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a b s t r a c t

In this paper, we study bi-center and bi-isochronous center problems in cubic planar
systems which are symmetric with respect to a straight line. These systems can be trans-
formed to ones which are symmetric with respect to the y-axis and have two symmetric
singular points at (±1, 0), which can be classified as elementary and nilpotent singular
points. A complete classification is given on the centers, including nine conditions for
elementary singular points and four conditions for nilpotent singular points. Moreover,
seven bi-isochronous center conditions are obtained for the elementary singular points.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Center and isochronous center problems, which are closely related to the 16th problem proposed by D. Hilbert in 1900,
re far from being solved. As a classical problem, center problem has been considered by many mathematicians. Some
pecial systems have been investigated, for example, the systems given in the form of

dx
dt

= y + Pm(x, y),

dy
dt

= −x + Qm(x, y),
(1.1)

here Pm(x, y) and Qm(x, y) are homogeneous polynomials of degree m. The three cases m = 3, 4, 5 have been studied
in [1–3], respectively. The characterization of the centers for cubic systems described by

dx
dt

= y + P2(x, y) + P3(x, y),

dy
dt

= −x + Q2(x, y) + Q3(x, y),
(1.2)

s not well investigated. Only some special cases with degenerate singular points at infinity have been completely
haracterized [4]. The center problem for systems with nilpotent singular points is more complicated because the classical
ethods used for studying elementary singular points are not applicable. Especially, a nilpotent center may not be an
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analytical center, which has no analytical first integral. This implies that the center problem for degenerate singular points
is much more difficult. Partial results have been obtained for the systems with null linear part, see for instance [5].

For analytical Liénard systems whose linear part has a pair of purely imaginary eigenvalues, an effective method was
eveloped to derive necessary and sufficient conditions for the existence of centers, see [6–8]. The isochronous center
roblem is equivalent to determining whether the system can be transformed to a linear system by a formal change of
he state variables. Over the past three decades, this problem has also been intensively investigated by many researchers,
or example, see [9,10]. Periodic constants can be used to determine isochronous centers, and several methods have been
eveloped to compute periodic constants, see [11–15]. However, these methods are hard to be applied to a concrete
ystem because of the computation complexity. As far as we know, there are only a few complete classifications about
sochronous centers for some special systems, see for instance [11,12,14,16–20]. On the other hand, the isochronous center
roblem for the homogeneous polynomial systems was considered and solved thoroughly. In 1964, Loud [17] classified
he isochronous centers of systems with homogeneous polynomials of degree two. The isochronous center problem for
ystems whose nonlinear parts are homogeneous polynomials of degree three were solved by Pleshkan [18]. The results
or the isochronous centers of systems with homogeneous perturbations of degrees four and five can be found in [11,12].
inearization of linear systems perturbed by 5th-degree homogeneous polynomials was studied in [20].
As a class of special systems, the time-reversible systems were also studied by many researchers, for instance, the time-

eversible cubic vector fields were investigated in [21,22]. More recently, the linearizability conditions of time-reversible
uartic systems with homogeneous nonlinearities have been obtained in [23]. For the complex Lotka–Volterra system,
he linearizability problem was solved in [24]. Some other methods have been developed in recent years, for example,
he time-angle method was proposed in [25], which can also be found in the book [26]. For some planar polynomial
amiltonian systems, the isochronicity and linearizability were also studied in [27,28].
The reason for studying the time-reversible systems is due to the existence of symmetry, which plays an important

ole in the qualitative analysis. Breaking of symmetry destroys the underlying order of nature. Another important kind
f symmetric systems is the Zn-equivariant system, with many good results obtained about the center and isochronous
enter problems. Recently, a complete study on the bi-center problem for Z2-equivariant cubic vector fields was given
n [29], and the bi-center problem for some Z2-equivariant quintic systems was studied in [30]. In 2017, the bi-isochronous
center problem for cubic systems in Z2-equivariant vector fields with real coefficients was considered in [31]. In 2020, the
isochronous center problem for the Z2-equivariant cubic vector fields with complex coefficients are completely solved [32].
The Z2-equivariant cubic vector fields with nilpotent singular point, weak saddles or resonant saddles were studied
in [32–35], while the Z2-equivariant cubic polynomial Hamiltonian systems with bi-center were investigated in [36].

Besides above mentioned symmetries, other types of symmetry are also important, and some of such systems have been
considered. For example, systems with the y-axis symmetry were studied in [37], and the planar cubic differential systems
with symmetric centers were investigated in [38]. In this paper, we will study cubic systems with the y-axis symmetry, and
focus on the bi-center and bi-isochronous center problems with the main attention paid to the elementary and nilpotent
singular points. We will provide a complete classification on the centers, including nine conditions for elementary singular
points and four conditions for nilpotent singular points. Moreover, we derive six bi-isochronous center conditions for the
elementary singular points.

The rest of the paper is organized as follows. In the next section, we simplify cubic systems symmetric with respect to a
straight line and derive the condition possessing two elementary singular points or nilpotent singular points. In Section 3,
nine cases are classified for the center conditions of the cubic systems with two elementary singular points. Then, the
periodic constants are computed at (±1, 0) of cubic systems, which are used to obtain six isochronous center conditions.
In Section 4, four cases are classified for the center conditions of cubic systems with two nilpotent singular points. Finally,
conclusion is drawn in Section 5.

2. Simplification of cubic systems symmetric with respect to a straight line

A system is symmetric with respect to a straight line if the phase portrait is symmetric with respect to the straight line,
and the straight line is called the axis of symmetry. Especially, a system is called symmetric with respect to the y-axis if
the system is invariant under the transformation (x, y, t) → (−x, y, t). In this context, we consider cubic systems which
are symmetric with respect to a straight line, and assume that P0 = (x0, y0) is a singular point which is not on this line
f symmetry. If P0 is a center, and P1 = (x1, y1) is the image of P0 under the symmetric transformation, then P1 is also a
enter. Then, the points P0 and P1 are called bi-center.
To investigate the existence of bi-center or bi-isochronous center for the cubic systems which possesses symmetry

ith respect to a straight line, we first find the normal form of the system using the symmetry. We have the following
esult.

heorem 2.1. Consider planar polynomial cubic systems with

(1) a singular point associated with a pair of purely imaginary eigenvalues ±mi; and
(2) a straight line as the axis of symmetry, which does not include the singular point in (1).
2
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Then there exists an affine transformation of the coordinates such that the straight line as the axis of symmetry is taken into
the y-axis and the cubic systems can be rewritten in the following form:

dx
dt

=
−x
2b3

(−2a1b3 + 2a1b3x2 + 4a21y + m2y − 2a8b3y2),

dy
dt

= −b3 + b3x2 + (2a1 − b7)y + b7x2y + b5y2 + b9y3.
(2.1)

roof. Let (x0, y0) be a singular point of a symmetric cubic system with respect to a straight line such that its Jacobian
matrix has a pair of purely imaginary eigenvalues. Assume that the cubic system possesses a straight line r: ax + by = c
a, b, c ∈ R) as the axis of symmetry and (x0, y0) does not belong to r . Without loss of generality, we may assume a ̸= 0
otherwise we simply apply the change of the coordinates (x, y) → (y, x)). According to the results in [37], the straight
ine r becomes the y-axis (i.e., x = 0) and the singular point (x0, y0) is moved to the point (1, 0) by a transformation. So,
we can always assume that (1, 0) is a singular point. Thus, with the symmetry, the system is changed to

dx
dt

= −x(−a1 + a1x2 − a4y − a8y2),

dy
dt

= −b3 + b3x2 + b2y + b7x2y + b5y2 + b9y3,

whose Jacobian matrix is given by

J(1,0) =

[
−2a1 a4
2b3 b2 + b7

]
.

It is easy to see that b3 ̸= 0. Otherwise, according to condition (1), b3 = 0 yields that b2 + b7 = 2a1, leading to

det(J(1,0)) = −2a1(b2 + b7) = −4a21,

which contradicts with the assumption, det(J(1,0)) = m2. So we get

b2 = 2a1 − b7, a4 = −
(4a21 + m2)

2b3
from Tr(J(1,0)) = 0 and det(J(1,0)) = m2, namely, system is changed to the normal form (2.1). □

Similarly, we can prove the following theorem.

Theorem 2.2. Consider planar polynomial cubic systems with

(1) a singular point associated with a double-zero eigenvalue; and
(2) a straight line as the axis of symmetry which does not include the singular point in (1).

hen, there exists an affine transformation of the coordinates such that the straight line is taken into the y-axis, and the cubic
ystems can be rewritten as

dx
dt

= −
x
b3

(−a1b3 + a1b3x2 + 2a21y − a8b3y2),

dy
dt

= −b3 + b3x2 + (2a1 − b7)y + b7x2y + b5y2 + b9y3.
(2.2)

In order to prove center conditions, we introduce the results obtained in [39], where the so-called Liénard-like systems
with a degenerate singular point are investigated. The Liénard-like systems are described by

dx
dt

= y,

dy
dt

= p0(x) + p1(x)y + p2(x)y2,
(2.3)

here

p0(x) = −x2n−1
+

∞∑
k=2n

akxk, n ≥ 1,

p1(x) = Axn−1
+

∞∑
k=n

bkxk,

p2(x) =

∞∑
ckxk.
k=0

3
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The following result for system (2.3) is usually applied to prove center conditions.

heorem 2.3 ([39]). The origin of system (2.3) is a centre if and only if the equations,

W1(x) = W1(y) and W2(x) = W2(y),

here

W1(x) =
p0p1p2 − p1p′

0 + p0p′

1

p31
, W2(x) =

W ′

1(x)p0
p21

,

have an analytical solution y = ϕ(x) with ϕ(0) = 0 and ϕ′(0) = −1 in the neighborhood of x = 0.

It should be pointed out that the conclusion in Theorem 2.3 is also true for the case when W1(x) or W2(x) is a constant,
which is not included in the result of [39].

3. Bi-center and bi-isochronous center of system (2.1)

For system (2.1), there are two elementary singular points (±1, 0) associated with a pair of purely imaginary
eigenvalues ±mi. We need only to study the center problem at the singular point (1, 0) because of the symmetry. System
(2.1) can be transformed into

dx
dt

= −
x + 1
2b3

(4a1b3x + 2a1b3x2 + 4a21y + m2y − 2a8b3y2),

dy
dt

= 2b3x + b3x2 + 2a1y + 2b7xy + b7x2y + b5y2 + b9y3,
(3.1)

y x = x̄ + 1, where we still use x for x̄ for convenience. As a result, the singular point (1, 0) of system (2.1) is shifted to
he origin of system (3.1). Furthermore, under the transformation,

u = −
y

2b3
, v =

x
m

+
a1y
mb3

, τ = mt,

ystem (3.1) can be changed to

dx
dτ

= (1 + 2a1x)(−1 + 2b7x)y +
1
2
m(−1 + 2b7x)y2

+
2
m

x2(2a1b7 + a21(−1 + 2b7x) + b3(−b5 + 2b3b9x)),

dy
dτ

= x −
8a1(a21(a1 + b7) + b23(−a8 + b9))x3

m2 −
4a1(a1 + b7)xy

m

+
2x2[2a8b23(1 + my) + a1(2b3b5 − 4a1b7 + m2

− 2a1(3a1 + 2b7)my)]
m2

+ xy(m − 2a1(3a1 + b7)y) − a1y2(2 + my).

(3.2)

Now we are ready to derive the center and isochronous center conditions for system (3.2).

3.1. Bi-center conditions of system (2.1)

By the complex transformation, z = x+ iy, w = x− iy, τ = iT , system (3.2) can be changed to its complex concomitant
system. Then, computing and analyzing the focus values at the origin of the resulting system with the formal series method
developed in [26] yields the following result.

Theorem 3.1. The first three focus values at the origin of system (3.2) are

µ1 =
i

m3 {4(2a
2
1 + b3b5 − a1b7)(−b3(a8b3 + a1b5) + 2a21b7)

+ [(2a1 − b7)(−b3b5 + 2a1b7) − 3b23b9]m
2},

µ2 =
4i

9m7 (−10a8b23 − 10a1b3b5 + 20a21b7 + 4a1m2
+ b7m2)f1f2,

µ3 =
8i

(a1 − b7)(4a1 + b7)(2a1 + 3b7)f1f2,
225m5

4
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where

f1 = 8a31 + 4a1b3b5 − 4a21b7 + 2a1m2
− b7m2,

f2 = − 4a21a8b
2
3 − 4a31b3b5 − 2a8b33b5 − 2a1b23b

2
5 + 8a41b7

+ 2a1a8b23b7 + 6a21b3b5b7 − 4a31b
2
7 − a1b3b5m2

+ 2a21b7m
2
− b3b5b7m2

+ 2a1b27m
2.

The following two theorems directly follow from Theorem 3.1.

Theorem 3.2. All the first three focus values at the origin of system (3.2) vanish if and only if one of the following nine
conditions holds:

C1 : b9 = −
b5b7
b3

, a8 = −
b7(2b3b5 − 4b27 − m2)

2b23
, a1 = b7;

C2 : b9 =
b7(2b3b5 + b27)

4b23
, a8 =

b7(2b3b5 + b27 − m2)
8b23

, a1 = −
b7
4

;

C3 : b9 = −
2b7(2b3b5 + 4b27)

b23
, a8 =

b7(3b3b5 + 9b27 − m2)
2b23

, a1 = −
3b7
2

;

C4 : b9 =
b7(b3b5 − 2a1b7)

b23
,

a8 = −
(b3b5 − 2a1b7)(4a31 + 2a1b3b5 + 2a21b7 + a1m2

+ b7m2)
2b23(2a

2
1 + b3b5 − a1b7)

;

C5 : b9 = −
b37
b23

, b5 = −
3b27
b3

, a1 = −b7;

C6 : b9 = a1 = b5 = 0;

C7 : b9 = 0, b5 = −
b27
b3

, a1 = −
b7
2

;

C8 : b9 =
a8(2a1 − b7)

3a1
, b5 = −

(2a1 − b7)(4a21 + m2)
4a1b3

;

C9 : b9 = −
4a8b3b5
3m2 , a1 = b7 = 0.

Theorem 3.2 gives the necessary conditions under which the origin of system (3.2) is a center. Next, we use Theorem 2.3
to prove that these conditions are also sufficient.

Theorem 3.3. The origin of system (3.2) is a center if and only if one of the nine conditions in Theorem 3.2 holds.

Proof. When the condition C1 in Theorem 3.2 holds, system (3.2) becomes

dx
dτ

=
1
2m

{
−4b3b5x2 + 8b23b9x

3
− 2 my

+ (2b7x + my)[−my + 2b7x(1 + 2b7x + my)]
}
,

dy
dτ

= x(1 + 2b7x)2 − 2b7(1 + 4b7x)y2 + my(x + 2b7x2 − b7y2),

−
4b7x(b3b5x + b7(2 + 3b7x))y

m
.

(3.3)

hen b7 ̸= 0, system (3.3) has an integral factor

I1 = g

4b27+m2
−4b3b5

4b27+m2

1 g

4b27+m2
−4b3b5

2(4b27+m2)

2 ,

in the neighborhood of the origin, where

g1 = 1 + 2b7x + my,

g2 = −
m2(1 + 2b7x)2

2 + 8m(1 + 2b7x)y + 4m2y2.

b7

5
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When b7 = 0, system (3.3) becomes

dx
dτ

= −
1
2m

(4b3b5x2 + 2 my + m2y2),

dy
dτ

= x(1 + my),

hich is time-reversible, implying that the origin is a center.
When the condition C2 in Theorem 3.2 holds, system (3.2) is reduced to

du
dt

=
u + 1
4b23

(2b23b7u − b3b27v − 4b3m2v + 2b3b5b7v2
+ b37v

2),

dv
dt

=
1

4b23
(4b33u − 2b23b7v + 4b23b7uv + 4b23b5v

2
+ 2b3b5b7v3

+ b37v
3),

by the transformation u = x2 − 1, v = y, and can be further changed to

dx1
dτ

=
1

4b23m
(4b23b5x

2
1 + 2b3b27x

2
1 + 2b3b5b7x31 + b37x

3
1

+4b23 my1 + 4b3b7 mx1y1),
dy1
dτ

= −
1

4b23m
(4b23 mx1 + 2b3b7 mx21 + b3b27x1y1 + 4b3m2x1y1

−2b3b5b7x21y1 − b37x
2
1y1 − 2b3b7 my21).

(3.4)

y using x1 = v, y1 =
b3
m u −

b7
2mv, τ = mt . Moreover, with the transformation,

X = x1,

Y =
1

4b23m
(4b23b5x

2
1 + 2b3b27x

2
1 + 2b3b5b7x31 + b37x

3
1 + 4b23 my1 + 4b3b7 mx1y1),

system (3.4) can be changed to the following Liénard-like system,

dX
dτ

= Y ,

dY
dτ

= p0(X) + p1(X)Y + p2(X)Y 2,

(3.5)

where

p0(X) = −
X(2b3 + b7X)

32b43m2(b3 + b7X)
(2b23 + 2b3b7X − 2b3b5X2

− b27X
2)

× (8b23m
2
+ 8b3b7m2X − 2b3b5b27X

2
− b47X

2),

p1(X) =
X

4b23 m(b3 + b7X)
(8b33b5 + 23b23b

2
7 − 4b23m

2
+ 26b23b5b7X + 116b3b37X

− 4b3b7m2X + 22b3b5b27X
2
+ 95b47X

2),

p3(X) =
3b7

2(b3 + b7X)
.

et

W1(X) =
p0(X)p1(X)p2(X) − p1(X)p′

0(X) + p0(X)p′

1(X)
p1(X)3

,

W2(X) =
W ′

1(X)p0(X)
p1(X)2

.

It is easy to verify that W1(X) − W1(Y ) = 0 and W2(X) − W2(Y ) = 0 have a solution b3X + b3Y + b7XY = 0. According to
Theorem 2.3, the origin of system (3.2) is a center.

When the condition C3 in Theorem 3.2 holds, system (3.2) is reduced to

du
dτ

=
u + 1
b23

(3b23b7u − 9b3b27v − b3m2v + 3b3b5b7v2
+ 9b37v

2
− b7m2v2),

dv
dτ

=
1
b23

(b33u − 3b23b7v + b23b7uv + b23b5v
2
+ 2b3b5b7v3

+ 8b37v
3),
6
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by the transformation u = x2 − 1, v = y, and can be further changed to

dx1
dτ

=
1

b23m
(b23b5x

2
1 + 3b3b27x

2
1 + 2b3b5b7x31 + 8b37x

3
1

+ b23 my1 + b3b7 mx1y1),
dy1
dτ

= −
1

b23m2
(b23 mx1 + 4b3b7m2x21 − 3b3b5b27x

3
1 − 3b47x

3
1

+ 3b27m
2x31 − 6b3b27 mx1y1 + b3m3x1y1 − 3b3b5b7x21y1

− 9b37 mx21y1 + b7m3x21y1 − 3b3b7m2y21),

(3.6)

by using x1 = v, y1 =
b3
m u −

3b7
m v, τ = mt . System (3.6) can be changed to the Liénard-like system (3.5) with

p0(X) = −
X(b3 + 2b7X)

b43m2(b3 + b7X)
(b23 + 2b3b7X − b3b5X2

− 4b27X
2)

× (b23m
2
+ 2b3b7m2X + 3b3b5b27X

2
+ 15b47X

2
+ b27m

2X2),

p1(X) =
X

b23 m(b3 + b7X)
(2b33b5 + 12b23b

2
7 − b23m

2
+ 4b23b5b7X + 24b3b37X

− 2b3b7m2X − 5b3b5b27X
2
− 23b47X

2
− b27m

2X2),

p3(X) =
4b7

2(b3 + b7X)
,

y the transformation,

X = x1,

Y =
1

b23m
(b23b5x

2
1 + 3b3b27x

2
1 + 2b3b5b7x31 + 8b37x

3
1 + b23 my1 + b3b7 mx1y1).

ote that W1(X)−W1(Y ) and W2(X)−W2(Y ) have a common factor (X−Y )(b3X+b3Y +2b7XY ). According to Theorem 2.3,
the origin of system (3.2) is a center.

When the condition C4 in Theorem 3.2 holds, system (3.2) has an integrating factor,

I2 = x1+
−4b3b5+4a1(−2a1+b7)

m2 (b3 + b7y)
−8a31+4a21b7+b7m

2
−2a1(2b3b5+m2)

b7m2

f b7 ̸= 0. In fact, for any real b7, system (3.2) can be changed to

dx1
dτ

=
1

b23m
(b3 + b7x1)(b3b5x21 − 2a1b7x21 + b3 my1),

dy1
dτ

= −
b23m

2(2a21 + b3b5 − a1b7)x1 + P(x1, y1)
b23m2(2a21 + b3b5 − a1b7)

,

(3.7)

y using x1 = y, y1 =
b3
m (x2 − 1) −

2a1
m y, τ = mt , where

P(x1, y1) = (−4a31b3m
2
− a1b23b5m

2
+ b23b5b7m

2
− 2a1b3b27m

2)x21
+ (16a51b7 − 8a41b3b5 − 4a21b

2
3b

2
5 + 8a31b3b5b7 − 2a1b23b

2
5b7 + 6a21b3b5b

2
7

− 4a31b
3
7 − 2a21b3b5m

2
+ 4a31b7m

2
− 2a1b3b5b7m2

+ 4a21b
2
7m

2)x31
+ ( − 8a41b3m − 4a21b

2
3b5 m − 2a1b23b5b7m + 2a21b3b

2
7 m + 2a21b3m

3

+ b23b5m
3
− a1b3b7m3)x1y1 + (4a31b3b5 m + 2a1b23b

2
5m − 8a41b7m

− 6a21b3b5b7m + 4a31b
2
7m + a1b3b5m3

− 2a21b7m
3
+ b3b5b7m3

− 2a1b27m
3)x21y1 + (4a31b3m

2
+ 2a1b23b5m

2
− 2a21b3b7m

2)y21.

Then, by the transformation,

X = x1,

Y =
1

b2m
(b3 + b7x1)(b3b5x21 − 2a1b7x21 + b3 my1),
3

7
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system (3.7) can be changed to the Liénard-like system (3.5), where

p0(X) =
X(b3 + 2b7X)

b43(2a
2
1 + b3b5 − a1b7)

(−b23 + 2b3a1X + b3b5X2
− 2a1b7X2)

× (2a21b3 + b23b5 − a1b3b7 + a1b3b5X − 2a21b7X + b3b5b7X − 2a1b27X),

p1(X) =
X(4a21 + 2b3b5 − 2a1b7 − m2)

b23m(2a21 + b3b5 − a1b7)
(2a21b3 + b23b5 − a1b3b7 + a1b3b5X

− 2a21b7X + b3b5b7X − 2a1b27X),

p3(X) =
2a1 − b7

2(b3 + b7X)
.

f 4a21 + 2b3b5 − 2a1b7 − m2
= 0, the Liénard-like system is symmetric with the X-axis. Otherwise, after a tedious

omputation, we obtain

W1(X) = −
2(2a21 + b3b5 − a1b7)m2

(4a21 + 2b3b5 − 2a1b7 − m2)2
,

hich is a constant, implying that the origin is a center.
When the conditions C5, C6 and C7 in Theorem 3.2 hold, system (3.2) can be reduced to⎧⎪⎨⎪⎩

dx
dt

=
1

2b3
xy(−m2

+ 2a8b3y),

dy
dt

= (x2 − 1)(b3 + b7y),
for C5,

⎧⎪⎨⎪⎩
dx
dt

=
1

2b3
x(−2b3b7 + 2b3b7x2 − 4b27y − m2y + 2a8b3y2),

dy
dt

=
1
b23

(−b3 + b3x − b7y)(b3 + b7y)(b3 + b3x + b7y).
for C6,

⎧⎪⎨⎪⎩
dx
dt

=
x

2b3
(−b3b7 + b3b7x2 − b27y − m2y + 2a8b3y2),

dy
dt

=
1
b3

(−b3 + b3x2 − b7y)(b3 + b7y),
for C7,

which admit the following inverse integrating factors:

I5 = x(b3 + b7y), I6 = x(b3 + b7y)3 and I7 = x(b3 + b7y)2,

for C5, C6 and C7, respectively, indicating that the origin of system (3.2) is a center under each of these three conditions.
When the condition C8 in Theorem 3.2 holds, system (3.2) can be changed to

dx1
dτ

= −
1

12a1b3m
(24a31x

2
1 + 12a21b7x

2
1 + 6a1m2x21 − 3b7m2x21

− 8a1a8b3x31 + 4a8b3b7x31 − 12a1b3 my1 − 12a1b7 mx1y1),
dy1
dτ

=
−1

6b3m2 (6b3m
2x1 + 24a31x

2
1 − 12a8b23x

2
1 + 12a21b7x

2
1 − 6a1m2x21

− 3b7m2x21 + 16a1a8b3x31 + 4a8b3b7x31 − 24a21mx1y1
− 12a1b7 mx1y1 + 6m3x1y1 − 12a8b3 mx21y1 + 12a1m2y21).

(3.8)

y using x1 = y, y1 =
b3
m (x2 − 1) −

b7
m y, τ = mt . Applying the same method with the transformation,

X = x1,

Y = −
1

12a1b3m
(24a31x

2
1 + 12a21b7x

2
1 + 6a1m2x21 − 3b7m2x21

3 3

− 8a1a8b3x1 + 4a8b3b7x1 − 12a1b3 my1 − 12a1b7 mx1y1),

8
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we can change system (3.8) to the Liénard-like system (3.5) with

p0(X) =
X

72a1b23m2(b3 + b7X)
( − 6b3m2

− 24a31X + 12a8b23X − 12a21b7X

− 6a1m2X − 3b7m2X + 8a1a8b3X2
+ 8a8b3b7X2)(12a1b23 − 24a21b3X

+ 12a1b3b7X + 24a31X
2
− 12a21b7X

2
+ 6a1m2X2

− 3b7m2X2

− 8a1a8b3X3
+ 4a8b3b7X3),

p1(X) =
(−4a1 + b7)X

12a1b3m(b3 + b7X)
(6b3m2

+ 24a31X − 12a8b23X + 12a21b7X

+ 6a1m2X + 3b7m2X − 8a1a8b3X2
− 8a8b3b7X2),

p3(X) =
2a1 − b7
b3 + b7X

.

If b7 = 4a1, the Liénard-like system is symmetric with the X-axis. Otherwise, a simple computation shows that

W1(X) = −
2a1(2a1 − b7)
(−4a1 + b7)2

,

which is a constant, implying that the origin of system (3.2) is a center according to Theorem 2.3.
When the condition C9 in Theorem 3.2 holds, system (3.2) is reduced to

dx
dt

=
xy
2b3

(−m2
+ 2a8b3y),

dy
dt

=
1

3m2 (−3b3m2
+ 3b3m2x2 + 3b5m2y2 − 4a8b3b5y3),

hich admits an integrating factor I8 = x
4b3b5−m2

m2 , showing that the origin of system (3.2) is a center.
The proof for Theorem 3.3 is complete. □

.2. Bi-isochronous center conditions of system (2.1)

For each case listed in Theorem 3.2, we compute and analyse the periodic constants at the origin of system (3.2) to
btain the following Lemmas.

emma 3.1. If C1 in Theorem 3.2 holds, then system (3.2) has an isochronous center at the origin if and only if one of the
following conditions holds:

L1 : a1 = 0, a8 = 0, b5 = −
m2

b3
, b7 = 0, b9 = 0;

L2 : a1 = 0, a8 = 0, b5 = −
m2

4b3
, b7 = 0, b9 = 0.

Proof. When the condition C1 holds, the first two periodic constants of system (3.2) can be obtained as

T1 = −
4b23b

2
5 − 28b3b5b27 + 40b47 + 5b3b5m2

+ 14b27m
2
+ m4

3m2 ,

T2 =
6b27(−20b3b5b27 + 36b47 + 5b3b5m2

+ 13b27m
2
+ m4)

m2 .

It is obvious that T2 = 0 yields a solution b7 = 0 which in turn leads to a1 = a8 = b9 = 0 due to the condition C1. Then,
or b7 = 0, the equation T1 = 0 gives two solutions: b5 = −

m2

b3
and b5 = −

m2

4b3
, yielding the conditions L1 and L2.

If b7 ̸= 0, then eliminating b7 from the two equations: T1 = T2 = 0 gives a solution,

b27 =
b3b5(36b3b5 − 5m2) − m4

52b3b5 + 4m2 ,

and a resultant equation,

b3b5(64b23b
2
5 + 189b3b5m2

+ 21m4) = 0.

It is easy to show that the resultant equation yields solutions for b and b such that b2 < 0.
3 5 7

9
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When the conditions L1 and L2 hold, system (3.2) can be rewritten as⎧⎪⎨⎪⎩
dx
dτ

=
1
2
(−2y + 4mx2 − my2),

dy
dτ

= x(1 + my),
for L1,⎧⎪⎨⎪⎩

dx
dτ

=
1
2
(−2y + mx2 − my2),

dy
dτ

= x(1 + my),
for L2,

which admit the transversal commuting systems,

dx
dτ

= −x(−1 + m2x2 − 2 my),

dy
dτ

= −
1
2
y(−2 + 2m2x2 − 3 my + m2y2),

or L1 and

dx
dτ

= x(1 + my),

dy
dτ

=
1
2
(−mx2 + 2y + my2),

for L2, respectively. This implies that the origin of system (3.2) is an isochronous center according to Corollary 5.1
in [40]. □

Lemma 3.2. If the condition C2 in Theorem 3.2 holds, then system (3.2) has an isochronous center at the origin if and only
f either L2 or the following condition L3 is satisfied:

L3 : a1 = −
b7
4

, a8 =
b7(11b27 + 6m2)

4b23
, b5 = −

3b27 + 4m2

4b3
, b9 =

b7(3b27 + 4m2)
4b23

.

Proof. When the condition C2 holds, the first two periodic constants of system (3.2) are given by

T1 = −
(4b3b5 + 3b27 + 4m2)(16b3b5 + 9b27 + 4m2)

48m2 ,

T2 =
b27(b

2
7 + 4m2)(4b3b5 + 3b27 + 4m2)

384m2 .

It is easy to see that the solution b7 = 0 yields the condition L2. If b7 ̸= 0, then b5 is easily derived from the common
factor of T1 and T2: 4b3b5 + 3b27 + 4m2

= 0, and then the condition C1 leads to the expressions of a1, a8 and b9. This gives
the condition L3.

If the condition L3 holds, system (3.2) can be brought into

dx
dT

=
1

8b23m
(2b3b27x

2
+ 8b3m2x2 + b37x

3
+ 4b7m2x3

− 8b23 my − 8b3b7 mxy),
dy
dT

=
1

8b23m
(8b23 mx + 4b3b7 mx2 + 2b3b27xy + 8b3m2xy

+ b37x
2y + 4b7m2x2y − 4b3b7 my2),

(3.9)

hich has a transversal commuting system,

dx
dT

=
1

8b23m
(8b23 mx + 4b3b7 mx2 + 2b3b27xy + 8b3m2xy + b37x

2y

+ 4b7m2x2y − 4b3b7 my2),
dy
dT

=
y(8b23 m + 8b3b7 mx + 2b3b27y + 8b3m2y + b37xy + 4b7m2xy)

8b23m
.

(3.10)

his shows that the origin of system (3.10) is an isochronous center according to Corollary 5.1 in [40]. □

If the condition C in Theorem 3.2 holds, we get the same condition as that for the condition C .
3 1

10
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Lemma 3.3. If the condition C4 in Theorem 3.2 holds, then system (3.2) has an isochronous center at the origin if and only
f one of the following conditions holds:

L4 : a1 = −b7, a8 = b9 = −
b7(4b27 + m2)

4b23
, b5 = −

12b27 + m2

4b3m
;

L5 : a1 = −b7, a8 = b9 = −
b7(b27 + m2)

b23
, b5 = −

12b27 + m2

4b3m
.

roof. When the condition C4 holds, the first three periodic constants of system (3.2) are obtained as

T1 = −
1

3(2a21 + b3b5 − a1b7)2m2
f3,

T2 =
(a1 + b7)

8(2a21 + b3b5 − a1b7)4
f4,

T3 = −
(a1 + b7)

23040(2a21 + b3b5 − a1b7)6m2
f5,

here

f3 = 4(2a21 + b3b5 − a1b7)4 + (32a61 − 48a51b7 + 3a1b3b5b7(b3b5 − 15b27)

+ b23b
2
5(5b3b5 + 12b27) + a41(48b3b5 + 76b27) + a31(−96b3b5b7 + 64b37)

+ a21(36b
2
3b

2
5 − 54b3b5b27 + 43b47))m

2
+ (2a21 + b3b5 − a1b7)2m4.

The lengthy expressions f4 and f5 are omitted here for brevity. Similarly, we can prove that the three equations, T1 = T2 =

T3 = 0, yield the conditions L4 and L5.
When the condition L4 holds, by the complex transformation z = x + iy, w = x − iy, τ = iT , system (3.2) can be

changed to its complex concomitant system,

dz
dT

= −
1
2
z(−2 − ib7m2w2

+ 2b27w
2
+ imz + 4b7z − ib7 mz2 − 2b27z

2),

dw
dT

= −
1
2
w(2 + imw − 4b7w − ib7 mw2

+ 2b27w
2
− ib7 mz2 − 2b27z

2),
(3.11)

hich has a linearizability transformation L3 constructed by the simple integral curves, as shown in Table 1.
When the condition L5 holds, by the same complex transformation for proving L4, system (3.2) can be changed to its

omplex concomitant system,

dz
dT

=
1
8
z( − 3imw2

+ 8z − 6imwz − 8b27w
2z + 10ib7 mw2z − 16b7z2

− 7imz2 + 12ib7 mwz2 + 8b27z
3
+ 10ib7 mz3),

dw
dT

=
1
8
w( − 8w + 16b7w2

− 7imw2
− 8b27w

3
+ 10ib7 mw3

− 6i mwz + 12ib7 mw2z − 3imz2 + 8b27wz2 + 10ib7 mwz2),

(3.12)

which also has a linearizability transformation L5 constructed by the simple integral curves, as given in Table 1.

When the conditions C5, C6 and C7 in Theorem 3.2 hold, there do not exist more isochronous center conditions. When
the condition C9 in Theorem 3.2 holds, we get the same condition as that for the condition C1. Finally, we consider the
condition C8.

Lemma 3.4. If the condition C8 in Theorem 3.2 holds, then system (3.2) has an isochronous center at the origin if and only
if one of the following conditions holds:

L6 : a1 = −

√
2m
4

, a8 = b9 = 0, b5 = −
3m2

b3
, b7 =

3
√
2m
2

;

L7 : a1 =

√
2m
4

, a8 = b9 = 0, b5 = −
3m2

b3
, b7 = −

3
√
2m
2

;

L8 : b7 = −2a1, a8 = b9 = 0, b5 = −
4a21 + m2

.

b3

11
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Table 1
Linearizability transformations for systems (3.11) and (3.12).
Linearizability transformation Integral curves

L4: ξ = −zh
−

4ib7
m

1 h2h
−m+2b7 i

m
3 , h1 = −1 + b7(w + z),

η = wh
4ib7
m

1 h−1
2 h

−2b7 i
m

4 . h2 = −2 − imw + 2b7(w + z),
h3 = (−1 + b7w)(2 − 2b7w + imw) + (4b7 +

im)(1 + w)z − b7(2b7 + im)z2,
h4 = −8 + 4imz + 4b7(4 + im(w − z))(w + z) −

8b27(w + z)2 − mw(4i + mz).

L5: ξ = h−2ib7
5 h−2+2b7 i

6 f7, h5 = −1 + b7 m(w + z),

η = h1+ib7
5 f −1

6 h
1+b7 i

2
7 . h6 =

mw2
+ 8iz − 2 mwz − 8ib7 mwz +mz2 − 8ib7 mz2,

h7 = 2 + 4imw − 4b7 mw − 3m2w2
− 4ib7m2w2

+

2b27m
2w2

− 4imz − 4b7 mz − 2m2wz + 4b27m
2wz −

3m2z2 + 4ib7m2z2 + 2b27m
2z2.

Proof. When the condition C8 holds, the first three periodic constants of system (3.2) are given by

T1 = −
1

12a1m4 f6,

T2 =
(a1 + b7)

8(2a21 + b3b5 − a1b7)4
f4,

T3 = −
(a1 + b7)

23040(2a21 + b3b5 − a1b7)6m2
f5,

here

f6 = 160(2a41 − a1a8b23 + a31b7)
2
+ 48a21(6a

4
1 − 2a1a8b23

+ 3a31b7 + a8b23b7)m
2
+ 6a21(4a

2
1 − b27)m

4
− (a1 − b7)(2a1 + b7)m6.

The lengthy expressions f7 and f8 are not given here for brevity. Similarly, we can use the equations T1 = T2 = T3 = 0 to
obtain the conditions L6, L7 and L8.

When a8 = 0, system (3.8) can be simplified to

dx1
dτ

= −
1

4a1b3m
(8a31x

2
1 + 4a21b7x

2
1 + 2a1m2x21 − b7m2x21

− 4a1b3 my1 − 4a1b7 mx1y1),
dy1
dτ

= −
1

2b3m2 (2b3m
2x1 + 8a31x

2
1 + 4a21b7x

2
1 − 2a1m2x21

− b7m2x21 − 8a21mx1y1 − 4a1b7 mx1y1 + 2m3x1y1 + 4a1m2y21),

hich can be further changed to

du
dτ

= −v +
2a1 − b7

4a1
u2

+
a1(2a1 + b7)

m2 v2,

dv
dτ

= u(1 + v).
(3.13)

y the transformation u = −
mx1
b3

−
2a1y1
b3

, v = −
2a1x1
b3

+
my1
b3

. It is well known that the origin of a quadratic system is an
sochronous center if and only if the system can be brought into one in the form of

du
dτ

= −v + Au2
+ Bv2,

dv
dτ

= u(1 + v).

here (A, B) ∈ {(1, 0), ( 12 , −
1
2 ), ( 14 , 0), (2, − 1

2 )}, see [40]. When the condition L6 or L7 holds, the coefficients of u2 and v2

n system (3.13) are 2 and −
1
2 , respectively. When the condition L8 holds, the coefficients of u2 and v2 in system (3.13)

are 1 and 0, respectively. So the origin of system (3.13) is an isochronous center. □

It is seen that the condition L1 can be included in condition L8. Summarizing the above results, we have the following
theorem.
12



F. Li, Y. Wu and P. Yu Communications in Nonlinear Science and Numerical Simulation 120 (2023) 107167

w

t

b
o

Theorem 3.4. The origin of system (3.2) is an isochronous center if and only if one of the following seven conditions holds:

L2 : a1 = 0, a8 = 0, b5 = −
m2

4b3
, b7 = 0, b9 = 0;

L3 : a1 = −
b7
4

, a8 =
b7(11b27 + 6m2)

4b23
, b5 = −

3b27 + 4m2

4b3
, b9 =

b7(3b27 + 4m2)
4b23

;

L4 : a1 = −
b7
m

, a8 = b9 = −
b7(4b27 + m2)

4b23
, b5 = −

12b27 + m2

4b3m
;

L5 : a1 = −
b7
m

, a8 = b9 = −
b7(b27 + m2)

b23
, b5 = −

12b27 + m2

4b3m
;

L6 : a1 = −

√
2m
4

, a8 = b9 = 0, b5 = −
3m2

b3
, b7 =

3
√
2m
2

;

L7 : a1 =

√
2m
4

, a8 = b9 = 0, b5 = −
3m2

b3
, b7 = −

3
√
2m
2

;

L8 : b7 = −2a1, a8 = b9 = 0, b5 = −
4a21 + m2

b3
.

4. Bi-center conditions of system (2.2)

With a proper linear transformation, planar autonomous analytic systems with a nilpotent critical point can always be
given in the form of

dx
dt

= Φ(x, y) = y +

∞∑
k+j=2

akjxkyj,

dy
dt

= Ψ (x, y) =

∞∑
k+j=2

bkjxkyj,

(4.1)

where Φ(x, y), Ψ (x, y) are analytic in the neighborhood of the origin.
The results given in [41] show that the origin of system (4.1) is a monodromic critical point if and only if the following

conditions hold:

Ψ (x, f (x) = αx2n−1
+ o(x2n−1)), α ̸= 0,[

∂Φ

∂x
+

∂Ψ

∂y

]
y=f (x)

= βxn−1
+ o(xn−1),

β2
+ 4nα < 0,

(4.2)

here n is a positive integer.
For system (2.2), there are two nilpotent singular points (±1, 0) with a double-zero eigenvalue. We need only to study

he center problem at the singular point (1, 0) due to the symmetry. System (2.2) can be transformed into

dx
dt

= −
x + 1
b3

(2a1b3x + a1b3x2 + 2a21y − a8b3y2),

dy
dt

= 2b3x + b3x2 + 2a1y + 2b7xy + b7x2y + b5y2 + b9y3, (4.3)

y x = x̄+1, where we still use x for x̄ for convenience. The singular point (1, 0) of system (2.2) is translated to the origin
f system (4.3). It is noted that when a1 = 0, by the transformation, u = y, v = 2b3x, system (4.3) becomes

dx
dt

=
4b23b5x

2
+ 4b23b9x

3
+ 4b23y + 4b3b7xy + b3y2 + b7xy2

4b23
,

dy
= a8x2(2b3 + y).

(4.4)
dt
13
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It is easy to verify that the origin of system (4.4) is not a monodromic singular point. Therefore, we assume a1 ̸= 0 in
ystem (4.3). Then, by the transformation, u = b3x, v = −2a1b3x − 2a21y, system (4.3) can be changed to

dx
dt

= −
(b3 + x)(4a51x

2
− 4a21a8b

2
3x

2
− 4a41b3y − 4a1a8b23xy − a8b23y

2)
4a41b

2
3

,

dy
dt

=
1

4a41b
2
3
( − 8a31a8b

3
3x

2
− 8a41b

2
3b5x

2
+ 16a51b3b7x

2
+ 8a61x

3

− 8a31a8b
2
3x

3
+ 8a51b7x

3
+ 8a31b

2
3b9x

3
− 8a51b3xy

− 8a21a8b
3
3xy − 8a31b

2
3b5xy + 8a41b3b7xy − 8a21a8b

2
3x

2y

+ 4a41b7x
2y + 12a21b

2
3b9x

2y − 2a1a8b33y
2
− 2a21b

2
3b5y

2

− 2a1a8b23xy
2
+ 6a1b23b9xy

2
+ b23b9y

3).

(4.5)

Now we are ready to derive the center conditions for system (4.5). Using the results in [41], we obtain

α2 = a8b3 − a1(−b3b5 + 2a1b7),

α3 = a31(−b3b5b7 + 2a1b27 + b23b9) < 0,

α4 =
8a1(a1 + b7)(b3b5 − 2a1b7)(a21 + b3b5 − 2a1b7)

b3
,

α5 = −2a1(a1 + 3b7)(−b3b5 + 2a1b7),

β1 = −
2(2a21 + b3b5 − a1b7)

a1b3
.

The origin of system (4.5) is a third-multiple monodromic singular point if α2 = 0, α3 < 0 and β2
1 + 8α3 < 0. When

α3 = 0, namely, b9 =
b7(b3b5−2a1b7)

b23
, the origin of system (4.5) is at most a fourth-multiple singular point when α4 ̸= 0. The

origin is a singular point with multiplicity four because of the symmetry. So the origin is a monodromic singular point of
system (4.5) with multiplicity three.

Due to the complexity in the monodromic condition of the nilpotent singular point, we compute the quasi-focus values
before discussing the monodromic condition. The first two quasi-focus values at the origin of system (4.5) are

µ1 = −
(−b3b5b7 + 2a1b27 + b23b9)

15a31b
4
3

(16a31 + 18a1b3b5 − 24a21b7

− 3b3b5b7 + 8a1b27 + 15b23b9),

µ2 = −
8(−b3b5b7 + 2a1b27 + b23b9)

2625a51b
6
3

(a1 − b7)(4a1 + b7)(2a1 + 3b7)

× (2a21 + b3b5 − a1b7).

Theorem 4.1. The first two quasi-focal values at the origin of system (4.5) vanish if and only if one of the following four
onditions holds:

NC1 : b9 = −
b5b7
b3

, a1 = b7;

NC2 : b9 =
b7(2b3b5 + b27)

4b23
, a1 = −

b7
4

;

NC3 : b9 =
2b7(2b3b5 + 4b27)

b23
, a1 = −

3b7
2

;

NC4 : b9 =
a1(4a21 − b27)

b23
, b5 = −

a1(a1 − b7)
b3

.

Theorem 4.1 implies that the four conditions together with α3 < 0 and β2
1 + 8α3 < 0 are necessary for the origin of

ystem (4.5) to be a center. Next, we prove that these conditions are also sufficient.

heorem 4.2. The origin of system (4.5) is a center if and only if one of the four conditions in 4.1 together with α3 < 0 and
β2
1 + 8α3 < 0 hold.

Proof. When the condition NC1 in Theorem 4.1 holds, system (4.5) admits an inverse integrating factor,

I = (b + x)
1− b3b5

b27 y
1
2 −

b3b5
b27 (4b b + 4b x + y)

1
2 −

b3b5
b27 .
7 3 3 7 7
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b

S

b

w

When the condition NC2 in Theorem 4.1 holds, system (2.2) can be changed to
dx1
dt

=
1

4b23
(4b23b5x

2
1 + 2b3b27x

2
1 + 2b3b5b7x31 + b37x

3
1 + 4b23y1 + 4b3b7x1y1),

dy1
dt

= −
b7y1
4b23

(b3b7x1 − 2b3b5x21 − b27x
2
1 − 2b3y1),

(4.6)

by using x1 = y, y1 = b3(x2 − 1) −
b7
2 y. System (4.6) admits an inverse integrating factor,

I8 = y
−3+ 8b3b5

b27
1 (2b3 + b7x1 + 2y1)

7+ 8b3b5
b27 .

When the condition NC3 in Theorem 4.1 holds, system (2.2) can be changed to
dx1
dt

=
1
b23

(b23b5x
2
1 + 3b3b27x

2
1 + 2b3b5b7x31 + 8b37x

3
1 + b23y1 + b3b7x1y1),

dy1
dt

=
3b7
4b23

(b3b5b7x31 + b37x
3
1 + 2b3b7x1y1 + b3b5x21y1 + 3b27x

2
1y1 + b3y21).

(4.7)

y using x1 = y, y1 = b3(x2 − 1) − 3b7y. Moreover, by the transformation,

X = x1,

Y =
1
b23

(b23b5x
2
1 + 3b3b27x

2
1 + 2b3b5b7x31 + 8b37x

3
1 + b23y1 + b3b7x1y1),

system (4.7) can be changed to the Liénard-like system (3.5), where

p0(X) =
3b27(b3b5 + 5b27)X

3(b3 + 2b7X)
b43(b3 + b7X)

(b232b3b7X − b3b5X2
− 4b27X

2),

p1(X) =
X

b23(b3 + b7X)
(2b33b5 + 12b23b

2
7 + 4b23b5b7X + 24b3b37X

− 5b3b5b27X
2
− 23b47X

2),

p3(X) =
4b7

2(b3 + b7X)
.

ince W1(X) − W1(Y ) and W2(X) − W2(Y ) have a common factor (X − Y )(b3X + b3Y + 2b7XY ), the origin of system (4.7)
is a center according to Theorem 2.3.

When the condition NC4 in Theorem 4.1 holds, system (2.2) can be changed to
dx1
dt

=
1

3b23
( − 6a21b3x

2
1 − 3a1b3b7x21 + 4a31x

3
1 − a1b27x

3
1

+ 3b23y1 + 3b3b7x1y1),
dy1
dt

=
2a1
3b23

( − 8a31x
3
1 − 6a21b7x

3
1 − a1b27x

3
1 + 6a1b3x1y1

+ 3b3b7x1y1 + 6a21x
2
1y1 + 3a1b7x21y1 − 3b3y21),

(4.8)

y using x1 = y, y1 = b3(x2 − 1) + 2a1y. Moreover, system (4.8) can be changed to the Liénard-like system (3.5) by the
transformation,

X = x1,

Y =
1

3b23
(−6a21b3x

2
1 − 3a1b3b7x21 + 4a31x

3
1 − a1b27x

3
1 + 3b23y1 + 3b3b7x1y1),

here

p0(X) = −
4a21(a1 + b7)(2a1 + b7)X3(b3 + 2b7X)

9b43(b3 + b7X)
(−3b33 + 6a1b23X

− 3b23b7X − 6a21b3X
2
+ 3a1b3b7X2

+ 4a31X
3
− a1b27X

3),

p1(X) =
2a1(4a1 − b7)(a1 + b7)(2a1 + b7)X3

3b23(b3 + b7X)
,

p3(X) = −
2a1 − b7

.

2(b3 + b7X)
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If b7 = 4a1, the Liénard-like system is symmetric with the X-axis. Otherwise, a simple computation shows that W1(X) =
2a1(2a1−b7)
(4a1−b7)2

is a constant, implying that the origin of system (4.8) is a center according to Theorem 2.3. □

5. Conclusion

In this paper, we have investigated the bi-center and bi-isochronous center problems in cubic planar systems which are
symmetric with respect to a straight line. We first apply a transformation to move the symmetric line on the y-axis with
two symmetric singular points at (±1, 0), which are classified as elementary and nilpotent singular points. A complete
classification is provided, with nine conditions for elementary singular points and four conditions for nilpotent singular
points. Moreover, six bi-isochronous center conditions are obtained for the elementary singular points.

It should be pointed out that for the nilpotent singular points, the classical method is first to give the monodromic
condition, and then to compute the quasi-focus values in order to solve the center problem. However, in this paper we
first compute the quasi-focus values, and then obtain the center conditions. In fact, when α2 = 0 and α3 > 0, the origin
of system (4.5) is a nilpotent saddle point with multiplicity three. The conditions in Theorem 4.1 are also integrability
conditions of nilpotent saddle point, which will be considered in future work.
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