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Abstract In this paper, we present a method to com-
pute focal values and periodic constants at infinity of a
class of switching systems and apply it to study a cubic
system. We prove that such a cubic system can have
7 limit cycles in the sufficiently small neighborhood
of infinity. Moreover, we consider a quintic switching
system to obtain 14 limit cycles at infinity, while con-
tinuous quintic systems can have only 11 limit cycles
in the sufficiently small neighborhood of infinity. This
indicates that switching systems or discontinuous sys-
tems can exhibit more complex dynamics compared to
smooth systems.

Keywords Switching system · Infinity · Lyapunov
constant · Limit cycle · Center · Quasi-isochronous
center

1 Introduction

In recent years, bifurcation of limit cycles in planar dif-
ferential systems with small perturbations has received
a great deal of attention. This is closely related to
the so-called weakened Hilbert’s 16th problem [1],
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which asks for the number and distribution of limit
cycles in dynamical systems around a singular point
or near a closed orbit. Limit cycles theory has been
widely applied to consider real practical problems, and
in recent years, researchers have paid attention to an
important and interesting problem related to multiple
stability (e.g., see [2–5]). However, it has been noticed
that most of the known results are concerned with the
bifurcation of limit cycles in the finite region of the
plane. However, the study of limit cycles bifurcation
from infinity is important, particularly for the weak-
ened Hilbert’s 16th problem. There have been some
results [6–10] on limit cycles bifurcation at infinity for
certain special continuous systems. Bifurcation of peri-
odic orbits from infinity has also been studied for poly-
nomial planar vector fields, see for instance the work of
Sotomayor and Paterlini [11], Blows and Rousseau [7]
and Gunez et al. [12]; as well as for special systems
such as the Rayleigh equation studied by Keith and
Rand [13], the Van der Pol system by Malaguti [14]
and the Liénard system by Sabatini [15]. In general, it
is hard to solve the center problem for a system with
a singular point at infinity and to determine the num-
ber of limit cycles at infinity. A special system with a
singular point at infinity, described by

dx

dt
= (δx − y)

(
x2 + y2

)n +
2n∑
k=0

Fk(x, y),

dy

dt
= (x + δy)

(
x2 + y2

)n +
2n∑
k=0

Gk(x, y), (1.1)
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has been considered by Liu [16]. Here, Fk(x, y) and
Gk(x, y) are homogeneous polynomials of order k.
The importance of study of the limit cycles bifurcating
from infinity of nonlinear systems is not only because
it is related to the well-known Hilbert’s 16th problem
which considers possible bifurcation of limit cycles in
the whole plane, but also because it helps people to
understand global structure of nonlinear systems. To
solve the problem, one may use a proper transforma-
tion to change the singular point of system (1.1) at
infinity into the origin which is a weak focus, so that
classical methods can be applied to determine the num-
ber of limit cycles.

Recently, many practical problems in science and
engineering are modeled by using ordinary differential
equations with discontinuity, see for example [17,18].
These modeling and studies are of great importance
in direct control theory [19,20], in switching circuits
of power electronics [21] and in impact and dry fric-
tions of mechanical engineering [22,23] and so on.
Study of switching systems associatedwithHopf bifur-
cation has also attracted many researchers. Leine and
Nijmeijer [24] and Zou et al. [25] considered nons-
mooth Hopf bifurcation. Freire et al. [26] discussed
the focus-center limit cycle bifurcation in a symmetric
3-dimensional, piecewise linear system. Furthermore,
Chen and Du presented a quadratic switching system
with nine limit cycles in [27]. Recently, Tian and Yu
constructed aBautin switching system to show the exis-
tence of ten limit cycles in [28]. Llibre et al. [29] stud-
ied the maximum number of limit cycles that bifurcate
from the family of the periodic solutions arising from
isochronous centers in a cubic polynomial system, and
they also studied the maximum number of limit cycles
which bifurcate from the periodic orbits associatedwith
isochronous centers in discontinuous quadratic poly-
nomial differential systems [30]. The number of limit
cycles which can bifurcate from the periodic orbits of
a linear center perturbed by nonlinear functions in the
form of all classical polynomial Liénard differential
equations with discontinuities was discussed in [31].

For piecewise continuous systems, Llibre et al.
[32] established sufficient and necessary conditions for
bifurcation of limit cycles from the periodic orbit at
infinity in symmetric piecewise linear bidimensional
systems. Later, the same authors studied the bifurcation
of limit cycles from infinity for a nonsmooth but con-
tinuous piecewise differential system [33]. But for non-
linear systems, to date, none of the methods developed

for studying the center problem at infinity is perfect to
be used directly and thus needs further improving. In
this paper, we consider the bifurcation of limit cycles
from infinity for switching bidimensional systems.This
problem can be treated as a kind of generalized Hopf
bifurcation at infinity. In particular, we study a class of
discontinuous planar systems of ordinary differential
equations, with the upper system given by

dx

dt
= (δx − y)

(
x2 + y2

)n +
2n∑
k=0

F+
k (x, y),

dy

dt
= (x + δy)

(
x2 + y2

)n +
2n∑
k=0

G+
k (x, y), (1.2)

and the lower system described by

dx

dt
= (δx − y)

(
x2 + y2

)n +
2n∑
k=0

F−
k (x, y),

dy

dt
= (x + δy)

(
x2 + y2

)n +
2n∑
k=0

G−
k (x, y), (1.3)

where F±
k (x, y) and G±

k (x, y) are kth-order homoge-
neous polynomials. Note that the x-axis (y = 0) is
the discontinuity boundary. As a class of discontinuous
vector fields, the classical Hopf bifurcation theorem is
not applicable so that specific techniques are needed.
The aim of this paper is to modify an existing method
on the study of the Poincaré Map in a neighborhood
of infinity for switching systems with a singular point
at infinity. In general, for such systems, it is hard to
solve the center problem and to determine the num-
ber of limit cycles. However, for the system described
by (1.2) and (1.3), classical Bendixson transformation
could be used to transform the singular point at infinity
into the origin, which is a weak focus and thus existing
methods may be applied or modified to overcome the
difficulty.

The rest of the paper is organized as follows. In the
next section, a method to compute Lyapunov constants
and periodic constants at infinity of the above switching
system is presented. As examples, two cubic switching
systemswith a singular point at infinity are investigated
in Sects. 3 and 4. Section5 summarizes the results of
this paper.
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Fig. 1 Positive half-return map of system (1.2) and negative
half-return map of system (1.2). (Color figure online)

2 Lyapunov constants of singular point at infinity
for a class of switching systems

The study of the Poincaré map in a neighborhood of
infinity for planar vector fields, when it is well defined,
can be conveniently carried out by using the Bendixson
transformation. This reduces the problem to a similar
study in a neighborhood of the origin for the trans-
formed system, see for instance Andronov and oth-
ers [34]. But for switching systems, classical methods
cannot be used, and we thus must develop some new
techniques. Similarly, we may define half-return maps
as that used in [35] and may generalize Lemma 2.1
in [35] to compute the positive half-returnmaps of (1.2)
and (1.3), respectively.

Firstly, we define the positive half-returnmap of sys-
tem (1.2), and then with a time changing, we can define
the positive half-return map for the lower half-plane.
This is illustrated in Figs. 1, 2 and 3. Figure1 shows the
positive half-returnmap of system (1.2) (in green color)
and the negative half-return map of system (1.3) (in
red color). Then, applying the transformation y → −y
to the lower half-plane moves the negative half-return
map of system (1.3) into the upper half-plane, as shown
in Fig. 2 (see the red curve with the arrow in the counter
clockwise direction). Finally, with the reversing time
t → −t , the negative half-return map of system (1.3)
becomes a positive half-return map, see the red curve
in Fig. 3 (i.e. the small semicircle), and the resulting
system of (1.3) is now given by

dx

dt
= (δx − y)

(
x2 + y2

)n +
2n∑
k=0

F−
k (x,−y),

dy

dt
= (x + δy)

(
x2 + y2

)n +
2n∑
k=0

G−
k (x,−y).

(2.1)

x

y

Fig. 2 The lower half-plane changed to the upper half-plane.
(Color figure online)

x

y

Fig. 3 The vector fields of systems (1.2) and (2.1) with positive
half-return maps. (Color figure online)

Therefore, we only need to consider the positive
half-return maps of systems (1.2) and (2.1). More
details can be found in [36]. To find the positive half-
return maps, we may apply the Bendixson transforma-
tion in polar coordinates,

x = cos θ

r
, y = sin θ

r
, (2.2)

and the timescale t = r2nτ , to systems (1.2) and (2.1)
to obtain

dr

dτ
= −r

[
±δ +

2n+1∑
k=1

ϕ2n+2−k(θ)rk
]

,

dθ

dτ
= 1 +

2n+1∑
k=1

ψ2n+2−k(θ)rk,

(2.3)

where ϕk(θ), ψk(θ) are polynomials of cos θ and sin θ ,
given by

ϕ2n+2(θ) = cos θX2n+1(cos θ, sin θ)

+ sin θY2n+1(cos θ, sin θ),

ψ2n+2(θ) = cos θY2n+1(cos θ, sin θ)

− sin θX2n+1(cos θ, sin θ).
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Combining the two equations in (2.3) yields that

dr

dθ
= −r

±δ + �∞
k=1ϕ2n+2−k(θ) rk

1 + �∞
k=1ψ2n+2−k(θ) rk

, (2.4)

which is a special case of the equation,

dr

dθ
= r

∞∑
k=1

Rk(θ) rk . (2.5)

By the method of small parameter of Poincaré, the
solutions of (2.5) can be written as

r = r̃(θ, h) =
∞∑
k=1

vk(θ)hk,

wherev1(0) = 1, vk(0) = 0,∀k ≥ 2. So the successive
function for the switching system can be written as

�(h) = �1(h) − �2(h) = r̃1(π, h) − r̃2(π, h),

where

�1(h) = r̃1(π, h) − h, �2(h) = r̃2(π, h) − h.

The period function for (1.2) and (2.1) can be defined
as

T = T1(θ, h) + T2(θ, h) = 2π +
n∑

k=1

Tkh
k,

where

T1(θ, h) =
∫ π

0

dϑ

1 + �∞
k=1ψ2n+2−k(θ)r̃ k1 (ϑ, h)

,

T2(θ, h) =
∫ π

0

dϑ

1 + �∞
k=1ψ2n+2−k(θ)r̃ k2 (ϑ, h)

. (2.6)

In the following, we present some definitions which
will be used in the next section.

Definition 2.1 �(h) = ∑n
1(u1(θ) − v1(θ))hk =∑n

k=1 Vkh
k,where Vk is called the kth-order focal val-

ues of the switching system at infinity.

Definition 2.2 T (h) = T1(θ, h) + T2(θ, h) = ∑n
k=1

Tkhk,where Tk is called the kth-order periodic constant
of the switching system at infinity.

Definition 2.3 The infinity is said to be a center if every
solution curve of the system in a neighborhood of infin-
ity (the equator) is a closed orbit. The infinity is called
a quasi-isochronous center if all periodic constants at
the origin of system (2.3) are zero.

The following steps describe how to compute the
focal values and the periodic constants.

1. Introduce the transformations: y → −y and t →
−t to the negative half-plane.

2. Apply the Bendixson transformation in polar coor-
dinates x = cos θ

r , y = sin θ
r , and the timescale

t = r2nτ to systems (1.2) and (2.1), and write the
solutions of the systems as

r1 = r̃1(θ, h) =
∞∑
k=1

uk(θ)hk and

r2 = r̃2(θ, h) =
∞∑
k=1

vk(θ)hk,

respectively, satisfying u1(0) = v1(0) = 1, uk(0)
= vk(0) = 0, ∀ k ≥ 2.

3. Solve uk(θ) and vk(θ).
4. Compute the successive function for the switching

system using the formula,

�(h) = �1(h) − �2(h) = r̃1(π, h) − r̃2(π, h).

5. Compute the periodic constants for the switching
system using the formula,

T = T1(π, h) + T2(π, h).

To end this section, in order to show the fundamen-
tal difference in the center conditions between smooth
and switching systems, we give an example to demon-
strate that even if both the upper and lower half-planes
have analytic first integrals at infinity, the infinity of the
switching system may not be a center.

Example 2.1

dx

dt
= −y

(
x2 + y2

)
,

dy

dt
= x

(
x2 + y2

)
+ 3x2,

(y > 0),

dx

dt
= −y

(
x2 + y2

)
,

dy

dt
= x

(
x2 + y2

)
,

(y < 0).

(2.7)

Obviously, the upper half-plane has a first integral,

H(x, y) = 1

4
x4 + 1

2
x2y2 + 1

4
y4 + x3,

and the lower half-plane also has a first integral,

H(x, y) = x2 + y2.

However, the singular point at infinity is not a center,
as shown in Fig. 4.
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y

x

Fig. 4 The phase portrait of system (2.7)

3 A switching cubic system having seven limit
cycles at infinity

In this section, we consider the following switching
cubic system,

dx

dt
= (δx − y)

(
x2 + y2

)
+ a10x + a01y,

dy

dt
= (x + δy)

(
x2 + y2

)
+ b10x + b01y,

(y > 0),

dx

dt
= (δx − y)

(
x2 + y2

)
+ a20x

2 + a11xy + a02y
2,

dy

dt
= (x + δy)

(
x2 + y2

)
+ b11xy + b02y

2,

(y < 0).

(3.1)

The aim of this section is to solve the center and the
pseudo-isochronous center problem of system (3.1).
Moreover, we shall prove that seven limit cycles can
bifurcate from infinity.

3.1 Center conditions and limit cycles for system (3.1)

A direct computation yields the following theorem.

Theorem 3.1 For system (3.1), the first eight Lyapunov
constants at infinity are given by

λ0 = 2πδ,

λ1 = 2
3 (a11 + 2b02) ,

λ2 = −π
8

[
4 (a10 + b01) + b02 (b11 + 2a20)

]
,

λ3 = − 4
315 b02 (2a20 + b11) (a20 + 20a02 − 22b11) ,

λ4 = π
6400 b02 (2a20 + b11)

[
400

(
b10 − a01 + b202

)

−7a220 − 247a20b11 + 122b211
]
,

λ5 = − 2
716625 b02 (2a20 + b11)

[
238a320 + 26509a220b11

−8a20
(
5415b202 + 2009b211

)

−4 b11
(
1740 b202 + 749 b211

) ]
,

λ6 = π

23592960000(361a20+58b11)
2 b02 (2a20 + b11) f1 (a20, b11) ,

λ7 = 2
938765953125(361a20+58b11)2

b02 (2a20 + b11) f2 (a20, b11) ,

where f1 and f2 are lengthy polynomials in a20 and
b11, which are omitted here for brevity. In the above
expressions of λk , we have set λ0 = λ1 = · · · =
λk−1 = 0 for k = 1, 2, . . . , 7.

The following assertion directly follows Theorem
3.1.

Proposition 3.1 The first eight Lyapunov constants at
infinity of system (3.1) are zero if and only if one of the
following conditions is satisfied:

δ = a10 + b01 = a11 = b02 = 0, (3.2)

δ = a10 + b01 = a11 + 2b02 = b11 + 2a20 = 0.

(3.3)

They are also the center conditions of system (3.1) at
infinity.

Proof Thenecessity canbe easily obtained fromsetting
the Lyapunov constants λi = 0, i = 0, 1, 2, . . . , 7.
To prove the sufficiency of these conditions, first we
consider (3.2) under which system (3.1) becomes

dx

dt
= − y

(
x2 + y2

)
− b01x + a01y,

dy

dt
= x

(
x2 + y2

)
+ b10x + b01y,

(y > 0),

dx

dt
= − y

(
x2 + y2

)
+ a20x

2 + a02y
2,

dy

dt
= x

(
x2 + y2

)
+ b11xy,

(y < 0).

(3.4)

Obviously, the upper half-plane has a first integral,

H1(x, y) = 1

4

(
x4 + 2x2y2 + y4

)
+ b01xy

+1

2

(
b10x

2 − a01y
2
)

,

which is an even function of x when y = 0; the lower
half-plane is symmetric with the y-axis. So the singular
point at infinity is a center [36].

Next, when condition (3.3) is satisfied, system (3.1)
can be rewritten as
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dx

dt
= −y

(
x2 + y2

) − b01x + a01y,

dy

dt
= x

(
x2 + y2

) + b10x + b01y,

(y > 0),

dx

dt
= −y

(
x2 + y2

) + a20x
2 − 2b02xy + a02y

2,

dy

dt
= x

(
x2 + y2

) − 2a20xy + b02y
2,

(y < 0).

(3.5)

It is easy to find that the upper half-plane has a first
integral,

H2(x, y) = 1

4

(
x4 + 2x2y2 + y4

)
+ b01xy

+1

2

(
b10x

2 − a01y
2
)

,

and the lower half-plane has a first integral,

H3(x, y) = 1

4

(
x4 + 2x2y2 + y4

)
− a20x

2y

+b02xy
2 + 1

3
a02y

3,

and both H2 and H3 are even functions of x when y =
0. So the singular point at infinity is a center [36]. ��

As far as bifurcation of limit cycles is concerned, it
follows from Theorem 3.1 that seven limit cycles can
bifurcate from the sufficiently small neighborhood of
infinity of system (3.1). We have the following result.

Theorem 3.2 When the singular point at infinity is a
7th-order weak focus of system (3.1), for 0 < δ � 1,
seven limit cycles can bifurcate from the sufficiently
small neighborhood of infinity of system (3.1) .

Proof When the singular point at infinity is a 7th-order
weak focus of system (3.1), the following conditions
should be satisfied (obtained by setting λi = 0, i =
0, 1, . . . , 5):

δ = 0,

a11 = −2b02,

a10 = − 1
4

[
4b01 + b02(b11 + 2a20)

]
,

a01 = − 1
400

[
7a220 − 400

(
b10 + b202

)

+ b11 (247a20 − 122b11)
]
,

a02 = − 1
20 (a20 − 22 b11) ,

b202 = 7
(
34a320+3787a220b11−2296a20b211−428b311

)
120(361a20+58b11)

.

(3.6)

Furthermore, let a20 = kb11. Then, the function
f2 (a20, b11)

f2 = b711 (116937939968 + 4287138780192k

+ 37797150073792k2

+ 103765059007440k3 + 127218646021480k4

+ 121994388459846k5

+105515070638794k6 + 35510995814089k7
)
.

(3.7)

We could choose other parameters like b10 such that
f1 = 0 and f2 	= 0, implying that the singular point at
infinity is a 7th-order critical point. In fact, if f2 = 0, it
is easy to verify that b202 < 0 for any values of k which
satisfies f2 = 0, so 7 is the highest order of the critical
point at the infinity singular point.

When the singular point at infinity is a 7th-order
weak focus, a direct computation shows that J =

∂(λ1,λ2,λ3,λ4,λ5,λ6)
∂(a11,a10,a02,a01,b02,b10)

	= 0. In fact, it is easy to see that
perturbingλ6, λ5, . . . , λ0 by using b10, b02, a01, a02,
a10, a11 and δ one by one at each step guarantees the
existence of seven limit cycles bifurcating from the suf-
ficiently small neighborhood of infinity.

The proof is complete. ��

3.2 Quasi-isochronous centers of system (3.1)

Now, we discuss the quasi-isochronous center condi-
tions of system (3.1) under the center conditions (3.2)
and (3.3). First, if condition (3.2) holds, the periodic
constants are obtained as follows:

τ1 = π
24

[
12 (a01 − b10) + 5a02 (a02 − b11)

− a20 (a20 + b11 + 4a02) + 2b211
]
,

τ2 = 2
2835

[
320a302 − 12a202 (104a20 + 67b11)

+ 6a02
(
4a220 + 151a20b11 + 97b211

)

− 41a320 + 276a220b11 − 51a20b
2
11 − 184b311

]
,

τ3 = − π
768 f3 (a20, a02, b11) ,

τ4 = − 2
11609325 f4 (a20, a02, b11) ,

(3.8)

where f3 and f4 are polynomials in a20, a02 and b11
(which are omitted here for brevity).
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Theorem 3.3 The singular point at infinity of system
(3.1) is a quasi-isochronous center if and only if one of
the following conditions holds:

δ = a11 = b02 = a10 + b01 = a01 − b10

= a02 = b11 − a20 = 0; (3.9)

δ = a11 = b02 = a10 + b01 = a01 − b10

= a02 − a20 = b11 − 3a20 = 0. (3.10)

Proof Thenecessity can be shownby setting τ1 = τ2 =
τ3 = τ4 = 0, which yields either a02 = 0, b11 = a20
or a02 = a20, b11 = 3a20. These two sets of conditions
are then combined with (3.2) to yield (3.9) and (3.10).
To prove the sufficiency, we first consider condition
(3.9) and rewrite system (3.1) under (3.9) as

dx

dt
= − y

(
x2 + y2

)
− b01x + b10y,

dy

dt
= x

(
x2 + y2

)
+ b10x + b01y,

(y > 0),

dx

dt
= − y

(
x2 + y2

)
+ b11x

2,

dy

dt
= x

(
x2 + y2

)
+ b11xy,

(y < 0).

(3.11)

By using the transformations,

x = u

u2 + v2
, y = v

u2 + v2
, τ =

(
x2 + y2

)
t,

the upper half-plane of system (3.11) becomes

du

dτ
= b01u

3 − v − 3b10u
2v − 3b01uv2 + b10v

3,

dy

dτ
= u + b10u

3 + 3b01u
2v − 3b10uv2 − b01v

3,

(3.12)

which can be further transformed to

dz

dτ
= i z

[
1 + (b10 − ib01)z

2],
dz

dτ
= − i z

[
1 + (b10 + ib01)z

2], (3.13)

under the transformations: z = u + iv, z = u − iv,
where z is the complex conjugate of z.Now, introducing
another transformation,

F = z√
1 + (b10 − ib01) z2

,

F = z√
1 + (b10 + ib01) z2

,

into (3.13) we obtain

dF

dτ
= i F,

dF

dτ
= − i F,

which clearly shows that infinity of system (3.1) is a
quasi-isochronous center (e.g., see Sect. 3 in [37]).

For the lower half-plane of system (3.11), we apply
a simple time rescaling τ = (

x2 + y2
)
t into the system

to obtain

dx

dτ
= − y + b11x2(

x2 + y2
) ,

dy

dτ
= x + b11xy(

x2 + y2
) , (3.14)

which, by using the Bendixson transformation (2.2),
yields

dθ

dτ
= 1.

So the singular point at infinity of system (3.1) is a
quasi-isochronous center.

Next, consider condition (3.10) in Theorem 3.3. If
this condition holds, system (3.1) can be rewritten as

dx

dt
= − y (x2 + y2) − b01x + b10y,

dy

dt
= x (x2 + y2) + b10x + b01y,

(y > 0),

dx

dt
= − y (x2 + y2) + 1

3
b11x

2 + 1

3
b11y

2,

dy

dt
= x (x2 + y2) + b11xy,

(y < 0).

(3.15)

We only need to consider the liberalization problem of
the lower system, since the upper system is the same as
that discussed above in (3.11). By using the following
transformations,

u = x
(
x2 + y2

)2
, v = y

(
x2 + y2

)2
,

τ =
(
x2 + y2

)3
t,

the lower system of (3.15) becomes

du

dτ
= − 1

9

[
9v + b11

(
u4 + 10u2v2 − 3v4

) ]
,

dv

dτ
= 1

9
u

(
9 + 5b11u

2v − 7b11v
3
)

,

(3.16)

which has an inverse integral factor

μ(u, v) =
(
u2 + v2

)2
f

5
6
5 ,
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where

f5 = 9
[
1 + 2b11

(
u2 − v2

)
v + b211

(
u2 + v2

)2
v2

]
.

Thus, we obtain a first integral,

H(u, v) = u2 + v2

f
1
6
5 + 16b11

(
u2 + v2

) ∫
u f

− 5
6

5 du
,

Then, the system has a transversal system,

du

dt
= u

(
3 − 9b211v

3
) u2 + v2

f
1
6
5 H(u, v)

,

dv

dt
= v

(
3 + 9b11u

2v − 3b11v
3
) u2 + v2

f
1
6
5 H(u, v)

,

(3.17)

which indicates that the singular point at infinity of
system (2.2) is a quasi-isochronous center. ��

Finally, we consider the conditions in (3.3), under
which the periodic constants of system (3.1) are given
as follows:

τ1 = π
24

[
5a202 + 12(a01 − b10) + 6a02a20 + 9

(
a220 + b202

) ]
,

τ2 = 2
567

(
64a302 + 72a202a20 + 108a02a220

+ 135a320 + 216a02b
2
02 + 324a20b

2
02

)
,

τ3 = − π
24 b10 f6, τ4 = − 2

47385 f7.

(3.18)

where

f6 = 5a202 + 6a02a20 + 9a220 + 9b202,

f7 = 1792a502 + 1920a402a20 + 2880a302

(
a220 + 4b202

)

+ 4320a202a20
(
a220 + 6b202

)

+ 270a02
(
21a420 + 144a220b

2
02 + 48b402

)

+ 243a20
(
21a420 + 140a220b

2
02 + 80b402

)
.

We have the following result.

Theorem 3.4 Under condition (3.3), the infinity of sys-
tem (3.1) is a quasi-isochronous center if and only if
δ = a20 = a02 = a11 = b11 = b02 = a10 + b01 =
a01 − b10 = 0.

Proof To prove the necessity, we need to find the con-
ditions such that τ1 = τ2 = · · · = 0. We start from
τ2.
Case 1. Assume 2a02 + 3a20 	= 0. Then τ2 = 0 yields

b202 = − 64a302+72a202a20+108a02a220+135a320
108(2a02+3a20)

.

(1a) If b10 	= 0, then Resultant [ f6, f7] = −
4504037556848431104 a1220 . Thus, when a20 = 0,
we have f6 = f7 = 0, yielding a02 = 0, a contra-
diction with the assumption.

(1b) If b10 = 0, then f7 = 0 becomes

2176a402 + 13056a302a20 + 22896a202a
2
20

+16416a02a
3
20 + 17091a420 = 0.

Hence, if a20 = 0, we would have a02 = 0 which
again contradicts the assumption. So a20 	= 0. Let
a02 = ka20 (k 	= 0). Then, f7 = 0 is reduced to

17091 + 16416k + 22896k2 + 13056k3 + 2176k4 = 0,

which has two real solutions: k = −3.24077 . . . ,

−2.51419 . . ., for which b202 < 0.

Therefore, there does not exist isochronous center con-
dition when 2a02 + 3a20 	= 0.
Case 2. Assume a02 = a20 = 0, leading to τ2 = 0,
and higher-order periodic constants become

τ3 = − 3π
8 a01b

2
02, τ4 = 0,

τ5 = 3π
16384 b

2
02

(
1536b201 − 25b402

)
, τ6 = τ7 = τ8 = 0,

τ9 = 9π
67108864 b

2
02

×
(
1966080b401 + 1290240b201b

4
02 + 6336149b802

)
.

(3.19)

It is clear that τ3 = τ5 = τ9 = 0 yields b02 = 0, and so
a20 = a02 = b02 = a11 = b22 = 0. Then, in addition,
τ1 = 0 gives a01 = b10. Combining these conditions
with (3.3) yields δ = a20 = a02 = a11 = b11 = b02 =
a10 + b01 = a01 − b10 = 0. Next, to prove sufficiency,
substituting these solutions into (3.1) we obtain

dx

dt
= − y

(
x2 + y2

)
− b01x + b10y,

dy

dt
= x

(
x2 + y2

)
+ b10x + b01y,

(y > 0),

dx

dt
= − y

(
x2 + y2

)
,

dy

dt
= x

(
x2 + y2

)
,

(y < 0).

(3.20)
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It is easy to see that system (3.20) is a special case
of system (3.15). Therefore, under condition (3.3), the
infinity of system (3.1) is not a quasi-isochronous cen-
ter.

4 A quintic switching system to yield 14 limit
cycles at infinity

In this section, we consider the following switching
quintic system,

dx

dt
= (δx − y)

(
x2 + y2

)2 + a10x + a01y

+x3 + a12xy2 + a03y3,
dy

dt
= (x + δy)

(
x2 + y2

)2 + b10x

+(
2048 − 237a03−211b12

256

)
y + b12xy2,

(y > 0),

dx

dt
= (δx − y)

(
x2 + y2

)2 − a20x
2 + a11xy − y2

+a13xy3,
dy

dt
= (x + δy)

(
x2 + y2

)2 + b20x
2 − b11xy

−b31x3y + b02y2,

(y < 0).

(4.1)

and show that 14 limit cycles can bifurcate from the
sufficiently small neighborhood of infinity of this sys-
tem. Compared to continuous systems which can have
only 11 limit cycles bifurcating at infinity, this exam-
ple shows that switching systems exhibitmore complex
dynamical behavior.

A direct computation of the Lyapunov constants of
system (4.1) yields the following theorem.

Theorem 4.1 For system (4.1), the first fifteen Lya-
punov constants at infinity are given by
λ0 = 2πδ, λ1 = 4

15 a13, λ2 = −π
8 (3 + 2a12),

λ3 = −2

3
(a11 + 2b02 + b20),

λ4 = π
128 (21a03 − 64a10 + 5b12 − 8(b02 + b20)b31),

λ5 = 664
5775 (b02 + b20) b231,

λ6 = π
1024

[
36 + 288a01 + 128b10 + 35a203

+32a03(4b01 − 3b12)

+128b01b12 − 67b212 − 64(5 + 2a20)b20
]
,

λ7 = 8
3465 (305 + 11a20) b20b31,

λ8 = π
1441792

[
253755392 + 369098752a01

−129261a03 − 17301504a203 + 5511a303

+11b12(3801 − 36700160a03 + 9187a203)

−11b212(35127296 − 7847a03)

−65549b312 − 16b20 (13320a03

−57720b12 + 43223b231
) ]

,

λ9 = 2b20
1029888834975

( − 153919703280915

+1597888131840b11

+156935441520b220 + 622726450432b331
)
,

λ10 = π
59369049259858486376037089280 g1,

λ11 = 2b20b231
41153503709639611736048728125

(9527177561208036361180765412625

−11639558363212446465203262000b220

−53969026104163661662028333824b331),

λ12 = − π
38752083011009890317882351442880102400 g2,

λ13 = 268578950576625 b20b31
191679803141459628078227240452036871190000000

×[
118138908984525

×(282643684386981960199

−36286844993368736b220

+562572489343744b420)

+512(863223938878025421260532496b220

−544024870948329059898852403421)b331

+1573803776331001710164992017920864

22228238336 b631
]
,

λ14 = π
52223464791867298715053481603251052325875220480000 g3,

where λ0 = λ1 = · · · = λk−1 = 0 have been set in
λk for k = 1, 2, . . . , 14 and g1, g2 and g3 are lengthy
polynomial functions in a03, b12, b20 and b31 (which
are omitted for brevity).

As far as bifurcation of limit cycles is concerned,
it follows from Theorem 4.2 that 14 limit cycles can
bifurcate from the sufficiently small neighborhood of
infinity of system (4.1).Wehave the following theorem.

Theorem 4.2 When the singular point at infinity is a
14th-order weak focus, when 0 < δ � 1, fourteen limit
cycles can bifurcate in the sufficiently small neighbor-
hood of infinity of system (4.1).

Proof When the singular point at infinity of system
(4.1) is a 14th-order weak focus, the following con-
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ditions should be satisfied (solved from λi = 0, i =
0, 1, 2, . . . , 9):

δ = 0,

a13 = 0,

a12 = − 3
2 ,

a11 = −2b02 − b20,

a10 = 1
64

[
21a02 + 5b12 − 5b12 − 8b31(b02 + b20)

]
,

b02 = − b20,

a20 = − 305
11 ,

b10 = 1
128 (−36 − 288a01 − 35a203

− 128a03b01 + 96a03b12

− 128b01b12 + 67b212 + 320b20 + 128a20b20),

a01 = 1
369098752

[ − 5511a303 + 11(1572864 − 9187b12)a203

+ (129261 + 213120b20 + 403701760b12

− 86317b212) a03 − 253755392

+ 65549b312 + 386400256b212

− (41811 + 923520b20) b12 + 691568b20b
2
31

]
,

b11 = 153919703280915−156935441520b220−622726450432b331
1597888131840 ,

Furthermore, letting λ11 = 0 yields

b220 = 128509892013953977
157003307510192 − 3373064131510228853876770864

727472397700777904075203875 b331,

and then setting λ13 = 0 results in two solutions b±
31.

Since b+
31 yields b

2
20 < 0, we choose b31 = b−

31 and use
the above formula to obtain two solutions b±

20. which
gives two sets of solutions S± = (b31, b

±
20). Then sub-

stituting S± into g1 and g2 yields two polynomial func-
tions g±

1 and g±
2 in a03 and b12. Next, eliminating a03

from the equations g±
1 = g±

2 = 0 gives two solu-
tions a±

03 = a±
30(b12) and two corresponding resultants

R±(b12), which are polynomial functions in b12 with
irrational coefficients. Solving each of the two polyno-
mial equations R±(b12) = 0 we obtain 12 solutions for
each one, given as follows:

(a03, b12)
+ = (−2278.60904 · · · , −10568.8937 · · · ),

(2903.39028 . . . , −1947.39814 . . .),

(1477.26646 . . . , −1776.61419 . . .),

(1466.15641 . . . , −1282.04274 . . .),

(1699.70968 . . . , −1054.45506 . . .),

(53.5803033 . . . , −54.5457756 . . .),

(34.2903757 . . . , −35.5482793 . . .),

(6.30984655 . . . , −7.49406686 . . .),

(−1.17343427 . . . , 1.46604612 . . .),

(−50.1357624 . . . , 49.0129578 . . .),

(−53.7987065 . . . , 52.7599527 . . .),

(4116.44805 . . . , 507.713023 . . .),

solved from R+(b12) = 0 and a03 is given by a
+
03(b12),

for which b20 = b+
20;

(a03, b12)
− = (−2278.32617 · · · , −10568.2354 · · · ),

(2798.40543 . . . , −1944.84558 . . .),

(1863.32971 . . . , −1769.11783 . . .),

(1451.63272 . . . , −1281.60011 . . .),

(1721.35086 . . . , −1053.84434 . . .),

(66.5963110 . . . , −66.6264036 . . .),

(58.3903841 . . . , −58.8504509 . . .),

(3.55510841 . . . , −2.38488604 . . .),

(−1.07623960 . . . , 0.78491381 . . .),

(−60.8126771 . . . , 60.2313023 . . .),

(−70.2233376 . . . , 70.1263827 . . .),

(4116.41945 . . . , 508.190205 . . .),

solved fromR−(b12) = 0 and a03 is given by a
−
03(b12),

for which b20 = b−
20.Moreover, it has been verified that

g3 	= 0 for all of these 24 solutions. So there exist in
a total 24 solutions such that the infinity singular point
is a critical point with the highest order 14.

Further, when the singular point at infinity is a 14th-
order weak focus, a direct computation shows that for
these 24 solutions, the following condition holds:

J = ∂(λ0, λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8, λ9, λ10, λ11, λ12, λ13)

∂(δ, a13, a12, a11, a10, b02, b10, a20, a01, b11, a03, b20, b12, b31)
	= 0.
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In fact, we only need to verify J̃ = ∂(λ10,λ11,λ12,λ13)
∂(a03,b20,b12,b31)

	=
0, since all the equations λi = 0, i = 0, 1, . . . , 9 have
been solved one by one with one coefficient at each
step. For example, choosing the solution

(a03, b12, b31, b20)
= (−1.173434278 . . . , 1.466046122 . . . ,

4.433629948 . . . , 20.357292941 . . .)

yields J̃ = ∂(λ10,λ11,λ12,λ13)
∂(a03,b20,b12,b31)

= − 0.1548824843 · · ·
1021π2. This clearly shows that there exist 14 limit
cycles which can bifurcate in the sufficiently small
neighborhood of infinity of system (4.1).

The proof is complete.

5 Conclusion

In this paper, we present a method to compute the
Poincaré map in a neighborhood of infinity for switch-
ing systems. When the map is well defined, one can
use the Bendixson transformation to obtain a new sys-
tem and then consider the limit cycles around the ori-
gin of the new system. As applications, two classes of
cubic and quintic switching systems are investigated
by using our method. These examples have shown that
there existmore limit cycles at infinity of switching sys-
tems than that in continuous systems, and the dynami-
cal behavior of these systems is more complex.
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