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In this paper, we present two classes of lopsided systems and discuss their analytic integrability.
The analytic integrable conditions are obtained by using the method of inverse integrating factor
and theory of rotated vector field. For the first class of systems, we show that there are n + 4
small-amplitude limit cycles enclosing the origin of the systems for n > 2, and ten limit cycles
for n = 1. For the second class of systems, we prove that there exist n + 4 small-amplitude limit
cycles around the origin of the systems for n > 2, and nine limit cycles for n = 1.
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1. Introduction

Integrability is one of the most important and diffi-
cult problems in studying ordinary differential sys-
tems. To explain the problem, consider a planar
analytic differential system, described by

= —v+U(u,v),

1
0 =u+ V(u,v), )

where dot indicates differentiation with respect to
time ¢, U and V are real analytic functions whose
series expansions in a neighborhood of the ori-
gin start at least from second-order terms. By the
Poincaré-Lyapunov theorem, system (1) has a cen-
ter at the origin if and only if there exists a first
integral, given in the form of

*Author for correspondence

oo
d(u,v) = u? + v + Z prjutvd, (2)
k+j=3

where the series converges in a neighborhood of the
origin. Determining whether the origin of system
(1) is a center or focus is called a center problem.
Another important problem in the study of sys-
tem (1) is the existence of analytical first integral
in a small neighborhood of the origin of system (1).
If there exists such an analytical first integral, the
origin of system (1) is a center, in particular, called
an analytic center, see [Algaba et al., 2012].

It is well known that it is difficult to distin-
guish focus from center when the singular point is
degenerate. Much research has been done in this
direction. For example, analytic systems having a
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nilpotent singular point at the origin were stud-
ied by Andreev [1958] in order to obtain their local
phase portraits. However, Andreev’s results do not
distinguish focus from center. Takens [1974] pro-
vided a normal form for nilpotent center of foci.
Later, Moussu [1982] found the C'* normal form
for analytic nilpotent centers. Further, Berthier and
Moussu [1994] studied the reversibility of nilpotent
centers. Teixeria and Yang [2001] analyzed the rela-
tionship between reversibility and the center-focus
problem, expressed in a convenient normal form,
and studied the reversibility of certain types of poly-
nomial vector fields. Han et al. considered polyno-
mial Hamiltonian systems with a nilpotent singular
point, and they obtained necessary and sufficient
conditions for quadratic and cubic Hamiltonian sys-
tems with a nilpotent singular point which may be
a center, a cusp or a saddle, see [Han et al., 2010]. In
particular, the local analytic integrability for nilpo-
tent centers was investigated in [Chavarriga et al.,
2003], for the differential systems in the form of

jZZy+P3(LE,y),

Y= Q3([Ba y>7

which has a local analytic first integral, where
P53 and Q3 represent homogeneous polynomials of
degree three. For third-order nilpotent singular
points of a planar dynamical system, the analytic
center problem was solved by using the integrating
factor method, see for example [Liu et al., 2013].

The Kukles system, as a well-known example,
has been investigated intensively on the existence
of its limit cycles as well as its integrability. For the
following Kukles system,

T =y,
§ = —x+ a12? + asxy + asy® + agx®

+ asz?y + agry® + ary’®,

the conditions under which the origin of the system
is a center have been examined in [Christopher &
Lloyd, 1990; Jin & Wang, 1990; Lloyd & Pearson,
1990, 1992; Rousseau et al., 1995; Wu et al., 1999;
Zang et al., 2008]. More details about the Kukles
system can be found in [Pearson & Lloyd, 2010].
The so-called extended Kukles system,

&=yl + k),

y=—x+ a1x2 + asxy + a3y2 + a4a:3

+ a5x2y + aﬁccy2 + a7y3,

has also been considered to obtain the center con-
ditions [Hill et al., 2007a, 2007b]. Recently, center
problem for some more generalized Kukles type sys-
tems have been studied [Rabanal, 2014; Grin &
Schneider, 2013; Llibre & Mereu, 2011]. A type
(n,4) (3 <mn < 27) of Liénard systems was investi-
gated and the lower bound of the maximal number
of limit cycles for this type of system was obtained
[Yang & Liang, 2015]. Center conditions of a class
of nilpotent-Poincaré system were obtained in [Li &
Wu, 2014] by using the method of inverse integrat-
ing factor and theory of rotated vector field.

Research on Hilbert’s 16th problem usually pro-
ceeds by the investigation on specific classes of poly-
nomial systems. In recent years, much effort on the
research has been devoted to investigate various
systems such as Poincaré system, Abel equation,
lopsided system and so on. The Kukles system is
perhaps the earliest example of lopsided systems
which can be written in the form of

jj:—y’ y:$+P<x73/);

or of

Since then, lopsided systems have drawn more and
more attention to researchers. Lopsided quartic and
quintic polynomial vector fields have been studied
and center conditions were obtained [Salih & Pons,
2002; Pons, 2002]. Furthermore, Gine [2002] proved
that there is exactly one isochronous system for lop-
sided quartic system, and the origin cannot be an
isochronous center for lopsided quintic system. For
7-degree polynomial lopsided systems, Soriano and
Salih [2002] showed that the origin is a center if and
only if the system is time-reversible and if it is not,
no more than seven local limit cycles can bifurcate
from the origin under certain conditions. However,
when the origin is a degenerate singular point, there
are fewer results in the literature because it is diffi-
cult to compute the Lyapunov constants. The cubic
lopsided system with a nilpotent singular point has
been investigated intensively. For example, Alvarez
and Gasull [2006] proved that three limit cycles can
bifurcate from a nilpotent singular point of the fol-
lowing system:

T = -V,
. 2 2 3
U= a1x” + asTy + a3y + asx (3)

+ az2?y + agzy® + ary?,
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via an analysis based on normal forms. Then, Liu
and Li [2009] showed that with a small perturba-
tion to the linear terms of system (3), the sys-
tem can exhibit four small-amplitude limit cycles.
Bifurcation of limit cycles and center conditions for
the following two families of lopsided systems with
nilpotent singularities,

= —y+ Ps(z,y),
g = —22°

and
= —y+ P5(z,y),
y = -2,

have been considered by Li et al. [2013], where
Py(z,y) and Ps(z,y) represent homogeneous poly-
nomials in x and y of degrees four and five, respec-
tively. Their results show that it is more difficult
to distinguish focus from center when the singular
point is degenerate. As far as analytic center of lop-
sided systems is concerned, it is more challenging to
distinguish it from focus. So, in this paper, we shall
discuss analytic center conditions and bifurcation of
limit cycles for two classes of lopsided systems with
a cubic-order nilpotent singular point, given by

T = Yy + H3([B7 y) + H2n+3(113, y>7

y=—2z
and
T =y,
, X (5)
y = —2z° + H3(x,y) + Hapys(z,y),

where Hy(x,y) represent a kth-degree homogeneous
polynomial in x and .

The main goal of this paper is to apply the
method of integrating factor and theory of rotating
vector fields to study analytic integrability condi-
tions and to find the conditions for analytic cen-
ters. This work is a continuation of that for the
Kukles system with a degenerate singular point. In
the next section, we present some known results
which are necessary for proving the main result. We
derive the analytic center conditions for the centers
of systems (4) and (5) in Secs. 3 and 4, respectively.
Finally, conclusion is drawn in Sec. 5.

2. Preliminary Results

In this section, we present some relative notions and
results taken from [Liu & Li, 2010a, 2010b], which

Analytic Integrability of Two Lopsided Systems

will be used in the following sections. A system
whose origin is a cubic-order monodromic singular
point can be written as

[e.e]

=y+p’+ Y aga'y =X(z,y),

i+2j=3

. (6)
g = 223 + 2uay + Z bija'y! =Y (z,y).
i+2j=4

Theorem 1. For any positive integer s and a given
number sequence {cop}, B > 3, a formal series can
be constructed successively in terms of the coeffi-
cients cop (a0 # 0) as

o oo
Mz,y)=y>+ Y capr®y’ = My(z,y),

a+p=3 k=2
(7)
satisfying
0X oY oM oM

= Z wm(snu)xma (8)
m=3

where My(x,y) is a kth-degree homogeneous poly-
nomial in x and y, satisfying su = 0 for all k.

Theorem 2. Fora>1, a+ (>3 in (7) and (8),
cap can be uniquely determined by the recursive
formula,

1
m(l‘laﬂﬁﬂ + Ba-15+1)- (9

For m > 1, wy,(s, ) can be uniquely determined by
the recursive formulae:

CaB =

wm<3; M) = Am,O + Bm,O; (10>
w2m+4(57 ,u)
Ap = — 217 11
2m —4s — 1 (11)
where
a+pB—1
Aag= > k= (s+1)(a—k+1)]
k+j=2
X QkjCo—k+1,8—j>
(12)
a+pB—1
Bag= Y [i—(s+1)(B—j+1)]
k+j=2

X bpjCa—k,B—j+1-
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Theorem 3. The origin of system (6) is an ana-
lytic center if and only if the origin of system (6)
is a center of oco-class, namely, the origin of sys-
tem (6) is a center for any natural number s.

3. Analytic Centers of System (4)

Now, we discuss the analytic centers of system (4)
in two cases.

3.1. Case 1: n=1

For this case, system (4) can be written as

W3 = wWyq4 = Wy = 0, W = (48 — 1)&30,

1
wg = _g<4s —3)(2a12 + 5asp), wy =0,

&=y + azor® + an 2y + arxy® + agsy®

+ asor® + a41x4y + a32w3y2 + a23~’62y3
(13)
+ angzy® + agsy’,

g = —223.

According to Theorem 1, we can find a formal series
M(z,y) = 2* + y? + o((2? + y?)?) for system (13),
such that Eq. (8) holds. Applying the recursive for-
mulae in Theorem 2 to system (13), with the help
of Mathematica, we obtain (a Mathematica code for
computing the coefficients w,, is given in Appendix
of [Li et al., 2015])

Wy = 3(& + 1)603,

1
Wiy = —?(43 —5)(2as2 + 3ag1az0),

15 1
w11 = Z(s + 1)005, w12 = _E<4S — 7)(12&14 + 30a03a50 + 5&410,50), w1z = 0,
3a 35
wig = —7—;0(48 — 9)(6ags + aziasr — 10a3), wis = g(s + 1)cor,
a
wig = —%(48 - 11)(600,()5 + 10agzaq1 + a?ﬂ - 3&210%0), w17 =0,
_ G50 2 2 2 2 2 _ 315
wig = 1155 (4s — 13)(2a21a3; + 300ap3azy + 9a3,azy + 100a41a5,), wig = 6—4(3 + 1)co,
Wog = — 89“5%)50 (45 — 15)(28ag1ajy + 252a3,a3,a2, + 800a3, a2, + 567a3,ady + 3600a2; aq1ady + 4500aS,),
wo1 = 0,
4a
w9 = fﬁ@ls —17) (4@%1@11 + 36ag’1aila§0 + 100&2165’11@%0 + 81a§1a§0 + 450a31a41a§0 — 125aila§0),
693 aso
= — 1 -
was = g (s Deown - wat = e 0000 7 1)
(14)
where

f1 = —15174868212a$5, a4, — 84454927200a3, a3, + 22768748000a3,a$, — 136573813908a5, a3, a2,

— 1193662008000a5; a3, a2, — 2087643726000a3, a}; aZ, + 651216400000as1 a3 a?,

—307291081293a5, asy — 3661266760200a5; as1a3y — 9313504335000a, a3y az,

+ 5946721200000a3, a3 ady 4+ 23826000000a ], ady — 1778596218045, a4, s

— 98929404000a3, a3, s + 2693490000043, a$, s — 160073659620a 5, a3 a2ys

— 1398534984000a 3, a3, a2ys — 2442981870000a3, a}; aZys + 18810000000a}; azys

+ 770106000000a21 a3, a2ys — 360165734145a5, adys + 6998670000000a3, a3 adys
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— 4290086997000a$; a41asys — 10903637205000a3, a3, adys + 496747339245, a3, s°

+ 2762867520003, a3y s* — 752916800003, aly s* + 44707260528a5, a3 a2ys>

4 390585888000a5; a3 aZys? + 682203816000a3, aj;azys® — 215262400000a9; a3, a2ys>
+100591336188a53, adys® + 1198155823200a; as1aiys® + 3044973060000a 4, a3 adys”

—1955419200000a3, a3, azys? — 50160000000, azqs>.

Based on (11) and (14), it is easy to find the first

ten quasi-Lyapunov constants of system (13). +100a21 a}y a2y + 8lag, as,
Theorem 4. The first ten quasi-Lyapunov con- + 450a%1a41a§0 _ 125a?11a§0),
stants evaluated at the origin of system (13) are u
wen b Ay — — 50
groen oy 10 = ~ 12089726250000(s + 1)(ds — 19)"
A1 = aso, (15)
1
Ay = 5(26112 + 5asp), where \p_1 =0 for k=2,...,10 have been used in

the computation of .
1

As = ?(2%2 + 3a21850), It follows from Theorem 4 that the following

1 assertion holds.
Ay = E(l2a14 + 30agsaso + 5aa1aso),

Proposition 1. For n = 1, the origin of sys-
3aso ) tem (13) is an analytic center if and only if the
As = 77 (6az3 + azras — 10a3), following conditions are satisfied:
Ag = —%(60%5 + 10ag3asr + aj; — 3asiady), @30 = @12 = a3 = @14 = a50 = 0. (16)
_aso 9 9 Proof. By setting A\ = Ao = -+ = A\;g = 0, it is
AT = 1155 (2a2103 + 300agza5 easy to get the conditions in (16). Assume asg # 0,
5 o ) and denote
+ 9@21@50 + 100@41@50)7
a5 , Yy fo = 28ag1a}; + 25243, a3, a3 + 800a; aZ,
+567a5, a5y + 3600a21 as1asy + 4500as,
3 2 3 4
+800az; a5 + 567a51a50 f3 = 4a3,ajy + 3643, a3, a3y + 10021 ajyady
4 6
+30600az ag1a5) + 4500a5), + 8ladyaly + 45002 anal, — 125020k,
4aso 17
Ay = —gamor (4a3;aly + 36a3,a3 a3 (a7)

Then, we have

Ry = Resultant[fs, f3, a91]
= 252226880859375a25(37a$, + 36000a’,az, + 864000ad,),
Ry = Resultant|[fs, f1, a91]
= —750785873641864353168750000000000000000a 24 (—879390304066912a 1
+47983547106994035360a ), as, + 49445533255803715842660a 5, ad,
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+1456057532744172471928500a %, ata + 6498810664995012399669375a 59
— 2759277767198304a 135 + 169297706825726316960a ] a2y s
+173470743593716632941700a$; a8y s + 5108374765584631369552500a5, atis
4 22851124455468570581840625a.55s — 2080601609429376a1% 5>
+151804543373289707520a 9, azs® + 154422423262500291638820a; a5y s>
+4547533910484627929569500a 3 azgs® + 20400917084512169654885625a 50 52
+610343850576768a.1% s> — 33200851039501326720a3; adys>
— 34214947244661526011900a5; a3y s® — 1007536381850376947992500a 3, aiis®
— 4496729306788344912103125a8s% 4 573878672057856a 175"
— 49876076993258065920a.3; azys® — 50424620011202182011120a; ad,s*
— 1484973484158264557562000a 3, atzs? — 6678213700042142946607500a.5 s
— 217264690435584a1%s° + 18276082133674805760a 3, asys’
+ 18496906029642804955200a$, aSys® 4 544720023506226322440000a 3, alls®
4 2448661869754899507450000a55° + 199146343813124a 13 5°
— 1701986627481384960a ], adys® — 1721646399680525295360a5, aS,s°
— 50701299015707667936000a 3, aas® 4+ 227963727065799050760000a:555).
With the aid of Mathematica, we obtain for Vs € Z7,
G1 = Resultant[R1, Ry, a41]
= —182848672642886912449902102931881129741668701171875a25(1 + 5)°(—19 + 45)6
x (12242160594943288477497249258950767957 + 571871909964189111242434735975019855405
+ 842100578378411051904448175875599447025 + 22053341878592957414426973876225026580s>
— 34746447450361087057581921863631440523s* — 71901805524288478008951385146923272805°
+ 8952012886140489676856041653019558112s5 — 19821808474773285507246182131503398405"
+ 1383544595367908402954918203675947525%)% # 0.

So there are no solutions for the set of equations, |

fi = fo = f3 = 0, implying that there do not exist ~ Obviously, system (18) is symmetric with the y-axis.

other analytic center conditions for system (13) if  According to Theorem 11 in [Liu et al., 2013], the

aso # 0. origin is an analytic center of system (13). W
Under the conditions in (16), system (13)

becomes Proposition 1 implies that

Theorem 5. The necessary and sufficient condi-
tions for the origin of system (13) being an ana-
(18) lytic center are determined from the vanishing of
the first ten quasi-Lyapunov constants, that is, the
conditions given in Proposition 1 are satisfied.

@ =y + ana’y + agsy® + anzy
+ ag3?y® + aosy’,
y = —2x°.
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When the cubic-order nilpotent singular point,
0(0,0), is a tenth-order weak focus, it is easy to
show that the perturbed system of (13), given by

@ =01 +y + aza® + anxy + arazy?

+ ao3y® + asor® + anxty + azgpxdy? (19)
19
+ a2’y + a14a:y4 + apsy®,

y = oy — 22,

can generate ten limit cycles enclosing an elemen-
tary node at the origin of system (21). We omit the
details of the proof for brevity.

It follows from the above statement and Theo-
rem 2.2 in [Liu & Li, 2010b], we have the following
result. The detailed proof can be seen in [Li et al.,
2015).

Theorem 6. If the origin of system (19) is a tenth-
order weak focus, then within a small neighborhood
of the origin, for 0 < § < 1, perturbing the coeffi-
cients of system (19) can yield ten small-amplitude
limit cycles bifurcating from the elementary node

0(0,0).

3.2. Case 2: n>2

For this case, system (4) can be written as

& =y + x(azor® + a1y + arery® + aozy®

2n+3 2n+2
+ a2n+43,0T + a2nt2,1T Y

Ml 2

2n+
+ agn41,27 -+ a1 2n+22Y

243
+ ag 2n4+3y>" )

= X1<$U,y),
§ = —22°.
(20)

Theorem 7. Forn > 2, the origin of system (20) is
at most an (n + 4)th-order weak focus. If the origin
of system (20) is an (n+4)th-order weak focus, then
within a small neighborhood of the origin, perturb-
ing the coefficients of system (20) can yield n + 4
small-amplitude limit cycles around the elementary

node O(0,0).

Proof. For a nilpotent system, in order to study the
dynamical behavior in the neighborhood of the ori-
gin, we could consider 3 and 22 to be of infinitesimal
equivalence in the neighborhood of the origin, see

Analytic Integrability of Two Lopsided Systems

[Liu & Li, 2010b]. Construct a comparison system
for system (20),

& =y + z(a1 2’y + aosy® + agny2177" 2y
+ -+ a1,2n+2$y2n+2)
(21)
= X2(xa y)a
y = 72333’

which shows that the system is symmetric with the
x-axis, and so the origin O(0,0) is a center.

Next, we compute the determinant of sys-
tems (20) and (21) to obtain

X1($7y> —23}3

Jl = det
XQ(H?,ZU) —23}3

_ 4 2 2 2n+2
= —2z"(azoz” + a12y” + a2n 43,07

2n, 2 2,2
+ a2n+1’2$ ny + e + a3’2nx y n

IM42
+ a1 o012y ).

By treating the y and 22 as infinitesimal equivalence
in the neighborhood of the origin, we have

Lh=—%ﬁ%m9+Mﬂ4+@m&M%”
2n+4 4n—+2
+ aon41,2% + -+ agon®
dn+4
+ a1 on2T mt ); (22)

which implies that a3, 12, A2n+3,0, A2n+1,25 - - -
a3,2n, a1,2n+2 could be taken as the focus values of
system (19). So for n > 2, the origin of system (20)
is at most an (n + 4)th-order weak focus. Accord-
ing to Theorem 4.1.5 in [Liu & Li, 2010a, 2010b],
within a small neighborhood of the origin, perturb-
ing the coefficients of system (20) can yield n + 4
small-amplitude limit cycles around the elementary
node 0(0,0). N

Furthermore, we have the following result.

Theorem 8. For n > 2, the origin of system (20)
s an analytic center if and only if

azo = @12 = a2n4+3,0 = A2n+1,2
= =a3o, = a12n42 = 0. (23)

The proof can be found in [Li et al., 2015].

4. Analytic Centers of System (5)

Now we turn to discuss the analytic center condi-
tions for system (5). It also has two cases.

1650026-7
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4.1. Case A: n=1

For this case, system (5) can be written as

1
&=y, w1 = —?(48 — 5)(2ag3a12 — 2a23 + 3agzaso),
§ = —22° + anz’y + appzy® + agsy’ 15
(24) wi = Z(S + 1)cos,
5 4 3,2
+as0x” + anzy + azx’y
4 a23x2y3 + a14xy4 4 a05y5’ w1 = %(48 - 5) (40&05 - 4&03&32
for which we can find a formal series M(x,y) = — 2a03a12a50 — 5a03a§0),
4+ 9% +o((2? +9?)?) according to Theorem 1, pro-
vided that (8) holds. Carrying out calculations with w13 =0,
help of Mathematica and applying the recursive for- o 031 (45 — 9)(48a2, — 40a
mulae in Theorem 2 to system (24), we obtain 4= 95y 03 14
wy=ws=ws =0, wsg=—=(4s—1)an +12a19a32 + 6aiqas0 + 12assas0
) 3 )

+ 2lajpad, + 18a3y).
Then, for a9 + 2asg 75 0,

w7 = 3(8 + 1)003,

35

wis = §<8 + 1)007,
a

w1 = %(48 — 11)(64&%3&12 + 160%2 -+ 12861(2)30,50 + 16ai2a32a50
+ 4a%2a§0 + 32@32a§0 + 20a12a§0 + 23a§0),

w17t = 07

ao3

a 61600(&12 + 2@50) <48 N 13) (40,32 + 2a12a50 + 561%0)(112@%20,32 - 432@%2

w18 =

+ 56a3qa50 — 96a12az2a50 + 200a35a2, — 640az2a2, + 120a12a3, — 85a3,),

315
w19 = 6—4<1 + 8)009,

ao3 9 A
= - 4s — 15)(4 2 5 14372996
w20 40840800(a12 + 2a50)2< s )(4asz + 2a12a50 + 5a5)( a19032

— 6389425607503, + 34076160a3, + 7186498a7,a50 — 10734116a3,a32a50
— 12772032a12a2,a50 + 28572751a a2, — 99036264a25a32a2,
+ 4554476802502, + 26958196a3,a5, — 39087216a12a32a3,),

wo1 =0,

aps
11639628000 (a12 + 2as0)?

wog = (4ass + 2a12a50 + 5a2y) f1

and for a2 + 2a50 = 0,

a
wig = %(43 — 11)(—4asy + a2y)(4ass + ady),
w17 = 0.

1650026-8
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If in addition agy = %, then
9&03 315
w18 = =700 (4s — 13)(4asy + a%o)(24a(2)3 + ago), w19 = ol — (s + 1)cog,
Taps 6 a03ag0 2
= — 4s — 15 =0 = — 5391 — 205861 66718
w20 = 3060 (48 T 1P)ag0,  wa =0, wa 13856700(1 1 5) st s)
. a2
and if agp = —=3¢, we have
wis =0, wig=—(s4 1)cgg, woo = 2a03 (4s — 15)(16@33 + ago)(27a(2]3 + 2a§0)
’ 64 ’ 5525 ’
dapzaso

wor =0, woy = — (16635 4 a3y)(27a35 + 2a3,).

1154725(1 + s)
Here,
f4 = —175151884140096a55ass + 900479057104608a35a3, — 870691837997952a12 a3,
— 87575942070048a%,a50 + 191710117401504a 5 a32a50 + 108696440458488a%,a35a50
— 135343772601984a3,a50 — 348204560750520a 702, + 1449441463187484a3,a30a2,
— 1227387674864544a12 03502, — 328545834076764a {5a3, + 705733010157654a2,a30a3,
— 180965555611680a3ya3, — 196530256579516a55a305 + 9565454975582560 550355
— 775708121404800a12 355 — 98265128289758aS,a505 4 188198718433828a1,a32a505
—92031891970176a3ya50s — 390699835897045a75a3)s + 1519172249991516a7,a32a35
— 1080068393470816a12a35a2ys — 368634374118786a15a3,s + 690504693129726a75az2a3,s
— 123060065895200a35a3,s + 80500800862640a35a325> — 396831061224512a3, a2, s
+ 336523546570752a12 a35s> + 40250400431320aS,a505% — 79597335692936a 19 az0as505°
— 56511998888512a25a35a505> + 43311880631808a55a505> + 160035098537960a55a25>
— 632261525950008a35a32a2,52 + 470151299998208a19 a3,a2,s* + 150997488382038a {5a3 s>
+ 142715605813496035a2,a505 — 292287689531688a 25 a30a3,5> + 57905489716480a3,a3,5°.
Based on (11) and (25), it is easy to find the first nine quasi-Lyapunov constants of system (24).

Theorem 9. The first nine quasi-Lyapunov constants evaluated at the origin of system (24) are given by

1 1 1
Al = —3021, A2 = *5(66103 +as), 3= *7(26103@12 — 2a23 + 3agzasp),
1
Ay = 20 —(40ag5 — 4agzazs — 2ag3a12a50 — Haozazy),
a,
A5 = —2L(48a2, — 40a14 + 12a10a30 + 6aZyas0 + 12as0as0 + 21araa, + 18a2).

154
Then, for ais + 2as0 # 0,

1650026-9
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A = — 61600(;123+ 2o (4azz + 2a12a50 + Hady)(112a35a3s — 432a3, + 56a,as0
— 96ay2az0as0 + 200a3,a3, — 640as0a2, + 120a12a3, — 85az,),

Ag = 740840800&0;’2 T (4azz + 2a12a50 + Hady)(14372996a7,a30 — 6389425603 ,a3,
+ 3407616003, + 7186498a3a50 — 10734116a3,a30a50 — 12772032a12a35a50 + 28572751a7,a2,
— 99036264a25a39a2, + 4554476802, a2, + 26958196a3,a3, — 39087216a12a32a3),

Ag 203 (dass + 2a12a50 + 5ady) f4;

~ 11639628000(a 12 + 2as0 )2

while for aio + 2a50 = 0, |

a where A\p—1 = 0 for k = 2,...,9 have been used in
A = %(—4%2 +a2y)(dase + aZy) computing N\j.
a2 Furthermore, the following result can be easily
and in addition if azs = =52, obtained.
9aps Proposition 2. For n =1, the origin of system
A7 = 7700 7700 (4as2 + a3o) (244G + a3y, (24) is an analytic center if and only if one of the
Tags following conditions holds:
Ag = — 6
8 13260 150’ a1 = ap3 = G41 = Gz3 = ag5 = 0; (26)
7
Ao = — 0305 a1 = aiq = aps =0, aq = —6ags,
13856700(1 + 5) , X (27)
= — 2 2 = —— 3 N
« (5391 — 205861s + 6671852); 023 = 5 (2012 + 3aso)aoy,  any = 5050
: a2, az = aps =0, as = —6ags,
if agx = —=32,
a2 = —2a50, 23 = —a03a50,
A7 =0, 2
1 2 (28)
2a ) 2 _ 43
As = 55;; (16ag; + ago)(27ags + 2a3y), 452 = 4 %0 903 = 757950,
1
4apza - _ - .3

1154725(1 + s)

Proof. Tt is easy to get the conditions (26)—(28) by

x (27a2; + 2a3 ,
(27a05 %) setting Ay = Ay = -+ = Ag = 0. When asg # 0, let

f5 = 112a35a30 — 43203, + 56a34a50 — 96a12as0a50 + 200a3,a2, — 640as0a2, + 120a12a3, — 85az,,
fo6 = 143729960 5a30 — 6389425607502, + 34076160a3, + 7186498a7,a50 — 1073411643 a30a50
— 12772032a19a35a50 + 28572751a1,a2, — 99036264a3ya30a2, + 4554476803502,
+26958196a3,a3, — 39087216a12a32a3).

Then, we obtain

R3 = Resultant|[fy, f5, as2]
= —200206652313600a3,(a12 + 2a50)*(72a3y + 652a],a50 + 2694a3,a3,
+6043atya3, + 7092a12a3, + 3463a),

1650026-10
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R, = Resultant|[fy, f¢, ass)
= —289298612593152000a3, (a12 + 2as0)* (2787340849924, + 3588989330016a5,as50
4 21026493958464a 5502, + 71854303647672a,a3, + 152324731255716a a4,
+197669760539760a 25032, + 144211704399495a19 al, 4 45502270176438a
+1651136278704a 15 + 18838630495800a,a50s + 98153819816532a35a2,s
4 294846821571666a 1,055 + 534120897148782a3,a3,s + 565346904516561a2,a3,s
— 310952885702031a12aS,s + 62534145621954a s + 18595532680564. 1452
+17577034105268a %5 a505% + 76054378966082a 7,02, s> + 181916843290105a 15035
+ 238094684972342a 3, a5,5? + 147267056136244a 3502, s> + 19507558179230a19a,s?
— 6987410240074a%,s* — 1714957345728a15s> — 17270801713568a Sy a505>
— 80278393721648a5,a2,s® — 212296048411048a15a3,s> — 328607615124608a3,a3ys>
— 285216632755972a2,a3,s> — 121914622605938a19aSys> — 19568176640258a 5,5
+301352777088a 55 + 3072037299008a 5y a50s* + 14465726297408a55a2,s"
+ 38896515312256a 15a3,s* + 61684793716376a3,a2,s* + 55602984609100a 2,02, s"
+25319000517368a12aS,s* + 4451109045332a%,s%).
Further, with the aid of Mathematica, we obtain for Vs € ZT
G9 = Resultant[Rs3, R4, a12]
= 30984189289342953910272000a 35 (1 + 5)°(—17 + 4s)°

x (—123287750793562256929839075859953216

— 339028124526887950169200211293420446245

— 1808553250349786573680194443424230802365>

— 10670669592046159616590047414883928655755°

— 33283434379624443753407620999928914721105*

— 4773196954655562390848005555854946921459

+ 142415408037847599167272364364103357143205°

— 107320884674960964670635027958153054751205"

+ 37214362483998573642955583631318406680325°

— 6256764622304757419359200598402738631685°

+ 414547858189798613025718090009010032645%)

£ 0.

The above calculations indicate that the equations f4 = f5 = fg = 0 do not have real solutions, namely,
there do not exist other analytic center conditions for system (24) if asg # 0.
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When the conditions in (26) hold, system (24)
becomes

T =y,
y = —22° + appxy® + asox® (29)
+ anr’y’ + anzy’,

Obviously, this system is symmetric with the y-axis,
implying that the origin of system (29) is an ana-
lytic center due to Theorem 11 in [Liu et al., 2013].

When the conditions in (27) are satisfied, sys-
tem (24) becomes

T =y,

1
§ = 7 (=82" + dasoa® — Aapsa’y + darzwy’

— 2a12a50x3y2 — 5a§0x3y2 + 4a03y3

+ dagzarar?y® + 6agzasor’y®).
(30)

Introducing the transformation,

(=2 + asox?)z
2(—2 + a50x2 + a03$z>

r =, Yy =

and time scaling,

T 2(—2 + a50x2)3t
=2+ as0z? — 2ag37y’

into system (30) yields

d

d; = z(as02® — 2)%,

i1

- = —12(12827 — 1924500 + 96aZa”

— 16a§’0x8 — 16a1222 + 24a12a50x222

+ 200,12 2% — 96a2;x1 2% — 12@12a§0x4z2

—20a3,0*2* + 48ad;a502°2% + 2a12a3,2° 2

+ 5ag, 1922 + 32a3,2°2% + 2a03a3,2°2%),
(31)

which is symmetric with the z-axis because a(2)3 =

—%. Thus, according to Theorem 11 in [Liu et al.,
2013], the origin of system (30) is an analytic center.

Similarly, when the conditions in (28) hold, sys-
tem (24) becomes

T =1y,

. 1 3 5 4

Uy = —=(—144x° + T2a50x° — 432a032"y
72 (32)
_ 144a5033y2 — 18a§0x3y2 + 72@031/3

2.3 .3 4
— 36apzasor -y’ — azgry”),

for which there exists an analytic integrating factor,

3.2 .4
e 8%o®

Lol e B 4
— —a5nT —aso
2 50 4 50LY

u($,y) =

indicating that the origin of system (32) is an ana-
lytic center. W

Therefore, Proposition 2 implies the following
result.

Theorem 10. The necessary and sufficient condi-
tions for the origin of system (24) being an ana-
lytic center are given by the vanishing of the first
nine quasi-Lyapunov constants, that is, one of the
conditions in Proposition 2 is satisfied.

Similarly, when the cubic-order nilpotent sin-
gular point O(0,0) is a ninth-order weak focus, it
is easy to prove that the perturbed system of (24),
given by

T =0x+vy,

§ =6y — 22° + ag1 2y + appry® + agzy®
(33)
+ a507° + anr'y + azr’y? + aszz’y?

+ a14$y4 + apsy”,

can generate nine limit cycles enclosing an elemen-
tary node at the origin. The proof is similar to that
for Theorem 9 and thus omitted for brevity.

Based on the above statement and Theorem 2.2
in [Liu & Li, 2010b] we have the following theorem.

Theorem 11. If the origin of system (33) is a
ninth-order weak focus, then within a small neigh-
borhood of the origin, for 0 < § < 1, system (33)
can yield nine small-amplitude limit cycles around
the elementary node O(0,0).

The proof of Theorem 11 can be seen in [Li
et al., 2015].
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4.2. Case B: n > 2

For this case, system (5) can be written as
T =y,

y = —22° + (aglxgy + arowy” + ao3y®

Mm+3 Mn42
+ agn+307°" % + agpi217" 2y
(34)
Mmt1, 2 Mn42
+ a2n+1,20 s a1,2n+2TY e
Mm+3
+ agont3y"" )
= Yl (:L', y)

Theorem 12. For n > 2, the origin of system (34)
is at most an (n+ 4)th-order weak focus. If the ori-
gin of system (34) is an (n+ 4)th-order weak focus,
then within a small neighborhood of the origin of
its perturbed system, perturbing the coefficients of
system (34) can yield n + 4 small-amplitude limit
cycles enclosing the elementary node O(0,0).

Proof. The proof is similar to that for Theorem 7.
We construct a comparison system for system (34),
=y,
y = —2z° + x(a12$y2 + a2n+3,0$2"+3
(35)

2 2n+1
+ - Fag oy )

= Y2 (CE, y)
It is easy to see that system (35) is symmetric with
the z-axis, and so 0(0,0) is a center.
Next, we compute the determinant of sys-
tems (34) and (35), yielding

y Yi(z,y)

JQ = det
y Yo(z,y)

_ 2 2 4 2n+2, 2
=a127Y" + ap3y” + a2n+2,1T Y

2n, 4

2. 2n+2
+a9n 3”7y + 0+ a22p4127Y mt

In+4
+apon3y”" .

Similarly, we take the y and z? as infinitesimal
equivalence in the neighborhood of the origin in
order to study the dynamical behavior of (34)
around the origin. So, Js becomes

4 2 4 Mm+2
Jo = (a2 + agzz® + agny2,12°""
Mm+2 4n+2
+ agn,3T 24 a2 2n4+1T n+
dn+4
+ag2n32™ "), (36)

Analytic Integrability of Two Lopsided Systems

implying that a21,a03, a2n42,1,020,3, - - -, 02,2041,
ap,2n+3 could be considered as the focal values of
the system. Therefore, for n > 2, the origin of sys-
tem (34) is at most an (n + 4)th-order weak focus.
According to Theorem 4.1.5 in [Liu & Li, 2010a,
2010b], within a small neighborhood of the origin,
one can perturb the coefficients of system (34) to
obtain n + 4 small-amplitude limit cycles around
the elementary node O(0,0). W

Moreover, we have a similar theorem for this
case.

Theorem 13. Forn > 2, the origin of system (34)
s an analytic center if and only if

a1 = Gp3 = A2np+2,1 = G2n,3

= ... = a272n+1 = a072n+3 = 0 (37)

For more details about the proof, see [Li et al.,
2015].

5. Conclusion

In this paper, two classes of lopsided systems have
been studied on their analytic integrable conditions
and bifurcation of limit cycles. We have obtained
some analytic integrability conditions for each class
of the systems for case n = 1. By using cer-
tain transformations or integrating factors, we have
proved that all conditions are sufficient and neces-
sary. For case n > 2, we have constructed different
comparison systems for each class of the systems
and shown that n + 4 limit cycles may bifurcate
from the origin of each system. In addition, con-
ditions for the origin being an analytic center are
obtained simultaneously.
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