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Abstract In this paper, we study the integrability and linearization of a class of quadratic quasi-analytic

switching systems. We improve an existing method to compute the focus values and periodic constants of quasi-

analytic switching systems. In particular, with our method, we demonstrate that the dynamical behaviors of

quasi-analytic switching systems are more complex than those of continuous quasi-analytic systems, by showing

the existence of six and seven limit cycles in the neighborhood of the origin and infinity, respectively, in a

quadratic quasi-analytic switching system. Moreover, explicit conditions are obtained for classifying the centers

and isochronous centers of the system.
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1 Introduction

The problem of characterizing the centers and isochronous centers of dynamical systems has attracted the

attention of many researchers. So far, regarding the family of polynomial differential systems, a complete

classification of the centers and isochronous centers has only been solved for quadratic polynomial systems,

or simply quadratic systems. Quadratic systems having a center were classified by Dulac [5], Kapteyn [10,

11], Bautin [2], Żo la̧dek [35] and Yu and Han [34], while quadratic systems having an isochronous center

were characterized by Loud [25]. Centers of the cubic systems with homogeneous nonlinearities were

studied in [24, 32], and the isochronous centers for such cubic systems were further investigated by

Pleshkan [29]. However, it is still far away from obtaining a complete classification of the centers and

isochronous centers for polynomial differential systems of degree three, and it is extremely difficult to

study these problems when the degree of the systems is increased. For example, consider the following

systems:

ż = (λ+ i)z + (zz̄)
d−5
2 (Az4+j z̄1−j +Bz3z̄2 + Cz2−j z̄3+j +Dz̄5), d = 2m+ 1 > 5, (1.1)
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ż = iz + (zz̄)
d−4
2 (Az3z̄ +Bz2z̄2 + Cz̄4), d = 2m > 4, (1.2)

ż = (λ+ i)z + (zz̄)
d−3
2 (Az3 +Bz2z̄ + Czz̄2 +Dz̄3), d = 2m+ 1 > 3, (1.3)

ż = (λ+ i)z + (zz̄)
d−2
2 (Az2 +Bzz̄ + Cz̄2), d = 2m > 2, (1.4)

which have been investigated by Llibre and Valls [20–23], and the conditions on the centers and isochronous

centers were obtained. However, in these articles, the parameter d was restricted to making the systems

be polynomial systems.

Recently, switching systems have been widely used in modelling many practical problems in science and

engineering. A theory suggests that switching systems can be considered as a uniform limit of continuous

systems, and that the global dynamics of continuous models may be approximated by switching systems.

In fact, the richness of dynamical behavior found in switching systems covers almost all the phenomena

discussed in general continuous systems, such as limit cycles, homoclinic and heteroclinic orbits, strange

attractors. For example, Leine and Nijmeijer [13], and Zou et al. [36] considered non-smooth Hopf b-

ifurcation in switching systems. Bifurcation of limit cycles from the centers of discontinuous quadratic

systems was studied by Chen and Du [3]. Limit cycles in a class of continuous and discontinuous cubic

polynomial differential systems were investigated by Llibre et al. [18]. Bifurcation of limit cycles in dis-

continuous quadratic differential systems with two zones was considered in [19]. The Melnikov function

method has also been extended to study homoclinic bifurcation of non-smooth systems (see [4, 12]). In

addition, some general efficient methods have also been developed to study non-smooth systems. Among

these methods, normal form computation for impact oscillators was given in [6], and a general method-

ology for reducing multidimensional flows to low-dimensional maps in piecewise nonlinear oscillators was

proposed in [28]. The center and isochronous center conditions for switching systems associated with

elementary singular points were discussed in [14].

More recently, quasi-analytic systems have also been widely used in modelling many practical problems.

By “quasi-analytic”, we mean that the system may be analytic for some parameters but not for some

other parameters. For example, an axis-symmetric quasi-analytical model was developed in order to

simulate the behavior of a remote field eddy current (RFEC) system during its operation (see [26]). A

quasi-analytical model for scattering infrared near-field microscopy has been designed for predicting and

analyzing signals on layered samples (see [9]). A simple quasi-analytical model was developed in [27] to

study the response of ice-sheets to climate. On the other hand, a general type of quasi-analytic systems,

described by

ẋ = δx− y +
∞∑
k=2

(x2 + y2)
(k−1)(λ−1)

2 Xk(x, y),

ẏ = x+ δy +

∞∑
k=2

(x2 + y2)
(k−1)(λ−1)

2 Yk(x, y),

(1.5)

where

Xk(x, y) =
∑

α+β=k

Aαβx
αyβ , Yk(x, y) =

∑
α+β=k

Bαβx
αyβ ,

has been studied by Liu [15] and Liu et al. [17]. As the special cases, quadratic quasi-analytic systems have

been studied in [16] and cubic quasi-analytic systems in [33]. In particular, generalized focal values and

bifurcation of limit cycles for quadratic quasi-analytic systems were discussed in [17]. Here, a quadratic

quasi-analytic system is defined by taking k = 2 only in (1.5). Similarly, cubic quasi-analytic systems

can be defined.

Similar to quasi-analytic continuous systems, in this paper, we propose to study the center and

isochronous center conditions for the following class of discontinuous planar systems:

ẋ = δx− y +

∞∑
k=2

(x2 + y2)
(k−1)(λ−1)

2 F+
k (x, y),

ẏ = x+ δy +
∞∑
k=2

(x2 + y2)
(k−1)(λ−1)

2 G+
k (x, y),

y > 0, (1.6a)
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ẋ = δx− y +

∞∑
k=2

(x2 + y2)
(k−1)(λ−1)

2 F−
k (x, y),

ẏ = x+ δy +
∞∑
k=2

(x2 + y2)
(k−1)(λ−1)

2 G−
k (x, y),

y < 0, (1.6b)

for (x, y) ∈ R2, where the two subsystems (1.6a) and (1.6b) describe dynamics on the upper and lower

half planes, called the upper and lower systems, respectively. For λ > 0 (< 0), the linear terms in (1.6) are

the lowest (highest) order terms in these functions. Hence, when λ > 0, the origin of (1.6) is a center or a

focus. When λ < 0, System (1.6) has no real singular point in the equator of Poincaré compactification,

but the point at infinity is a center or a focus. Therefore, it is necessary to determine, for λ ̸= 0, whether

or not the origin (when λ > 0) or infinity (when λ < 0) is a center (or a weak focus). As a continuous

work of [14, 15, 17], we generalize the study to consider the center and isochronous center conditions of

quasi-analytic switching systems and hope to promote the research in this direction.

As compared with bifurcations, the center and isochronous center problems of switching systems have

not received much attention. They should be considered carefully for switching systems because they are

closely related to the conditions on integrability and linearization. Freire [7] discussed the center problem

in a piecewise linear system. But it is much harder to solve the center or isochronous center problem for

nonlinear or piecewise linear systems because the classical methods for computing Lyapunov constants

and periodic constants are no longer applicable. Thus, new techniques are needed to develop.

In this paper, we study quasi-analytic switching systems mainly from two aspects. First of all, we

modify and improve existing methods to compute Lyapunov constants and periodic constants for quasi-

analytic switching systems. Secondly, as an application, we study a quadratic quasi-analytic switching

system and derive its center and isochronous center conditions.

The rest of the paper is organized as follows. In Section 2, we present a method to compute the return

map of System (1.6). As an application, a class of quadratic quasi-analytic switching systems is studied

in Section 3, and the center and isochronous center are classified by using our method. Finally, our

conclusion is drawn in Section 4.

2 Lyapunov constants of the quasi-analytic switching system (1.6)

Under the transformation of the polar coordinates

x = r
1
λ cos θ, y = r

1
λ sin θ, (2.1)

(1.5) becomes

ṙ = λr

(
δ +

∞∑
k=1

φk+2(θ)rk
)
, θ̇ = 1 +

∞∑
k=1

ψk+2(θ)rk, r > 0, (2.2)

where φk(θ) and ψk(θ) are polynomial functions in cos θ and sin θ, given in the form of

φk(θ) = cos θXk−1(cos θ, sin θ) + sin θYk−1(cos θ, sin θ),

ψk(θ) = cos θYk−1(cos θ, sin θ) − sin θXk−1(cos θ, sin θ).

Then, it follows from (2.2) that
dr

dθ
= λr

δ + Σ∞
k=1φk+2(θ)rk

1 + Σ∞
k=1ψk+2(θ)rk

. (2.3)

Obviously, the polar coordinate form of the quasi-analytic system (1.5) differs from that of analytic

systems by only a constant factor λ. It is easy to see that (2.3) is a special case of the following equation:

dr

dθ
= r

∞∑
k=1

Rk(θ)rk, r > 0. (2.4)
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By the method of small parameters of Poincaré, the general solution of (2.3) can be expressed as [1],

i.e.,

r = r̃(θ, h) =
∞∑
k=1

vk(θ)hk,

where v1(0) = 1, vk(0) = 0, ∀ k > 2. Now, substituting the above solution r = r̃(θ, h) into (2.4) yields

v′1(θ) = R0(θ)v1(θ),

v′2(θ) = R0(θ)v2(θ) +R1(θ)v1(θ)2,

...

v′m(θ) = R0(θ)Ω1,m(θ) +R1(θ)Ω2,m(θ) + · · · +Rm−1(θ)Ωm,m(θ).

(2.5)

Thus, we may solve vk(θ) one by one to obtain

v1(θ) = e
∮ ϑ
0

R0(φ)dφ,

v2(θ) = 2v1(θ)

∮ ϑ

0

R1(φ)v1(φ)dφ,

...

vm(θ) = v1(θ)

∮ ϑ

0

R1(φ)Ω2,m(φ) + · · · +Rm−1(φ)Ωm,m(φ)

v1(φ)
dφ.

(2.6)

Note that R0(θ) = λδ for (2.2). Furthermore, we define the successive function as

∆(h) = r̃(2π, h) − h,

and thus the critical point being a center must satisfy ∆(h) = 0, namely,

r̃(2π, h) = h.

Many methods have been developed to compute the successive function ∆(h) (see, e.g., [17]).

From the second equation of (2.2), we can also obtain

t = T (θ, h) =

∫ θ

0

dϑ

1 +
∑∞

k=1 ψk+2(θ)r̃(θ, h)k
, (2.7)

which implies that the critical point being an isochronous center should satisfy

r̃(2π, h) = h and T (2π, h) = 2π.

However, the classical methods and formulas cannot be directly applied to a non-analytic switching

system due to discontinuity. We need to modify the existing methods to resolve this problem. Similar

to the return map defined for analytic switching systems (see [8]), the approach used in [8, Lemma 2.1]

can be extended to define the return maps for the quasi-analytic switching system (1.6). The basic idea

is briefly illustrated as follows (see Figure 1). First of all, we define the positive half-return map of the

upper phase of (1.6a). Then, by a transformation y → −y, the lower half phase could be transformed

into the upper phase, as shown in Figure 2. Furthermore, using a time reverse changing, the computation

of this transformed half-return map of the lower phase is replaced by computing the positive half-return

map of the following system:

ẋ = δx− y −
∞∑
k=2

(x2 + y2)
(k−1)(λ−1)

2 F−
k (x,−y),

ẏ = x+ δy +
∞∑
k=2

(x2 + y2)
(k−1)(λ−1)

2 G−
k (x,−y),

y > 0, (2.8)
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x

y

Figure 1 Half-return maps for (1.6a) and (1.6b)

x

y

Figure 2 The lower-half plane changed to the upper-half plane

x

y

Figure 3 Vector fields of (1.6a) and (2.8)

which is shown in Figure 3. Therefore, we only need to compute the two positive half-return maps

for (1.6a) and (2.8).

By defining the successive functions for (1.6a) and (2.8), respectively, as

∆1(h) = r̃1(π, h) − h and ∆2(h) = r̃2(π, h) − h,

then we obtain the successive function for the switching system (1.6), defined as

∆(h) = ∆1(h) − ∆2(h) = r̃1(π, h) − r̃2(π, h). (2.9)

Similarly, the period constants for (1.6a) and (2.8) can be defined as

T1(θ, h) =

∫ π

0

dϑ

1 +
∑∞

k=1 ψ2+k(θ)r̃1
k(ϑ, h)

,

T2(θ, h) =

∫ π

0

dϑ

1 +
∑∞

k=1 ψ2+k(θ)r̃2
k(ϑ, h)

,

which in turn yield the period function for the switching system (1.6) in the form of

T = T1(π, h) + T2(π, h) = 2π +
∞∑
k=1

Tkh
k. (2.10)
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In particular, if the equations describing the lower half plane are given by

ẋ = δx− y +
∞∑
k=2

(x2 + y2)
(k−1)(λ−1)

2 F−
k (x, y) = −y,

ẏ = x+ δy +

∞∑
k=2

(x2 + y2)
(k−1)(λ−1)

2 G−
k (x, y) = x,

(2.11)

then we only need to compute ∆1(h) and T1(θ, h).

Based on the above results, we can define the focus values and periodic constants for the quasi-analytic

switching system (1.6).

Definition 2.1. ∆(h) can be written as

∆(h) =
n∑
1

[u1(π) − v1(π)]hk =
∞∑
k=1

Vkh
k,

where Vk is called the k-th-order focus value at the origin (or infinity) of the quasi-analytic switching

system (1.6).

Definition 2.2. T (h) can be expressed as

T (h) = T1(π, h) + T2(π, h) = 2π +
∞∑
k=1

Tkh
k,

where Tk is called the k-th periodic constant at the origin (or infinity) of the quasi-analytic switching

system (1.6).

Having defined Vk and Tk, we now describe the steps in computing them.

(1) Introduce the transformations: y → −y and t→ −t for the lower half plane.

(2) By means of the transformation of polar coordinates,

x = r
1
λ cos θ, y = r

1
λ sin θ,

in (1.6a) and (2.8), write the solutions for (2.8) and (2.10) as

r1 = r̃1(θ, h) =
∞∑
k=1

uk(θ)hk and r2 = r̃2(θ, h) =
∞∑
k=1

vk(θ)hk,

respectively, satisfying u1(0) = v1(0) = 1, uk(0) = vk(0) = 0, ∀ k > 2.

(3) Solve uk(θ) and vk(θ).

(4) Compute the successive function for the switching system by the formula,

∆(h) = ∆1(h) − ∆2(h) = r̃1(π, h) − r̃2(π, h).

(5) Compute the periodic constants for the switching system by the formula,

T = T1(π, h) + T2(π, h).

Obviously, the symmetry principle for continuous systems is no longer applicable for switching systems.

We need to redefine symmetry for switching systems in order to derive the center conditions of switching

systems.

Definition 2.3. If both (1.6a) and (1.6b) are symmetric with respect to the y-axis, then (1.6) is said

to be symmetric with respect to the y-axis. Furthermore, if the vector fields of (1.6a) and (1.6b) satisfy

F+
k (x, y) = −F−

k (x,−y) and G+
k (x, y) = G−

k (x,−y),

then (1.6) is said to be symmetric with respect to the x-axis.

So obviously, if (1.6) is symmetric with respect to the x-axis or the y-axis, then the origin of System (1.6)

is a center.
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3 A quadratic quasi-analytic switching system

In this section, we consider a quadratic quasi-analytic switching system to demonstrate the application

of the formulae and results obtained in the previous section. We will use our method to determine the

center conditions and isochronous center conditions of the system we will consider, given by

ẋ = δx− y + (x2 + y2)
(λ−1)

2 (a20x
2 + a11xy + a02y

2),

ẏ = x+ δy + (x2 + y2)
(λ−1)

2 (b20x
2 + b11xy + b02y

2),
y > 0,

ẋ = δx− y,

ẏ = x+ δy,
y < 0.

(3.1)

The case λ = 1 (a polynomial system) has been studied in [8], which becomes a special quadratic switching

system. It is shown in [8] that the highest order of focus values for this special system is 5, and 5 small-

amplitude limit cycles are obtained. We want to extend the study to the case λ ̸= 1. However, when the

lower system is not in a simple form, even for general quadratic switching systems, it is very difficult to

determine the center conditions and isochronous center conditions. Thus, in this paper we focus on the

study of (3.1) for λ ̸= 1.

3.1 Center conditions and limit cycles for System (3.1)

We first study the center conditions and bifurcation of limit cycles in (3.1). It has been recently noticed

that Tian and Yu [31] studied a quadratic switching Bautin system and obtained 10 small-amplitude

limit cycles. Here, we want to show that (3.1) with λ ̸= 1 can bifurcate 7 limit cycles around the origin,

two more than those of the system with λ = 1.

In order to consider the center and isochronous center conditions, and determine the number of limit

cycles bifurcating in the small neighborhood of the origin (or infinity), we need to compute the Lyapunov

constants and periodic constants. With the aid of a computer algebra system—Mathematica, we obtain

the following Lyapunov constants of (3.1).

The first three Lyapunov constants at the origin are given by

L0 = 2πδ,

L1 = −2

3
(a11 + 2b02 + b20)λ,

L2 = −π
8

[b20(a20 + a02) + (2a20 + b11)(b20 + b02)]λ.

(3.2)

For higher Lyapunov constants, we have two cases.

Case (A) b20 ̸= 0. For this case, L3 is given by

L3 = − 2

105
λ{[6a20b02(2a20 + b11) + b20(3a220 + 4b202)](λ+ 6) + 14b20[3a20(2a20 + b11) + 2b20b02]}.

Then, there are three sub-cases in computing Li, i > 4.

Case (A1) a20[7b20 + b02(λ+ 6)] ̸= 0, for which we have

L4 =
a20b20λπ

1536[7b20 + b02(λ+ 6)]2
[4b20 + b02(λ+ 3)][12b20 + b02(λ+ 9)]

× {3a220(λ+ 6)2 − 28b20[7b20 + b02(λ+ 6)]}.

(a) If b20 = −1
4b02(λ+ 3), then

L5 = − b02λ(λ+ 3)

3243240(λ− 1)2
f1,

L6 = − πb02λ
3(λ+ 3)2

5308416a20(λ− 1)3
f2,

L7 = − b02λ(λ+ 3)

6788231049600a220(λ− 1)4
f3,
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where

f1 = (3868a420 − 2909a220b
2
02 − 1085b402)λ5 + (34320a420 − 5962a220b

2
02 − 1085b402)λ4 + 2(41274a420

+ 3162a220b
2
02 + 3563b402)λ3 − 6b202(2937a220 + 259b202)λ2 + 243b202(83a220 − 35b202)λ+ 5103b402,

f2 = [(4a220 − 7b202)λ2 + 2(24a220 − 7b202)λ+ 3(48a220 + 7b202)]

× [(196a420 + 25a220b
2
02 + 4b402)λ2 − 2b202(53a220 + 4b202)λ+ 81a220b

2
02 + 4b402],

f3 = 56b802(λ− 1)4(λ+ 3)(1027505λ4 + 426036λ3 − 1498554λ2 + 551124λ+ 1476225)

+ 128a820λ
5(9756302λ4 + 203092731λ3 + 1398704409λ2 + 3748721013λ+ 2969005833)

− 4a620b
2
02λ

3(λ− 1)(488213167λ5 + 3344141799λ4 + 596192742λ3

− 12028807314λ2 + 57678458859λ+ 102228640299)

+ a220b
6
02(λ− 1)3(24084923λ6 − 1850127480λ5 − 6861739149λ4

+ 1283638536λ3 + 11199899889λ2 − 5507145936λ− 10721822175)

− 3a420b
4
02(λ− 1)2λ(192786817λ6 + 2736149472λ5 + 4596112377λ4

− 12782671128λ3 − 13724853597λ2 − 2481265224λ− 22052498589).

(b) If b20 = − 1
12b02(λ+ 9), then

L5 = − b02λ(λ+ 9)

4169880(5λ+ 9)3
f̃1,

L6 = − πb02λ
3(λ+ 9)

143327232a20(5λ+ 9)4
f̃2,

L7 = − b02λ(λ+ 9)

183282238339200a220(5λ+ 9)5
f̃3,

where

f̃1 = (43092a420 + 52305a220b
2
02 + 8675b402)λ6 + (386532a420 + 597639a220b

2
02 + 86980b402)λ5

+ 9(45900a420 + 56538a220b
2
02 − 8377b402)λ4 − 162(5202a420 + 68961a220b

2
02 + 11720b402)λ3

− 729b202(47283a220 + 6887b202)λ2 − 177147b202(159a220 + 28b202)λ− 1594323b402,

f̃2 = [(108a220 + 35b202)λ2 + 54(24a220 + 7b202)λ+ 3888a220 + 567b202]

× [(11772a420 + 15255a220b
2
02 + 2300b402)λ4 + 24(1035a420 + 2256a220b

2
02 + 220b402)λ3

− 18(2034a420 + 13479a220b
2
02 + 1036b402)λ2 − 2592b202(417a220 + 25b202)λ− 12393b202(81a220 + 4b202)],

f̃3 = 279936a820(λ− 1)λ5(38218052λ4 + 790049163λ3 + 5940016749λ2 + 19219084137λ+ 22987749699)

+ 56b802(λ+ 9)(5λ+ 9)4(4362337λ5 + 301281λ4 − 20129886λ3 − 60022134λ2 − 143311923λ

− 39858075) + 324a620b
2
02λ

3(5λ+ 9)(12357727123λ6 + 228212204300λ5 + 1303142758287λ4

+ 688198402656λ3 − 17536030592607λ2 − 57374137182060λ− 55078300245699)

+ 3a220b
6
02(5λ+ 9)3(5875349809λ7 + 75871528713λ6 + 173810927169λ5 − 698576296239λ4

− 3526727842629λ3 − 8234719793325λ2 − 10205502265773λ− 2605402788525)

+ 27a420b
4
02λ(5λ+ 9)2(15822388201λ7 + 255144264153λ6 + 1105548667713λ5 − 1017555100407λ4

− 18518298666957λ3 − 51274399423149λ2 − 74254559009373λ− 56058065936181).

(c) If a220 = 28b20[7b20+b02(λ+6)]
3(λ+6)2 , the following hold:

L5 =
128b520

715(λ+ 6)4
λ(λ− 1)(2λ− 9)(5λ+ 16),

L6 = 0,

L7 = − 128b720
692835(λ+ 6)6

λ(λ− 1)(2λ− 9)(1587λ3 − 82636λ2 − 527988λ− 838080).
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Case (A2) a20 = 0, under which L3 is reduced to

L3 = −8b20b02
105

λ[7b20 + b02(λ+ 6)],

and higher Lyapunov constants are

L4 = − πb302b11
3136

λ(λ− 1)(5λ+ 9),

L5 = − 128b302
108153045(λ+ 6)

λ(λ− 1)(2λ− 9)[9b202(5λ+ 16)(λ+ 6)2 + 49b211(27λ+ 50)],

L6 = − πb302b11
59006976(λ+ 6)

λ(λ− 1)[3b202(λ+ 6)2(562λ2 + 5085λ+ 13365)

− b211(60074λ2 − 6615λ− 235935)],

L7 =
128b302

231084662834025(λ+ 6)3
λ(λ− 1)[405b402(2λ− 9)(λ+ 6)4(1587λ3 − 82636λ2 − 527988λ

− 838080) + 441b202b
2
11(λ+ 6)2(2699488λ4 + 1664883λ3 − 12695418λ2 + 64285812λ

+ 193185000) + b411(17594187058λ4 + 24560280388λ3 − 109958232048λ2 − 10609846128λ

+ 343997992800)].

Case (A3) b20 = −1
7b02(6 + λ), for which L3 becomes

L3 =
2a220b02

245
λ(λ+ 6)2,

and higher Lyapunov constants are given by

L4 = − π b02λ(λ− 1)(9 + 5λ)

43904(6 + λ)
[a20b

2
02λ

2 + 2b220(20a20 + 7b11)λ

+ 12a20(17b202 − 49a220 − 49a20b11) + 21b11(4b202 − 7a20b11)],

L5 =
18a420b02
105105

λ(2λ+ 9)(7λ+ 12)(λ+ 2)(λ+ 6),

L6 =
πa20b

3
02λ(λ+ 6)

4956585984
[2(34496a220 + 15375b202)λ4 + 3(29792a220 + 165045b202)λ3

− 18(279104a220 + 37917b202)λ2 − 27(130144a220 + 103149b202)λ+ 1620(1568a220 + 891b202)],

L7 =
2a220b02

245
λ(λ+ 6)2.

Case (B) b20 = 0. For this case, we have

L1 = − 2(a11 + 2b02)

3
λ,

L2 = − πb02(2a20 + b11)

8
λ,

L3 = − 2b02(2a20 + b11)

315
(8a02 − 9b11)λ(λ+ 6),

L4 = − πb02(2a20 + b11)

9216
(28a202 + 36b202 − 36a02b11 + 27b211)λ(λ+ 3)(λ+ 9),

L5 =
b02(2a20 + b11)

1216215
[27b11(27a202 + 120b202 − 60a02b11 + 35b211) − 128a02(10a202 + 27b202)]

× λ(λ+ 2)(λ+ 12)(2λ+ 9),

L6 = − πb02(2a20 + b11)

28311552
[16(143a402 + 594a202b

2
02 + 243b402) − 288a02b11(11a202 + 45b202)

+ 1080b211(3a202 + 7b202 − 45b311(56a02 − 27b11)]

× λ(λ+ 3)(λ+ 6)(λ+ 15)(2λ+ 3).
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Note that in the above computations, Lk−1 = 0, k = 1, 2, . . . , 6 have been used in computing Lk.

Now, by carefully analyzing the above Lyapunov constants, we obtain the following result.

Theorem 3.1. For (3.1), maximal six small-amplitude limit cycles can bifurcate from the origin and

maximal seven small-amplitude limit cycles can exist in the neighborhood of infinity. Moreover, the first

seven Lyapunov constants at the origin (or infinity) of (3.1) vanish if and only if one of the following

conditions is satisfied:

(i) δ = a11 = b20 = b02 = 0;

(ii) δ = b20 = a11 + 2b02 = b11 + 2a20 = 0;

(iii) δ = a20 = b02 = a11 + b20 = b11 + a02 = 0;

(iv) δ = λ− 1 = a02 = a20 = b02 + b20 = a11 − b20 = 0;

(v) δ = λ− 1 = 2a11b20 + 3a220 − 2b220 = 2b11 + 5a20 = 0,

8a02b
2
20 + a20(8b220 − 3a220) = 4b02b20 − 3a220 + 4b220 = 0;

(vi) δ = λ− 9

2
= 12a11b20 + 27a220 − 4b220 = 4b11 + 11a20 = 0,

32a02b
2
20 + 3a20(8b220 − 9a220) = 24b02b20 − 27a220 + 16b220 = 0.

Proof. First of all, note that δ = 0 is a necessary condition for all cases in order to get limit cycles

bifurcating from the origin (or infinity), under which L0 = 0.

We start from Case (B) in which b20 = 0. It is easy to see that for this case all Li, i = 2, 3, . . . , 6

contain a same factor b02(2a20 + b11). Thus, Li = 0, i = 2, 3, . . . 6, if b02(2a20 + b11) = 0, implying that

the maximal number of limit cycles that can be obtained is two. When b20 = b02 = 0, L2 = 0 and L1 = 0

yield one solution: a11 = 0, which gives the condition (i). If b20 = 2a20 + b11 = 0, then L2 = 0, and

L1 = 0 requires a11 + 2b02 = 0, which yields the condition (ii).

Case (A3) in which b20 = −1
7b02(6 + λ) is simple since it is assumed that b20 ̸= 0 and so b02 ̸= 0. It is

also assumed that a20 ̸= 0 for this case, yielding L3 ̸= 0, implying that three limit cycles can be obtained

since one can choose appropriate values of a11 and b11 to set L1 = L2 = 0.

Next, consider Case (A2) in which a20 = 0. Maximal 5 limit cycles may be obtained by choosing b02 ̸= 0,

and setting b11 = 0 (so L4 = 0), b20 = 0 (so L2 = L3 = 0), and a11+2b02 = 0 (so L1 = 0). If b02 = 0, then

L3 = L4 = · · · = L7 = 0. Furthermore, setting L1 = L2 = 0 we obtain a11 + b20 = b11 + a02 = 0, which

is the condition (iii). Another possibility for this case is to set λ = 1, given L4 = L5 = L6 = L7 = 0.

Furthermore, letting L1 = L2 = L3 = 0 yields a02 = b02+b20 = a11−b20 = 0, leading to the condition (iv).

For Case (A1)(c), it is noted that λ = 1 or λ = 9
2 yields L5 = L7 = 0 (L6 is already equal to zero).

L1 = 0 gives b02 = − 1
2 (a11 + b20) which is substituted into

a220 =
28b20[7b20 + b02(λ+ 6)]

3(λ+ 6)2

to obtain 2a11b20 + 3a220 − 2b220 = 0 for λ = 1, and 12a11b20 + 27a220 − 4b220 = 0 for λ = 9
2 . Then, for the

condition (v) for which λ = 1, using a220 = 4
3b20(b20 + b02) to simplify L3 = 0 yields 2b11 + 5a20 = 0, and

again using the expression of a220 as well as b11 = −5
2a20 to simplify L2 = 0 we obtain 8a02 + a20(8b220

− 3a220) = 0. Finally, using a11 =
2b220−3a2

20

2b20
to simplify L1 = 0 results in 4b02b20 − 3a220 + 4b220 = 0.

Summarizing the above results leads to the condition (v). Following the same procedure, we can obtain

the condition (vi).

Now we come to Cases (A1)(a) and (A1)(b). First note that for these two cases, b02 ̸= 0 since it is

assumed b20 ̸= 0. Therefore, instead of considering the equation L5 = L6 = L7 = 0, we consider the

polynomial equations f1 = f2 = f3 = 0 for Case (A1)(a) and f̃1 = f̃2 = f̃3 = 0 for Case (A1)(b). In

order to obtain the maximal number of limit cycles, we need to find the conditions such that Li = 0,
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i = 0, 1, . . . , k − 1, but Lk ̸= 0. Actually, setting Li = 0, i = 0, 1, 2, 3, 4, we obtain two sets of solutions

δ = 0,

b20 = −b02
4

(λ+ 3),

a11 =
b02
4

(λ− 5),

a02 =
a220 λ− b202(λ− 1)

6a20
,

b11 = −a
2
20(λ2 + 21λ+ 6) − b202(λ− 1)(λ+ 3)

6a20(λ− 1)

(3.3)

for Case (A1)(a), and

δ = 0,

b20 = −b02
12

(λ+ 9),

a11 =
b02
12

(λ− 15),

a02 = −9a220λ(λ+ 13) + b202(λ− 3)(5λ+ 9)

18a20(5λ+ 9)
,

b11 =
a220(9λ2 − 45λ+ 162) + b202(λ+ 9)(5λ+ 9)

18a20(5λ+ 9)

(3.4)

for Case (A1)(b).

Note that the functions f1, f2, f3 and f̃1, f̃2, f̃3 are homogeneous polynomials in a220 and b202. So we

may introduce b202 = k a220 (k > 0) into these polynomials. Note that f2 and f̃2 have two factors, and one

is linear in k and one is quadratic in k, given as follows:

f2 = −a620f2af2b
= −a620[7(λ− 1)(λ+ 3)k − 4(λ+ 6)2][4(λ− 1)2k2 + (λ− 1)(25λ− 81)k + 196λ2]. (3.5)

We first solve f2a = 0 to obtain k = 4(λ+6)2

7(λ−1)(λ+3) , which is then substituted into f1 and f3 to yield

f1 = −1296a420
7

(λ− 1)(2λ− 9)(5λ+ 16)(λ+ 3)2,

f3 = −699840a820
49

(λ− 1)2(2λ− 9)(λ+ 3)3C3,

where

C3 = (1587λ3 − 82636λ2 − 527988λ− 838080). (3.6)

Since (λ − 1)(λ + 3) ̸= 0, the only solution satisfying f1 = 0 and f3 ̸= 0 is λ = −16
5 . When λ = 9

2 ,

Li = 0, i = 0, 1, . . . , 7, but it is easy to verify that this is a special case of (vi).

Moreover, for the solution λ = −16
5 ,

det(J) = det

[
∂(L5, L6)

∂(k, λ)

]
=

8384103915264

78125
a1020 ̸= 0 for a20 ̸= 0,

implying that seven limit cycles can bifurcate in the small neighborhood of infinity.

For the second factor f2b, we eliminate k from the two equations f1 = f2b = 0 to obtain the solution

for k,

k = − 4λ2(6337λ2 + 27872λ+ 27783)

(λ− 1)(1721λ3 − 2945λ2 − 38097λ− 45927)
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and a resultant equation

R12 = λ(λ+ 1)(λ− 1)(397378λ4 + 3696797λ3 + 12760835λ2 + 19311435λ+ 10762227) = 0,

which has three real solutions: λ = −2.59473685 · · · , −1.58363608 · · · , −1, but none of them yields

k > 0. Hence, there are no solutions from f2b = 0 to generate seven limit cycles.

When the conditions in (3.4) are satisfied, similarly, we can use b202 = k̃ a220 to find that

f̃2 = a620f̃2af̃2b

= a620[7(λ+ 9)(5λ+ 9)k̃ + 108(λ+ 6)2][4(5λ+ 9)2(23λ2 − 30λ− 153)k̃2

+ 9(5λL+ 9)(339λ3 + 593λ2 − 6459λ− 12393)k̃ + 108λ2(λ− 1)(109λ+ 339)]. (3.7)

Solving f̃2a = 0 to obtain k̃ = − 108(λ+6)2

7(λ+9)(5λ+9) , and then substituting it into f̃1 and f̃3 yields

f̃1 = −34992a420
49

(λ− 1)(2λ− 9)(5λ+ 16)(λ+ 9)2,

f̃3 = −17061120a820
49

(λ− 1)2(2λ− 9)(5λ+ 9)2(λ+ 9)3 C3,

where C3 is given in (3.6). Since (5λ + 9)(λ + 9) ̸= 0, the only solution satisfying f1 = 0 and f3 ̸= 0

is λ = −16
5 . λ = 1 and λ = 9

2 are not the solutions since they yield k̃ < 0. For the solution λ = − 16
5 ,

we have

det(J) = det

[
∂(L5, L6)

∂(k̃, λ)

]
= −304277047914997479168

78125
a1020 ̸= 0 for a20 ̸= 0,

implying that seven limit cycles can bifurcate in the small neighborhood of infinity.

For the second factor f̃2b, similarly we eliminate k̃ from the two equations f̃1 = 0 and f̃2b = 0 to obtain

the solution for k̃,

k̃ = − 36λ2(λ− 1)(223λ4 + 8120λ3 − 127950λ2 − 778680λ− 741393)

(5λ+ 9)/(6419λ6 + 31564λ5 − 1363197λ4 − 4806072λ3 + 20436705λ2 + 88888428λ+ 81310473)

and a resultant equation

R̃12 = λ(λ− 1)(λ− 9)(5λ+ 9)(8397602λ9 + 84616511λ8 − 1494342124λ7 − 16706405616λ6

+ 16325397720λ5 + 375950483190λ4 − 756410507892λ3 − 10202463072792λ2

− 22941003813786λ− 15945065065773),

which has four real solutions: λ = −12.38286360 · · · , −8.54108488 · · · , 1, 9, 13.13951523 · · · , but all of

them yield k̃ 6 0. Thus, there are no solutions from f̃2b = 0 to give seven limit cycles.

Summarizing the above results obtained for Cases (A1)(a) and (A1)(b), we conclude that there exist two

sets of infinite solutions such that (3.1) can have seven limit cycles bifurcating in the small neighborhood

of infinity.

Although we cannot obtain seven limit cycles around the origin of (3.1), we may find an infinite

number of solutions for six limit cycles which bifurcate in the small neighborhood of the origin, which is

still better than the five limit cycles obtained in [8]. To find the solutions, it needs Li, i = 0, 1, . . . , 5,

but L6 ̸= 0. Thus, we only need to solve f1 = 0 (or f̃1 = 0). Let b202 = ka220, and f1 = 0 becomes

f1 = − a220[A2k
2 +A1k +A0], where

A2 = 7(λ− 1)2(λ+ 3)(155λ2 − 243),

A1 = λ(λ− 1)(2909λ3 + 8871λ2 + 2547λ+ 20169),

A0 = −4λ3(967λ2 + 8580λ+ 20637).
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We want to find the solutions satisfying k > 0 and λ > 0 (λ ̸= 1). It is easy to show that f1 = 0

has a unique positive solution for k when λ > 9
√

3/155, and does not have the solutions when 1 < λ

< 9
√

3/155. When λ ∈ (0, 1), Ai < 0, i = 0, 1, 2, and

∆ = A2
1 − 4A2A0

= −81λ2(1 − λ)3(311721λ5 + 3409519λ4 + 14178654λ3 + 25596434λ2 + 14511609λ− 5022081),

which is positive for λ ∈ (0, 0.23512585), leading to that f1 = 0 has two solutions for k and each λ chosen

from this interval. Hence, there exists an infinite number of solutions for k satisfying f1 = 0 when

λ ∈ (0, 0.23512585) ∪ (9
√

3/155, ∞).

These solutions do not yield f2 = 0, since in the above we have already shown that f1 = f2 = 0 does

not have the solutions satisfying k > 0 and λ > 0. This indicates that for Case (A1)(a) there exist an

infinite number of solutions for the existence of six limit cycles around the origin of (3.1). Similarly, for

Case (A1)(b), we can prove that f1 = 0 has two positive solutions for k when λ ∈ (0, 1) and one positive

solution when λ ∈ (1, 5.132341426), implying that for Case (A1)(b) there also exist an infinite number

of solutions for the existence of six limit cycles around the origin of (3.1).

The proof is completed.

Note that the conditions (i)–(vi) given in Theorem 3.1 yield Li = 0, i = 0, 1, . . . , 7, implying that they

are necessary conditions for the origin (or infinity) of (3.1) to be a center. In the following, we will show

that these conditions are also sufficient for the origin (or infinity) of (3.1) to be a center. We have the

following theorem.

Theorem 3.2. The conditions (i)–(vi) given in Theorem 3.1 are necessary and sufficient for the origin

(or infinity) of (3.1) to be a center.

Proof. The necessity has been shown in the proof of Theorem 3.1. Hence, we only need to prove the

sufficiency. First note that for all the six cases, the lower-half plane is same (as δ = 0), described by

ẋ = −y, ẏ = x, y < 0.

This system has a first integral H0(x, y) = x2 + y2, which is an even function of x (i.e., symmetric with

the y-axis). Thus, in the following, for each case we only list the equations for the upper-half plane.

When the condition (i) holds, the equations for the upper-half plane of (3.1) become

ẋ = −y + (a20x
2 + a02y

2)(x2 + y2)
(λ−1)

2 ,

ẏ = x+ b11xy(x2 + y2)
(λ−1)

2 ,
y > 0, (3.8)

which is symmetric with the y-axis, so the origin (or infinity) is a center.

When the condition (ii) is satisfied, the equations for the upper-half plane of (3.1) can be rewritten as

ẋ = −y + (a20x
2 − 2b02xy + a02y

2)(x2 + y2)
(λ−1)

2 ,

ẏ = x− (2a20x− b02y)y (x2 + y2)
(λ−1)

2 ,
y > 0, (3.9)

which has an integrating factor 2
3λ(x2 + y2)

(1−λ)
2 . Then, (3.9) becomes

ẋ = −2

3
λy(x2 + y2)

(1−λ)
2 +

2

3
λ(a20x

2 − 2b02xy + a02y
2),

ẏ =
2

3
λx(x2 + y2)

(1−λ)
2 − 2

3
λ(2a20x− b02y)y,

which has a first integral,

H1(x, y) = 6λ(x2 + y2)
(3−λ)

2 + 2λ(λ− 3) y[3(a20x− b02y)x+ a02y
2].
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It is seen that H1 is an even function of x when y = 0, so the origin (or infinity) of (3.1) is a center (see,

e.g., [14, Theorem 2.2]).

When the condition (iii) holds, the equations for the upper-half plane of (3.1) can be rewritten as

ẋ = −y − (b20x− a02y)y (x2 + y2)
(λ−1)

2 ,

ẏ = x+ (b20x− a02y)x (x2 + y2)
(λ−1)

2 ,
y > 0. (3.10)

It is easy to see that (3.10) has a first integral,

H2(x, y) = (x2 + y2)
λ
3 ,

which is an even function of x, so the origin (or infinity) is a center.

When the condition (iv) is satisfied, the equations for the upper-half plane of (3.1) become

ẋ = −y + b20xy,

ẏ = x+ (b20x
2 + b11xy − b20y

2),
y > 0. (3.11)

It can be shown that (3.11) has a first integral,

H3(x, y) = (b20x− 1)[b20x+ 1 + 12(b11 − γ)y]α[b20x+ 1 + 12(b11 + γ)y](1−α),

where

α =
4b220

γ(γ + b11)
, γ =

√
b211 + 8b220.

H3(x, y) is an even function of x when y = 0 because H3(x, 0) = b220x
2 − 1, so the origin is a center

(see [14]).

When the condition (v) holds, the upper-half plane has a first integral

H4(x, y) = (2b20x− a20y − 2)2[4(b20x+ 1)2 − (4a20 + 12a20b20x)y + (3a220 − 8b220)y2],

which is an even function of x when y = 0 since H4(x, 0) = 16(1 − b220x
2)2. So the origin is a center

(see [14]).

Finally, when the condition (vi) is satisfied, the equations for the upper-half plane of (3.1) become

ẋ = −y +
1

96b220
(x2 + y2)

7
4 [96a20b

2
20x

2 − 8b20(27a220 − 4b220)xy + 9a20(9a220 − 8b220)y2],

ẏ = x+
1

24b20
(x2 + y2)

7
4 [24b220x

2 − 66a20b20xy + (27a220 − 16b220)y2],

(3.12)

which has a first integral

H5(x, y) =
9a220

64b220(9a220 + 16b220)(x2 + y2)
3
2

× {4096b420 + (4b20x− 3a20y)4[8b220(x2 − y2) − 3a20(8b20x− 3a20y)y](x2 + y2)
3
2

+ 128b220y(4b20x− 3a20y)(24a20b20x− 9a220y + 16b220y)(x2 + y2)
3
4 }.

Since

H5(x, 0) = −288a220b
2
20(2 + b220x

6|x|3)

(9a220 + 16b220)|x|3
,

H5(x, y) is an even function of x when y = 0, and hence the origin is a center (see [14]).

Combining the results in Theorems 3.1 and 3.2, we have the following theorem.

Theorem 3.3. For (3.1), the highest order of focus value is 7.
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3.2 Isochronous centers of (3.1)

Having established the center conditions in the previous section for (3.1), we now discuss the isochronous

center conditions for this system.

First, by a direct computation, we can show that under any of the conditions (ii)–(vi), no isochronous

center can exist because these conditions cannot lead to all periodic constants vanishing. When the

condition (i) holds, the periodic constants are obtained as

τ1 =
2

3
(a20 + 2a02 − b11),

τ2 =
π

16
a202[2a20λ+ a02(3λ+ 5)],

τ3 = − 2a302
105

(λ2 − 1),

τ4 =
3πa402
1024

(λ2 − 1)(λ+ 3),

τ5 = − 2a502
1001

(λ2 − 1)(14λ2 + 91λ+ 139),

τ6 =
3πa602

4587521024
(λ2 − 1)(1190λ2 + 8817λ+ 13898),

...

Therefore, we have the following theorem.

Theorem 3.4. The origin (or infinity) of (3.1) is an isochronous center if and only if one of the

following conditions holds:

(I) a11 = b02 = b20 = a02 = b11 − a20 = 0;

(II) λ− 1 = a11 = b02 = b20 = b11 + 2a02 = a20 + 4a02 = 0;

(III) λ+ 1 = a11 = b02 = b20 = b11 − 3a02 = a20 − a02 = 0.

Proof. The necessity can be easily proved by setting the periodic constants τi = 0, i = 1, 2, . . . , 6.

To prove the sufficiency, we consider three systems under three conditions (I)–(III). First, consider the

condition (I). When this condition holds, the equations for the upper-half plane of (3.1) can be written as

ẋ = −y + a20x
2(x2 + y2)

(λ−1)
2 ,

ẏ = x+ a20xy(x2 + y2)
(λ−1)

2 .
(3.13)

A simple calculation gives dθ
dt = 1, so the origin (or infinity) of (3.1) is an isochronous center.

When the condition (II) is satisfied, (3.1) becomes

ẋ = −y − a02(4x2 − y2),

ẏ = x− 2a02xy,
y > 0,

ẋ = −y,
ẏ = x,

y < 0.

(3.14)

This system has a transversal system

ẋ = x− 4a02 xy (1 − a02y),

ẏ = y − a02 y
2(3 − 2a02y),

y > 0,

ẋ = x,

ẏ = y,
y < 0.

(3.15)

So by [30, Theorem 2.1], the origin of (3.1) is an isochronous center.
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When the condition (III) is satisfied, introducing the transformation

u = x(x2 + y2)−
2
3 , v = y(x2 + y2)−

2
3 ,

into (3.1) yields

u̇ = −v − 1

3
a02(u4 + 10u2v2 − 3v4),

v̇ = u+
1

3
a02(5u2 − 7v2)uv,

v > 0,

u̇ = −v,
v̇ = u,

v < 0.

(3.16)

The upper-half plane has an inverse integrating factor

V (u, v) = (u2 + v2)2f
5
6
7 ,

from which a first integral can be obtained as

H(u, v) =
u2 + v2

f
1
6
7 + 16a02(u2 + v2)

∫
uf

− 5
6

7 du
,

where

f7 = 9[1 + 2a02 v(u2 − v2) + a202v
2(u2 + v2)2].

Thus, this system has a transversal system

u̇ = u(3 − 9a202v
3)

u2 + v2

f
1
6
7 H(u, v)

,

v̇ = v(3 + 9a02u
2v − 3a02v

3)
u2 + v2

f
1
6
7 H(u, v)

,
v > 0,

u̇ = u,

v̇ = v,
v < 0,

(3.17)

implying that infinity of (3.1) is an isochronous center.

4 Conclusion

In this paper, quasi-analytic switching systems have been considered. A modified and improved method

for computing the return maps of quasi-analytic switching systems is presented. In particular, a quadratic

quasi-analytic switching system is investigated using this method. The center and isochronous center

conditions are explicitly derived. Compared with the special case λ = 1 for which five limit cycles are

obtained around the origin (see [8]), we have shown that there exist an infinite number of solutions of

λ > 0, λ ̸= 1 for the existence of six limit cycles around the origin, and two solutions for the existence of

seven limit cycles for λ = −16
5 , which bifurcate in the small neighborhood of infinity of the system. This

shows that the dynamics of quasi-analytic switching systems is more complex.
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