history; and (b) phase portrait. 

 

 

 

 

4.1. Rescaling 

First, in order to apply the GSPM, we need introduce a proper scaling to model (2.5) , by defining new dimensionless

variables ( x, y, z, t 1 ) as follows: 

X = μ1 x, Y = μ2 y, Z = μ3 z, t = μ4 t 1 , (4.1)

where μ1 and μ2 are typical calcium concentration scales in cytosol and mitochondria, μ3 is typical concentration scale of

bounded Ca 2+ binding sites, and μ4 is a time rescale. Substituting (4.1) into (2.5) , we obtain the following dimensionless

system: 

μ1 

μ4 

d x 

d t 1 
= k ch 

μ2 
1 x 

2 

K 

2 
1 

+ μ2 
1 
x 2 

[
βER 

ρER 

(
Ca tot − μ1 x − ρMit 

βMit 

μ2 y − μ3 z 

)
− μ1 x 

]
+ k leak 

[
βER 

ρER 

(
Ca tot − μ1 x − ρMit 

βMit 

y − μ3 z 

)
− μ1 x 

]
− k pump μ1 x 

+ k out 
μ2 y 

K 3 + μ2 y 
− k in 

μ8 
1 x 

8 

K 

8 
2 

+ μ8 
1 
x 8 

+ k −μ3 z − k + μ1 x ( P r tot − μ3 z ) , 

μ2 

μ4 

d y 

d t 1 
= 

βMit 

ρMit 

(
k in 

μ8 
1 x 

8 

K 

8 
2 

+ μ8 
1 
x 8 

− k out 
μ2 y 

K 3 + μ2 y 

)
, 
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Fig. 7. Simulated time history of system (2.5) for k ch = 4460 , converging to the equilibrium E . 

 

 

 

 

 

 

 

 

 

1 

μ4 

d z 

d t 1 
= −k −z + k + μ1 x ( P r tot − z ) . 

In addition, in the above equations we set 
μ8 

1 

K 8 
2 

= 1 , 
μ2 
K 3 

= 1 , Pr tot 
μ3 

= 1 and 

μ4 βMit 
μ2 ρMit 

= 1 to get 

μ1 = μ2 = K 3 , μ3 = P r tot , μ4 = 

K 3 ρMit 

βMit 

, 

and so the above differential equations become 

K 2 βMit 

P r tot K 3 ρMit 

d x 

d t 1 
= 

k ch 

P r tot 

K 

2 
2 x 

2 

K 

2 
1 

+ K 

2 
2 

x 2 

[
βER 

ρER 

(
Ca tot − K 2 x − ρMit 

βMit 

K 3 y − P r tot z 

)
− K 2 x 

]
+ 

k leak 

P r tot 

[
βER 

ρER 

(
Ca tot − K 2 x − ρMit 

βMit 

K 3 y − P r tot z 

)
− K 2 x 

]
− k pump 

P r tot 
K 2 x + 

k out 

P r tot 

y 

1 + y 
− k in 

P r tot 

x 8 

1 + x 8 
+ k −z − k + K 2 x ( 1 − z ) , 

d y 

d t 1 
= k in 

x 8 

1 + x 8 
− k out 

y 

1 + y 
, 

d z 

d t 1 
= 

K 3 ρMit 

βMit 
[ −k −z + k + K 2 x ( 1 − z ) ] . 

Now, comparing the coefficients in the above system, we find that 
K 2 βMit 

Pr tot K 3 ρMit 
= 5 . 3763 × 10 −4 and 

k leak 
Pr tot 

= 4 . 1667 × 10 −4 are

much smaller than all other coefficients which are in the order of 10 −2 ∼ 10 2 . Thus, we introduce a small perturbation

parameter ε > 0 into the above system to obtain 

ε 
d x 

d t 1 
= 

(
k ch 

P r tot 

K 

2 
2 x 

2 

K 

2 
1 

+ K 

2 
2 

x 2 
+ ε 

)[
βER 

ρER 

(
Ca tot − K 2 x − ρMit 

βMit 

K 3 y − P r tot z 

)
− K 2 x 

]
−k pump 

P r tot 
K 2 x + 

k out 

P r tot 

y 

1 + y 
− k in 

P r tot 

x 8 

1 + x 8 
+ k −z − k + K 2 x ( 1 − z ) 

≡ f (x, y, z, ε) , 

d y 

d t 1 
= k in 

x 8 

1 + x 8 
− k out 

y 

1 + y 
, 

d z 

d t 1 
= 

K 3 ρMit 

βMit 
[ −k −z + k + K 2 x ( 1 − z ) ] . (4.2)

System (4.2) is a singular perturbed system (a slow-fast system) with two slow variables ( y, z ) and one fast variable x .

The proper identification of the fast and slow variables in the three-store calcium oscillation model allows us to utilize the

GSPM to investigate the dynamical behaviour of the system in geometric structure that involves mixed-mode interaction

and complex oscillations. 

To demonstrate the “jump” phenomenon with respect to ε, we vary ε from 10 −4 to 10 −2 to obtain the numerical bifur-

cation diagrams, shown in Figs. 8 , 9 (a) and 9 (b) for k ch = 500 , 3000 and 4200 respectively. It is seen from Figs. 8 and 9 (b)

that “jump” points exist, at which canard explosions happen, while the oscillation amplitude shown in Fig. 9 (a) changes
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Fig. 8. Numerical bifurcation diagram of system (4.2) for k ch = 500 (with other parameter value taken from Table 1 ). 

Fig. 9. Numerical bifurcation diagram of system (2.5) for (a) k ch = 30 0 0 ; and (b) k ch = 4200 (with other parameter value taken from Table 1 ). 

 

 

 

 

smoothly. This is not surprising since k ch = 500 and k ch = 4200 are near the two “jump” points while k ch = 30 0 0 is located

at the middle smooth part, as shown in Fig. 4 (a). 

4.2. Layer problem 

Further, introducing a time scale t 1 = ετ into (4.2) yields 

x ′ = f (x, y, z, ε) , 

y ′ = ε 

(
k in 

x 8 

1 + x 8 
− k out 

y 

1 + y 

)
, 

z ′ = ε 
K 3 ρMit 

βMit 
[ −k −z + k + K 2 x ( 1 − z ) ] , (4.3) 

in which the prime denotes differentiation with respect to the fast time τ . 

Letting ε → 0 in (4.3) yields the equations describing the layer problem, which approximates the dynamics for the fast

variable x , 

x ′ = f (x, y, z, 0) , 

y ′ = 0 , 

z ′ = 0 , (4.4) 

Note that the slow variables ( y, z ) are considered as parameters in the layer problem. Then, we obtain the critical manifold,

which is defined as the set of equilibria of the layer problem: 

S 0 = { (x, y, z) ∈ R 

3 | f (x, y, z, 0) = 0 } . (4.5)
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Fig. 10. The critical manifold S 0 for k ch = 4200 (with other parameter values taken from Table 1 ), consisting of two attracting sheets S ±a , one repelling 

sheet S r and two fold curves F ± (in yellow color). (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The graph of the critical manifold is shown in Fig. 10 , which represents a S-shape surface. The fold curves L of S 0 are

precisely the set of points where the layer problem undergoes fold bifurcations: 

F = { (x, y, z) ∈ R 

3 | f x (x, y, z, 0) = 0 } (4.6)

where f x = 

∂ f 
∂x 

. 

It should be noted that the condition given in (4.6) is necessary but not sufficient for fold bifurcation. Fig. 10 shows

two fold curves denoted as F ± in yellow color for k ch = 4200 . The fold curves are important because according to Fenichel

theory [39] they divide the critical manifold S 0 into attracting and repelling parts. Whether the part is attracting or repelling

is determined by the sign of f x (x, y, z, 0) | S 0 . If f x (x, y, z, 0) | S 0 � = 0 , S 0 is called normally hyperbolic, and if f x (x, y, z, 0) | S 0 <
0 for ( x, y, z ) ∈ S a , then S a is attracting. If f x (x, y, z, 0) | S 0 > 0 for ( x, y, z ) ∈ S r , then S r is repelling. Normally, hyperbolic

disappears at f x (x, y, z, 0) | S 0 = 0 . On this critical manifold S 0 , there are two attracting parts denoted by S + a and S −a , and one

repelling part denoted by S r , as shown in Fig. 10 . Hence, S 0 = S + a 

⋃ 

F + 
⋃ 

S r 
⋃ 

F −
⋃ 

S −a . 

4.3. Reduced problem 

Letting ε → 0 in (4.2) , we obtain the reduced problem which approximates the dynamics for the slow variables ( y, z ), 

0 = f (x, y, z, 0) , 

˙ y = k in 
x 8 

1 + x 8 
− k out 

y 

1 + y 
, 

˙ z = 

K 3 ρMit 

βMit 
[ −k −z + k + K 2 x ( 1 − z ) ] , (4.7)

where the dot denotes differentiation with respect to the slow time t 1 . 

The reduced problem is a 3-D differential-algebraic system. The first equation describes the dynamics which occur on

the critical manifold S 0 , while the last two equations describe the slow motions along critical manifold. Note that y can be

expressed explicitly as a function of ( x, z ) through f (x, y, z, 0) = 0 , denoted as y = φ(x, z) . 

To analyze the flow on the critical manifold S 0 , we take a total time derivative of f (x, y, z, 0) = 0 to obtain 

f x ̇ x + f y ̇ y + f z ̇ z = 0 , 

and then project the reduced problem (4.7) onto the x − z plane. So, we have 

− f x ̇ x = f y 

(
k in 

x 8 

1 + x 8 
− k out 

y 

1 + y 

)
+ f z 

K 3 ρMit 

βMit 
[ −k −z + k + K 2 x ( 1 − z ) ] , 

˙ z = 

K 3 ρMit 

βMit 
[ −k −z + k + K 2 x ( 1 − z ) ] , (4.8)

This system is singular along the fold curves, where f x = 0 . The singularity can be removed by introducing a new rescaling

time s = − t 
f x 

, which yields the desingularized reduced system: 

˙ x = f y 
(
k in 

x 8 

1+ x 8 − k out 
y 

1+ y 
)

+ f z 
K 3 ρMit 

βMit 
[ −k −z + k + K 2 x ( 1 − z ) ] , 

˙ z = − f x 
K 3 ρMit 

β [ −k −z + k + K 2 x ( 1 − z ) ] , 
(4.9)
Mit 
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Fig. 11. Phase portraits of locally linearized slow flow of the desingularized system (4.9) near a folded node. The red solid line, the blue solid line and the 

black dotted line denote the eigenvector, the trajectory and the folded curve, respectively. All trajectories in the shadow region, called funeral region, pass 

through the folded singularity. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where the dot denotes differentiation with respect to new time s , and y is given by y = φ(x, z) . The detailed lengthy expres-

sions of f x , f y , f z , and φ( x, z ) are omitted here for brevity. 

The flow described by desingularized system (4.9) is equivalent to the reduced system (4.8) on the attracting sets S ±a but

has opposite orientation on the repelling set S r since f x < 0 on S r . 

System (4.9) has two types of singularities, one is folded singularity defined by 

f x (x, φ(x, z) , z, 0) = 0 , 

f y 

(
k in 

x 8 

1 + x 8 
− k out 

φ(x, z) 

1 + φ(x, z) 

)
+ f z 

K 3 ρMit 

βMit 
[ −k −z + k + K 2 x ( 1 − z ) ] = 0 , (4.10) 

and the other is an ordinary singularity defined by 

k in 
x 8 

1 + x 8 
− k out 

φ(x, z) 

1 + φ(x, z) 
= 0 , 

K 3 ρMit 

βMit 
[ −k −z + k + K 2 x ( 1 − z ) ] = 0 . (4.11) 

The ordinary singularity defines the equilibria of the desingularized system (4.9) , while the folded singularity does not

mean any equilibria in the reduced problem, but defines a special set of points where both sides of the first equation of

(4.8) become zero, which implies that ˙ x is finite and non-zero at the folded singularity. This allows trajectories to move

across the fold curve in finite time, and such solutions are called singular canards. The following definition [34] is needed

to classify the folded singularity. 

Definition 4.1. Suppose the point ( x ∗, z ∗) satisfies the folded singularity condition (4.10) . Denote the Jacobian matrix of

the desingularized system (4.9) evaluated at ( x ∗, z ∗) as J| (x ∗,z ∗) . Let λ1 and λ2 (with | λ1 | < | λ2 |) be the eigenvalues of the

Jacobian matrix. Then the signs of the eigenvalues λ1 and λ2 can be used to classify the singularities into three types: a

folded node with two negative real eigenvalues, a folded focus with a complex conjugate pair of eigenvalues, and a folded

saddle with two real eigenvalues having opposite signs. 

In the folded node case, the trajectories of the slow flow that lie along the eigenvectors passing through the attracting

sheet to the repelling sheet of the critical manifold with nonzero speed in slow time, yield singular canards. Fig. 11 depicts

the geometry of a generic folded node, with associated trajectories. It is seen from Fig. 11 that the orientation of eigenvector

and the direction of trajectories on the repelling part are opposite from standard node. All trajectories in the shadow region

(see Fig. 11 ) pass through the folded singularity called funeral region, and bounded by strong eigenvector and folded curve.

Mathieu [36] studied the folded node case theoretically and gave the following theorem. For the folded focus case, there

does not exist singular canards (see Corollary 3.1 in [37] ). 

Theorem 4.1. (Theorem 2.3 in [36] ) For the slow-fast system 

˙ x = g(x, z, ε) , 
˙ z = f (x, z, ε) , 

where x ∈ R 

n , z ∈ R 

m , with ε > 0 sufficiently small, and for a folded node case, letting μ = λ2 /λ1 , in which λ1 corresponds to

the weak eigenvector and λ2 to the strong eigenvector. 

(A) If μ < 1, the singular canard corresponding to the strong eigenvector can always be perturbed to a maximal canard. If

μ−1 / ∈ N , then the singular canard corresponding to the weak eigenvector can also be perturbed to a maximal canard. These two

canards are called primary canards. 
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Fig. 12. The critical manifold S 0 and a singular orbit � for model (4.2) with k ch = 4200 (and other parameter values are taken from Table 1 ), projected 

onto the z − x plane. The critical manifold S 0 consists of two attracting sheets S ±a (blue solid line), one repelling sheet S r (red dashed line) and two fold 

curves F ± (black dashed line). The singular orbit contains four segments, two fast segments �f 1,2 and two slow segments �s 1,2 . (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(B) Suppose k > 0 is an integer satisfying 2 k + 1 < μ−1 < 2 k + 3 and μ−1 � = 2(k + 1) . Then, in addition to the two primary

canards, there exist at most other k canards, which are called secondary canards. 

4.4. Construction of singular orbits 

Based on Theorem 4.1 , we know that the folded node can produce small oscillations. Moreover, with a suitable global

return mechanism, folded node can also generate mixed-mode oscillations (MMOs). 

In this section, in order to well understand the “jump” phenomenon in model (2.5) , we construct singular orbits for

system (4.2) to show a global return mechanism, yielding slow-fast motions. The singular orbit � consists of four segments,

as shown in Fig. 12 . The first segment �f 1 starts from the lower fold curve F −, where a rapid evolution happens along

the flow of layer problem (4.4) to the upper attracting critical manifold S + a . Once arriving on S + a , the second segment �s 1

begins. The trajectory moves along the flow of the reduced problem (4.7) until it reaches the upper fold curve F + . On the

fold curve F + , the reduced problem is singular. If the singularity is a folded node, the trajectory crosses the fold curve in

slow time from attracting sheet S + a to the repelling sheet S r , inducing small oscillations. Then, after finite time in a rotation,

the trajectory jumps down to the lower attracting manifold S −a . If the singularity is a folded focus, the trajectory jumps down

directly to the lower attracting manifold S −a without rotation [35,36] . The jumping down is the third segment �f 2 which is

described by the reduced problem. Then the flow of layer problem takes over until reaching the lower fold curve F −, which

consists of the fourth segment �s 2 . This formed singular orbit � characterizes a large-amplitude oscillation. 

Having constructed the singular orbits, we now turn to the study of the oscillatory behavior of model (4.2) . As men-

tioned in Section 2 , there are two typical slow-fast oscillations which may occur in our model, one is 1 0 MMOs (i.e., one

large-amplitude oscillation without small-amplitude oscillations), the other is 1 s MMOs (i.e., one large-amplitude oscilla-

tion carrying s small-amplitude oscillations). In next section, we will present two examples to illustrate the mechanism of

slow-fast oscillations. 

4.5. Examples 

Example 1. 1 s MMOs. It follows from Theorem 4.1 that a folded node can induce small oscillations when the trajec-

tories move across the folded singularity. As an example, we take k ch = 4200 to show how the mechanism works for

1 s MMOs. Fig. 13 (a) shows a singular orbit which contains two folded singularities. To identify them, we use (4.5) and

(4.10) to calculate the folded singularity points to get P 1 : (x, z) = (0 . 33532165 , 0 . 71869963) on the upper folded curve, and

P 2 : (x, z) = (0 . 10832623 , 0 . 71242882) on the lower folded curve. The eigenvalues evaluated at these two folded singularity

points are: 

For P 1 : λ1 = − 0 . 01205194 , λ2 = − 1 . 15842838 ;
For P 2 : λ1 , 2 = 0 . 26619241 ± 0 . 17515246 i, 

According to Definition 4.1 , P 1 is a folded node while P 2 is a folded focus. Folded focus can not induce singular canards.

Consider the singular orbit as shown in Fig. 13 (a), and suppose that the orbit starts from P 2 , since P 2 is an unstable focus,

and jumps up to the upper attracting sheet S + a labeled by A . Here we define δ to measure the distance from A to the strong

eigendirection (the blue line in Fig. 13 (a)) [36] . δ > 0 means that the point A is in the funeral region, otherwise it is outside



162 P. Liu et al. / Commun Nonlinear Sci Numer Simulat 52 (2017) 148–164 

Fig. 13. (a) The critical manifold S 0 and a singular orbit � for model (4.2) with k ch = 4200 (and other parameter values are taken from Table 1 ), and 

(b) the simulated time history. 

Fig. 14. (a) The critical manifold S 0 and a singular orbit � for model (4.2) with k ch = 1200 (and other parameter values are taken from Table 1 ), and 

(b) the simulated time history. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the region. If δ < 0, the trajectory will never cross the fold curve to reach the repelling sheet, but directly jumps down

to the lower attracting sheet. In our case, the trajectory along the reduced flow goes to the folded node P 1 due to δ > 0,

yielding singular canards in which the trajectory crosses the folded singularity from S + a to S r in finite speed and in finite

slow time till attracted by S −a . Then, the trajectory moves fast to jump down to the attracting sheet S −a and continues along

the reduced flow to reach P 2 , forming a singular orbit. 

The number of singular canards or the rotation near P 1 can be estimated by using Theorem 4.1 . For P 1 , μ−1 =
96 . 11967670 , we have k = 47 , implying that at P 1 there exist at most 47 secondary singular canards and two primary sin-

gular canards [37] , and thus the maximal number of small oscillations is 49. Fig. 13 (b) shows the simulated time history,

from which we can see that MMOs appear, showing large-amplitude oscillations and many small oscillations between them.

A more clear picture can be viewed in a zoomed box (see Fig. 13 (b)). 

Example 2. 1 0 MMOs. To see 1 0 MMOs, we choose k ch = 1200 as an example to depict a critical manifold of system (4.2) ,

as shown in Fig. 14 (a) in which a singular orbit is formed with two folded singularities appearing on the two fold curves.

In this example, the two folded singularities are obtained from (4.10) and (4.5) as P 1 : (x, z) = (0 . 45150 6 63 , 0 . 64267178) on

the upper folded curve, and P 2 : (x, z) = (0 . 14314289 , 0 . 61820441) on the lower folded curve. The eigenvalues of the system

evaluated at these two folded singularity points are: 

For P 1 : λ1 = −0 . 03034533 , λ2 = −2 . 39949156 ;
For P 2 : λ1 , 2 = 0 . 08274715 ± 0 . 03240994 i, 

It is easy to see that P 1 is a folded node while P 2 is a folded focus. Similarly, we consider a trajectory starting from the

unstable folded focus P 2 . Then it rapidly jumps up to the landing point A on the attracting sheet S + a , but for this case, the

point A is out of the funeral region, meaning that the trajectory does not pass P , and so no singular canards appear. Hence,
1 
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after arriving at the point A , the trajectory follows the reduced flow to reach the folded curve, and then jumps down to the

lower attracting sheet S −a . Further, it follows the reduced flow to the point P 2 to form a closed orbit. The simulated time

history is shown in Fig. 14 (b), indeed indicating a relaxation oscillation. 

5. Conclusions 

In this paper, after a brief introduction on the general scheme of the cell process involved in calcium oscillations, we

select a three-store calcium oscillation model and modify a term to exclude possibility of chaos. Then we prove that this

system is well-posed with non-negative, bounded solutions. We show that this model has typical relaxtion oscillation as

well as mixed oscillations, and explain how they happen, based on bifurcation theory and geometric singular perturbation

method. 

In order to reveal the mechanism of oscillating behaviours of the model, we apply bifurcation theory and choose the

maximal permeability of the CICR channels, k ch , as a bifurcation parameter. We have shown that the only possible bifur-

cation arising from the positive equilibrium of the system is Hopf bifurcation. We use linear analysis to identify two Hopf

critical points, and then employ nonlinear analysis with normal form theory to study the stability of limit cycles. This study

indicates that Hopf bifurcation is a source of the oscillation behaviours. To give a further theoretical investigation on the os-

cillation induced by Hopf bifurcation, we compared the order of parameters and introduced a small perturbation parameter

ε so that the geometric singular perturbation method (GSPM) can be applied. The resulting dimensionless slow-fast system

contains one fast and two slow variables. The fast variable is associated with the free calcium concentration in cytosol, and

the slow system describes the changes of the free calcium concentration in mitochondria and the bounded calcium concen-

tration on the cytosolic proteins. We identified the folded singularities and singular orbits, and presented two examples to

illustrate the slow-fast motion in oscillations. 

With the help of GSPM, the study given in this paper reveals that the mechanism of generating the slow-fast oscillating

behaviour in the three-store calcium model for certain parameter values is due to the relative fast change in the free calcium

in cytosol, and relative slow changes in the free calcium in mitochondria and in the bounded Ca 2+ binding sites in cytosolic

proteins. A further parametric study can be performed to identify the parameter regions where such slow-fast oscillations

may happen and thus may provide some useful information for controlling harmful effect, by adjusting the amount of

calcium in a human body. Moreover, for those parameter values which are not close to the Hopf critical points (see Fig. 9 (a)),

we may apply the method developed by Zhang, et al. [40,41] and Yu, et al. [42] to identify a different type of slow-fast

oscillations, and thus will give a more accurate global picture on this slow-fast oscillation phenomenon. 
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