Bi-center Problem in a Class of Z_{2}-equivariant Quintic Vector Fields*

Hongwei Li^{1}, Feng Li ${ }^{1, \dagger}$ and Pei Yu^{2}

Abstract

In this paper, we study the center problem for Z_{2}-equivariant quintic vector fields. First of all, for convenience in analysis, the system is simplified by using some transformations. When the system has two nilpotent points at $(0, \pm 1)$ with multiplicity three, the first seven Lyapunov constants at the singular points are calculated by applying the inverse integrating factor method. Then, fifteen center conditions are obtained for the two nilpotent singular points of the system to be centers, and the sufficiency of the first seven center conditions are proved. Finally, the first five Lyapunov constants are calculated at the two nilpotent points $(0, \pm 1)$ with multiplicity five by using the method of normal forms, and the center problem of this system is partially solved.

Keywords Nilpotent singular point, Center-focus problem, Bi-center, Lyapunov constant.

MSC(2010) 34C05, 34C07.

1. Introduction

Consider the following planar differential system,

$$
\begin{equation*}
\frac{d x}{d t}=P(x, y), \quad \frac{d y}{d t}=Q(x, y) \tag{1.1}
\end{equation*}
$$

where P and Q are polynomials. The second part of Hilbert's 16th problem is to find the upper bound of the limit cycles that system (1.1) can have. One important problem related to the bifurcation of limit cycles is to determine whether a singular point of system (1.1) is a center or not, which is called center problem. The distinction between a center case and a non-center case has great difference on the determination of limit cycles.

As a special class of system (1.1), the Z_{n}-equivariant vector fields have attractive properties because of their symmetry. It is well known that better results on the number of limit cycles are often obtained from Z_{n}-equivariant vector fields. In

[^0]recent years, more and more attention has been paid to the center problem of $Z_{n^{-}}$ equivariant vector fields. For example, Liu and Li [1] gave a complete study on the bi-center problem of a class of Z_{2}-equivariant cubic vector fields. Romanovski et al. [2] studied the bi-center problem of some Z_{2}-equivariant quintic systems. Giné [3] investigated the coexistence of centres in two families of planar Z_{n}-equivariant systems. Theory of rotated equations was discussed by Han et al. [4] and applied to study a population model. The Poincaré return map and generalized focal values of analytic planar systems with a nilpotent focus or center were considered in [5] where the classical Hopf bifurcation theory was generalized. Global phase portraits of symmetrical cubic Hamiltonian systems with a nilpotent singular point were discussed in [6]. Recently, Yu el al. [7] applied the method of normal forms to improve the results on the number of limit cycles bifurcating from a non-degenerate center of various homogeneous polynomial differential systems. A special type of bifurcation of limit cycles from a nilpotent critical point was studied in [8]. However, for degenerate singular points, because of difficulty, there are very few results obtained even for Z_{2}-equivalent systems with two nilpotent singular points. In [9], the authors proved that the origin of any Z_{2}-symmetric system is a nilpotent center if and only if there exists a local analytic first integral. Recently, we studied bifurcation of limit cycles in a class of Z_{2}-equivalent cubic planar differential systems with two nilpotent singular points, described by
\[

$$
\begin{align*}
& \frac{d x}{d t}=A_{10} x+A_{01} y+A_{30} x^{3}+A_{21} x^{2} y+A_{12} x y^{2}+A_{03} y^{3}=X(x, y) \\
& \frac{d y}{d t}=B_{10} x+B_{01} y+B_{30} x^{3}+B_{21} x^{2} y+B_{12} x y^{2}+B_{03} y^{3}=Y(x, y) \tag{1.2}
\end{align*}
$$
\]

In [10], sufficient and necessary conditions for the critical points of the system (1.2) to be centers were obtained. In addition, the existence of 12 small-amplitude limit cycles bifurcating from the critical points was proved.

In this paper, a class of Z_{2}-equivariant quintic planar differential systems with two nilpotent singular points, given by

$$
\begin{align*}
\frac{d x}{d t}= & A_{10} x+A_{01} y+A_{50} x^{5}+A_{41} x^{4} y+A_{32} x^{3} y^{2}+A_{23} x^{2} y^{3} \\
& +A_{14} x y^{4}+A_{05} y^{5}=X(x, y) \\
\frac{d y}{d t}= & B_{10} x+B_{01} y+B_{50} x^{5}+B_{41} x^{4} y+B_{32} x^{3} y^{2}+B_{23} x^{2} y^{3} \tag{1.3}\\
& +B_{14} x y^{4}+B_{05} y^{5}=Y(x, y)
\end{align*}
$$

are studied. Necessary conditions for the singular points of system (1.3) to be centers are derived.

The rest of the paper is organized as follows. In the next section, we simplify system (1.3) for convenience in analysis. In Section 3, the first seven Lyapunov constants at an order-3 nilpotent singular point are computed by using the inverse integrating factor method or the method of normal forms. Bi-center conditions in Z_{2}-equivariant vector fields are discussed, and fifteen bi-center conditions are obtained for system (1.3). Further, the first five Lyapunov constants at an order-5 nilpotent singular point are computed by using the method of normal forms, yielding one more bi-center condition.

2. Simplification of system (1.3)

Suppose $(0, \pm 1)$ are isolated singular points of system (1.3). Then,

$$
\begin{equation*}
A_{01}=-A_{05}, \quad B_{01}=-B_{05} \tag{2.1}
\end{equation*}
$$

and the Jacobin matrix of system (1.3) evaluated at $(0, \pm 1)$ is given by

$$
J_{0}=\left(\begin{array}{ll}
\frac{\partial X}{\partial x} & \frac{\partial X}{\partial y} \tag{2.2}\\
\frac{\partial Y}{\partial x} & \frac{\partial Y}{\partial y}
\end{array}\right)_{(0, \pm 1)}=\left(\begin{array}{ll}
A_{10}+A_{14} & 4 A_{05} \\
B_{10}+B_{14} & 4 B_{05}
\end{array}\right)
$$

We have the following result.
Lemma 2.1. Suppose $(0, \pm 1)$ are isolated nilpotent singular points of (1.3). Then

$$
A_{05} \neq 0
$$

Proof. Suppose $A_{05}=0$. Then J_{0} is a triangular matrix with two eigenvalues,

$$
\lambda_{1}=A_{10}+A_{14}, \quad \lambda_{2}=4 B_{05}
$$

Since $(0, \pm 1)$ are isolated nilpotent singular points, we have

$$
\lambda_{1}=\lambda_{2}=0
$$

under which together with (2.1), system (1.3) is reduced to

$$
\begin{align*}
& \frac{d x}{d t}=x\left(A_{10}+A_{50} x^{4}+A_{41} x^{3} y+A_{32} x^{2} y^{2}+A_{23} x y^{3}+A_{14} y^{4}\right), \\
& \frac{d y}{d t}=x\left(B_{10}+B_{50} x^{4}+B_{41} x^{3} y+B_{32} x^{2} y^{2}+B_{23} x y^{3}+B_{14} y^{4}\right), \tag{2.3}
\end{align*}
$$

which has a common factor x in the two equations, implying that $(0, \pm 1)$ are not isolated, and so Lemma 2.1 is proved.

Lemma 2.2. Suppose $(0, \pm 1)$ are isolated nilpotent singular points of system (1.3). Then without loss of generality, it can be assumed that

$$
\begin{array}{ll}
A_{10}=-A_{14}, & A_{05}=\frac{1}{4} \tag{2.4}\\
B_{10}=-B_{14}, & B_{05}=0
\end{array}
$$

Proof. Suppose ($0, \pm 1$) are isolated nilpotent singular points of system (1.3). So $A_{05} \neq 0$ by Lemma 2.1. Consider the following non-degenerate transformation,

$$
\begin{equation*}
x=4 A_{05} \xi, \quad y=4 B_{05} \xi+\eta \tag{2.5}
\end{equation*}
$$

which has fixed points $(0,0)$ and $(0, \pm 1)$. By applying the transformation (2.5), it is easy to obtain the Jacobin matrix evaluated at $(0, \pm 1)$, given by

$$
J_{1}=\left(\begin{array}{cc}
\operatorname{Tr}\left(J_{0}\right) & 1 \tag{2.6}\\
-\operatorname{Det}\left(J_{0}\right) & 0
\end{array}\right)
$$

Since $(0, \pm 1)$ are nilpotent singular points of system (1.3), we have

$$
\operatorname{Tr}\left(J_{0}\right)=\operatorname{Det}\left(J_{0}\right)=0,
$$

and then (2.6) becomes

$$
J_{1}^{*}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) .
$$

Namely, we can always suppose

$$
J_{0}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

Otherwise, J_{0} can be transformed into J_{1}^{*} by the transformation (2.5), so Lemma 2.2 is proved.

By Lemma 2.2, we have that
Lemma 2.3. If $(0, \pm 1)$ are isolated nilpotent singular points of system (1.3), then the system can be simplified as

$$
\begin{align*}
& \frac{d x}{d t}=-\frac{1}{4} y+\frac{1}{4} y^{5}-A_{14} x+A_{50} x^{5}+A_{41} x^{4} y+A_{32} x^{3} y^{2}+A_{23} x^{2} y^{3}+A_{14} x y^{4} \\
& \frac{d y}{d t}=-B_{14} x+B_{50} x^{5}+B_{41} x^{4} y+B_{32} x^{3} y^{2}+B_{23} x^{2} y^{3}+B_{14} x y^{4} \tag{2.7}
\end{align*}
$$

Now we discuss the multiplicity of nilpotent singular points $(0, \pm 1)$ of system (2.7). System (2.7) can be transformed to

$$
\begin{align*}
\frac{d \xi}{d t}= & \frac{1}{4} \eta(1+\eta)(2+\eta)\left(\eta^{2}+2 \eta+2\right)+A_{50} \xi^{5}+A_{41} \xi^{4}(1+\eta) \\
& +A_{32} \xi^{3} \eta(1+\eta)^{2}+A_{23} \xi^{2} \eta(1+\eta)^{3}+A_{14} \xi \eta(2+\eta)\left(\eta^{2}+2 \eta+2\right) \\
= & \Phi(\xi, \eta) \\
\frac{d \eta}{d t}= & B_{50} \xi^{5}+B_{41} \xi^{4}(1+\eta)+B_{32} \xi^{3} \eta(1+\eta)^{2} \tag{2.8}\\
& +B_{23} \xi^{2} \eta(1+\eta)^{3}+B_{14} \xi \eta(2+\eta)(2+\eta(2+\eta)) \\
= & \Psi(\xi, \eta)
\end{align*}
$$

by

$$
\xi= \pm x, \quad \eta= \pm y-1
$$

Suppose the only solution of the implicit function equation $\Phi(\xi, \eta)=0$ near $(0,0)$ is

$$
\eta=f(\xi)=\sum_{k=2}^{\infty} c_{k} \xi^{k}
$$

Denote

$$
\begin{align*}
& \Psi(\xi, f(\xi))=\sum_{k=2}^{\infty} \alpha_{k} \xi^{k} \tag{2.9}\\
& {\left[\frac{\partial \Phi}{\partial \xi}+\frac{\partial \Psi}{\partial \eta}\right]_{(\xi, f(\xi)}=\sum_{l=1}^{\infty} \beta_{l} \xi^{l}}
\end{align*}
$$

By using the intersection number of algebraic curves, the definition of multiplicity of a singular point of system (1.1) is given in [11].
Definition 2.1. [11] Suppose that the origin is an isolated singular point of system (2.8) and the conditions given in (2.9) holds. If $\alpha_{2}=\alpha_{3}=\cdots=\alpha_{k-1}=0, \alpha_{k} \neq 0$, the origin is called a k-multiple singular point of system (2.8), and the k is called the multiplicity of the origin.

It is not difficult to obtain the coefficients α_{k} and β_{l} in (2.9), as given below:

$$
\begin{align*}
\alpha_{2}= & B_{23}, \\
\alpha_{3}= & B_{32}-4 A_{23} B_{14}, \\
\alpha_{4}= & 16 A_{14} A_{23} B_{14}-4 A_{32} B_{14}-3 A_{23} B_{23}+B_{41}, \\
\alpha_{5}= & -64 A_{14}^{2} A_{23} B_{14}+8 A_{23}^{2} B_{14}+16 A_{14} A_{32} B_{14}-4 A_{41} B_{14}+12 A_{14} A_{23} B_{23} \\
& -3 A_{32} B_{23}-2 A_{23} B_{32}+B_{50}, \\
\alpha_{6}= & \frac{1}{2}\left(512 A_{14}^{3} A_{23} B_{14}-96 A_{14} A_{23}^{2} B_{14}-128 A_{14}^{2} A_{32} B_{14}+24 A_{23} A_{32} B_{14}\right. \\
& +32 A_{14} A_{41} B_{14}-8 A_{50} B_{14}-96 A_{14}^{2} A_{23} B_{23}+9 A_{23}^{2} B_{23}+24 A_{14} A_{32} B_{23} \\
& \left.-6 A_{41} B_{23}+16 A_{14} A_{23} B_{32}-4 A_{32} b 32-2 A_{23} B_{41}\right) \\
\beta_{1}= & 2\left(A_{23}+2 b_{14}\right) \\
\beta_{2}= & -4 A_{14} A_{23}+3 A_{32}+3 B_{23}, \\
\beta_{3}= & -2\left(-8 A_{14}^{2} A_{23}+3 A_{23}^{2}+2 A_{14} A_{32}-2 A_{41}+6 A_{23} B_{14}-b 32\right), \\
\beta_{4}= & -64 A_{14}^{3} A_{23}+32 A_{14} A_{23}^{2}+16 A_{14}^{2} A_{32}-12 A_{23} A_{32}-4 A_{14} A_{41}+5 A_{50} \\
& +48 A_{14} A_{23} B_{14}-12 A_{32} B_{14}-6 A_{23} B_{23}+B_{41} . \tag{2.10}
\end{align*}
$$

According to Theorems 7.2 and 7.3 in [12], the types of the origin of system (2.7) can be classified as follows.

For $k=2 m, \alpha_{k} \neq 0$,

For $k=2 m+1, \lambda=\beta_{n}^{2}+4(m+1) \alpha_{2 m+1}$,

$$
\left\{\begin{array}{l}
\alpha_{2 m+1}>0, \text { saddle, } \\
\alpha_{2 m+1}<0,\left\{\begin{array} { l }
{ \beta _ { n } = 0 , \text { center or focus, } } \\
{ \beta _ { n } \neq 0 \{ \begin{array} { l }
{ n > m , } \\
{ \text { or } n = m , \lambda < 0 , } \\
{ n < m , } \\
{ \text { or } n = m , \lambda \geq 0 , }
\end{array} } \\
{ \text { center or focus } , }
\end{array} \left\{\begin{array}{l}
n \text { even, node }, \\
n \text { odd, degenerate point. }
\end{array}\right.\right.
\end{array}\right.
$$

Proposition 2.1. The nilpotent singular points $(0, \pm 1)$ of (2.7) are degenerate singular points when $\alpha_{2}=B_{23} \neq 0$.

Phase portraits of some systems were given in [13] with the help of Maple programme P4. We also use the Maple programme P4 to show some simulations.

Example 2.1. When $A_{50}=A_{41}=A_{32}=A_{23}=A_{14}=B_{50}=B_{41}=B_{32}=B_{23}=$ $B_{14}=1$, obviously we have $\alpha_{2}=B_{23}=1 \neq 0$. So according to the classification, $(0, \pm 1)$ are degenerate singular points, as shown in Figure 1.

Figure 1. Phase portrait showing $(0, \pm 1)$ to be degenerate singular points for $A_{50}=A_{41}=A_{32}=$ $A_{23}=A_{14}=B_{50}=B_{41}=B_{32}=B_{23}=B_{14}=1$.

Proposition 2.2. The nilpotent singular points $(0, \pm 1)$ of (2.7) are saddles for $B_{23}=0, \alpha_{3}>0$; but are centers or foci when the following conditions hold:

$$
B_{23}=0, \quad \alpha_{3}<0, \quad \beta_{1} \neq 0, \quad \lambda_{1}=\beta_{1}^{2}+8 \alpha_{3}<0
$$

Proposition 2.3. The nilpotent singular points $(0, \pm 1)$ of (2.7) are saddle-node points when $B_{23}=0, \alpha_{3}=0, \alpha_{4} \beta_{1} \neq 0$; and are degenerate singular points when $B_{23}=0, \alpha_{3}=\beta_{1}=0, \alpha_{4} \neq 0$.

Example 2.2. Taking $A_{50}=A_{41}=A_{32}=A_{14}=B_{50}=B_{41}=B_{32}=B_{14}=$ $1, B_{23}=0, A_{23}=-2, B_{32}=-10$, we have $\alpha_{2}=B_{23}=0, \alpha_{3}=1>0$, so $(0, \pm 1)$ are saddle-node points, see Figure 2.

When $A_{50}=A_{41}=A_{32}=A_{14}=B_{50}=B_{41}=B_{14}=1, B_{23}=0, A_{23}=-2, B_{32}=$ -20 , we have $\alpha_{2}=B_{23}=0, \alpha_{3}=-1>0, \lambda=1>0$, hence $(0, \pm 1)$ are degenerate singular points, as depicted in Figure 3.

When $B_{23}=0, \alpha_{3}=\alpha_{4}=0$, we have the following result.
Proposition 2.4. The nilpotent singular points $(0, \pm 1)$ of (2.7) can be classified

Figure 2. Phase portrait showing $(0, \pm 1)$ to be saddle-node points for $A_{50}=A_{41}=A_{32}=A_{14}=$ $B_{50}=B_{41}=B_{32}=B_{14}=1, B_{23}=A_{23}=0$.

Figure 3. Phase portrait showing $(0, \pm 1)$ to be degenerate singular points for $A_{50}=A_{41}=A_{32}=$ $A_{23}=A_{14}=B_{50}=B_{41}=B_{32}=B_{14}=1, B_{23}=0$.
as follows:

$$
\left\{\begin{array}{l}
\alpha_{5}>0, \text { saddle, } \\
\alpha_{5}<0,\left\{\begin{array}{l}
\beta_{1} \neq 0, \text { degenerate point, } \\
\beta_{1}=0\left\{\begin{array}{l}
\beta_{2}=0, \text { center or focus, }, \\
\beta_{2} \neq 0,\left\{\begin{array}{l}
\lambda<0 \text { center or focus, } \\
\lambda \geq 0 \text { node. }
\end{array}\right.
\end{array}\right.
\end{array} .\left\{\begin{array}{l}
\text { 友 }
\end{array}\right.\right.
\end{array}\right.
$$

Proposition 2.5. The nilpotent singular points $(0, \pm 1)$ of (2.7) are saddle-node points when the following conditions hold:

$$
B_{23}=0, \quad \alpha_{3}=0, \quad \alpha_{4}=\alpha_{5}=\beta_{1}=0, \quad \alpha_{6} \beta_{2} \neq 0
$$

and degenerate singular points when

$$
B_{23}=0, \quad \alpha_{3}=0, \quad \alpha_{4}=\alpha_{5}=\beta_{1}=\beta_{2}=0, \quad \alpha_{6} \neq 0
$$

Example 2.3. When $A_{50}=A_{41}=A_{32}=A_{23}=A_{14}=B_{50}=B_{41}=B_{32}=B_{14}=$ $1, B_{23}=0$, we have $\alpha_{2}=B_{23}=0, \alpha_{3}=-1>0, \lambda=-1<0$, which implies that $(0, \pm 1)$ are foci, see Figure 4.

When $A_{50}=A_{41}=A_{32}=A_{14}=B_{50}=B_{41}=B_{32}=B_{14}=1, B_{23}=A_{23}=0$, we obtain $\alpha_{2}=B_{23}=0, \alpha_{3}=-1>0, \lambda=-1<0$, and so $(0, \pm 1)$ are centers, as shown in Figure 5.

Figure 4. Phase portrait showing $(0, \pm 1)$ to be foci for $A_{50}=A_{41}=A_{32}=A_{14}=B_{50}=B_{41}=B_{14}=$ $1, B_{23}=0, A_{23}=-2, B_{32}=-20$.

Figure 5. Phase portrait showing $(0, \pm 1)$ to be centers for $A_{50}=A_{41}=A_{32}=A_{14}=B_{50}=B_{41}=$ $B_{32}=B_{14}=1, B_{23}=0, A_{23}=-2, B_{32}=-10$.

Proposition 2.6. The multiplicity of the nilpotent singular points $(0, \pm 1)$ of (2.7) is at most six.

Proof. Using (2.10) and setting $\alpha_{2}=\alpha_{3}=\alpha_{4}=\alpha_{5}=0$, we obtain

$$
\begin{aligned}
& B_{23}=0, \quad B_{32}=4 A_{23} B_{14} \\
& B_{41}=-4\left(4 A_{14} A_{23}-a_{32}\right) B_{14} \\
& B_{50}=4\left(16 A_{14}^{2} A_{23} B_{14}-4 A_{14} A_{32} B_{14}+A_{41} B_{14}\right)
\end{aligned}
$$

and $\alpha_{6}=4\left(64 A_{14}^{3} A_{23}-16 A_{14}^{2} A_{32}+4 A_{14} A_{41}-A_{50}\right) B_{14}$. For $\alpha_{6}=0$, there are two cases.

If $B_{14}=0, \Psi(\xi, \eta) \equiv 0$, indicating that $(0, \pm 1)$ are not isolated.
If $A_{50}=4\left(16 A_{14}^{3} A_{23}-4 A_{14}^{2} A_{32}+A_{14} A_{41}\right)$, system (2.8) becomes

$$
\begin{aligned}
\frac{d \xi}{d t} & =\frac{1}{4} \eta\left(1+4 A_{14} \xi+\eta\right) f(\xi, \eta) \\
\frac{d \eta}{d t} & =B_{14} \xi f(\xi, \eta)
\end{aligned}
$$

where

$$
\begin{aligned}
f(\xi, \eta)= & 4 A_{41} \xi^{4}+4 A_{32} \xi^{3}\left(1-4 A_{14} \xi+\eta\right) \\
& +4 A_{23} \xi^{2}\left[16 A_{14}^{2} \xi^{2}-4 A_{14} \xi(1+\eta)\right. \\
& \left.+(1+\eta)^{2}\right]+\eta(2+\eta)[2+\eta(2+\eta)]
\end{aligned}
$$

Hence there exists a common factor $f(\xi, \eta)$ in $\Phi(\xi, \eta)$ and $\Psi(\xi, \eta)$, implying that $(0, \pm 1)$ are not isolated.

Since the multiplicity of a nilpotent focus or center is an odd positive integer greater than 1 , Proposition 2.6 implies that the multiplicity of $(0, \pm 1)$ is 3 or 5 if $(0, \pm 1)$ are nilpotent foci or centers of system (2.7). In particular, $(0, \pm 1)$ are nilpotent foci or centers of system (2.7) with multiplicity 3 if and only if

$$
\alpha_{2}=0, \quad \alpha_{3}<0, \quad \Delta=\beta_{1}^{2}+8 \alpha_{3}<0
$$

namely,

$$
B_{23}=0, \quad B_{32}-2 A_{23} B_{14}<0, \quad 4\left(A_{23}-2 B_{14}\right)^{2}+8 B_{32}<0 .
$$

By a simple scaling, we can assume that $\alpha_{3}=-2$, yielding $B_{32}=-2+4 A_{23} B_{14}$. Now, combining the above results, we get our first main theorem.

Theorem 2.1. Suppose $(0, \pm 1)$ are the nilpotent foci or centers of system (1.3) with multiplicity 3. By proper linear transformation and time rescaling, system (1.3) can be changed to

$$
\begin{align*}
& \frac{d x}{d t}=-A_{14} x-\frac{1}{4} y+\frac{1}{4} y^{5}+A_{50} x^{5}+A_{41} x^{4} y+A_{32} x^{3} y^{2}+A_{23} x^{2} y^{3} \tag{2.11}\\
& \frac{d y}{d t}=-B_{14} x+B_{50} x^{5}+B_{41} x^{4} y+\left(-2+4 A_{23} B_{14}\right) x^{3} y^{2}+B_{14} x y^{4}
\end{align*}
$$

where the following condition is satisfied:

$$
\Delta=4\left(A_{23}+2 B_{14}\right)^{2}-16<0
$$

Furthermore, we can obtain that if

$$
\alpha_{2}=\alpha_{3}=\alpha_{4}=0, \alpha_{5}<0, \quad \Delta=\beta_{2}^{2}+12 \alpha_{5}<0
$$

namely

$$
\begin{aligned}
& B_{23}=0, \quad B_{32}=2 A_{23} B_{14}, \quad B_{41}=-4\left(4 A_{14} A_{23} B_{14}-A_{32} B_{14}\right) \\
& A_{23}=-2 B_{14}, \quad \beta_{2}^{2}+12 \alpha_{5}<0
\end{aligned}
$$

the singular points $(0, \pm 1)$ are isolated nilpotent foci or centers of system (2.7) with multiplicity 5 .

Similarly, with a simple scaling, we can assume that $\alpha_{3}=-\frac{3}{4}$, yielding

$$
\begin{equation*}
B_{50}=-\frac{3}{4}-\left(16 A_{14} A_{32} B_{14}-4 A_{41} B_{14}+128 A_{14}^{2} B_{14}^{2}\right) \tag{2.12}
\end{equation*}
$$

Now, combining the above results, we have our second main theorem.
Theorem 2.2. Suppose $(0, \pm 1)$ are isolated nilpotent foci or centers of system (1.3) with multiplicity 5. By proper linear transformation and time rescaling, system (1.3) can be rewritten as

$$
\begin{align*}
\frac{d x}{d t}= & \frac{1}{4}\left(-4 A_{14} x+4 A_{50} x^{5}-y+4 A_{41} x^{4} y+4 A_{32} x^{3} y^{2}\right. \\
& \left.+4 A_{23} x^{2} y^{3}+4 A_{14} x y^{4}+y^{5}\right) \\
\frac{d y}{d t}= & -x\left(B_{14}-B_{50} x^{4}+16 A_{14} A_{23} B_{14} x^{3} y-4 A_{32} B_{14} x^{3} y\right. \tag{2.13}\\
& \left.-4 A_{23} B_{14} x^{2} y^{2}-B_{14} y^{4}\right)
\end{align*}
$$

where B_{50} is given in (2.12) and $\Delta=\left(3 A_{32}+8 A_{14} B_{14}\right)^{2}-9<0$.

3. Center problem of $(0, \pm 1)$ with multiplicity 3

Consider the following system,

$$
\begin{align*}
& \frac{d x}{d t}=y+a_{20} x^{2}+\sum_{k+2 j=3}^{\infty} a_{k j} x^{k} y^{j} \\
& \frac{d y}{d t}=b_{11} x y+b_{30} x^{3}+\sum_{k+2 j=4}^{\infty} b_{k j} x^{k} y^{j} \tag{3.1}
\end{align*}
$$

The origin of system (3.1) is a nilpotent singular point with multiplicity 3 if and only if $b_{30}-a_{20} b_{11} \neq 0$. Especially, when $b_{30}-a_{20} b_{11}<0$, the origin of system (3.1) is a nilpotent focus or center if $\left(2 a_{20}-b_{11}\right)^{2}+8 b_{30}<0$, or a degenerate singular point if $\left(2 a_{20}-b_{11}\right)^{2}+8 b_{30} \geq 0$.

For system (3.1) with a nilpotent focus or center, an inverse integrating factor method developed by Liu and Li in [14] for computing the Lyapunov constants of the system, as stated in the following theorem. However, note that this method is restricted to the case when the nilpotent focus or center has multiplicity 3 .

Theorem 3.1. For system (3.1), there exists a power series of the form

$$
M(x, y)=\left[y^{2}+\frac{1}{2}\left(2 a_{20}-b_{11}\right) x^{2} y-\frac{1}{2} b_{30} x^{4}\right]+\sum_{k+2 j=5}^{\infty} c_{k j} x^{k} y^{j}
$$

such that

$$
\frac{\partial}{\partial x}\left(\frac{X}{M^{s+1}}\right)+\frac{\partial}{\partial y}\left(\frac{Y}{M^{s+1}}\right)=\frac{1}{M^{s+2}} \sum_{m=1}^{\infty} \nu_{m}(2 m-4 s-3) x^{2 m+4}
$$

for an integer s.

The recursive formulas for computing $c_{k j}$ and ν_{m} can be found in Theorem 4.5 of [14], ν_{m} is the m th Lyapunov constant of system (3.1) at the origin.

Now we compute the first seven Lyapunov constants at $(0, \pm 1)$ of system (2.11). For simplicity, we denote

$$
A_{23}=2 \mu-2 B_{14}
$$

According to Theorem 2.1, we detect that $(0, \pm 1)$ of system (2.11) are foci or centers if $\mu^{2}<1$ and degenerate singular points if $\mu^{2} \geq 1$. But it is very difficult to compute the Lyapunov constants when $\mu \neq 0$. In this paper we only consider the case when $\mu=0$, namely $A_{23}=-2 B_{14}$.

3.1. Lyapunov constants for the case $\mu=0$

Using the formulas in Theorem 3.1, we obtain the Lyapunov constants as follows.
Proposition 3.1. The first seven Lyapunov constants at $(0, \pm 1)$ of system (2.11) are

$$
\begin{aligned}
\nu_{1} & =3 A_{32}+8 A_{14} B_{14} \\
\nu_{2} & =\frac{H_{2}}{9} \\
\nu_{3} & =\frac{H_{3}}{675} \\
\nu_{4} & =\frac{H_{4}}{2835000} \\
\nu_{5} & =\frac{H_{5}}{30618000000} \\
\nu_{6} & =\frac{H_{6}}{848730960000000} \\
\nu_{7} & =\frac{H_{7}}{185362841664000000000}
\end{aligned}
$$

where

$$
\begin{aligned}
H_{2}=45 & A_{50}+4 A_{14}\left\{-3 A_{41}\left(3+32 B_{14}^{2}\right)\right. \\
& \left.+2\left(3+8 B_{14}^{2}\right)\left[-3+8 B_{14}\left(4 A_{14}^{2}+3 B_{14}\right)\right]\right\} \\
& -9 B_{41}+6\left[3 A_{41}-4 B_{14}\left(4 A_{14}^{2}+3 B_{14}\right)\right] B_{41}
\end{aligned}
$$

and $H_{3}, H_{4}, H_{5}, H_{6}$ and H_{7} are polynomials in $B_{50}, A_{14}, B_{14}, A_{41}, B_{41}$ and μ, which contain 47, 174, 481, 1070, and 2133 terms, respectively.

3.2. Bi-center conditions of system (2.11) for $\mu=0$

In this subsection, we apply the inverse integrating factor method to study the bi-center problem of system (2.11). We have the following result.

Theorem 3.2. The first seven Lyapunov constants at the two singular points $(0, \pm 1)$ of system (2.11) are all zero if and only if one of the following fifteen conditions
holds:
$I_{1}: \quad A_{32}=0, A_{14}=0, A_{50}=0, B_{41}=0 ;$
$I_{2}: \quad A_{32}=0, A_{14}=0, A_{50}=-\frac{1}{5} B_{41}, A_{41}=1+4 B_{14}^{2} ;$
$I_{3}: \quad A_{32}=0, A_{14}=0, A_{50}=-\frac{1}{5} B_{41}\left(-1+2 A_{41}\right), B_{14}=0, B_{50}=0 ;$
$I_{4}: \quad A_{32}=0, A_{50}=2 A_{14}, B_{50}=4\left(8 A_{14}+B_{41}\right) A_{14}, A_{41}=\frac{1}{2}, B_{14}=0$;
$I_{5}: \quad A_{32}=0, A_{50}=4 A_{14} A_{41}, B_{50}=0, B_{41}=-8 A_{14}, B_{14}=0$;
$I_{6}: \quad A_{32}=-8 A_{14}^{3}, \quad A_{50}=-4 A_{14}\left(64 A_{14}^{4}-A_{41}\right), B_{14}=3 A_{14}^{2}$,
$B_{50}=-12\left(64 A_{14}^{4}-2-A_{41}\right) A_{14}^{2}, \quad B_{41}=8 A_{14}\left(-1+24 A_{14}^{4}\right)$;
$I_{7}: \quad A_{32}=-\frac{8}{3} A_{14} B_{14}, \quad A_{50}=\frac{16}{105} A_{14}\left(-91 B_{14}^{2}+168 A_{14}^{2} B_{14}-15\right)$,
$A_{41}=-2+\frac{416}{15} A_{14}^{2} B_{14}-\frac{52}{15} B_{14}^{2}, B_{41}=\frac{16}{21} A_{14}\left(28 B_{14}^{2}-3\right)$,
$B_{50}=\frac{16}{15} B_{14}^{2}\left(-13 B_{14}+24 A_{14}^{2}\right)$;
$I_{8}: \quad A_{32}=-\frac{2 B_{41} B_{14}}{9+16 B_{14}^{2}}, \quad A_{50}=-\frac{3}{25\left(9+16 B_{14}^{2}\right)} B_{41}\left(12 B_{14}^{2}-5\right)$,
$A_{41}=\frac{196}{45} B_{14}^{2}+\frac{4}{5}, \quad B_{50}=\frac{56}{125}\left(14 B_{14}^{2}+5\right) B_{14}$,
$A_{14}=\frac{3 B_{41}}{4\left(9+16 B_{14}^{2}\right)}, \quad B_{41}=\frac{4}{45} \sqrt{15 B_{14}}\left(16 B_{14}^{2}+9\right), B_{14}>0 ;$
$I_{9}: \quad A_{32}=-\frac{4 B_{41} B_{14}}{3+32 B_{14}^{2}}, \quad A_{50}=\frac{3 B_{41}\left(8 B_{14}^{2}+1\right)}{3+32 B_{14}^{2}}$,
$A_{41}=-\frac{28}{9} B_{14}^{2}+\frac{1}{3}, B_{50}=-\frac{28}{9}\left(1+4 B_{14}^{2}\right) B_{14}$,
$A_{14}=-\frac{3 B_{41}}{2\left(3+32 B_{14}^{2}\right)}, \quad B_{41}=\frac{4}{9} \sqrt{-3 B_{14}}\left(32 B_{14}^{2}+3\right), B_{14}<0$;
$I_{10}: \quad A_{32}=-\frac{2 B_{41} B_{14}}{16 B_{14}^{2}-1}, \quad A_{50}=\frac{B_{41}\left(412 B_{14}^{2}-25\right)}{25\left(16 B_{14}^{2}-1\right)}$,
$A_{41}=-\frac{28}{5} B_{14}^{2}-2, \quad B_{50}=-\frac{13104}{25} B_{14}^{3}, \quad A_{14}=\frac{3}{4\left(16 B_{14}^{2}-1\right)}$,
$B_{41}=\frac{4}{5} \sqrt{-5 B_{14}}\left(16 B_{14}^{2}-1\right), B_{14}<0 ;$
$I_{11}: \quad A_{32}=-\frac{8}{3} A_{14} B_{14}$,
$A_{50}=-\frac{1}{3\left(-3 B_{41}-24 A_{14}+64 B_{14}^{2} A_{14}\right)} f_{5}$,
$B_{50}=-\frac{16\left(256 A_{14}^{3} B_{14}^{2}-12 B_{41} A_{14}^{2}-64 A_{14} B_{14}^{3}-8 A_{14} B_{14}+3 B_{14} B_{41}\right) B_{14}^{2}}{-3 B_{41}-24 A_{14}+64 B_{14}^{2} A_{14}}$,
$A_{41}=\frac{2}{3\left(-3 B_{41}-24 A_{14}+64 B_{14}^{2} A_{14}\right)} f_{6} ;$

$$
\begin{aligned}
& I_{12}: \quad A_{32}=-\frac{8}{3} A_{14} B_{14}, \\
& A_{50}=\frac{128}{15} A_{41} B_{14}^{2} A_{14}+\frac{32}{15} B_{41} A_{14}^{2} B_{14}+\frac{1}{5} B_{41}+\frac{8}{5} A_{14}-\frac{2}{5} A_{41} B_{41}+\frac{4}{5} A_{14} A_{41} \\
& -\frac{256}{15} A_{14}^{3} B_{14}-\frac{2048}{45} B_{14}^{3} A_{14}^{3}+\frac{8}{5} B_{14}^{2} B_{41}-\frac{512}{15} B_{14}^{4} A_{14}-\frac{128}{15} B_{14}^{2} A_{14}, \\
& B_{50}=-\frac{4 f_{1}}{15 g_{1}}, \\
& A_{41}=\frac{1}{3 B_{14}}\left(16 B_{14}^{2} A_{14}^{2}+12 B_{14}^{3}+3 B_{14}+3 A_{14}^{2} \pm 3 \sqrt{\left(A_{14}^{2} B_{14}+A_{14}^{4}\right)}\right) ; \\
& I_{13}: \quad A_{32}=-\frac{8}{3} A_{14} B_{14}, \quad B_{41}=\frac{16}{21} A_{14}\left(28 B_{14}^{2}-3\right), \\
& A_{50}=-\frac{4}{105} A_{14}\left(576 A_{14}^{2} B_{14}+208 B_{14}^{2}-30-45 A_{41}\right) \text {, } \\
& B_{50}=\frac{120}{7} B_{14}-\frac{212992}{315} A_{14}^{4} B_{14}^{3}-\frac{26624}{63} B_{14}^{4} A_{14}^{2}+\frac{6656}{105} B_{14}^{5} \\
& +\frac{64}{7} A_{14}^{2} A_{41}-\frac{26624}{105} A_{14}^{4} B_{14}-\frac{4608}{35} B_{14}^{2} A_{14}^{2}+\frac{5504}{105} B_{14}^{3} \\
& +\frac{128}{7} A_{14}^{2}+\frac{256}{105} A_{41} B_{14}^{3}-\frac{32}{7} A_{41}^{2} B_{14}+\frac{15872}{105} A_{14}^{2} B_{14}^{2} A_{41}-\frac{4}{7} B_{14} A_{41}, \\
& A_{41}=\frac{1}{3 B_{14}}\left(3 B_{14}+16 B_{14}^{2} A_{14}^{2}+3 A_{14}^{2}+12 B_{14}^{3} \pm 3 A_{14} \sqrt{B_{14}+A_{14}^{2}}\right) ; \\
& I_{14}: \quad A_{32}=-\frac{8}{3} A_{14} B_{14} \text {, } \\
& A_{50}=\frac{128}{15} A_{41} B_{14}^{2} A_{14}+\frac{32}{15} B_{41} A_{14}^{2} B_{14}+\frac{1}{5} B_{41}+\frac{8}{5} A_{14}-\frac{2}{5} A_{41} B_{41} \\
& +\frac{4}{5} A_{14} A_{41}-\frac{256}{15} A_{14}^{3} B_{14}-\frac{2048}{45} B_{14}^{3} A_{14}^{3}+\frac{8}{5} B_{14}^{2} B_{41} \\
& -\frac{512}{15} B_{14}^{4} A_{14}-\frac{128}{15} B_{14}^{2} A_{14}, \\
& A_{41}=\frac{1}{3\left(448 B_{14}^{2} A_{14}-21 B_{41}-48 A_{14}\right)} f_{7}, \\
& B_{41}=\frac{4 f_{2}}{21 g_{2}}, \\
& B_{50}=-\frac{512}{5} A_{14}^{4} B_{14}-\frac{448}{15} B_{14}^{2} A_{14}^{2}+\frac{172}{7} A_{14}^{2}+16 B_{14}^{3}+\frac{132}{7} B_{14} \pm \frac{4}{105} \sqrt{f_{3}} ; \\
& I_{15}: \quad A_{32}=-\frac{8}{3} A_{14} B_{14} \text {, } \\
& A_{50}=\frac{128}{15} A_{41} B_{14}^{2} A_{14}+\frac{32}{15} B_{41} A_{14}^{2} B_{14}+\frac{1}{5} B_{41}+\frac{8}{5} A_{14}-\frac{2}{5} A_{41} B_{41}+\frac{4}{5} A_{14} A_{41} \\
& -\frac{256}{15} A_{14}^{3} B_{14}-\frac{2048}{45} B_{14}^{3} A_{14}^{3}+{ }_{8} 5 B_{14}^{2} B_{41}-\frac{512}{15} B_{14}^{4} A_{14}-\frac{128}{15} B_{14}^{2} A_{14}, \\
& A_{41}=\frac{1}{3\left(448 B_{14}^{2} A_{14}-21 B_{41}-48 A_{14}\right)} f_{8}, \\
& B_{41}=-8 A_{14} \frac{f_{4}}{g_{4}}, \\
& B_{50}=\left(\frac{16}{15} B_{14}^{2}+7-\frac{96}{5} A_{14}^{2} B_{14} \pm \frac{1}{15} \sqrt{g_{3}}\right) B_{14},
\end{aligned}
$$

where f_{i} and g_{i} are given in Appendix.
If the condition I_{1} in Theorem 3.2 holds, system (2.11) can be rewritten as

$$
\begin{aligned}
\frac{d x}{d t}= & \frac{1}{4}(1+y)\left(8 B_{14} x^{2}-4 A_{41} x^{4}-4 y+16 B_{14} x^{2} y\right. \\
& \left.-6 y^{2}+8 B_{14} x^{2} y^{2}-4 y^{3}-y^{4}\right) \\
\frac{d y}{d t}= & x\left(-2 x^{2}-8 B_{14}^{2} x^{2}+B_{50} x^{4}+4 B_{14} y-4 x^{2} y-16 B_{14}^{2} x^{2} y\right. \\
& \left.+6 B_{14} y^{2}-2 x^{2} y^{2}-8 B_{14}^{2} x^{2} y^{2}+4 B_{14} y^{3}+B_{14} y^{4}\right)
\end{aligned}
$$

which is symmetric with the x-axis.
If the condition I_{2} in Theorem 3.2 is satisfied, system (2.11) is reduced to

$$
\begin{aligned}
& \frac{d x}{d t}=\frac{1}{20}\left(-4 B_{41} x^{5}-5 y+20 x^{4} y+80 B_{14}^{2} x^{4} y-40 B_{14} x^{2} y^{3}+5 y^{5}\right) \\
& \frac{d y}{d t}=-x\left(B_{14}-B_{50} x^{4}-B_{41} x^{3} y+2 x^{2} y^{2}+8 B_{14}^{2} x^{2} y^{2}-B_{14} y^{4}\right)
\end{aligned}
$$

which is a Hamiltonian system with the first integral,

$$
\begin{gathered}
F_{1}=\frac{1}{120}\left\{20 B_{50} x^{6}+240 B_{14}^{2} x^{4} y^{2}-60 B_{14} x^{2}\left(1+y^{4}\right)\right. \\
\left.+y\left[-24 B_{41} x^{5}+5 y\left(-3+12 x^{4}+y^{4}\right)\right]\right\}
\end{gathered}
$$

If the condition I_{3} in Theorem 3.2 holds, system (2.11) becomes

$$
\begin{aligned}
& \frac{d x}{d t}=\frac{1}{20}\left(4 B_{41} x^{5}-8 A_{41} B_{41} x^{5}-5 y+20 A_{41} x^{4} y+5 y^{5}\right) \\
& \frac{d y}{d t}=x^{3}\left(B_{41} x-2 y\right) y
\end{aligned}
$$

which has an integrating factor,

$$
M_{1}=2\left(-1+A_{41}\right) y
$$

If the condition I_{4} in Theorem 3.2 holds, system (2.11) takes the form

$$
\begin{aligned}
\frac{d x}{d t} & =\frac{1}{4}\left(4 A_{14} x+y\right)\left(-1+2 x^{4}+y^{4}\right) \\
\frac{d y}{d t} & =x^{3}\left(8 A_{14} x+B_{41} x-2 y\right)\left(4 A_{14} x+y\right)
\end{aligned}
$$

for which an integrating factor is obtained,

$$
M_{2}=\left(4 A_{14} x+y\right)
$$

If the condition I_{5} in Theorem 3.2 holds, system (2.11) is transformed to

$$
\begin{aligned}
& \frac{d x}{d t}=\frac{1}{4}\left(4 A_{14} x+y\right)\left(-1+4 A_{41} x^{4}+y^{4}\right) \\
& \frac{d y}{d t}=-2 x^{3} y\left(4 A_{14} x+y\right)
\end{aligned}
$$

which is symmetric with the x-axis.
If the condition I_{6} in Theorem 3.2 holds, system (2.11) takes the form

$$
\begin{align*}
\frac{d x}{d t}= & \frac{1}{4}\left(4 A_{14} x+y\right)\left(1+256 A_{14}^{4} x^{4}-4 A_{41} x^{4}-64 A_{14}^{3} x^{3} y+24 A_{14}^{2} x^{2} y^{2}-y^{4}\right) \\
\frac{d y}{d t}= & -x\left(3 A_{14}^{2}-24 A_{14}^{2} x^{4}+768 A_{14}^{6} x^{4}-12 A_{14}^{2} A_{41} x^{4}+8 A_{14} x^{3} y\right. \\
& \left.-192 A_{14}^{5} x^{3} y+2 x^{2} y^{2}+72 A_{14}^{4} x^{2} y^{2}-3 A_{14}^{2} y^{4}\right) \tag{3.2}
\end{align*}
$$

which has two algebraic invariant curves:

$$
f_{1}=-2 A_{14} x+y, \quad f_{2}=6 A_{14} x+y
$$

Then an inverse integrating factor for (3.2) is obtained as

$$
M_{3}=\left(-2 A_{14} x+y\right)^{\frac{1}{2}+39 A_{14}^{4}-\frac{3}{4} A_{41}}\left(6 A_{14} x+y\right)^{\frac{1}{4}\left(-2-52 A_{14}^{4}+A_{41}\right)}
$$

If the condition I_{7} in Theorem 3.2 holds, system (2.11) takes the form

$$
\begin{align*}
\frac{d x}{d t}= & \frac{1}{420}\left(-420 A_{14} x-960 A_{14} x^{5}+10752 A_{14}^{3} B_{14} x^{5}\right. \\
& -5824 A_{14} B_{14}^{2} x^{5}-105 y-840 x^{4} y+11648 A_{14}^{2} B_{14} x^{4} y \\
& -1456 B_{14}^{2} x^{4} y-1120 A_{14} B_{14} x^{3} y^{2}-840 B_{14} x^{2} y^{3} \\
& \left.+420 A_{14} x y^{4}+105 y^{5}\right) \tag{3.3}\\
\frac{d y}{d t}= & -\frac{1}{105} x\left(105 B_{14}-2688 A_{14}^{2} B_{14}^{2} x^{4}\right. \\
& +1456 B_{14}^{3} x^{4}+240 A_{14} x^{3} y-2240 A_{14} B_{14}^{2} x^{3} y+210 x^{2} y^{2} \\
& \left.+840 B_{14}^{2} x^{2} y^{2}-105 B_{14} y^{4}\right)
\end{align*}
$$

which has two algebraic invariant curves:

$$
\begin{aligned}
f_{3}= & -4 B_{14} x^{2}+y\left(4 A_{14} x+y\right) \\
f_{4}= & 840 B_{14}\left(-3 A_{14}^{2}+B_{14}\right)+16\left(24 A_{14}^{2}-13 B_{14}\right) B_{14}(-15 \\
& \left.+56\left(3 A_{14}^{2}-B_{14}\right) B_{14}\right) x^{4}+320 A_{14} B_{14}\left(-15+56\left(3 A_{14}^{2}\right.\right. \\
& \left.\left.-B_{14}\right) B_{14}\right) x^{3} y+120 B_{14}\left(15+56 B_{14}\left(-3 A_{14}^{2}+B_{14}\right)\right) x^{2} y^{2} \\
& +15\left(-15+56\left(3 A_{14}^{2}-B_{14}\right) B_{14}\right) y^{4},
\end{aligned}
$$

which in turn yield an inverse integrating factor $M_{3}=f_{3} f_{4}$, for system (3.3).
Remark 3.1. If the condition I_{8} in Theorem 3.2 holds, let $B_{14}=15 r^{2}$, system (2.11) takes the form

$$
\begin{aligned}
\frac{d x}{d t}= & \frac{1}{20}\left(-20 r x+16 r x^{5}-8640 r^{5} x^{5}-5 y+16 x^{4} y\right. \\
& \left.\quad+19600 r^{4} x^{4} y-800 r^{3} x^{3} y^{2}-600 r^{2} x^{2} y^{3}+20 r x y^{4}+5 y^{5}\right) \\
\frac{d y}{d t}= & \frac{1}{5} x\left(-75 r^{2}+168 r^{2} x^{4}+105840 r^{6} x^{4}+60 r x^{3} y\right. \\
& \left.\quad+24000 r^{5} x^{3} y-10 x^{2} y^{2}-9000 r^{4} x^{2} y^{2}+75 r^{2} y^{4}\right)
\end{aligned}
$$

which has an algebraic invariant curve,

$$
f_{5}=-6 r x+y
$$

Although we have tried up to 13th-degree curves, we did not obtain more algebraic invariant curves and thus we cannot construct an integrating factor and so cannot prove that this condition is sufficient for the origin of this system to be a center. Similarly, it is very hard to prove the sufficiency for the conditions $I_{9}-I_{15}$.

Summarizing the above results, we have the following theorem.
Theorem 3.3. The conditions $I_{1}-I_{15}$ in Theorem 3.2 are necessary conditions for $(0, \pm 1)$ of system (2.11) to be centers. Moreover, the conditions $I_{1}-I_{7}$ are also sufficient.

Conjecture 3.1. When $\mu=0$, the conditions $I_{8}-I_{15}$ in Theorem 3.2 are sufficient for $(0, \pm 1)$ of system (2.11) to be centers.

4. Center problem of $(0, \pm 1)$ with multiplicity 5

Suppose $(0, \pm 1)$ are nilpotent foci or centers of system (1.3) with multiplicity 5 . By proper linear transformation and time recalling, system (1.3) can be changed to

$$
\begin{align*}
\frac{d x}{d t}=\frac{1}{4} & \left(-4 A_{14} x+4 A_{50} x^{5}-y+4 A_{41} x^{4} y+4 A_{32} x^{3} y^{2}\right. \\
& \left.+4 A_{23} x^{2} y^{3}+4 A_{14} x y^{4}+y^{5}\right) \tag{4.1}\\
\frac{d y}{d t}= & -x\left(B_{14}-B_{50} x^{4}+16 A_{14} A_{23} B_{14} x^{3} y-4 A_{32} B_{14} x^{3} y\right. \\
& \left.-4 A_{23} B_{14} x^{2} y^{2}-B_{14} y^{4}\right),
\end{align*}
$$

where B_{50} is given in (2.12). Denote

$$
A_{32}=\mu-\frac{8}{3} A_{14} B_{14} .
$$

Theorem 2.2 shows that $(0, \pm 1)$ of system (4.1) are foci or centers if $\mu^{2}<1$ and degenerate singular points if $\mu^{2}>1$.

4.1. Lyapunov constants at $(0, \pm 1)$ of system (4.1)

In this section, we study the integrability of $(0, \pm 1)$ of system (4.1) when $(0, \pm 1)$ are nilpotent singular points with multiplicity 5 . We first compute the Lyapunov constants at $(0, \pm 1)$ by using the method of normal forms developed in [15].

Proposition 4.1. The first five Lyapunov constants at $(0, \pm 1)$ of system (4.1) are

$$
\begin{aligned}
\nu_{1}= & \mu, \\
\nu_{2}= & \frac{1}{3}\left(60 A_{14} A_{41}+15 A_{50}-128 A_{14}^{3} B_{14}-224 A_{14} B_{14}^{2}\right), \\
\nu_{3}= & \frac{A_{14}}{90}\left(675-40320 A_{14}^{2} A_{41}+104448 A_{14}^{4} B_{14}\right. \\
& \left.+3840 A_{41} B_{14}+177664 A_{14}^{2} B_{14}^{2}-15360 B_{14}^{3}\right) .
\end{aligned}
$$

Case 1. For $B_{14} \neq \frac{21}{2} A_{14}^{2}$,

$$
\begin{aligned}
\nu_{4} & =-\frac{2 A_{14}}{225\left(21 A_{14}^{2}-2 B_{14}\right)} G_{1} \\
\nu_{5} & =-\frac{A_{14}}{9676800\left(21 A_{14}^{2}-2 B_{14}\right)^{2}} G_{2}
\end{aligned}
$$

Case 2. For $B_{14}=\frac{21}{2} A_{14}^{2}$,

$$
\begin{aligned}
\nu_{4} & =\frac{3}{2} A_{14}\left(5+21504 A_{14}^{6}\right), \\
\nu_{5} & =0
\end{aligned}
$$

where G_{1}, G_{2} are given in Appendix.
Theorem 4.1. The first five Lyapunov constants at the two singular points $(0, \pm 1)$ of system (4.1) are all zero if and only if the following condition holds:

$$
I_{16}: \quad A_{14}=A_{50}=\mu=0
$$

Proof. When the condition I_{16} holds, system (4.1) can be rewritten as

$$
\begin{aligned}
\frac{d x}{d t}= & -2 B_{14} x^{2}+A_{41} x^{4}+y-6 B_{14} x^{2} y+A_{41} x^{4} y+\frac{5}{2} y^{2} \\
& -6 B_{14} x^{2} y^{2}+\frac{5}{2} y^{3}-2 B_{14} x^{2} y^{3}+\frac{5}{4} y^{4}+\frac{1}{4} y^{5} \\
\frac{d y}{d t}= & -8 B_{14}^{2} x^{3}-\frac{3}{4} x^{5}+4 A_{41} B_{14} x^{5}+4 B_{14} x y \\
& -16 B_{14}^{2} x^{3} y+6 B_{14} x y^{2}-8 B_{14}^{2} x^{3} y^{2}+4 B_{14} x y^{3}+B_{14} x y^{4}
\end{aligned}
$$

which is symmetric with the x-axis.
Hence, we have the following theorem.
Theorem 4.2. The singular points $(0, \pm 1)$ of system (4.1) with multiplicity 5 are centers if and only if $A_{14}=A_{50}=\mu=0$.

5. Conclusion

In this paper, we have studied quintic Z_{2}-equivariant vector fields with two isolated nilpotent singular points, with particular attention on the case $\mu=0$. We first introduce some transformations to simplify the system, and get a general form of the system which has two isolated nilpotent foci or centers at $(0, \pm 1)$. Then we compute the first seven Lyapunov constants of the system by using the inverse integrating factor method when $(0, \pm 1)$ are nilpotent singular points with multiplicity 3. Moreover, the integrability of the system is discussed, leading to fifteen center conditions, all of them are necessary and seven of them, $I_{1}-I_{7}$, are also proved to be sufficient. In addition, by using the method of normal forms, the first five Lyapunov constants of the system are obtained when $(0, \pm 1)$ are nilpotent singular points with multiplicity 5 , and the integrability of the system is discussed. Two problems are still open, left for future study: (1) proving sufficiency of the other eight conditions, $I_{8}-I_{15}$ for the system when $(0, \pm 1)$ are order-3 nilpotent singular points; and (2) computing the Lyapunov constants for the system when $\mu \neq 0$.

References

[1] Y. Liu, J. Li, Complete study on a bi-center problem for the Z_{2}-equivariant cubic vector fields, Acta Math. Sin. 27(7) (2011) 1379-1394.
[2] V. Romanovski, W. Fernandes, R. Oliveira, Bi-center problem for some classes of Z_{2}-equivariant systems. J. Comput. Appl. Math. 320 (2017) 61-75.
[3] J. Giné, J. Llibre J, C. Valls, Simultaneity of centres in Zq-equivariant systems, Proc. R. Soc. A, 474 (2018) 20170811.
[4] M. Han, X. Hou, L. Sheng, C. Wang, Theory of rotated equations and applications to a population model, Discrete Continuous DynamicalSystems-A 38 (2018) 2171-2185.
[5] M. Han, V. G. Romanovski, Limit cycle bifurcations from a nilpotent focus or center of planar systems, Abstract and Applied Analysis. 2012 (2012) 97-112.
[6] H. Zhang, A. Chen, Global phase portraits of symmetrical Cubic hamiltonian systems with a nilpotent singular point, J. Nonlinear Modeling and Anal. 1(2) (2019) 193-205.
[7] P. Yu, M. Han, J. Li, An Improvement on the Number of Limit Cycles Bifurcating from a Nondegenerate Center of Homogeneous Polynomial Systems, Int. J. Bifur. Chaos. 28(2018) 1850078.
[8] T. Liu, Y. Liu, F. Li, A kind of bifurcation of limit cycles from a nilpotent critical point, J. Appl. Anal. Comp. 8 (2018) 10-18.
[9] A. Algaba A, C. García, J. Giné, The center problem for Z2-symmetric nilpotent vector fields, J. Math. Anal. Appl. 466 (2018) 183-198.
[10] F. Li , Y. Liu, Y. Liu, P. Yu, Bi-center problem and bifurcation of limit cycles from nilpotent singular points in Z2-equivariant cubic vector fields, J. Differential Equations. 265 (2018) 4965-4992.
[11] Y. Liu, Multiplicity of higher order singular point of differential autonomous system, J. Cent. South Univ. Techonol. 30(3) (1999) 325-326.
[12] Z. Zhang, T. Ding, W. Huang, Z. Dong, The Qualitative Theory of Differential Equations, Science Press, Bejing, 1997.
[13] F. Dumortier, J. Llibre, C. Arts, Qualitative theory of planar differential systems, Universitext, Springer-Verlag, Berlin, 2006.
[14] Y. Liu, J. Li, On three-order nilpotent critical points: Integral factor method, Int. J. Bifur. Chaos 21(5) (2011) 1293-1309.
[15] P. Yu, F. Li, Bifurcation of limit cycles in a cubic-order planar system around a nilpotent critical point, J. Math. Anal.Appl. 453(2) (2017) 645-667.

Appendix

$$
\begin{aligned}
& f_{1}=5760 B_{14}^{3} A_{14} A_{41}+2160 B_{14} A_{41}^{2} A_{14}-76032 B_{14}^{2} A_{41} A_{14}^{3}-540 A_{14} B_{14} A_{41} \\
& +11520 A_{14} B_{14}^{5} A_{41}-328704 B_{14}^{4} A_{41} A_{14}^{3}+8640 B_{14}^{3} A_{14} A_{41}^{2}-9720 A_{14} B_{14} \\
& +860160 A_{14}^{5} B_{14}^{3}+503808 B_{14}^{4} A_{14}^{3}-138240 A_{14} B_{14}^{5}-5184 A_{14}^{3} A_{41} \\
& +110592 A_{14}^{5} B_{14}+36864 A_{14}^{3} B_{14}^{2}-40320 A_{14} B_{14}^{3}+884736 A_{14}^{3} B_{14}^{6} \\
& +1507328 B_{14}^{5} A_{14}^{5}+5400 B_{14}^{3} B_{41}+378 A_{14} B_{41}^{2}+1728 B_{41} A_{14}^{2} \\
& +810 B_{14} B_{41}-10368 A_{14}^{3}+11376 A_{14}^{2} A_{41} B_{14}^{2} B_{41}-540 A_{41} B_{14}^{3} B_{41} \\
& -28800 A_{14}^{4} B_{14} B_{41}-49152 A_{14}^{4} B_{14}^{3} B_{41}+189 B_{41}^{2} A_{14} A_{41}+864 A_{14}^{2} A_{41} B_{41} \\
& -405 A_{41}^{2} B_{14} B_{41}-1008 A_{14}^{3} B_{14} B_{41}^{2}-405 B_{14} A_{41} B_{41}-756 B_{41}^{2} B_{14}^{2} A_{14} \\
& -25344 B_{41} B_{14}^{4} A_{14}^{2}-24480 B_{41} B_{14}^{2} A_{14}^{2}+8640 B_{14}^{5} B_{41}-184320 A_{14} B_{14}^{7} \text {, } \\
& g_{1}=36 A_{14}-63 B_{41}-336 B_{41} A_{14}^{2} B_{14}-1344 A_{41} B_{14}^{2} A_{14}-252 B_{14}^{2} B_{41} \\
& +7168 B_{14}^{3} A_{14}^{3}+63 A_{41} B_{41}+144 A_{14} A_{41}+5376 B_{14}^{4} A_{14} \\
& -768 A_{14}^{3} B_{14}+768 B_{14}^{2} A_{14} \text {, } \\
& f_{2}=241266060 B_{14}^{3}-202713840 B_{14}^{5}-390620160 B_{14}^{7}+185932800 A_{14}^{6} \\
& +21244317696 B_{14}^{4} A_{14}^{6}+7774470144 B_{14}^{3} A_{14}^{8}-832978944 A_{14}^{8} B_{14} \\
& -4532161536 A_{14}^{6} B_{14}^{2}-3284508416 A_{14}^{2} B_{14}^{6}+8318679040 A_{14}^{4} B_{14}^{5} \\
& -7645236480 A_{14}^{4} B_{14}^{3}+701367840 A_{14}^{4} B_{14}-3860832864 B_{14}^{4} A_{14}^{2} \\
& -4067280 A_{14}^{4} B_{50}+24413760 B_{14}^{4} B_{50}-9128385 B_{14}^{2} B_{50} \\
& +761100660 B_{14}^{2} A_{14}^{2}+95032560 A_{14}^{2} B_{14}^{3} B_{50} \\
& -12724110 A_{14}^{2} B_{14} B_{50}+37961280 A_{14}^{4} B_{14}^{2} B_{50}, \\
& g_{2}=-4110480 B_{14}^{3}-3487680 B_{14}^{5}-12724110 A_{14}^{2} B_{14} B_{50}-15494400 A_{14}^{6} \\
& +69414912 A_{14}^{8} B_{14}+189681408 A_{14}^{6} B_{14}^{2}-12724110 A_{14}^{2} B_{14} B_{50} \\
& +74273920 A_{14}^{4} B_{14}^{3}-48763320 A_{14}^{4} B_{14}-29325968 B_{14}^{4} A_{14}^{2} \\
& -12724110 A_{14}^{2} B_{14} B_{50}+338940 A_{14}^{4} B_{50}+217980 B_{14}^{2} B_{50} \\
& -35144880 B_{14}^{2} A_{14}^{2}+848505 A_{14}^{2} B_{14} B_{50} \text {, } \\
& f_{3}=308025 A_{14}^{4}-4014080 A_{14}^{4} B_{14}^{4}-1989120 A_{14}^{4} B_{14}^{2}+308025 A_{14}^{2} B_{14} \\
& -2983680 A_{14}^{6} B_{14}+2408448 A_{14}^{6} B_{14}^{3}+802816 B_{14}^{5} A_{14}^{2} \\
& +308025 A_{14}^{2} B_{14}+994560 B_{14}^{3} A_{14}^{2}+7225344 A_{14}^{8} B_{14}^{2}, \\
& g_{3}=50176 B_{14}^{4}+33600 B_{14}^{2}-301056 B_{14}^{3} A_{14}^{2}+11025-100800 A_{14}^{2} B_{14} \\
& +451584 A_{14}^{4} B_{14}^{2},
\end{aligned}
$$

$$
\begin{aligned}
f_{4}= & 24647490000 B_{14}^{2}-184104576000 B_{14}^{4}-2097506016000 B_{14}^{6}+151723125 B_{50}^{2} \\
& -6665641113600 B_{14}^{8}-8943530803200 B_{14}^{10}-4369888051200 B_{14}^{12} \\
& -237456011427840 A_{14}^{6} B_{14}^{5}+120010151854080 A_{14}^{4} B_{14}^{6} \\
& +29883528806400 A_{14}^{6} B_{14}^{3}+11934755758080 B_{14}^{7} A_{14}^{2} \\
& +25735457894400 A_{14}^{4} B_{14}^{4}-3984368486400 B_{14}^{5} A_{14}^{2} \\
& -2801288448000 A_{14}^{4} B_{14}^{2}-1444283136000 B_{14}^{3} A_{14}^{2} \\
& +102876480000 A_{14}^{2} B_{14}-17069875200 B_{14}^{6} B_{50}^{2}+546236006400 B_{14}^{9} B_{50} \\
& -1454355000 B_{14}^{2} B_{50}^{2}-9601804800 B_{14}^{4} B_{50}^{2}+289494777600 B_{14}^{5} B_{50} \\
& +712599552000 B_{14}^{7} B_{50}-7372620000 A_{14}^{2} B_{50}-3870990000 B_{14} B_{50} \\
& +33083964000 B_{14}^{3} B_{50}-42433693876244 A_{14}^{8} B_{14}^{5} B_{50} \\
& -2755620000 A_{14}^{2} B_{14} B_{50}^{2}+2342283116544 A_{14}^{4} B_{14}^{7} B_{50} \\
& +26231813701632 A_{14}^{6} B_{14}^{6} B_{50}+13289141698560 A_{14}^{6} B_{14}^{4} B_{50} \\
& -3014888325120 A_{14}^{4} B_{14}^{5} B_{50}+149751504000 A_{14}^{2} B_{14}^{2} B_{50} \\
& -1995466752000 A_{14}^{4} B_{14}^{3} B_{50}+172642752000 A_{14}^{4} B_{14} B_{50} \\
& -115828531200 A_{14}^{2} B_{14}^{4} B_{50}-1470895718400 A_{14}^{6} B_{14}^{2} B_{50} \\
& +23318668800 A_{14}^{2} B_{14}^{3} B_{50}^{2}-3698374213632 A_{14}^{2} B_{14}^{8} B_{50}^{2} \\
& -2794541137920 A_{14}^{2} B_{14}^{6} B_{50}+16460236800 A_{14}^{4} B_{14}^{2} B_{50}^{2} \\
& +4998616842240 A_{14}^{8} B_{14}^{3} B_{50}+102419251200 A_{14}^{2} B_{14}^{5} B_{50}^{2} \\
& +598476849152 A_{14}^{2} B_{14}^{1} 0 B_{50}-7181722189824 A_{14}^{4} B_{14}^{9} B_{50} \\
& -153628876800 A_{14}^{4} B_{14}^{4} B_{50}^{2}+32317749854208 A_{14}^{6} B_{14}^{8} B_{50} \\
& -64635499708416 A_{14}^{8} B_{14}^{7} B_{50}+48476624781312 A_{14}^{10} B_{14}^{6} B_{50} \\
& -5193924083712 A_{14}^{0} B_{14}^{4} B_{50}+3102503986003968 B_{14}^{8} A_{14}^{12} \\
& -332411141357568 B_{14}^{6} A_{14}^{12}+153210073382912 B_{14}^{12} A_{14}^{4} \\
& -976714217816064 B_{14}^{1} 1 A_{14}^{6}+3102503986003968 B_{14}^{1} A_{14}^{8} \\
& -4912297977839616 B_{14}^{9} A_{14}^{10}+3762665054797824 B_{14}^{8} A_{14}^{8} \\
& -3214373120114688 B_{14}^{7} A_{14}^{10}+1225295206023168 A_{14}^{8} B_{14}^{6} \\
& -1031122351816704 A_{14}^{6} B_{14}^{7}-155511957749760 A_{14}^{8} B_{14}^{4} \\
& +43036204990464 B_{14}^{9} A_{14}^{2}+144789717123072 B_{14}^{8} A_{14}^{4} \\
& -1391757090619392 A_{14}^{6} B_{14}^{9}+131010014478336 B_{14}^{10} A_{14}^{4} \\
& +382238566907904 A_{14}^{10} B_{14}^{5}+25772936921088 B_{14}^{11} A_{14}^{2} \\
& -9575629586432 B_{14}^{13} A_{14}^{2}, \\
& -14,
\end{aligned}
$$

$$
\begin{array}{rl}
g_{4}= & 147884940000 B_{14}^{2}+1038282624000 B_{14}^{4}+2848372128000 B_{14}^{6} \\
& +889835625 B_{50}^{2}+3529399910400 B_{14}^{8}+1638708019200 B_{14}^{10} \\
& +442736545628160 A_{14}^{6} B_{14}^{5}-59382170910720 A_{14}^{4} B_{14}^{6} \\
& +130807797350400 A_{14}^{6} B_{14}^{3}-17197283819520 B_{14}^{7} A_{14}^{2} \\
& -50355377049600 A_{14}^{4} B_{14}^{4}-6218257766400 B_{14}^{5} A_{14}^{2} \\
& -13987531008000 A_{14}^{4} B_{14}^{2}+944270784000 B_{14}^{3} A_{14}^{2} \\
& +617258880000 A_{14}^{2} B_{14}+4286520000 B_{14}^{2} B_{50}^{2} \\
& +6401203200 B_{14}^{4} B_{50}^{2}-289171814400 B_{14}^{5} B_{50} \\
& -204838502400 B_{14}^{7} B_{50}-44114220000 A_{14}^{2} B_{50} \\
& -23007240000 B_{14} B_{50}-135869076000 B_{14}^{3} B_{50} \\
& +24238312390656 A_{14}^{8} B_{14}^{5} B_{50}-12859560000 A_{14}^{2} B_{14} B_{50}^{2} \\
& +2693145821184 A_{14}^{4} B_{14}^{7} B_{50}-12119156195328 A_{14}^{6} B_{14}^{6} B_{50} \\
& -11135411159040 A_{14}^{6} B_{14}^{4} B_{50}-589804830720 A_{14}^{4} B_{14}^{5} B_{50} \\
& +157022064000 A_{14}^{2} B_{14}^{2} B_{50}+1031159808000 A_{14}^{4} B_{14}^{3} B_{50} \\
& +837179712000 A_{14}^{4} B_{14} B_{50}+1197997516800 A_{14}^{2} B_{14}^{4} B_{50} \\
& -6067818086400 A_{14}^{6} B_{14}^{2} B_{50}-38407219200 A_{14}^{2} B_{14}^{3} B_{50}^{2} \\
& -224428818432 A_{14}^{2} B_{14}^{8} B_{50}+1362844385280 A_{14}^{2} B_{14}^{6} B_{50} \\
& +57610828800 A_{14}^{4} B_{14}^{2} B_{50}^{2}+18509597245440 A_{14}^{8} B_{14}^{3} B_{50} \\
& -18178734292992 A_{14}^{10} B_{14}^{4} B_{50}-1163438994751488 B_{14}^{6} A_{14}^{12} \\
& -1163438994751488 B_{14}^{8} A_{14}^{8}+184211171689856 B_{14}^{7} A_{14}^{00} \\
& -1535653573558272 A_{14}^{8} B_{14}^{6}+561151890948096 A_{14}^{6} B_{14}^{7} \\
& -615324828303360 A_{14}^{8} B_{14}^{4}-9280116228096 B_{14}^{9} A_{14}^{2} \\
& -55284517306368 B_{14}^{8} A_{14}^{4}+366267831681024 A_{14}^{6} B_{14}^{9} \\
& -57453777518592 B_{14}^{10} A_{14}^{4}+1402759035224064 A_{14}^{10} B_{14}^{5} \\
& +3590861094912 B_{14}^{11} A_{14}^{2}, \\
f_{5}=9 B_{41}^{2}+72 B_{41} A_{14}+12288 B_{14}^{3} A_{14}^{4}+1024 B_{14}^{4} A_{14}^{2}-1920 B_{14}^{2} A_{14}^{2} \\
& -576 B_{41} A_{14}^{3} B_{14}-240 B_{41} B_{14}^{2} A_{14}, \\
f_{6}= & -768 A_{14}^{3} B_{14}-144 B_{14}^{2} A_{14}+512 B_{14}^{3} A_{14}^{3}+72 A_{14}+9 B_{41} \\
& -24 B_{41} A_{14}^{2} B_{14}-18 B_{14}^{2} B_{41}+384 B_{14}^{4} A_{14}, \\
f_{7}= & 36 A_{14}-63 B_{41}-336 B_{41} A_{14}^{2} B_{14}-252 B_{14}^{2} B_{41}+7168 B_{14}^{3} A_{14}^{3} \\
& +768 B_{14}^{2} A_{14}+5376 B_{14}^{4} A_{14}-768 A_{14}^{3} B_{14}, \\
f_{8} & 36 A_{14}-63 B_{41}-336 B_{41} A_{14}^{2} B_{14}-252 B_{14}^{2} B_{41}+7168 B_{14}^{3} A_{14}^{3} \\
& 768 B_{14}^{2} A_{14}+5376 B_{14}^{4} A_{14}-768 A_{14}^{3} B_{14}, \\
&
\end{array}
$$

$$
\begin{aligned}
G_{1}= & 8847360 A_{14}^{8} B_{14}-279281664 A_{14}^{6} B_{14}^{2}+88375296 A_{14}^{4} B_{14}^{3} \\
& +4987744 A_{14}^{2} B_{14}^{4}-707520 B_{14}^{5}-3645000 A_{14}^{4}+170100 A_{14}^{2} B_{14} \\
& +105300 B_{14}^{2}, \\
G_{2}= & 106542032486400 A_{14}^{1} 2 B_{14}-9381533303439360 A_{14}^{1} 0 B_{14}^{2} \\
& +863284903280640 A_{14}^{8} B_{14}^{3}+1618159372861440 A_{14}^{6} B_{14}^{4} \\
& +8847360 A_{14}^{8} B_{14}-455881204695040 A_{14}^{4} B_{14}^{5} \\
& -110125080576000 A_{14}^{8}-279281664 A_{14}^{6} B_{14}^{2} \\
& +44573995827200 A_{14}^{2} B_{14}^{6}-24409340928000 A_{14}^{6} B_{14} \\
& +88375296 A_{14}^{4} B_{14}^{3}-1494173614080 B_{14}^{7} \\
& +18695570688000 A_{14}^{4} B_{14}^{2}+4987744 A_{14}^{2} B_{14}^{4} \\
& -2317135824000 A_{14}^{2} B_{14}^{3}-707520 B_{14}^{5}-3645000 A_{14}^{4} \\
& +87395616000 B_{14}^{4}+170100 A_{14}^{2} B_{14}-11577431250 A_{14}^{2} \\
& +105300 B_{14}^{2}+1929571875 B_{14} .
\end{aligned}
$$

[^0]: ${ }^{\dagger}$ the corresponding author. Email address:lf0539@126.com(Feng Li)
 ${ }^{1}$ School of Mathematics and Statistics, Linyi University, Linyi, Shandong 276005, China
 ${ }^{2}$ Department of Applied Mathematics, Western University, London, Ontario N6A 5B7, Canada
 *This research was partially supported by the National Natural Science Foundation of China, No. 11601212 (F. Li), Shandong Natural Science Foundation, No. ZR2018MA002 (F. Li) and the Natural Sciences and Engineering Research Council of Canada, No. R2686A02 (P. Yu).

