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1. Introduction

Center and isochronous center problems, which are closely related to the 16th problem proposed by D. Hilbert in 1900,
are far from being solved. As a classical problem, center problem has been considered by many mathematicians. Some
special systems have been investigated, for example, the systems given in the form of

dx

I =Y+ Pn(x,y),

dy (1.1)
i =X+ Qu(x, y),

where Py,(x, y) and Qu(x, y) are homogeneous polynomials of degree m. The three cases m = 3, 4, 5 have been studied
in [1-3], respectively. The characterization of the centers for cubic systems described by

dx

— =Y+ Py(x,y) + P3(x,y),
dt (1.2)
dy

i + Qa(x, ¥) + Q3(x, y),

is not well investigated. Only some special cases with degenerate singular points at infinity have been completely
characterized [4]. The center problem for systems with nilpotent singular points is more complicated because the classical
methods used for studying elementary singular points are not applicable. Especially, a nilpotent center may not be an
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analytical center, which has no analytical first integral. This implies that the center problem for degenerate singular points
is much more difficult. Partial results have been obtained for the systems with null linear part, see for instance [5].

For analytical Liénard systems whose linear part has a pair of purely imaginary eigenvalues, an effective method was
developed to derive necessary and sufficient conditions for the existence of centers, see [6-8]. The isochronous center
problem is equivalent to determining whether the system can be transformed to a linear system by a formal change of
the state variables. Over the past three decades, this problem has also been intensively investigated by many researchers,
for example, see [9,10]. Periodic constants can be used to determine isochronous centers, and several methods have been
developed to compute periodic constants, see [11-15]. However, these methods are hard to be applied to a concrete
system because of the computation complexity. As far as we know, there are only a few complete classifications about
isochronous centers for some special systems, see for instance [11,12,14,16-20]. On the other hand, the isochronous center
problem for the homogeneous polynomial systems was considered and solved thoroughly. In 1964, Loud [17] classified
the isochronous centers of systems with homogeneous polynomials of degree two. The isochronous center problem for
systems whose nonlinear parts are homogeneous polynomials of degree three were solved by Pleshkan [18]. The results
for the isochronous centers of systems with homogeneous perturbations of degrees four and five can be found in [11,12].
Linearization of linear systems perturbed by 5th-degree homogeneous polynomials was studied in [20].

As a class of special systems, the time-reversible systems were also studied by many researchers, for instance, the time-
reversible cubic vector fields were investigated in [21,22]. More recently, the linearizability conditions of time-reversible
quartic systems with homogeneous nonlinearities have been obtained in [23]. For the complex Lotka-Volterra system,
the linearizability problem was solved in [24]. Some other methods have been developed in recent years, for example,
the time-angle method was proposed in [25], which can also be found in the book [26]. For some planar polynomial
Hamiltonian systems, the isochronicity and linearizability were also studied in [27,28].

The reason for studying the time-reversible systems is due to the existence of symmetry, which plays an important
role in the qualitative analysis. Breaking of symmetry destroys the underlying order of nature. Another important kind
of symmetric systems is the Z,-equivariant system, with many good results obtained about the center and isochronous
center problems. Recently, a complete study on the bi-center problem for Z,-equivariant cubic vector fields was given
in [29], and the bi-center problem for some Z,-equivariant quintic systems was studied in [30]. In 2017, the bi-isochronous
center problem for cubic systems in Z,-equivariant vector fields with real coefficients was considered in [31]. In 2020, the
isochronous center problem for the Z,-equivariant cubic vector fields with complex coefficients are completely solved [32].
The Z,-equivariant cubic vector fields with nilpotent singular point, weak saddles or resonant saddles were studied
in [32-35], while the Z,-equivariant cubic polynomial Hamiltonian systems with bi-center were investigated in [36].

Besides above mentioned symmetries, other types of symmetry are also important, and some of such systems have been
considered. For example, systems with the y-axis symmetry were studied in [37], and the planar cubic differential systems
with symmetric centers were investigated in [38]. In this paper, we will study cubic systems with the y-axis symmetry, and
focus on the bi-center and bi-isochronous center problems with the main attention paid to the elementary and nilpotent
singular points. We will provide a complete classification on the centers, including nine conditions for elementary singular
points and four conditions for nilpotent singular points. Moreover, we derive six bi-isochronous center conditions for the
elementary singular points.

The rest of the paper is organized as follows. In the next section, we simplify cubic systems symmetric with respect to a
straight line and derive the condition possessing two elementary singular points or nilpotent singular points. In Section 3,
nine cases are classified for the center conditions of the cubic systems with two elementary singular points. Then, the
periodic constants are computed at (£1, 0) of cubic systems, which are used to obtain six isochronous center conditions.
In Section 4, four cases are classified for the center conditions of cubic systems with two nilpotent singular points. Finally,
conclusion is drawn in Section 5.

2. Simplification of cubic systems symmetric with respect to a straight line

A system is symmetric with respect to a straight line if the phase portrait is symmetric with respect to the straight line,
and the straight line is called the axis of symmetry. Especially, a system is called symmetric with respect to the y-axis if
the system is invariant under the transformation (x, y, t) — (—x, y, t). In this context, we consider cubic systems which
are symmetric with respect to a straight line, and assume that Py = (xg, o) is a singular point which is not on this line
of symmetry. If Py is a center, and P; = (X1, y1) is the image of Py under the symmetric transformation, then Py is also a
center. Then, the points Py and P; are called bi-center.

To investigate the existence of bi-center or bi-isochronous center for the cubic systems which possesses symmetry
with respect to a straight line, we first find the normal form of the system using the symmetry. We have the following
result.

Theorem 2.1. Consider planar polynomial cubic systems with

(1) a singular point associated with a pair of purely imaginary eigenvalues +mi; and
(2) a straight line as the axis of symmetry, which does not include the singular point in (1).

2
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Then there exists an affine transformation of the coordinates such that the straight line as the axis of symmetry is taken into
the y-axis and the cubic systems can be rewritten in the following form:

dx —x
%= i(—2alb3 + 2a1b3x* + 4a2y + m2y — 2aghsy?),
d)t/ 3 (2.1)

= bt bsx* + (2a; — b7 )y + byx*y + bsy?® + bey>.

Proof. Let (xg, yo) be a singular point of a symmetric cubic system with respect to a straight line such that its Jacobian
matrix has a pair of purely imaginary eigenvalues. Assume that the cubic system possesses a straight line r: ax + by = ¢
(a, b, c € R) as the axis of symmetry and (xq, yo) does not belong to r. Without loss of generality, we may assume a # 0
(otherwise we simply apply the change of the coordinates (x,y) — (¥, x)). According to the results in [37], the straight
line r becomes the y-axis (i.e., x = 0) and the singular point (xg, ¥o) is moved to the point (1, 0) by a transformation. So,
we can always assume that (1, 0) is a singular point. Thus, with the symmetry, the system is changed to

dx

<= —X(—a1 + a1x* — agy — agy?),

d

dit/ = —bs + b3x2 + by + b7x2y + bs)’2 + b9y3,

whose Jacobian matrix is given by
| 2w ay
‘](]’0) - 2b3 b2 + b7 :
It is easy to see that b; # 0. Otherwise, according to condition (1), b3 = 0 yields that b, + b; = 2ay, leading to
det(J1.0)) = —2ai(b; + by) = —4a?,
which contradicts with the assumption, det(J1,0)) = m?. So we get
(4a3 + m?)
2bs

from Tr(J1,0)) = 0 and det(J1,0)) = m?, namely, system is changed to the normal form (2.1). O

by =2a; — by, ay=—

Similarly, we can prove the following theorem.

Theorem 2.2. Consider planar polynomial cubic systems with

(1) a singular point associated with a double-zero eigenvalue; and
(2) a straight line as the axis of symmetry which does not include the singular point in (1).

Then, there exists an affine transformation of the coordinates such that the straight line is taken into the y-axis, and the cubic
systems can be rewritten as

d

@ _ —i(_ale + a;bsx* + 247y — asbsy?),

gt B (2.2)
d%/ = —bs + bsx? + (2a; — by)y + b7x?y + bsy* + boy>.

In order to prove center conditions, we introduce the results obtained in [39], where the so-called Liénard-like systems
with a degenerate singular point are investigated. The Liénard-like systems are described by

dx _y
g; (2.3)
o = Po®)+pi(x)y + p2(x)y?,

where

o0
pox) = ="+ Y awdt, n>1,

k=2n

o0
pi(x) = AX" 4 ) b

k=n

o0
pa(x) = Z X"
k=0
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The following result for system (2.3) is usually applied to prove center conditions.

Theorem 2.3 ([39]). The origin of system (2.3) is a centre if and only if the equations,
Wi(x) = Wi(y) and Wa(x) = Wa(y),

where

_ Pop1P2 — P1Py + PoP) Wi (x)po

B p} r

have an analytical solution y = ¢(x) with ¢(0) = 0 and ¢’(0) = —1 in the neighborhood of x = 0.

Wi(x) . Whx) =

)

It should be pointed out that the conclusion in Theorem 2.3 is also true for the case when W;(x) or W5(x) is a constant,
which is not included in the result of [39].

3. Bi-center and bi-isochronous center of system (2.1)

For system (2.1), there are two elementary singular points (£1,0) associated with a pair of purely imaginary
eigenvalues £mi. We need only to study the center problem at the singular point (1, 0) because of the symmetry. System
(2.1) can be transformed into

dx x+1

T (4a1bsx + 2a;1b3x* + 4a2y + m%y — 2aghsy?),
t 3 (3.1)

d
dit/ = 2b3x + b3x? + 2a1y + 2bsxy + b7x*y + bsy? + boy?,

by x = X + 1, where we still use x for x for convenience. As a result, the singular point (1, 0) of system (2.1) is shifted to

the origin of system (3.1). Furthermore, under the transformation,
y X a1y
U=—-———, v=—+——, T=mt,
2b3 m mb3

system (3.1) can be changed to

dx 1
o= (14 2a1x)(—1 + 2bsx)y + 5m(—1 + 2bsx)y?
2

+ Ex2(2a1b7 + a3(—1+ 2bsx) + b3(—bs + 2bsbgx)),
dy _ 8ai(ai(ar +by) +b3(—as +bg)X*  4ai(ar + by)xy (3.2)
dr — m2 m

N 2x*[2agb3(1 + my) + a1(2bsbs — 4a1b; + m? — 2a;(3a; + 2by)my)]

m2

+ xy(m — 2a1(3a; + by )y) — ary*(2 + my).

Now we are ready to derive the center and isochronous center conditions for system (3.2).

3.1. Bi-center conditions of system (2.1)

By the complex transformation, z = x+iy, w = x—iy, t = iT, system (3.2) can be changed to its complex concomitant
system. Then, computing and analyzing the focus values at the origin of the resulting system with the formal series method
developed in [26] yields the following result.

Theorem 3.1. The first three focus values at the origin of system (3.2) are

i
n = 5{4(20% + bsbs — aib;)(—bs(agbs + aibs) + 2a3b;)
+ [(2a; — by )(—bsbs + 2a;b;) — 3b3bglm?},

4i

W2 = W(—]Oasbg — loa]b3b5 + 20(1%[)7 + 4a]m2 + b7m2)f1f27
8i

13 = oo (@1 = by)4ar + b)(2a + 3b7)fifo,
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where
fi = 8@ + 4a;bsbs — 4a3b; + 2a,m* — b;m?,
fo = — 4diagh} — 4aibsbs — 2agb3bs — 2a,b3bZ + 8afb;
+ 2ajagb3b; + 6a3bsbsb; — 4ab% — ajbsbsm?
+ 2a3b;m* — bsbsb;m?* 4 2a,b3m?.

The following two theorems directly follow from Theorem 3.1.

Theorem 3.2. All the first three focus values at the origin of system (3.2) vanish if and only if one of the following nine
conditions holds:

b5b7 b7(2b3b5 — 4b§ — m2)
Ci: bg=—"2, ag=— , a1 =by;
1 9 bs 8 2b§ 1 7
b;(2bsbs + b2) b7(2bsbs + b2 — m?) by
Cz:bgziz, a8: 2 ) a]:_i;
4bj5 8b3 4
) 2b;7(2b3bs + 4b2) b7(3bsbs + 9b2 — m?) 3b;
Cg.bgz——z, ag = 2 s 1= ">
b3 2bj 2
b7(bsbs — 2a1b
Cy: by = 7(b3bs _ a; 7)7
b3
a5 = _(b3b5 — 2a1b7)(4a? + 2a1b3b5 + 20%[]7 + a1m2 + b7m2).
2b§(2(1% + b3b5 — (11b7)
b3 3b2
C:b:—l,b:—i, = —by;
5 9 b% 5 by aq 7
C(; bg—a]=b5—0,
b2 b,
C;: bg=0, bs = —-L, =——
7 9 5 bs aq )
Cg: by = 7(18(2(11 — b7), bs = _(2(11 — b7)(4a% + m2)§
3a, 4a,bs
4agb3b5
Co: bg=— 3z 1=b; =

Theorem 3.2 gives the necessary conditions under which the origin of system (3.2) is a center. Next, we use Theorem 2.3
to prove that these conditions are also sufficient.

Theorem 3.3. The origin of system (3.2) is a center if and only if one of the nine conditions in Theorem 3.2 holds.

Proof. When the condition C; in Theorem 3.2 holds, system (3.2) becomes

dx 1
= =7 { —4bsbsx* + 8b3box® — 2 my
+ (2b7x + my)[—my + 2b;x(1 + 2bsx + my)] },
J (3.3)
% = X(1+4 2b7x)* — 2b5(1 + 4bsx)y* + my(x + 2b7x* — boy?),

_ 4b7X(b3b5X + b7(2 + 3b7X))y

m
When b; # 0, system (3.3) has an integral factor

4b2+m?—4bsbs  4b3-+m?—db3bs
462 +m? 2(4b2+m?2)

L =& 1) ’

in the neighborhood of the origin, where

g1 =14 2b;x + my,
m2(1 + 2bx)?

7 + 8m(1 + 2bsx)y + 4m?y?.
7

& =
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When b; = 0, system (3.3) becomes

d. 1

O (4bsbsx® + 2 my + my?),
dt 2m

d

Y x1+my),

dt

which is time-reversible, implying that the origin is a center.
When the condition G, in Theorem 3.2 holds, system (3.2) is reduced to

du u+1
== an? (2b3b7u — bsb3v — 4bsm®v + 2bsbsb;v? + b3v?),
dv 1
== 4—bz(4b§u — 2b3byv + 4b5byuv + 4b3bsv® + 2bsbsb;v + b3v?),
3
by the transformation u = x> — 1, v = y, and can be further changed to
dx
di‘[] = 4b2m(4b§b5){% + 2b3b%X% + 2b3b5b7X? + b;X?
3
+4b2 my; + 4bsb; mx1y,),
iy, ) 3 ; Y1 307 1)’21) ; i (3.4)
—_— = —7(4173 mxi + 2b3b7 mx; + b3b7X1y1 + 4b3m X1V1
dr 4b§m

—2b3b5b7x%y1 — b;X%}H — 2b3b7 my%)

by using x; = v, y1 = %u - f—fnv, T = mt. Moreover, with the transformation,

X =Xy,
Y = 4b2m(4b§b5X% + 2b3b%X% + 2b3b5b7X? + b;X? + 4b§ my1 + 4b3b; mxi1y1 ),
3
system (3.4) can be changed to the following Liénard-like system,
ax _ Y
(cii; (3.5)
e Po(X) + p1(X)Y + p2(X)Y?,
where
X(2bs + b;X) 5 5 292
= — —————— " (2b5 + 2b3b;X — 2b3bsX* — b5X
Po(X) 32b§m2(b3~|—b7X)( 3 3b; 3bs 7X7)
X (8b§m2 + 8b3b7m2X — 2b3b5b§X2 — b;‘Xz),
X
X) = ———————(8b3bs + 23b2b2 — 4b2m? + 26b2bsb;X + 116b3b3X
p1(X) 4b§ m(b3+b7X)( 305 307 3 30507 307
— 4b3b;m*X + 22bsbsb3X? + 95b3X?),
3b;
X)=——.
P = 5y + bX)
Let
Po(X)p1(X)p2(X) — p1(X)py(X) + po(X )P} (X)
WiX) = 3 )
p1(X)
W/ (X X
W) = WCKI)
p1(X)

It is easy to verify that W;(X) — W(Y) = 0 and W5(X) — W5(Y) = 0 have a solution b3X + bsY + b;XY = 0. According to
Theorem 2.3, the origin of system (3.2) is a center.
When the condition C; in Theorem 3.2 holds, system (3.2) is reduced to

du u+1

E = biz(.:;b%bﬂ,l — 9b3b§v — bgmzv + 3b3b5b7v2 + 9b;l)2 — b7m2v2),
3

d 1

% = ?(bgu — 3b3b;v + b3byuv + b3bsv? + 2bsbsb,v? + 8b3v?),

3

6
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by the transformation u = x> — 1, v =y, and can be further changed to

dx 1
T; = 5 (B3bsx + 3b3b2; + 2bsbsby] + b
3
+ b3 my; + bsby mxyy1),
d 1
% = — W(bg mxy + 4bsb;m’x] — 3bsbsb3x; — 3b3x} .
T 3m

+ 3b%m2X? — 6b3b% mx1yq + b3m3x1y1 — 3b3b5b7X%y1
— 9b3 mxjy; + bym*x3y; — 3bsb;m?y?),

%u — 37y, r =mt. System (3.6) can be changed to the Liénard-like system (3.5) with

by using x; = v, y; = -

X(b3 + 2b;X)

po(X) = — m(b§ + 2b3b;X — b3bsX? — 4b2X?)
x (b3m* + 2b3b;m®X + 3b3bsb3X? + 15b3X* + bim?X?),
pi(X) = m(zbgm + 12b3b3 — b3m? + 4b3bsb;X + 24bsh3X
— 2b3b;m?X — 5b3bsb2X? — 23b2X? — b2m*X?),
i) = 5

by the transformation,
X =X,
1
Y = %(bgbsxf + 3b3b2x3 + 2bsbsb,x3 + 8b3x] + b3 my; + b3b; mx1y).
3

Note that W;(X)—W;(Y) and W>(X)— W>(Y) have a common factor (X —Y)(b3X +b3Y +2b;XY). According to Theorem 2.3,
the origin of system (3.2) is a center.
When the condition C4 in Theorem 3.2 holds, system (3.2) has an integrating factor,

3 2 2 2
14 —4b3bs +4ay (=201 +b7) —8ay+4ayby+bym”—2a;(2b3bs +m7)

I =x m? (bs + b7y) bym

if b; # 0. In fact, for any real b7, system (3.2) can be changed to

dx 1
d—; =3~ (bs + byxi)(babsx} — 2a1b7; + bs my),
3
3.7
dy: b2m?(2a? + bsbs — aib7)x1 + P(x1, y1) (37)
dt b%mz(Za% + bsbs — aby) ’

by using x; =y, y1 = %(xz —-1)— %y, T = mt, where

P(x1,y1) = (—4albsm* — a;b3bsm? + b3bsb;m?* — 2a;bsb3m*)x3

+ (16a3b; — 8aibsbs — 4a’bib2 + 8a3bsbsb; — 2a;b3b2b; + 6a3bsbsb3
— 4a3b3 — 2ab3bsm? + 4a3b;m* — 2a;bsbsb;m* + 4a’bim?)x3
+ ( — 8atbsm — 4a?b3bs m — 2a,b3bsb;m + 2atbsbs m + 2absm®
+ bibsm® — a;bsb;m?)x1y1 + (4absbs m + 2a;b3b2m — 8atb;m
— 6a2b3bsbym + 4a3bim + a;bsbsm® — 2a2b;m* + b3bsb;m?
— 2a,b2m*)X%y; + (4a3bsm? + 2a,bibsm® — 2a2bsb;m?)y?.

Then, by the transformation,

X:X1,

1
Y = %(ba + bsx1)(b3bsx? — 2a;b7x% + b3 my,),
3
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system (3.7) can be changed to the Liénard-like system (3.5), where

X(bs + 2b;X)

X) = —b% + 2b3a1X + bsbsX? — 2a,b;X?
po(X) b‘3‘(2a%+b3b5 —a1b7)( 3 3a1 305 1b7X*)
X (2a%b3 + b§b5 — a1b3b7 + a, b3b5X — Za%b7X + b3b5b7X — 2a1b%X),
X(4(12 + 2b3b5 — 2(11b7 — mz)
X) = 1 2a%bs + b2bs — a1bsb; 4 a;bsbsX
p1(X) Bm(2a? + bybs — arby) (2a5bs + b3bs — a;bsb; + aibsbs
— 2a%b;X + bsbsb;X — 2a1b3X),
2(11 — b7
X)= —.
P = 5y 1 5X)

If 4a§ + 2bsbs — 2a1b; — m? = 0, the Liénard-like system is symmetric with the X-axis. Otherwise, after a tedious
computation, we obtain

2(20% + b3b5 — a1b7)m2

Wi (X) = — ,
1X) (422 + 2bsbs — 2a;b; — m2)?

which is a constant, implying that the origin is a center.
When the conditions Cs, Cg and C7 in Theorem 3.2 hold, system (3.2) can be reduced to

dx 1
— = —xy(—m? + 2agbsy),
dt 2b3 for Cs,

d
gf = (x — 1)(bs + byy),
X 1
5= EX(_2b3b7 + 2bsbsx? — 4b2y — m?y + 2agbsy?),
dy 1° for Cg,
pri ﬁ(—bs + b3x — byy)(bs + bzy)(bs + bsx + b7y).
3

dx X
o = 5. ("b3br + babrx® — by — m’y + 2asbsy?).
R for (5,

dy 1
= b—(—b3 + b3x* — byy)(bs + bsy),
3

which admit the following inverse integrating factors:
Is = x(bs + bsy), Is =x(bs+bsy)’ and I = x(bs + byy)’,

for Cs, Cs and (5, respectively, indicating that the origin of system (3.2) is a center under each of these three conditions.
When the condition Cg in Theorem 3.2 holds, system (3.2) can be changed to

dx 1
T; - — m(%a?x% + 12a3b7x% + 6aym*x? — 3b;mx?

— 8(11(13173)(? + 4agb3b7X§ — 12(1]b3 my; — 12(11b7 mxiy1 ),

d -1
% = W(Gbgmzm + 24a3x? — 12agb3x? + 12a2bsx? — 6a,m*x? (3.8)
T 3

— 3b;m?x3 + 16a1agb3x] + 4agbsb,x3 — 24aimx,y,

— 12a.b; mxiy, + 6m3x1y1 — ]2(13b3 mX%YI + 1201m2y%).
by using x; =y, y1 = %(xz —-1)— %y, t© = mt. Applying the same method with the transformation,

X =xq,
=— W(Ma?xf + 12a3b7x3 + 6aym?x7 — 3b;m’x3
— 8(11(18b3X% + 4(18b3b7)(% — 12a1b3 my, — 12(11b7 mxiy1 ),
8
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we can change system (3.8) to the Liénard-like system (3.5) with
X

X)= — 6bsm? — 24a3X + 12agb®X — 12a%b,X
o) = a2y + bx) - O 1 8% 1
— 6a1m2X — 3b7m2X + 8(11(18b3X2 + 8a8b3b7X2)(12a1b§ — 24a%b3X
+ 12a;b3bsX + 24a3X? — 12a%b;X* + 6a,m*X* — 3b;m*X?
— 8a1a3b3X3 + 4(18b3b7X3),
(—4a; + by)X 2 3 2 2
X)= 6bsm? + 24a3X — 12agb%X + 12a%b,X
PiX) 12a1b3m(b3+b7X)( M 244 sbat + 12diby
+ 6a1m2X + 3b7m2X — 8a1a8b3X2 — 8agb3b7X2),
2a; — b
Pi(X) =
3 + b7X

If b; = 4ay, the Liénard-like system is symmetric with the X-axis. Otherwise, a simple computation shows that
2a1(2a; — by)
(—4a; + by )?’

which is a constant, implying that the origin of system (3.2) is a center according to Theorem 2.3.
When the condition Cy in Theorem 3.2 holds, system (3.2) is reduced to

Wi(X) =

dx  xy 2

— = —(— 2agbsy),
i 2b3( m® + 2agbsy)
dy

1
= ——(—3bsm? + 3bysm?x* + 3bsm?y* — 4aghsbsy>),
dt  3m?
4bybs—m?
which admits an integrating factor Iy =x m? , showing that the origin of system (3.2) is a center.
The proof for Theorem 3.3 is complete. O

3.2. Bi-isochronous center conditions of system (2.1)

For each case listed in Theorem 3.2, we compute and analyse the periodic constants at the origin of system (3.2) to
obtain the following Lemmas.

Lemma 3.1. If C; in Theorem 3.2 holds, then system (3.2) has an isochronous center at the origin if and only if one of the
following conditions holds:

m
Li: a4=0, ag=0, bs=——, by =0, by=0;

bs
L'a—Oa—Ob—mzb—Ob—O
20 @1=0, a3 =0, bs=—7" by =0 by=0.

Proof. When the condition C; holds, the first two periodic constants of system (3.2) can be obtained as

4b2b% — 28b3bsb? + 40b5 + 5b3bsm? + 14b2m? + m*
1= 3m2 )

2
m2

It is obvious that T, = 0 yields a solution b; = 0 which in turzn leads to a; = ag = bg = 0 due to the condition C;. Then,
for b; = 0, the equation T; = 0 gives two solutions: bs = —7}—3 and bs = —"1”73, yielding the conditions Ly and L;.
If b; # 0, then eliminating b; from the two equations: T; = T, = 0 gives a solution,
bz _ b3b5(36b3b5 — 5m2) — m4
7 52bsbs + 4m?

and a resultant equation,

)

b3bs(64b2b2 + 189bsbsm? + 21m*) = 0.
It is easy to show that the resultant equation yields solutions for b3 and bs such that b% < 0.

9
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When the conditions L; and L, hold, system (3.2) can be rewritten as

d 1
& —(=2y + 4mx*> — my?),
g}/ 2 for Lq,
— =x(1+my),
A
X
—— = o(=2y +mx’> —my?),
‘é; 2 for L,
— =x(1+my),
dt
which admit the transversal commuting systems,
dx
= = —x(—1+ m?*x* — 2 my),
dr
d 1
Yy om = 3my + mAy),
dr 2
for Ly and
dx
— =x(1+my),
dr
d 1
= S(m 2+ my),
dr 2

for L,, respectively. This implies that the origin of system (3.2) is an isochronous center according to Corollary 5.1
in [40]. O

Lemma 3.2. If the condition C, in Theorem 3.2 holds, then system (3.2) has an isochronous center at the origin if and only
if either L, or the following condition L3 is satisfied:

b, _ by(11b% 4 6m?)

. 3b2 + 4m? b;(3b2 4 4m?)
. _ D7\ A

s b = _—, =
> 9 42

4b? 4b3

Proof. When the condition C, holds, the first two periodic constants of system (3.2) are given by

(4bsbs + 3b2 + 4m?)(16bsbs + 9b2 + 4m?)
48m?
T, — b2(b% + 4m?)(4bsbs + 3b2 + 4m?)
384m?
It is easy to see that the solution b; = 0 yields the condition L,. If b; # 0, then bs is easily derived from the common
factor of Ty and T,: 4b3bs + 3b§ +4m? = 0, and then the condition C; leads to the expressions of a;, ag and bg. This gives
the condition Ls.
If the condition L3 holds, system (3.2) can be brought into

1= —

’

dx 1
- = 2b3b2x% + 8bsm?x* + b2x® + 4bym?x3
dr 8b§m( > ’ 7 ’
— 8b3 my — 8bsb; mxy), (35)
d 1 :
% = 8b2m(8b§ mx + 4b3b; mx? + 2bsb2xy + 8bsm>xy
3
+ b3x%y + 4b;m*x%y — 4bsb; my?),
which has a transversal commuting system,
dx 1
o= 8b2m(8b§ mx + 4bsb; mx® + 2b3b2xy + 8bsm?xy + b3x’y
3
+ 4b;m*x°y — 4b3b; my?), (3.10)
dy y(8b3 m + 8bsb; mx + 2b3b2y + 8bsm?y + bixy + 4b;m*xy)
dr 8b2m '

This shows that the origin of system (3.10) is an isochronous center according to Corollary 5.1 in [40]. O

If the condition C; in Theorem 3.2 holds, we get the same condition as that for the condition Cj.

10
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Lemma 3.3. If the condition C4 in Theorem 3.2 holds, then system (3.2) has an isochronous center at the origin if and only
if one of the following conditions holds:

b;(4b% + m?) 12b2 + m?
Ly: aj=-b;, ag=bg=——"—-"1_—° pg=—"T"TT .
4 1 7, a8 9 a2 5 abym

b (b3 4+ m?) 12b3 + m?
Ls: ay = —b;, ag =bg = ——————, =7
5 1 7, 08 9 B 5 abym

Proof. When the condition C4 holds, the first three periodic constants of system (3.2) are obtained as

1
T, = — ,
"7 7 3(2a% + bsbs — a1b7)2m2f3
(a; + b)
I, = 3 . +fa,
8(2(11 + b3b5 — a1b7)
T — (a1 + by)
> 7 7 23040(2a + bsbs — by )Pm2”
where

f3 = 4(2a% 4 bsbs — a;by)* + (32a5 — 48a3b; + 3a;bsbsb;(bsbs — 15b%)
+ b3b%(5b3bs + 12b3) + a}(48bsbs + 76b3) + a3(—96b3bsb; + 64b3)
+ a%(36b3b2 — 54bsbsb3 + 43b3))m* + (2a% + bsbs — a;b;)*m*.
The lengthy expressions f4 and fs are omitted here for brevity. Similarly, we can prove that the three equations, Ty = T, =
T3 = 0, yield the conditions L, and Ls.

When the condition L4 holds, by the complex transformation z = x + iy, w = x — iy, t = iT, system (3.2) can be
changed to its complex concomitant system,

dz 1

T = —Ez(—z — ibym*w? + 2b2w? + imz 4 4b;z — ib; mz* — 2b3z%), o
3.11

d 1

d%’ = —Sw(2 + imw — 4byw — iby mw? + 2b2w? — ib; mz? — 2b27%),

which has a linearizability transformation L3 constructed by the simple integral curves, as shown in Table 1.
When the condition Ls holds, by the same complex transformation for proving L4, system (3.2) can be changed to its
complex concomitant system,

dz 1
=54~ 3imw? + 8z — 6imwz — 8bw?z + 10ib; mw?z — 16b;z°

— 7imz? + 12ib; mwz?* + 8b3z° + 10ib; mz?), (3.12)
d 1 '
% = gw(— 8w + 16byw’ — 7imw? — 8b3w’ + 10ib; mw’

— 6imwz + 12ib; mw?z — 3imz* + 8b3wz* + 10ib; mwz?),
which also has a linearizability transformation Ls constructed by the simple integral curves, as given in Table 1.
When the conditions Cs, Cg and C; in Theorem 3.2 hold, there do not exist more isochronous center conditions. When

the condition Cy in Theorem 3.2 holds, we get the same condition as that for the condition C;. Finally, we consider the
condition Cg.

Lemma 3.4. If the condition Cg in Theorem 3.2 holds, then system (3.2) has an isochronous center at the origin if and only
if one of the following conditions holds:

V2m 3m? 342m
Lg: a = ——, a =b :O’ b = ——, b, = ;
6 1 4 8 9 5 bs 7 3
V2m 3m? 34/2m
L;: a = —, a =b =0, b = ——, b — _ :
7 1 4 8 9 5 bs 7 5
4aj + m?

Lg : b7:—2(11, agzbg:O, bsz—i.

11
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Table 1
Linearizability transformations for systems (3.11) and (3.12).
Linearizability transformation Integral curves
_& —m+2byi
Ly: S:—Zh hzh "oy hy = =1+ bs(w +2),
47/:7 2b7|
n=wh™ hy h . hy = =2 —imw + 2b;(w + 2),
h3 = (—=1+ b;w)(2 — 2b;w + imw) + (4b; +
im)(1 4+ w)z — b;(2b; + im)z?
hy = =8 + 4imz + 4b;(4 + im(w — z))(w + z) —
8b2(w +z)2 — mw(4i + mz).
Is: &= h*”’”h*“”’”’f . hs = —1+ by m(w + 2),
+byi
1+1b7f6 1h 7 hs _

mw? + 8iz — 2 mwz — 8ib; mwz + mz? — 8ib; mz?,
hy = 2 + 4imw — 4b; mw — 3m?w? — 4ib;m*w? +
2b2m*w? — 4imz — 4b; mz — 2m*wz + 4b2m?wz —
3m?z2 + 4ib;m?z? + 2b2m?z*

Proof. When the condition Cg holds, the first three periodic constants of system (3.2) are given by

1
T = ——f,
! 12a1m“f6
(ay + by)
I, = 3 o fa,
8(2(1] + b3b5 — (11b7)4
(a1 + by)
;= 3 /5
23040(2(11 + bsbs — a1b;)°m
where

fo = 160(2a] — aiaghj + a3b;)* + 484d3(6a] — 2a,ash3
+ 3alb; + agb?b;)m? + 6d3(4a? — b3)m* — (a; — by)(2a; + by)m®
The lengthy expressions f; and fg are not given here for brevity. Similarly, we can use the equations Ty =T, = T3 = 0 to

obtain the conditions Lg, L7 and Lg.
When ag = 0, system (3.8) can be simplified to

dx 1
T; == m(8a 2 4 4a?byxd + 2a;m*x3 — bym’x
1bs

— 4a1b3 my; — 4a;b; mx1yq),

d 1
% =— W(Zbgmzm + 8a3x3 + 4atbsx? — 2a,m*x?
3

— bym*& — 8a3mx1y1 — 4arb; mxyyy + 2mPxy1 + daym?y?),
which can be further changed to
du 2a; — b a;(2a; +b
dau vt 1 7u2+1( 1+ 7)1}2

dr 4a, m2 ’ (3.13)
dv ’
— =u(14v).
dr ( )
by the transformation u = —% Zably Ly= 2‘“"1 + TX. 1t is well known that the origin of a quadratic system is an
isochronous center if and only 1f the system can be brougflt into one in the form of
du
— = —v +Au® + Bv?,
dt
dv
— =u(1+v).
I (1+v)

where (A, B) € {(1,0), (3, —1), (7, 0), (2, —1)}, see [40]. When the condition Lg or L; holds, the coefficients of u* and v?
in system (3.13) are 2 and % respectively. When the condition Lg holds, the coefficients of u? and v? in system (3.13)
are 1 and 0, respectively. So the origin of system (3.13) is an isochronous center. O

It is seen that the condition L; can be included in condition Lg. Summarizing the above results, we have the following
theorem.

12
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Theorem 3.4. The origin of system (3.2) is an isochronous center if and only if one of the following seven conditions holds:

2

Ly: a1=0, ag=0, bs=——, b; =0, by =0;
4bs

by b;(11b3 + 6m?) 3b3 + 4m? b7(3b3 + 4m?)
Ly: ot =——, 043=——5——, bs=————— bg= —————;

4 4b? 4bs 4b3

b b;(4b2 + m?) 12b% + m?
Ly: ay=——, ag=bg = ——7F——, =
4 ! m C o 4b? > 4bsm

b, by(B2 + m?) 1262 + m?
Ls: ay=——, ag=bg=——"-"——=, ="
> ! m e ? b2 > 4bsm

2m 3m? 3v2m
L: ay=—Y" Gg=bo=0, b= -2 b, = :
6 1 2 g = bg 5 bs 7 5

2m 3m? 34/2m
L;: a=——, ag=bg=0, by =——ro, = -
7 1 1 8 = bg 5 bs 7 5

4a? + m?
Ly: b; =—2a;, ag=bg =0, bs =— 1;_
3

4. Bi-center conditions of system (2.2)

With a proper linear transformation, planar autonomous analytic systems with a nilpotent critical point can always be
given in the form of

dx = A
= Py =y+ > agxty,
k+j=2
" N (4.1)
7 = Y&y =) bgdy
k+j=2

where @(x,y), ¥(x, y) are analytic in the neighborhood of the origin.
The results given in [41] show that the origin of system (4.1) is a monodromic critical point if and only if the following
conditions hold:

W(x, f(x) = ax® 1 +o(x*""1), a #£0,

o v
— ﬂxn—l +O(Xn_1), (42)
0x d
Y dy=fwx)
ﬂ2 + 4na < 0,

where n is a positive integer.
For system (2.2), there are two nilpotent singular points (1, 0) with a double-zero eigenvalue. We need only to study
the center problem at the singular point (1, 0) due to the symmetry. System (2.2) can be transformed into

dx x+1
=3 (2a1b3x + arbsx* + 2a3y — agbsy?),
3
d
dit, = 2b3x + b3x? + 2a1y + 2bsxy + b7x%y + bsy? + bey?, (4.3)

by x = x+ 1, where we still use x for x for convenience. The singular point (1, 0) of system (2.2) is translated to the origin
of system (4.3). It is noted that when a; = 0, by the transformation, u =y, v = 2bsx, system (4.3) becomes

dx  4b3bsx* + 4b3box> + 4b%y + 4bsbyxy + bsy* + byxy?

e~ 4b? ’
dy
dt

(4.4)
= (18X2(2b3 +y)

13
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It is easy to verify that the origin of system (4.4) is not a monodromic singular point. Therefore, we assume a; # 0 in

system (4.3). Then, by the transformation, u = bsx, v = —2ab3x — Za%y, system (4.3) can be changed to
dx (b + x)(4a3x* — 4a2agb%x? — 4ajbsy — 4ajagbixy — agbly?)
dt 4aib3
dy

1
= Ffbg( — 8ajagh3x® — 8aibibsx* + 16a5bsbsx* + 8afx®

— 8ajagh3x® + 8a3b;x* + 8ajb3box® — 8ajbsxy

— 8a2agh3xy — 8ajb3bsxy + 8ajbsbsxy — 8alaghix’y
+ 4atb;x’y + 12a2b3box’y — 2a;agh3y* — 2a2b3bsy?
— 2a;agb3xy* + 6a,b3boxy® + b3bgy?).

(4.5)

Now we are ready to derive the center conditions for system (4.5). Using the results in [41], we obtain
oy = agbs — ai(—bsbs + 2a1b7),
a3 = aj(—bsbsb; + 2a;,b3 + b3bg) < 0,
8ai(a; + by)(bsbs — 2aib;)(a? + bsbs — 2a;by)
= b,
as = —2a1(a; + 3b7)(—b3bs + 2a;by),
2(2(1% + b3b5 — (11b7)
Br=— :

aibs

Q4

)

The origin of system (4.5) is a third-multiple monodromic singular point if @y = 0, @3 < 0 and ,312 + 8a3 < 0. When
a3 = 0, namely, bg = w the origin of system (4.5) is at most a fourth-multiple singular point when a4 # 0. The

origin is a singular point with multiplicity four because of the symmetry. So the origin is a monodromic singular point of
system (4.5) with multiplicity three.

Due to the complexity in the monodromic condition of the nilpotent singular point, we compute the quasi-focus values
before discussing the monodromic condition. The first two quasi-focus values at the origin of system (4.5) are

g = — ZDabsbr :;jf;f% + bgbg)(lsa? + 18a;b3bs — 24a2b;
173
— 3bsbsby + 8a;b3 + 15b3by),
8(—bsbsb; + 2a;b2 + b2bo)
- 262503b8
x (2a% + bsbs — a;by).

(a; — by)(4a; + b7)(2a; + 3b7)

M2 =

Theorem 4.1. The first two quasi-focal values at the origin of system (4.5) vanish if and only if one of the following four
conditions holds:

bsh
NC; : bg=—£, a; = by;
b3
b;(2b3bs + b2 b
NG, : by = D72Dabs+b7) = - b7
4b2 4
2b,(2bsbs + 4b> 3b
NGy : by = 227(2babs +4b7) 325+ D g =3
b2 2
a;(4a? — b2 —b
NG, : bg:w, ps — _ Dl@ = 7).
b2 bs

Theorem 4.1 implies that the four conditions together with o3 < 0 and ,312 + 8wz < 0 are necessary for the origin of
system (4.5) to be a center. Next, we prove that these conditions are also sufficient.

Theorem 4.2. The origin of system (4.5) is a center if and only if one of the four conditions in 4.1 together with a3 < 0 and
/312 + 8wz < 0 hold.

Proof. When the condition NC; in Theorem 4.1 holds, system (4.5) admits an inverse integrating factor,
1_bsbs 1 _bsbs 1_bsbs

L =(bs+x) " y" " (4bsh, +4bx+y)" 7.

14
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When the condition NC; in Theorem 4.1 holds, system (2.2) can be changed to

dx
ditl 4b2 (4b2b5X1 + 2b3b7X1 + 2b3b5b7x1 + b7X1 + 4b V1 + 4b3b7X1y1)
dy: _ by (46)
E = 4b2 (b3b7X1 2b3b5X] — b7X] 2b3y1),
by using x; =y, y1 = b3(x* — 1) — b77y. System (4.6) admits an inverse integrating factor,
34 Sbbabs 7+8b32b5
Ig = Y1 7 (2b3 + b7x1 + 2}/1) by .
When the condition NC; in Theorem 4.1 holds, system (2.2) can be changed to
dx
‘Ttl (b2b5X1 + 3b3b2x3 + 2b3bsbsx3 + 8b3x3 + by, + bsbsxiy1),
(4.7)
dy 3b
dt] 4b; (bsbsbsx3 + b3x3 + 2bsbsx1y1 + b3bsx2y; + 3b2x%y; + bsy?).
by using x; = y, y1 = b3(x* — 1) — 3b;y. Moreover, by the transformation,
X = X'lv

(b2b5x1 + 3b3b7X] + 2b3b5b7X] + 8b7X] + b2y1 + bsb7x1y1),
3
system (4.7) can be changed to the Liénard-like system (3.5), where

3b2(bsbs + 5b2)X3(b3 + 2b7X
(b3 St 7)X°(bs + 2b7 )(b22b3b7X — bsbsX? — 4b2X?),
b3(b3 + b7X)
X
(2b3bs + 12b3b% + 4b3bsb,X + 24b3b3X

bi(bs + b7X)
— 5bs3bsb2X? — 23b%X?),

po(X) =

piX) =

X) = 4b,
P = s £ bX)
Since W1(X) — W4(Y) and W5 (X) — W5(Y) have a common factor (X — Y)(bsX + bsY + 2b;XY), the origin of system (4.7)

is a center according to Theorem 2.3.
When the condition NC4 in Theorem 4.1 holds, system (2.2) can be changed to

dx 1
ditl 3b2( 6a2b3x1 - 3a1b3b7X1 + 4a a1b7x1

+ 3b3y1 + 3bsbrxiy1), (48)
d 2a |
;tl . 3b;( 8(1 Gafbﬂﬁ' — a1b§x? + 6a1b3x1y1

+ 3bsb7xiy1 + GG%X%JH + 3a1bsxiy1 — 3bsy?),
by using x; =y, y1 = b3(x* — 1) + 2a,y. Moreover, system (4.8) can be changed to the Liénard-like system (3.5) by the

transformation,
X =X,
1
Y = ﬁ(—(ia%ng% — 3a1b3b7x% + 4(1? a1b7x1 + 3b 3Y1 + 3b3b7x1y1)
3
where

4a? by)(2 b;)X3(bs + 2b;X
Po(X) = — aj(ay + b7)(2a; + b7)X>(bs + 2by )(—3b§ n 6a1b§X
9b3(bs + b7X)
— 3b3b;X — 6a2b3X? + 3a1b3b; X? + 4@ X? — a1b3X3),
2ay(4a; — by)(ay + b7)(2a; + by )X3
piX) = 5 :
3b2(bs + b7X)
2a; —b
psX) = — -
2(bs + b7X)
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If b; = 4a,, the Liénard-like system is symmetric with the X-axis. Otherwise, a simple computation shows that W;(X) =

W is a constant, implying that the origin of system (4.8) is a center according to Theorem 2.3. O

5. Conclusion

In this paper, we have investigated the bi-center and bi-isochronous center problems in cubic planar systems which are
symmetric with respect to a straight line. We first apply a transformation to move the symmetric line on the y-axis with
two symmetric singular points at (+1, 0), which are classified as elementary and nilpotent singular points. A complete
classification is provided, with nine conditions for elementary singular points and four conditions for nilpotent singular
points. Moreover, six bi-isochronous center conditions are obtained for the elementary singular points.

It should be pointed out that for the nilpotent singular points, the classical method is first to give the monodromic
condition, and then to compute the quasi-focus values in order to solve the center problem. However, in this paper we
first compute the quasi-focus values, and then obtain the center conditions. In fact, when o; =0 and «3 > 0, the origin
of system (4.5) is a nilpotent saddle point with multiplicity three. The conditions in Theorem 4.1 are also integrability
conditions of nilpotent saddle point, which will be considered in future work.
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