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Abstract

This paper presents some simple feedback control laws to study global stabilization and global synchronization for a
special chaotic system described in the generalized Lorenz canonical form (GLCF) when s = �1 (which, for conve-
nience, we call Shimizu–Morioka system, or simply SM system). For an arbitrarily given equilibrium point, a simple
feedback controller is designed to globally, exponentially stabilize the system, and reach globally exponent synchroni-
zation for two such systems. Based on the system’s coefficients and the structure of the system, simple feedback control
laws and corresponding Lyapunov functions are constructed. Because all conditions are obtained explicitly in terms of
algebraic expressions, they are easy to be implemented and applied to real problems. Numerical simulation results are
presented to verify the theoretical predictions.
� 2009 Published by Elsevier Ltd.
1. Introduction

The discovery of the Lorenz chaotic attractor [1] has led to a new era in the study of chaos and its applications. Since
the 1960s of the last century, based on the Lorenz system, many researchers from different disciplines such as mathe-
matics and physics extensively investigated the property and applications of chaotic systems.

For a quite long period, due to the high sensitivity of a chaotic system to its initial condition, people thought that
chaos was not controllable, and two same type of chaotic systems could not be synchronized. However, the OGY
method [2] developed in the 1990s, and in particular the concept of the synchronization proposed by Pccora and Garrol
[3] in 1990, have completely changed the situation. This has attracted more researchers to study chaos control and
synchronization.

One goal of chaos control is: for a given unstable or locally stable equilibrium point, to design a feedback control law
such that the equilibrium point becomes globally, asymptotically stable or even globally, exponentially stable. Up to
now, a number of efficient methods have been proposed mainly for the Lorenz system, Chen system and Lü system
[2,4–13], but very little has been achieved for global and exponential stability.
0960-0779/$ - see front matter � 2009 Published by Elsevier Ltd.
doi:10.1016/j.chaos.2007.07.029

* Corresponding author. Tel.: +1 519 661 2111; fax: +1 519 661 3523.
E-mail address: pyu@pyu1.apmaths.uwo.ca (P. Yu).

mailto:pyu@pyu1.apmaths.uwo.ca


2492 X. Liao et al. / Chaos, Solitons and Fractals 39 (2009) 2491–2508
Although many results have been obtained for the study of the synchronization of two chaotic systems [1,3,11,12,14–
24] most of them were focused on the Lorenz system, Chua circuit, Chen system and Lü system. The results obtained
for global synchronization are less than that of local synchronization, and that for globally exponential synchronization
are even lesser.

State feedback control is perhaps the most generally and universally applicable method. However, to design the pos-
sibly simplest feedback control law requires good experience and skills. Generally, when the vector field of a chaotic
system satisfies global Lipschitz condition (such as Chua circuit), or a system has a globally attractive set (such as
the Lorenz system), the global and exponential stability can always be obtained by using a linear feedback control
law. When a chaotic system does not belong to the above two types of chaotic systems (or has not been proved to have
a globally attractive set), linear feedback controls cannot be used to reach global and asymptotic stability, and global
synchronization. In this case, nonlinear feedback controls must be considered. To design the possibly simplest feedback
control law, which does not change or only partially changes the structure of the original system, experience and skills
are needed. Just as the construction of Lyapunov functions, there are no general rules to follow. The researchers have to
develop their own methodologies to solve the problem.

We have thoroughly studied the general methods of chaos control and chaos synchronization for the six types of
existing Rössler systems, which are relatively more difficult in the study of chaos control and synchronization
[25,26]. These methods are general and can be easily extended to consider other chaotic systems.

Recently, Cělikovský and Chen [27] have used a canonical form to utilize different chaotic systems, including the
Lorenz system, Chen system, and Lü system. This canonical form is called generalized Lorenz canonical form (GLCF),
given by
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where k1 > 0, k2,3 < 0, and s 2 R.
It has been shown in [27] that with any s 5 �1, system (1) is state-equivalent to the following system:
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where
a11 ¼ k1 þ
k2 � k1

sþ 1
;

a12 ¼ �
k2 � k1

sþ 1
;

a21 ¼ k1 � k2 þ
k2 � k1

sþ 1
;

a22 ¼ k2 �
k2 � k1

sþ 1
;

ð3Þ
via the following linear transformation of coordinates:
x1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jsþ 1j

p
ðy1 � y2Þ;

x2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jsþ 1j

p
ðy1 þ sy2Þ;

x3 ¼ jsþ 1jy3:

ð4Þ
As pointed out in [27], the GLCF with s > �1 is equivalent to the generalized Lorenz systems (GLS), while the
GLCF with s < �1 is equivalent to the hyperbolic-type generalized Lorenz systems (HGLS). It is easy to see that
the case of s = �1 is well defined in (2), but cannot go through transformations of (3) and (4). Yet, this case is not equiv-
alent to the GLS, nor to the HGLS, it in fact stands for the transform between the hyperbolic and non-hyperbolic cases.
Since the two cases have qualitatively different structures in their nonlinear parts, they cannot be continuously changed
from one to another. Actually, this special case corresponds to two models reported in the literature: one is the Shi-
mizu–Morioka model developed in the 1970s of the last century [28], while the other is a model studied recently
[29]. It has been shown in [27] that these two models are state-equivalent. Thus we call such a model as SM system.
The classification of the GLCF is shown in Table 1.
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Since chaos control and chaos synchronization for the GLCF system (2) with s 5 �1 have been extensively studied
(e.g., see [5–9,14,15]), in this paper we will particularly consider chaos control and chaos synchronization for the CLCF
when s = �1, i.e., for the SM system. A series of constructive and simple algebraic methods are obtained.
2. The SM system, the definitions of chaos control and synchronization, and the relative lemmas

The original Shimizu–Morioka model is described by the following equations [28]:
Table
Classifi

GLCF

s 2 (�1
s = �1
s = (�
s = 0
s 2 (0,1
_x � dx
dt
¼ y;

_y � dy
dt
¼ xð1� zÞ � by;

_z � dz
dt
¼ �azþ x2;

ð5Þ
which can be transformed to the GLCF (1) with s = �1 via the following transformations:
x ¼ ðy1 � y2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k1 � k2

ð�k1k2Þ3=2

s
;

y ¼ ðk1y1 � k2y2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k1 � k2

ð�k1k2Þ5=2

s
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� �
;
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ffiffiffiffiffiffiffiffiffiffiffiffiffi
�k1k2

p
;

and a ¼ k3ffiffiffiffiffiffiffiffiffi
�k1k2

p , b ¼ � k1þk2ffiffiffiffiffiffiffiffiffi
�k1k2

p .

The model studied recently by Liu et al. [29] is given by
_̂x ¼ aðŷ � x̂Þ;
_̂y ¼ bx̂� kx̂ẑ;
_̂z ¼ �cẑþ hx̂2;

ð6Þ
where a, b, c, k and h are positive numbers. For example: a = 10, b = 40, c = 2.5, k = 1 and h = 4.
To reduce the number of the coefficients, introduce the following transformations:
x ¼ x̂
ffiffiffiffiffi
hk
p

; y ¼ ŷ
ffiffiffiffiffi
hk
p

; z ¼ kẑ;
into (6) to obtain
_x ¼ aðy � xÞ;
_y ¼ bx� xz;

_z ¼ �czþ x2:

ð7Þ
1
caion of the GLCF and their equivalents [27]

Equivalent systems

, �1) HGLS
Shimizu–Morika model or Liu–Liu–Liu–Liu model

1,0) GLS with a12a21 < 0, Chen system
GLS with a12a21 = 0, Lü system

) GLS with a12a21 > 0, Lorenz system
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It has been shown in [27] that system (7) is also state-equivalent to the GLCF (1) via linear transformations. This indi-
cates that the model (6) is state-equivalent to the Shimizu–Morioka model (5) via a linear transformation of coordinates
and a constant time scaling. Therefore, in the remaining of the paper, for convenience, we will call this model as SM
system.

Based on the SM system (5), in this paper we will present a detailed study on chaos control and chaos synchroni-
zation. With the aid of the general method developed in [25,26], we can construct the possibly simplest linear feedback
or nonlinear feedback control law and the corresponding Lyapunov function to achieve the algebraic conditions for
chaos control and chaos synchronization.

First note that the equilibrium points of (5) are:
E1 ¼ ð0; 0; 0Þ; E2 ¼ ð
ffiffiffi
a
p

; 0; 1Þ; E3 ¼ ð�
ffiffiffi
a
p

; 0; 1Þ;
where a = 0.03, b = 0.3 are positive constants. Let (x*,y*,z*) represent any one of the equilibrium points E1, E2, E3, and
further let
x ¼ x� x�; y ¼ y � y�; z ¼ z� z�:
Suppose the feedback control law is given by
u1ðx; y; zÞ; u2ðx; y; zÞ; u3ðx; y; zÞ;
where ui’s are linear or nonlinear functions which satisfy ui(0,0,0) = 0, i = 1, 2, 3. Then, adding the above feedback con-
trols to system (5) yields
_x ¼ y � u1ðx; y; zÞ;
_y ¼ x� xzþ x�z� � by � u2ðx; y; zÞ;
_z ¼ �azþ x2 � x�2 � u3ðx; y; zÞ:

ð8Þ
We will study how to select the simplest linear feedback controls u1, u2, u3 or the possibly simplest control law of the
combination of linear and nonlinear feedbacks, such that the zero solution of (8) is globally, exponentially stable, and
thus to achieve the global and exponential stability of an arbitrarily equilibrium point.

To further study the global and exponential synchronization of two such systems, consider system (5) as a drive sys-
tem (transmitter):
_xd ¼ yd;

_yd ¼ xd � xdzd � byd;

_zd ¼ �azd þ x2
d;

ð9Þ
where the subscript d indicates the ‘‘drive’’. The corresponding receiving system is:
_xr ¼ yr � u1ðex; ey ; ezÞ;
_yr ¼ xr � xrzr � byr � u2ðex; ey ; ezÞ;
_zr ¼ �azr þ x2

r � u3ðex; ey ; ezÞ;
ð10Þ
where r represents the ‘‘receive’’, and ex = xd � xr, ey = yd � yr, ez = zd � zr denote the errors. The error system is given
by
_ex ¼ ey þ u1ðex; ey ; ezÞ;
_ey ¼ ex � xdzd þ xrzr � bey þ u2ðex; ey ; ezÞ;
_ez ¼ �aez þ x2

d � x2
r þ u3ðex; ey ; ezÞ:

ð11Þ
Next, we will show how to choose the possibly simplest linear or nonlinear feedback control laws u1, u2, u3 such that
the zero solution of (11) is globally, exponentially stable, and thus the two systems (9) and (10) are globally, exponen-
tially synchronized.

Definition 1. For any arbitrary given initial condition xd(t0), yd(t0), zd(t0) 2 R3 of the drive system and the
corresponding initial condition xr(t0), yr(t0), zr(t0) of the receiving system, the zero solution of (11) satisfies the following
inequality:
e2
xðtÞ þ e2

yðtÞ þ e2
z ðtÞ 6 kðeðt0ÞÞe�aðt�t0Þ; ð12Þ
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where k(e(t0)) is a constant depending on e(t0), and a > 0 is a positive constant independent of e(x0). Then, the zero
solution of (11) is globally, exponentially stable, and the two systems (9) and (10) are globally, exponentially
synchronized.

For convenience in the following analysis, we present a lemma on global and exponential stability about the zero
solution of (11).

Lemma 1. For a system given in the form of (11), if there exists a positive definite quadratic form:
V ¼ ex ey ezð ÞP ex ey ezð ÞT;
where P = PT is a positive definite quadratic matrix, such that the derivative of V w.r.t. time t along the trajectory of (8)

satisfies
dV
dt

����
ð1Þ
6 ex ey ezð ÞQ ex ey ezð ÞT;
where Q = QT is negative definite, then the zero solution of (11) is globally, exponentially stable, and so systems (9) and (10)

are globally, exponentially synchronized. Further, we have the following estimation:
e2
xðtÞ þ e2

yðtÞ þ e2
z ðtÞ 6

kmaxðP Þ
kminðP Þ

½e2
xðt0Þ þ e2

yðt0Þ þ e2
z ðt0Þ�e

kmaxðQÞ
kmaxðPÞðt�t0Þ: ð13Þ
where kmin(P) and kmax(P) are the minimum and maximum eigenvalues of P, respectively, while kmax(Q) is the maximum

eigenvalue of Q.

Proof. Due to the symmetry of P, we have
dV
dt

����
ð3Þ
6 exðtÞ eyðtÞ ezðtÞð ÞQ exðtÞ eyðtÞ ezðtÞð ÞT 6 kmaxðQÞ½e2

xðtÞ þ e2
yðtÞ þ e2

z ðtÞ�

6
kmaxðQÞ
kmaxðPÞ

exðtÞ eyðtÞ ezðtÞð ÞP exðtÞ eyðtÞ ezðtÞð ÞT ¼ kmaxðQÞ
kmaxðP Þ

V :
Thus,
kminðPÞ½e2
xðtÞ þ e2

yðtÞ þ e2
z ðtÞ� 6 V ðtÞ 6 V ðt0Þe

kmaxðQÞ
kmaxðP Þðt�t0Þ

6 kmaxðP Þ½e2
xðt0Þ þ e2

yðt0Þ þ e2
z ðt0Þ�e

kmaxðQÞ
kmaxðPÞðt�t0Þ;
and finally we obtain
e2
xðtÞ þ e2

yðtÞ þ e2
z ðtÞ 6

kmaxðP Þ
kminðP Þ

½e2
xðt0Þ þ e2

yðt0Þ þ e2
z ðt0Þ�e

kmaxðQÞ
kmaxðPÞðt�t0Þ: � ð14Þ
Remark.

(1) Because the study of globally asymptotic stability (globally exponential stability) requires that the constructed
positive definite Lyapunov function must be radially unbounded. Therefore, in the following, all the constructed
Lyapunov functions are positive definite, quadratic forms, which are certainly radially unbounded. Thus, we shall
not repeat the property of radially unbounded in the rest of the paper.

(2) Although Lemma 1 is based on system (11), it is applicable to system (8), since this is a special case for
ex ¼ x ¼ x� x�, ey ¼ y ¼ y � y�, ez ¼ z ¼ z� z�.

Lemma 2. If with a proper feedback control law, system (8) or (11) becomes a linear system, then the necessary and suf-

ficient condition for the zero solution of the corresponding linear system being globally, exponentially stable is that the coef-

ficient matrix of the linear system is a Hurwitz matrix.

This is a standard result (e.g., see [13]) and thus the proof is omitted. The following result is also well known.

Lemma 3. The necessary and sufficient conditions for the cubic-degree polynomial k3 + Pk2 + Qk + R with real coefficients

being a Hurwitz polynomial are: P > 0 and PQ > R > 0 (see [13]).
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3. Globally exponential stabilization of the SM system

In this section, we consider the global, exponential stabilization of an arbitrary equilibrium point of system (5), E1,
E2 or E3 denoted by X* = (x*,y*,z*). First we define the global, exponential stabilization.

Definition 2. When a proper feedback control law, given by u1, u2, u3, is chosen such that the zero solution of system (8)
becomes globally, exponentially stable, then it is said that X* = (x*,y*,z*) is globally, exponentially stabilized.

Theorem 1. Under the following control law: u1 = 0, u2 ¼ �xz� d1xðd1 P 0Þ, u3 ¼ xx, when d1 < �1, any equilibrium

point of system (8), E1, E2, or E3, is globally, exponentially stabilized. When d1 < 0, E2 or E3 are globally, exponentially

stabilized.

Proof. Under the given control law, system (8) becomes:
_x ¼ y;
_y ¼ x� by � z�xþ d1x;
_z ¼ x�x� az:

ð15Þ
Since x*, y* and z* are constants, system (15) is a linear system with constant coefficients. Let
A1 ¼
0 1 0

ð1þ d1 � z�Þ �b 0

x� 0 �a

2
64

3
75:
Then � �

detðkE3 � A1Þ ¼

k �1 0
�ð1þ d1 � z�Þ kþ b 0
�x� 0 kþ a

�����
����� ¼ kðkþ bÞðkþ aÞ � ð1þ d1 � z�Þðkþ aÞ

¼ ðkþ aÞ½k2 þ bk� ð1þ d1 � z�Þ�; ð16Þ
where a > 0, b > 0. When d1 < 0 and z* = 1, 1 + d1 � z* = d1 < 0. A1 is a Hurwitz matrix. When d1 < �1 and z* = 0,
1 + d1 � z* = 1 + d1 < 0. A1 is still a Hurwitz matrix. According to Lemma 2, when d1 < �1, any equilibrium point
of system (8), E1, E2, or E3, is globally, exponentially stabilized. When d1 < 0, E2 or E3 are globally, exponentially sta-
bilized. h

Remark. Because the control law is constructed according to a given equilibrium point, i.e., the control law depends on
the choice of the equilibrium point (x*, y*, z*). Once the equilibrium point is determined, the control law can only be
designed for the specific equilibrium point. However, the necessary condition of the global, asymptotic stability requires
the uniqueness of the equilibrium point, so under the control law, all other equilibrium points of system (5) disappear
and thus chaos is vanished. With this regard, it has shown the importance of the special dynamics and asymptotic
behavior of the global, exponential stability of the designated equilibrium point.

Theorem 2. For system (8), when the control law is chosen as: u1 ¼ k1x, u2 ¼ �zx, u3 ¼ xx, assuming

k2a + ab + k1b � 1 > 0, (k2 + b + a)(k2a + ab + k2b � 1) > abk1 � a + x* > 0, then the zero solution of (8), i.e., an arbi-

trary equilibrium point of system (8), (x*, y*, z*), is globally, exponentially stabilized.

Proof. Under the given control law of Theorem 2, system (8) can be written as:
_x ¼ �k1xþ y;
_y ¼ x� by � x�z;
_z ¼ x�x� az:

ð17Þ
The coefficient matrix of linear system (17) is
A2 ¼
�k1 1 0

1 �b �x�

x� 0 �a

2
64

3
75:
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Thus,
detðkE3 � A2Þ ¼
kþ k1 �1 0

�1 kþ b x�

�x� 0 kþ a

�������
������� ¼ ðkþ k1Þðkþ bÞðkþ aÞ þ x�2 � ðkþ aÞ ¼ k3 þ ðk1 þ bþ aÞk2

þ ðk1aþ abþ k1bÞkþ abk1 � k� aþ x�2 ¼ k3 þ ðk1 þ bþ aÞk2

þ ðk1aþ abþ k1b� 1Þk� aþ x�2 þ abk1: ð18Þ
According to Lemma 3, the necessary and sufficient conditions for the cubic-degree polynomial (18) having a Hurwitz
matrix are
k1aþ abþ k1b� 1 > 0;

ðk1 þ bþ aÞðk1aþ abþ k1b� 1Þ > abk1 P 2bk1 � aþ x�2 > 0;

�

which shows that the zero solution of (18), i.e., any equilibrium point, E1, E2 or E3, is globally, exponentially stable.
Obviously, when
k1aþ abþ k1b� 1 > 0;

ðk1 þ bþ aÞðk1aþ abþ k1b� 1Þ > 2bk1 � a > 0;

�

equilibrium point E1 = (0,0,0) is globally, exponentially stabilized. h

Theorem 3. For system (8), if the control law is chosen as: u1 = 0, u2 ¼ �zxþ h1y þ d2z, u3 ¼ xx� d2x, where
d2

> 0; when x� > 0;

< 0; when x� < 0;

�

when ðaþ bþ h1Þ½aðbþ h1Þ � 1� > 2d2x� þ d2
2 þ x�2 � a > 0, any equilibrium point, E1, E2 or E3, is globally, exponentially

stabilized; when ðaþ bþ h1Þ½aðbþ h1Þ � 1� > d2
2 � a > 0, equilibrium point E1 = (0,0,0) is globally, exponentially

stabilized.

Proof. Under the given feedback control law, system (8) can be written as
_x ¼ y;
_y ¼ x� ðbþ h1Þy � ðx� þ d2Þz;
_z ¼ ðx� þ d2Þx� az:

ð19Þ
The coefficient matrix of (19) is
A3 ¼
0 1 0

1 �b� h1 �x� � d2

x� þ d2 0 �a

2
64

3
75:
The corresponding characteristic polynomial is
detðkE3 � A3Þ ¼
k �1 0

�1 kþ bþ h1 x� þ d2

�x� � d2 0 kþ a

�������
������� ¼ kðkþ bþ h1Þðkþ aÞ þ ðx� þ d2Þ2 � ðkþ aÞ

¼ k3 þ ðbþ h1 þ aÞk2 þ ½aðbþ h1Þ � 1�k þ d2
2 þ 2x�d2 þ x�2 � a: ð20Þ
By Lemma 3, the condition ðaþ bþ h1Þ½aðbþ h1Þ � 1� > 2d2x� þ d2
2 þ x�2 � a > 0 guarantees that A3 is a Hurwitz ma-

trix. Therefore, all the equilibrium points of system (8), i.e., E1, E2 and E3 can be globally, exponentially stabilized.
When ðaþ bþ h1Þ½aðbþ h1Þ � 1� > d2

2 � a > 0, E1 = (0,0,0) is globally, exponentially stable. h

Theorem 4. If in Eq. (8) choose the following control law: u1 ¼ k2x, u2 ¼ �xz, u3 ¼ �xx, then when the positive number k2

satisfies (a + b + k2)(ab + bk2 + ak2) > (2bk2 + a), E2 or E3 can be globally, exponentially stabilized; when k2 >
1
b, E1 can

be globally, exponentially stabilized.



2498 X. Liao et al. / Chaos, Solitons and Fractals 39 (2009) 2491–2508
Proof. For the control law given in this theorem, system (8) can be rewritten as
_x ¼ �k2xþ y;
_y ¼ x� by � x�z� z�x;
_z ¼ x�x� az:

ð21Þ
The coefficient matrix of system (21) is
A4 ¼
�k2 1 0

1� z� �b �x�

x� 0 �a

2
4

3
5:
When z* = 1 and x� ¼ �
ffiffiffi
a
p

,

A04 ¼
�k2 1 0

0 �b �
ffiffiffi
a
p

�
ffiffiffi
a
p

0 �a

2
4

3
5:
the corresponding characteristic polynomial is
detðkE3 � A04Þ ¼
kþ k2 �1 0

0 kþ b �
ffiffiffi
a
p

�
ffiffiffi
a
p

0 kþ a

������
������ ¼ ðkþ k2Þðkþ bÞðkþ aÞ þ a

¼ k3 þ ðaþ bþ k2Þk2 þ ðabþ k2bþ ak2Þkþ abk2 þ a:
When (a + b + k2)(ab + k2b + ak2) > abk2 + a, according to Lemma 3, E2 or E3 is globally, exponentially stable. When
x* = y* = z* = 0,
A004 ¼
�k1 1 0

1 �b 0

0 0 �a

2
4

3
5:
Obviously, if and only if k1 >
1
b, A004 is a Hurwitz matrix. Thus, if and only if k1 >

1
b, E1 is globally, exponentially sta-

ble. h

Theorem 5. Under the following control law: u1 ¼ xzþ k3x, u2 = 0, u3 ¼ �xy, when k3 > max½ð1þbÞ
4b ; 1

b�, any equilibrium

point of system (8), E1, E2 or E3 can be globally, exponentially stabilized; when k3 >
1
b, equilibrium point E1 can be globally,

exponentially stabilized.

Proof. Under the given control law, system (8) can be written as:
_x ¼ �k3xþ y � xz;
_y ¼ ð1� z�Þx� by � xz;
_z ¼ xxþ x�xþ xy � az:

ð22Þ
For the above system, construct the quadratic, positive definite Lyapunov function,
V ¼ x2 þ y2 þ z2: ð23Þ
Let P = diag(1,1,1) = I3. Then, kmax(P) = kmin(P) = 1. Evaluating the dV
dt along the trajectory of system (22) results in
dV
dt

����
ð22Þ
¼ 2x _xþ 2y _y þ 2z_z ¼ �2k3x2 þ 2xy � 2xxzþ 2ð1� z�Þxy � 2by2 � 2xyzþ 2xxzþ 2x�xzþ 2xyz� 2az2

¼
x
y
z

0
@

1
A

T �2k3 2� z� x�

½0:5ex�2� z� �2b 0
x� 0 �2a

2
4

3
5 x

y
z

0
@

1
A ¼def x y zð ÞQ1 x y zð ÞT:
Thus, for E1, i.e., for x* = y* = z* = 0, Q1 becomes
Q01 ¼
�2k3 2 0

2 �2b 0

0 0 �2a

2
64

3
75:
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Hence when k1 >
1
b, Q01 is a symmetric negative definite matrix.

Next, for (x*, y*, z*) 5 0, i.e., for E2 and E3, Q1 becomes
Q001 ¼
�2k3 1 �

ffiffiffi
a
p

1 �2b 0

�
ffiffiffi
a
p

0 �2a

2
664

3
775:
Obviously, when �8abk3 + 2ab + 2a < 0, i.e., k3 > max½ð1þbÞ
4b ; 1

b�, Q001 is a symmetric negative definite matrix.
By Lemma 1, for E1, we have the following estimation:
x2ðtÞ þ y2ðtÞ þ z2ðtÞ 6 ½x2ðt0Þ þ y2ðt0Þ þ z2ðt0Þ�ekmaxðQ01Þðt�t0Þ;
while for E2 or E3, the estimation is:
x2ðtÞ þ y2ðtÞ þ z2ðtÞ 6 ½x2ðt0Þ þ y2ðt0Þ þ z2ðt0Þ�ekmaxðQ001 Þðt�t0Þ: �
Theorem 6. If the following control law: u1 ¼ k4x� z�y þ xz, u2 = 0, u3 ¼ �xy is chosen for Eq. (8), then when k4 >
1
b,

E1 = (0,0,0) is globally, exponentially stabilized; and when k4 > max½bþ4a
4b ; 1

b�, E2 or E3 can be globally, exponentially

stabilized.

Proof. Under the given control law, system (8) becomes
_x ¼ k4xþ z�y � xzþ y;
_y ¼ x� by � z�x� xz;
_z ¼ ðxþ x�Þx� azþ xy:

ð24Þ
Taking the same positive definite and radially unbounded Lyapunov function (23) yields
dV
dt

����
ð24Þ
¼ 2x _xþ 2y _y þ 2z_z

¼ �2k4x2 þ 2z�xy � 2xxzþ 2xy þ 2xy � 2by2 � 2z�xy � 2xyzþ 2xxzþ 2x�xz� 2az2 þ 2xyz

¼
x
y
z

0
@

1
A

T �2k4 2 x�

2 �2b 0
x� 0 �2a

2
4

3
5 x

y
z

0
@

1
A ¼defðx y zÞ Q2 ðx y zÞT: ð25Þ
For E1, Q2 becomes
Q02 ¼
�2k4 2 0

2 �2b 0

0 0 �2a

2
64

3
75:
Hence, in this case, when k4 >
1
b, Q02 is negative definite. We have the following estimation:
x2ðtÞ þ y2ðtÞ þ z2ðtÞ 6 ½x2ðt0Þ þ y2ðt0Þ þ z2ðt0Þ�ekmaxðQ02Þðt�t0Þ:
For E2 and E3, Q2 becomes
Q002 ¼
�2k4 2 x�

2 �2b 0

x� 0 �2a

2
64

3
75:
Hence, when k4 > max½bþ4a
4b ; 1

b�, Q002 is negative definite. We have the following estimation:
x2ðtÞ þ y2ðtÞ þ z2ðtÞ 6 ½x2ðt0Þ þ y2ðt0Þ þ z2ðt0Þ�ekmaxðQ002 Þðt�t0Þ;
indicating that the conclusion of Theorem 5 holds. h
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4. Globally exponential synchronization of two SM chaotic systems

In this section, we shall consider the global and exponential stability of the zero solution of (11), i.e., the global,
exponential synchronization between systems (9) and (10).

Theorem 7. In Eq. (10), if we take any one of the following control laws:

(1) u1 ¼ �k̂1ex � xdez � xrez þ zrey , u2 = 0, u3 = xdey;
(2) u1 ¼ �k̂1ex � xdez � xrez þ zrey , u2 = xdez, u3 = 0;
(3) u1 ¼ �k̂1ex þ zrey , u2 = 0, u3 = �(xd + xr) ex + xdey;

where k̂1 >
1
b, the zero solution of (11) is globally, exponentially stable and so systems (9) and (10) are globally, exponen-

tially synchronized.

Proof. With the designed control law (1) of Theorem 7, system (11) becomes:
Fig. 1
withou
law gi
_ex ¼ �k̂1ex � ðxdez þ xrezÞ þ zrey þ ey ;

_ey ¼ ex � xdez � zrex � bey ;

_ez ¼ ðxd þ xrÞex þ xdey � aez:

ð26Þ
—1.0 —0.5 0 0.5 1.0
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x

y

—1.0 —0.5 0 0.5 1.0
0

0.5
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z

—1.2 —0.8 —0.4 0 0.4 0.8
0

0.5
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3.0

y

z

0 0.1 0.2 0.3
0.9

1.0

1.1

1.2

1.3

1.4

1.5

x

z

E2.

. Trajectories of system (5) with the initial condition, x(0) = 2.88 · 10�5, y(0) = 0.3 · 10�6, z(0) = 1.5 for chaotic attractor
t control: (a) projected on the x–y plane, (b) projected on the x–z plane, (c) projected on the y–z plane; and (d) with the control

ven in Theorem 1 for d1 = �2, globally convergent to the equilibrium point, E2: (0.1732,0,1).
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Under the designed control law (2) of Theorem 7, system (11) becomes:
Fig. 3.
conver
k2 = 10

Fig. 2
z(0) =
point,
_ex ¼ �k̂1ex þ ey � ðxdez þ xrezÞ þ zrey ;

_ey ¼ ex � zrex � bey ;

_ez ¼ ðxd þ xrÞex � aez:

ð27Þ
By the designed control law (3) of Theorem 7, system (11) becomes:
_ex ¼ �k̂1ex þ ey þ zrey ;

_ey ¼ ex � xdez � zrex � bey ;

_ez ¼ xdey � aez:

ð28Þ
By constructing the positive definite and radially unbounded Lyapunov function,
V ¼ e2
x þ e2

y þ e2
z ;
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.E2

Trajectories of system (5) with the control law given in Theorem 4 using the initial condition, x(0) = 0.8, y(0) = 3, z(0) = 3: (a)
gent to the equilibrium point, E1: (0,0,0) when k2 = 10; and (b) convergent to the equilibrium point, E2: (0.1732,0, 1) when
.

0.168 0.17 0.172 0.174 0.176 0.178
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x

z

E2

—0.6 —0.4 —0.2 0 0.2
—3
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0
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3

4
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z

E 3

. Trajectories of system (5) with the control law given in Theorem 3 using the initial condition, x(0) = 0.17, y(0) = 0.3,
1.05: (a) convergent to the equilibrium point, E2: (0.1732,0,1) when h1 = 100 and d2 = 2; and (b) convergent to the equilibrium
E3: (�0.1732,0,1) when h1 = 100 and d2 = �2.
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we obtain
Fig. 4.
zd(0) =
dV
dt

����
ð26Þ
¼ 2ex _ex þ 2ey _ey þ 2ez _ez

¼ 2ex½�k̂1ex � ðxdez þ xrezÞ þ zrey þ ey � þ 2ey ½ex � xdez � zrex � bey � þ 2ez½ðxd þ xrÞex þ xdey � aez�

¼ �2k̂1e2
x � 2xdexez � 2xrexez þ 2zrexey þ 2exey þ 2exey � 2xdeyez � 2zrexey � 2be2

y þ 2xdexez

þ 2xrexez þ 2xdeyez � 2ae2
z

¼
ex
ey
ez

 !T
�2k̂1 2 0

2 �2b 0
0 0 �2a

" #
ex
ey
ez

 !
¼def ex ey ezð ÞQ3 ex ey ezð ÞT: ð29Þ
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Error history of system (11) with the control law given in Theorem 7, (1) using the initial conditions, xd(0) = 10, yd(0) = 20,
8 and xr(0) = 5, yr(0) = �13, zr(0) = �10; when k̂1 ¼ 4.
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dV
dt

����
ð27Þ
¼ 2ex _ex þ 2ey _ey þ 2ez _ez

¼ 2ex½�k̂1ex þ ey � ðxdez þ xrezÞ þ zrey � þ 2ey ½ex � zrex � bey � þ 2ez½ðxd þ xrÞex � aez�

¼ �2k̂1e2
x þ 2exey � 2xdexez � 2xrexez þ 2zrexey þ 2exey � 2zrexey � 2be2

y

þ 2xdexez þ 2xrexez � 2ae2
z ¼

def ex ey ezð ÞQ3 ex ey ezð ÞT: ð30Þ

dV
dt

����
ð28Þ
¼ 2ex _ex þ 2ey _ey þ 2ez _ez ¼ 2ex½�k̂1ex þ zrey þ ey � þ 2ey ½ex � xdez � zrex � bey �

þ 2ez½xdey � aez� ¼ �2k̂1e2
x þ 2zrexey þ 2exey þ 2exey � 2xdeyez � 2zrexey � 2be2

y

þ 2xdeyez � 2ae2
z ¼

def ex ey ezð ÞQ3 ex ey ezð ÞT: ð31Þ
Here, Q3 is symmetric. Since k̂1 >
1
b, Q3 is negative definite. Consequently, by Lemma 1 we have
e2
xðtÞ þ e2

yðtÞ þ e2
z ðtÞ 6 ½e2

xðt0Þ þ e2
yðt0Þ þ e2

z ðt0Þ�ekmaxðQ3Þðt�t0Þ: ð32Þ
The zero solution of system (11) is globally, exponentially stabilized and so systems (9) and (10) are globally exponen-
tially synchronized. h

Theorem 8. In Eq. (10), if any one of the following control laws were taken:

(1) u1 ¼ �k̂1ex � ðxd þ xrÞez, u2 = xdez + zrex, u3 = 0;
(2) u1 ¼ �k̂1ex � xdez � zrex þ zrey , u2 = 0, u3 = xdey;
(3) u1 ¼ �k̂1ex þ zdey � xdez � xrez, u2 = xrez, u3 = 0;
(4) u1 ¼ �k̂1ex þ zrey , u2 = 0, u3 = �(xd + xr) ex + xd ey;

where k̂1 >
1
b, the zero solution of Eq. (11) is globally, exponentially stable and so systems (9) and (10) are globally, expo-

nentially synchronized with the same estimation Eq. (32).

Proof. With the control laws given in Theorem 8, system (11) can be written as
_ex ¼ �k̂1ex þ ey � ðxd þ xrÞez;

_ey ¼ ex � xdzd þ xrzr � bey þ xdez þ zrex; ð33Þ
_ez ¼ ðxd þ xrÞex � aez;

_ex ¼ �k̂1ex þ ey � xdez � xrez þ zrey ;

_ey ¼ ex � xdez � zrex � bey ; ð34Þ
_ez ¼ ðxd þ xrÞex þ xdey � aez:

_ex ¼ �k̂1ex þ ey þ zdey � xdez � xrez;

_ey ¼ ex � xrez � zdex � bey þ xrez; ð35Þ
_ez ¼ ðxd þ xrÞex � aez;
and
_ex ¼ �k̂1ex þ ey þ zrey ;

_ey ¼ ex � xdez � zrex � bey ;

_ez ¼ xdey � aez;

ð36Þ
respectively. We still construct the positive definite and radially unbounded Lyapunov function.
V ¼ e2
x þ e2

y þ e2
z :
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Similar to the proof of Theorem 7, we have
Fig. 5.
zd(0) =
dV
dt

����
ðÞð33Þ–ð36Þ

¼
ex

ey

ez

0
B@

1
CA

T �2k̂1 2 0

2 �2b 0

0 0 �2a

2
64

3
75

ex

ey

ez

0
B@

1
CA ¼def ex ey ezð ÞQ4 ex ey ezð ÞT;
where k̂1 >
1
b, which leads to the same estimation given in the proof of Theorem 7:
e2
xðtÞ þ e2

yðtÞ þ e2
z ðtÞ 6 ½e2

xðt0Þ þ e2
yðt0Þ þ e2

z ðt0Þ�ekmaxðQ4Þðt�t0Þ:
Thus zero solution of system (11) is globally, exponentially stabilized and so systems (9) and (10) are globally exponen-
tially synchronized. h
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Error history of system (11) with the control law given in Theorem 8, (2) using the initial conditions, xd(0) = 10, yd(0) = 20,
8 and xr(0) = 5, yr(0) = �13, zr(0) = �10; when k̂1 ¼ 4.
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5. Numerical simulation examples

In this section, we use a 4th-order Runge-Kutta method to simulate the stabilization of equilibrium points by using
system (5) with the control law given in Eq. (8). We also present numerical results for the synchronization between sys-
tems (9) and (10) under the feedback control. The system parameters take the values: a = 0.03 and b = 0.3.

For the stabilization problem, we show three examples using the control laws given in Theorems 1, 3 and 4, respec-
tively, since the remaining three cases are similar to Theorem 4. The initial conditions are chosen as
Fig. 6.
zd(0) =
xð0Þ ¼ 2:88� 10�5; yð0Þ ¼ 3� 10�7; zð0Þ ¼ 1:5; ð37Þ
xð0Þ ¼ 0:17; yð0Þ ¼ 0:3; zð0Þ ¼ 1:05 ð38Þ
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Error history of system (11) with the control law given in Theorem 8, (3) using the initial conditions, xd(0) = 10, yd(0) = 20,
8 and xr(0) = 5, yr(0) = �13, zr(0) = �10; when k̂1 ¼ 4.
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and
Fig. 7.
zd(0) =
xð0Þ ¼ 0:8; yð0Þ ¼ 3 zð0Þ ¼ 3; ð39Þ
respectively.
Without the feedback control, the system exhibits chaotic motion, as shown in Figs. 1a–c. The strange attractor is

similar to Chen’s attractor [16]. When the control law given in Theorem 1, with d1 = �2, is applied to system (5) and
using E2 as the designed equilibrium point, the trajectory of the controlled system globally, exponentially converges to
E2, as depicted by Fig. 1d.

When the control law given in Theorem 3 is applied to system (5), with h1 = 100 and d2 = 2, and using E2 as the
designed equilibrium point, it is shown (see Fig. 2a) that the trajectory converges to E2; while for h1 = 100 and
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Error history of system (11) with the control law given in Theorem 8, (4) using the initial conditions, xd(0) = 10, yd(0) = 20,
8 and xr(0) = 5, yr(0) = �13, zr(0) = �10; when k̂1 ¼ 4.
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d2 = �2, and using E3 as the designed equilibrium point it can be seen from Fig. 2b that the trajectory converges to E3.
Similarly, applying the control law given in Theorem 4 to system (5), we obtain the convergence to E1 or E2 by taking
k2 = 10, as depicted in Fig. 3.

For the synchronization problem, we present four examples by employing the four control laws given in Theorems 7
and 8, respectively. The initial conditions for the driving system are:
xrð0Þ ¼ 10; yrð0Þ ¼ 20; zrð0Þ ¼ 8; ð40Þ
while that for the receiving system are:
xrð0Þ ¼ 5; yrð0Þ ¼ �13; zrð0Þ ¼ �10; ð41Þ
which are quite different from that of the driving system. The values of parameters k̂1 is chosen the same for all the four
cases: k̂1 ¼ 4. The time histories for the error signals ex(t), ey(t) and ez(t) obtained for the four cases are displayed in
Figs. 4–7. All the four cases show the convergence of the errors to zero exponentially as expected, but with irregular
vibrating motions during the transient period.
6. Conclusion

In this paper, we have studied in detail the chaos control and chaos synchronization of the SM (Shimizu–Morioka)
chaotic system. For a given equilibrium point, we designed various linear and nonlinear feedback control laws to glob-
ally, exponentially stabilize the equilibrium point. We also designed a variety of possibly simplest feedback control laws
for two SM chaotic systems such that the zero solution of the error system is globally, exponentially stable, and thus the
two SM chaotic systems are globally, exponentially synchronized.

Because all the control laws obtained in this paper are designed according to the properties of the given system, and
thus all the conditions are simple, constructional, and algebraic. Since all conditions are not abstract or describing the
existence theory, it is very convenient to apply the method and conclusion presented in this paper to in practical prob-
lems. The methods can be easily generalized to consider other systems to obtain similar results.
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