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In this paper, an existing method is modified for computing the focal values and period

constants of switching systems associated with elementary singular points. In particular, a

quadratic switching system is considered to illustrate the computational efficiency of this

method. Further, with this method, a cubic switching system is constructed to show existence

of 15 limit cycles, which is the best result so far obtained for cubic switching systems.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

As one of the most important bifurcation phenomena, Hopf bifurcation plays an important role in the study of nonlinear

dynamical systems. Many results on Hopf bifurcation for continuous systems have been obtained, especially for planar differential

systems, see for example [1–3]. As far as the maximal number of small-amplitude limit cycles, bifurcating from an elementary

center or focus, is concerned, the best known result is M(2) = 3, obtained by Bautin in 1952 [4]. Here, M(n) denotes the maximal

number of small-amplitude limit cycles around a singular point with n being the degree of polynomials in the vector field. For

n = 3, a number of results have been obtained. Around an elemental focus, James and Lloyd [5] considered a special class of cubic

systems to obtain 8 limit cycles in 1991, and the systems were reinvestigated couple of years later by Ning et al. [6] to find another

solution of 8 limit cycles. Yu and Corless [7] constructed a cubic system and combined symbolic and numerical computations

to show 9 limit cycles in 2009, which was confirmed by purely symbolic computation with all real solutions obtained in 2013

[8]. Another cubic system was also recently constructed by Lloyd and Pearson [9] to show 9 limit cycles with purely symbolic

computation. Recently, Yu and Tian [10] have shown that there can exist 12 limit cycles around an elementary center in a planar

cubic-degree polynomial system. This is the best result obtained so far for cubic polynomial systems with all limit cycles around

a single singular point. For n � 4, there are very few results, for example, Huang gave an example of a quartic system with 8 limit

cycles bifurcating from a fine focus [11].
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However, in modeling practical physical and engineering problems, there exist many problems which involve discontinuous

or non-smooth functions, see for instance [12] and [13], and the references therein. Such examples include relay feedback systems

in control theory [14,15], switching circuits in power electronics [16], impact and dry frictions in mechanical engineering [17,18],

etc. In recent years, study of switching systems associated with Hopf bifurcation has attracted many researchers. Leine and

Nijmeijer [19], and Zou et al. [20] considered non-smooth Hopf bifurcation. Freire et al. [21] discussed the focus-center limit

cycle bifurcation in a symmetric three-dimensional, piecewise linear system. For homoclinic bifurcation, the Melnikov function

method has been extended to study non-smooth systems [22,23]. General effective methods have also been developed to

investigate non-smooth systems. For example, normal form computation for impact oscillators was given in [24], and a general

methodology for reducing multidimensional flows to low dimensional maps in piecewise nonlinear oscillators was proposed in

[25]. Due to complexity in non-smooth systems, such systems can exhibit not only all types of bifurcations that occur in smooth

systems, but also complicated nonstandard bifurcation phenomena that are unique in non-smooth ones, such as grazing [26,27],

sliding effects [17], border collision [28], etc. There are many articles in the literature, devoted to study various nonstandard

bifurcations for non-smooth systems; see, for example, [17,18,26–29] and the references therein.

Recently, Chen and Du constructed a quadratic switching system to obtain 9 limit cycles [30]. Llibre et al. studied the maximum

number of limit cycles that bifurcate from the periodic orbits of isochronous centers in switching cubic polynomial differential

systems [31] and in switching quadratic polynomial differential systems [32]. These examples show that there exist more limit

cycles in switching systems than in continuous systems, and the dynamics of these systems are more complex.

In this paper, the switching planar system, described by the following ordinary differential equations:⎧⎪⎪⎨
⎪⎪⎩

dx

dt
= −y + F+(x, y),

dy

dt
= x + G+(x, y),

(y > 0),

⎧⎪⎪⎨
⎪⎪⎩

dx

dt
= −y + F−(x, y),

dy

dt
= x + G−(x, y),

(y < 0), (1.1)

will be used to investigate bifurcation of limit cycles. In particular, a method for computing the Lyapunov constants of system

(1.1) is present in Section 2, and then an approach for computing the period constants of system (1.1) is given in Section 3. Then,

in Section 4 a quadratic switching system, as an example, is given to illustrate the computation efficiency of our methods; and

further in the same section we construct a cubic switching system to show that system (1.1) can exhibit at least 15 limit cycles,

which is a new best result for such systems. Finally, conclusion is drawn in Section 5.

2. Computation of Lyapunov constants of system (1.1)

In this section, we present a method for computing the Lyapunov constants of the switching system (1.1). First, we introduce

some basic formulas of computing Lyapunov constants and period constants. The classical method to solve center problems is

based on computing Lyapunov constants, with the procedure described as follows.

The general differential system,

dx

dt
= δx − y +

n∑
k=2

Xk(x, y) ≡ X(x, y),

dy

dt
= x + δy +

n∑
k=2

Yk(x, y) ≡ Y(x, y),

(2.1)

under the polar coordinates transformation,

x = r cos θ, y = r sin θ, (2.2)

can be rewritten as

dr

dt
= r

(
δ +

n∑
k=2

ϕk+2(θ)rk

)
,

dθ

dt
= 1 +

n∑
k=2

ψk+2(θ)rk,

(2.3)

where ϕk(θ ), ψk(θ ) are polynomials of cos θ and sin θ , given by

ϕk(θ) = cos θXk−1(cos θ, sin θ)+ sin θYk−1(cos θ, sin θ),

ψk(θ) = cos θYk−1(cos θ, sin θ)− sin θXk−1(cos θ, sin θ).

From Eq. (2.3) we have

dr

dθ
= r(δ + ∑n

k=2 ϕk+2(θ)rk)

1 + ∑n
k=2 ψk+2(θ)rk

, (2.4)

whose expansion around r = 0 can be expressed in the form of

dr

dθ
= r

∞∑
k=1

Rk(θ)rk. (2.5)
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Fig. 1. The successive function �(h).
By the method of small parameters of Poincaré, the general solution of (2.5) can be obtained as

r = r̃(θ, h) =
∞∑

k=1

vk(θ)hk,

where v1(0) = 1, vk(0) = 0, �k � 2. Now, substituting the above solution r = r̃(θ, h) into (2.5) yields

v′
1(θ) = R0(θ)v1(θ),

v′
2(θ) = R0(θ)v2(θ)+ R1(θ)v2

1(θ),
...

v′
m(θ) = R0(θ)�1,m(θ)+ R1(θ)�2,m(θ)+ · · · + Rm−1(θ)�m,m(θ).

(2.6)

Thus, we may solve vk(θ ) one by one, yielding

v1(θ) = e
∮ ϑ

0 R0(ϕ)dϕ,

v2(θ) = 2v1(θ)

∮ ϑ

0

R1(ϕ)v1(ϕ)dϕ,

...

vm(θ) = v1(θ)

∮ ϑ

0

R1(ϕ)�2,m(ϕ)+ · · · + Rm−1(ϕ)�m,m(ϕ)

v1(ϕ)
dϕ.

(2.7)

Furthermore, we define the successive function as

�(h) = r̃(2π, h)− h, (2.8)

as shown in Fig. 1, which in turn gives the condition to define a center, as

r(2π, h) = h. (2.9)

Many classical methods have been developed for computing the successive function of continuous systems, see, for example

[33].

From the second equation of (2.3), we can also obtain

t = T(θ, h) =
∫ θ

0

dϕ

1 + ∑n
k=2 ψk+2(ϕ)rk(ϕ, h)

, (2.10)

which shows that the condition, corresponding to an isochronous center, is given by

r(2π, h) = h, T(2π, h) = 2π. (2.11)

However, unfortunately, the classical methods and formulas cannot be directly applied to a switching system due to discontinuity.

We need to develop new methods to overcome this difficulty.

Note that the polar coordinates expression for (1.1) can be written as

(R+(r, θ), 1 + 
+(r, θ)), θ ∈ [0, π],
(R−(r, θ), 1 + 
−(r, θ)), θ ∈ [π, 2π].

(2.12)

Also note that although a return map cannot be simply defined for (1.1) like that for continuous systems, we may follow the

approach presented in [34] to define half-return maps, but the method of computing of the return map based on a suitable

decomposition of certain one-forms associated with the expression of the system in polar coordinates in [34] is difficult to

understand and complex. So we modified the method to compute the return map near the singular point.

By Lemma 2.1 in [34], we may equivalently compute the positive half-return map for

dx

dt
= −y + F+(x, y) ≡ X+(x, y),

dy = x + G+(x, y) ≡ Y+(x, y),

(y > 0) (2.13)
dt
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Fig. 2. Positive half-return maps.
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Fig. 3. Lower half plane changed to upper half plane.
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Fig. 4. Vector fields of system (2.13) and (2.14).
and that for

dx

dt
= −y − F−(x,−y) ≡ X−(x, y),

dy

dt
= x + G−(x,−y) ≡ Y−(x, y),

(y > 0). (2.14)

The idea to obtain the above system (2.14) is illustrated in Figs. 2 and 3. We first redefine the positive half-return maps for

the upper and lower half planes, defined by (1.1), as shown in Fig. 2. Then, we introduce the transformation y → −y to change

the lower half phase into upper phase, as shown in Fig. 3.

Further, with a time reversing t → −t, the computation of the half-return map of the lower plane in (1.1) is equivalent to the

computation of the positive half-return map of (2.14), as depicted in Fig. 4.

The above discussion indicates that we only need to compute the positive half-return maps for the systems (2.13) and (2.14).

Suppose

r1 = r̃1(θ, h) =
∞∑

k=1

uk(θ)hk

and

r2 = r̃2(θ, h) =
∞∑

k=1

vk(θ)hk

are the solutions of system (2.13) and (2.14), respectively, satisfying u1(0) = v1(0) = 1, uk(0) = vk(0) = 0, �k � 2. We can then

define the following successive functions:

�1(h) = r̃1(π, h)− h
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and

�2(h) = r̃2(π, h)− h,

for systems (2.13) and (2.14), respectively. Then, the successive function for the switching system (1.1) can be defined as

�(h) = �1(h)− �2(h) = r̃1(π, h)− r̃2(π, h). (2.15)

Definition 2.1. Define

�(h) =
n∑

k=1

(
uk(π)− vk(π)

)
hk =

n∑
k=1

Vkhk, (2.16)

where Vk is called the kth-order focal value of the switching system (1.1).

Obviously, the symmetry principle for continuous systems cannot be used to prove the center conditions of switching systems.

We need to redefine symmetry of switching systems in order to derive the center conditions for switching systems.

Definition 2.2. If the functions on the right-hand side of systems (1.1) satisfy the following conditions:

F+(x, y) = F+(−x, y), G+(x, y) = −G+(−x, y),

F−(x, y) = F−(−x, y), G−(x, y) = −G−(−x, y),

then system (1.1) is said to be symmetric with the y-axis. If the functions on the right-hand side of systems (1.1) satisfy

F+(x, y) = −F−(x,−y), G+(x, y) = G−(x,−y),

then system (1.1) is said to be symmetric with the x-axis.

With the above definitions, we have the following result.

Theorem 2.1. If system (1.1) is symmetric with the x-axis or the y-axis, then the origin of system (1.1) is a center.

Proof. When system (1.1) is symmetric with the y-axis, we have

F+(x, y) = F+(−x, y), G+(x, y) = G+(−x, y),

F−(x, y) = F−(−x, y), G−(x, y) = G−(−x, y).

Because the upper half plane and lower half plane are symmetry, the origins are the centers of the upper half plane and lower

half plane, then the origin of system (1.1) is a center because of its symmetry.

When (1.1) is symmetric with the x-axis, namely,

F+(x, y) = −F−(x,−y), G+(x, y) = G−(x,−y),

we may use the transformation, y → −y, t → −t, to transfer system (2.14) into (2.13). So the origin of (1.1) is a center. �

To end this section, we present an example to demonstrate that the origin of the switching system is not a center even if both

the upper half plane and lower half plane have analytic first integrals.

Example 2.1. Consider the following system:⎧⎪⎪⎨
⎪⎪⎩

dx

dt
= −y,

dy

dt
= x + 3x2 + 2x3,

(y > 0),

⎧⎪⎪⎨
⎪⎪⎩

dx

dt
= −y,

dy

dt
= x,

(y < 0). (2.17)

Obviously, the upper half plane has a first integral,

H(x, y) = x2 + y2 + 2x3 + x4;

and the lower half plane has a first integral,

H(x, y) = x2 + y2.

However, the origin of system (2.12) is not a center, as illustrated in Fig. 5.

This example implies the following result.

Theorem 2.2. If the upper half plane and lower half plane of system (1.1) have analytic first integrals, H1(x, y) and H2(x, y), respectively,

then the origin of system (1.1) is a center if and only if H1(x, y) and H2(x, y) satisfy one of the following conditions:

(1) H1(xi, 0) = h, and H2(x1, 0) = H2(x2, 0) for any real values of h, x1, x2;

(2) H (x , 0) = h, and H (x , 0) = H (x , 0) for any real values of h, x , x .
2 i 1 1 1 2 1 2
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Fig. 5. The vector field of system (2.12).
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Fig. 6. (a) The phase portrait of the upper half place of (2.18); (b) the phase portrait of the lower half place of (2.18); and (c) the phase portrait of (2.18).
In particular, when H1(x, 0) (H2(x, 0)) is symmetric with the y-axis, the origin of system (1.1) is a center if and only if H2(x, 0)

(H1(x, 0)) is also symmetric with the y-axis.

Conversely, the origin of the switching system may be a center even if neither of the upper half plane or the lower half plane

has the origin as its center, as illustrated by the following example.

Example 2.2. Consider the following system:⎧⎪⎪⎨
⎪⎪⎩

dx

dt
= 3y2,

dy

dt
= −2x − 4x3,

(y > 0),

⎧⎪⎪⎨
⎪⎪⎩

dx

dt
= −3y2,

dy

dt
= −2x − 4x3,

(y < 0). (2.18)

The phase portraits near the origin of the upper half plane and the lower half plane are shown in Fig. 6(a) and (b), respectively,

indicating that they are not centers. But the origin of the switching system is a center, as depicted in Fig. 6(c).
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3. Computation of period constants of system (1.1)

Similarly, the half period functions for system (1.1) can be defined as

T1(π, h) =
∫ π

0

dϑ

1 + ∑n
k=2 ψk+2(ϑ)rk

1(ϑ, h))
,

T2(π, h) =
∫ π

0

dϑ

1 + ∑n
k=2 ψk+2(ϑ)rk

2(ϑ, h))
.

(3.1)

Then, the period function for the switching system can be defined as

T = T1(π, h)+ T2(π, h). (3.2)

Definition 3.1. The period function of the switching system is defined by

T(h) = T1(π, h)+ T2(π, h) = 2π +
n∑

k=1

Tkhk, (3.3)

where Tk is called the kth period constant of the switching system.

The following example illustrates the difference between the period functions of continuous systems and switching systems.

Example 3.1. Consider the switching system,⎧⎪⎪⎨
⎪⎪⎩

dx

dt
= −y(1 + 2x + 4x2),

dy

dt
= x + x2 − y2 − 4xy2,

(y > 0),

⎧⎪⎪⎨
⎪⎪⎩

dx

dt
= −y,

dy

dt
= x,

(y < 0). (3.4)

It is easy to see that the origin is an isochronous center for both the upper half and lower half planes, but it is not an isochronous

center of the switching system.

Based on the results obtained in the previous section and this section, we summarize the main steps in computing the focal

values and period constants of the switching system as follows.

1. Introduce the transformation: y → −y, t → −t into the lower half plane.

2. Use the formulas in (2.7) to solve uk(θ ), vk(θ ).

3. Use the formula (2.15) to compute the successive function �(h) of the switching system.

4. When the origin is a center, use the formula (3.2) to compute the period constants T of the switching system.

Remark 3.1. Especially, if the system for the lower half plane is defined by

dx

dt
= −y − F−(x,−y) = −y,

dy

dt
= x + G−(x,−y) = x,

(3.5)

then one only needs to compute �1(h) and T1(θ , h).

4. Applications

In this section, we apply the results obtained in the previous sections to consider two examples. In particular, the second

example shows that a simple cubic switching system can have at least 15 limit cycles.

4.1. Example 1

The first example has been studied in [34]. We reinvestigate this example here to illustrate the computation efficiency of

our methods, by computing the Lyapunov constants and period constants, to find the center conditions and isochronous center

conditions of the system. The system equations are given by⎧⎪⎪⎨
⎪⎪⎩

dx

dt
= −y + (a20x2 + a11xy + a02y2),

dy = x + (b20x2 + b11xy + b02y2),

(y > 0),

⎧⎪⎪⎨
⎪⎪⎩

dx

dt
= −y,

dy = x,

(y < 0). (4.1)
dt dt
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4.1.1. Center conditions and bifurcation of limit cycles for (4.1)

First, we consider the center conditions and the number of bifurcating limit cycles. With the aid of symbolic computation, we

obtain the following result.

Theorem 4.1. For system (4.1), the first five Lyapunov constants at the origin are given by

λ1 = 2

3
(a11 + 2b02 + b20),

λ2 = π

16

(
2a11a20 + a11b11 − 2a02b20 − 4a20b20 − b11b20

)
,

with two cases:

(I) b20 � 0.

λ3 = 2

15

(
6a11a2

20 + 3a11a20b11 − a2
11b20 − 9a2

20b20 − 3a20b11b20 + b3
20

)
,

which has two sub-cases:

Sub-case (Ia). If a20(a11 − b20) � 0, we have

λ4 = a20b20π

192(a11 − b20)
(5a11 − 7b20)

(
3a2

20 + 2a11b20 − 2b2
20

)
,

λ5 = 128b5
20

21875(a11 − b20)2

(
3a2

20 + 2a11b20 − 2b2
20

)
.

Sub-case (Ib). If a20 = 0, we obtain

λ4 = 2

15
b20(−a11 + b20)(a11 + b20),

λ5 = − π

192
b11(−a11 + b20)(a11 + b20)(−5a11 + 7b20).

(II) b20 = 0.

λ2 = π

16
a11(2a20 + b11),

λ3 = 2

45
a11(2a20 + b11)(4a02 + 5a20 − 2b11),

λ4 = π

2304
a11(2a20 + b11)

(
140a2

02 + 45a2
11 + 260a02a20 + 176a2

20 − 50a02b11 − 130a20b11 + 26b2
11

)
,

λ5 = 2

14175
a11(2a20 + b11)

(
1600a3

02 + 1080a02a2
11 + 3840a2

02a20 + 1269a2
11a20 + 3936a02a2

20 + 1874a3
20

− 240a2
02b11 − 378a2

11b11 − 1626a02a20b11 − 1968a2
20b11 + 228a02b2

11 + 726a20b2
11 − 92b3

11

)
.

Note that in computing the above expressions λk, k = 2, ���, 5, λ1 = λ2 = ��� = λk − 1 = 0 have been used.

The following proposition follows directly from Theorem 4.1.

Proposition 4.1. The first five Lyapunov constants evaluated at the origin of system (4.1) become zero if and only if one of the following

conditions is satisfied:

b02 = 0, a02 = −b11, a20 = 0, a11 = −b20; (4.2)

b02 = −1

2
a11, b20 = 0, 2a20 + b11 = 0; (4.3)

b02 = −b20, a02 = a20 = 0, a11 = b20; (4.4)

2a11b20 + 3a2
20 − 2a2

20 = 2b11 + 5a20 = 0,

a02b2
20 + a20

(
8b2

20 − 3a2
20

) = 4a02b20 − 3b2
20 + 4a2

20 = 0;

(4.5)

a11 = b02 = b20 = 0. (4.6)

They are also the center conditions of system (4.1).
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x

y

Fig. 7. Phase portrait of system (4.1) when the conditions in (4.3) are satisfied with b11 = 2, b02 = 1, a02 = 3.
Proof. It has been shown in [34] that when the conditions in (4.2)–(4.5) hold, system (4.1) has respectively the following first

integrals:

H1(x, y) = x2 + y2,

H2(x, y) = 1

2
(x2 + y2)+ b11

2
x2y + b02xy2 − a02

3
y3,

H3(x, y) = (b20x−1)[b20x+12(b11−γ )y+1]
α

[b20x + 12(b11 + γ )y + 1]
(1−α)

,

H4(x, y) = (−2b20x + a20y + 2)2

×
[
4(b20x + 1)2 − (4a20 + 12a20b20x)y + (

3a2
20 − 8b2

20

)
y2

]
,

where

α =
(

4b2
20

) /
(γ (γ + b11)), γ =

√
b2

11 + 8b2
20.

Obviously, all Hi(x, 0), i = 1, 2, 3, 4, are symmetric with the y-axis. Thus, the origin of system (4.1) is a center. For example, when

the conditions in (4.3) hold and b11 = 2, b02 = 1, a02 = 3, the system has a first integral,

H2(x, y) = 1

2
(x2 + y2)+ x2y + xy2 − y3,

and the phase portrait of (4.1) is shown in Fig. 7.

When the conditions in (4.6) hold, system (4.1) becomes⎧⎪⎪⎨
⎪⎪⎩

dx

dt
= −y + (a20x2 + a02y2),

dy

dt
= x + b11xy,

(y > 0),

⎧⎪⎪⎨
⎪⎪⎩

dx

dt
= −y,

dy

dt
= x,

(y < 0). (4.7)

Obviously, the system is symmetric with the y-axis, and so the origin is a center of system (4.1). �

As far as limit cycles are concerned, it follows from Theorem 4.1 that at most 5 limit cycles can bifurcate from the origin of

system (4.1). Next, to obtain 5 limit cycles, we consider the perturbed system of (4.1), given as follows:⎧⎪⎪⎨
⎪⎪⎩

dx

dt
= δ1x−y+(a20x2+a11xy+a02y2),

dy

dt
= x+δ1y+(b20x2+b11xy+b02y2),

(y > 0),

⎧⎪⎪⎨
⎪⎪⎩

dx

dt
= δ2x − y,

dy

dt
= x + δ2y,

(y < 0), (4.8)

for which we have the following theorem.

Theorem 4.2. If the origin of system (4.8) is a 5th-order weak focus, then for 0 < δ1, δ2 � 1, 5 small-amplitude limit cycles can

bifurcate from the origin of the perturbed system (4.8).

Proof. When the origin of system (4.8) is a 5th-order weak focus, the following conditions:

b02 = −1

2
(a11 + b20),

a02 = 2a11a20 + a11b11 − 4a20b20 − b11b20

2b20
,

b11 = −−6a11a2
20 + a2

11b20 + 9a2
20b20 − b3

20

3a20(a11 − b20)
,

a11 = 7

5
b20,

a20b20(a11 − b20)
(

3a2
20 + 2a11b20 − 2b2

20

)
�= 0,
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should be satisfied, which result in

∂(λ1, λ2, λ3, λ4)

∂(b02, a02, b11, a11)
= a2

20b2
20

(
15a2

20 + 4b2
20

)
π2

2880
�= 0,

implying that 5 small-amplitude limit cycles can bifurcate from the origin of the perturbed system (4.8). �

4.1.2. Isochronous centers of system (4.1)

Next, we discuss isochronous center conditions of system (4.1). By simple computations, we can show that when one set of

the conditions in (4.2), (4.4) or (4.5) is satisfied, the period constants of system (4.1) cannot be zero simultaneously, so there do

not exist isochronous center conditions for these three cases.

When the conditions in (4.3) hold, the period constants are obtained as

τ1 = 2

3
(2a02 + 3a20),

τ2 = 9

64

(
a2

11 + 5a2
20

)
π,

τ3 = −2a3
20,

τ4 = 27

2048

(
7a4

11 + 78a2
11a2

20 + 183a4
20

)
π,

τ5 = −50944a3
20

(
a2

11 + 6a2
20

)
,

...

Note that τ 2 = 0 implies that a11 = a20 = 0, and so all τ i (i � 3) equal zero.

When the conditions in (4.6) are satisfied, the period constants are given by

τ1 = 2

3
(2a02 + a20 − b11),

τ2 = 1

8
a02(a20 + 4a02)π,

τ3 = 8

15
a02(a20 + 4a02)(a20 + a02),

τ4 = π

256
a02(a20 + 4a02)

(
84a2

02 + 97a02a20 + 48a2
20

)
,

τ5 = 16

1575
a02(a20 + 4a02)(a20 + a02)

(
198a2

02 + 127a02a20 + 60a2
20

)
,

...

Note for this case that τ i (i � 3) contains a common factor a02(a20 + 4a02).

Therefore, it is obvious that the origin is an isochronous center if and only if the first two period constants vanish, and we

obtain the following result.

Theorem 4.3. The origin of system (4.1) is an isochronous center if and only if one of the following conditions holds:

(a) a20 = a11 = a02 = b20 = b11 = b02 = 0;

(b) a11 = b02 = b20 = a02 = 0, b11 = a20;

(c) a11 = b02 = b20 = 0, b11 = −2a02, a20 = −4a02.

Proof. When the conditions in (a) are satisfied, the equations for the upper plane of system (4.1) can be rewritten as

dx

dt
= −y,

dy

dt
= x,

which shows that the origin of system (4.1) is an isochronous center.

When the conditions in (b) hold, the equations for the upper plane of system (4.1) become

dx

dt
= −y + a20x2,

dy

dt
= x + a20xy,

(4.9)
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A simple calculation yields

dθ

dt
= 1,

showing that the conclusion is true.

When the conditions in (c) are satisfied, the equations for the upper phase of system (4.1) can be rewritten as

dx

dt
= −y − 4a02x2 + a02y2,

dy

dt
= x − 2a02xy,

(4.10)

which has a transversal system⎧⎪⎪⎨
⎪⎪⎩

dx

dt
= x − 4a02xy + 4a2

02xy2,

dy

dt
= y − 3a02y2 + 2a2

02y3,

(y > 0),

⎧⎪⎪⎨
⎪⎪⎩

dx

dt
= x,

dy

dt
= y,

(y < 0), (4.11)

indicating that the origin of system (4.1) is an isochronous center. �

4.2. Example 2

As we know, the second part of Hilbert’s 16th problem is to find the maximal number and relative locations of the limit

cycles bifurcating in polynomial systems of degree n. This problem is far from being completely solved. Let H(n) denote this

number, called Hilbert number. For n = 2, Shi [35] and Chen and Wang [36] independently constructed concrete examples to

show existence of 4 limit cycles more than 30 years ago, but whether H(2) = 4 is still open. For n = 3, Li and Huang first proved

H(3) � 11 [37]. Li and Liu [38], and Liu et al. [39] respectively found more concrete cubic systems which have 11 limit cycles with

the same distribution. Later, Han et al. [40,41] used the method of stability-changing in a homoclinic loop to give more cubic

systems which have 11 limit cycles with two different distributions. Further, Yu and Han [42–44] proved H(3) � 12 by studying

Hopf bifurcation in a Z2-symmetric cubic system. Later, this Z2-symmetric system was reinvestigated by Li et al. [45] to prove

existence of one more limit cycle, namely, H(3) � 13. Liu and Li obtained a sufficient condition for existence of these 13 limit

cycles [33,46], with the distribution of one large limit cycle bifurcating from the equator, which surrounds 12 small limit cycles

bifurcating from two symmetric foci. Around the same time, Li et al. obtained another example of 13 limit cycles by perturbing

a Hamiltonian system [46], and was confirmed later by using a computation method [47].

In this section, motivated by the work of Liu et al. [46], we will consider a cubic switching system, and apply our method and

formulas to show that there can exist at least 15 limit cycles in this system. The system to be considered is given by⎧⎪⎪⎨
⎪⎪⎩

dx

dt
= −y + 3x2y − 2a2xy2 − 2a3y3,

dy

dt
= x − x3 − 2a5xy2 − 2a6y3,

(y > 0),

⎧⎪⎪⎨
⎪⎪⎩

dx

dt
= −y + 3x2y − 2b2xy2 − 2b3y3,

dy

dt
= x − x3 − 2b5xy2 − 2b6y3,

(y < 0).

(4.12)

It is easy to see from system (4.12) that both the upper and lower half planes of this system are Z2 equivalent. This system

has three singular points at (0, 0) and (±1, 0), so we may only need to study the singular points (0, 0) and (1, 0) since the upper

and lower half planes of this system are Z2 equivalent.

First, consider the singular point (1, 0). By using the translation: u = x − 1, v = y, we can transfer the singular point (1, 0) of

system (4.12) to the origin of the following system:⎧⎪⎪⎨
⎪⎪⎩

du

dt
= −v − 3

2
(2 + u)uv + a2(1 + u)v2 + a3v3,

dv

dt
= u + 3

2
u2 + 1

2
u3 + a5(1 + u)v2 + a6v3,

(v > 0),

⎧⎪⎪⎨
⎪⎪⎩

du

dt
= −v − 3

2
(2 + u)uv + b2(1 + u)v2 + b3v3,

dv

dt
= u + 3

2
u2 + 1

2
u3 + b5(1 + u)v2 + b6v3,

(v < 0).

(4.13)

In the following, we will use our method to compute the focal values and obtain the necessary and sufficient conditions for the

origin of system (4.13) being a center.
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4.2.1. Center conditions of system (4.13)

By using a computer algebra system, the Lyapunov constants associated with the singular point (±1, 0) of system (4.12) are

obtained, as given in the following theorem.

Theorem 4.4. For system (4.13), the first seven Lyapunov constants at the origin are given by

λ1 = 4

3
(a5 − b5),

λ2 = 1

8
(−2a2 + 3a6 − 2b2 + 2a2b5 + 2b2b5 + 3b6)π,

λ3 = − 4

45

(
9a3 − 8a2b2 − 8b2

2 − 9b3 − 6a3b5 + 8a2b2b5

+ 8b2
2b5 + 6b3b5 + 12a2b6 + 12b2b6

)
.

(i) When b5 �= 3
2 ,

λ4 = (a2 + b2)

288(−3 + 2b5)

(
216 + 30a2b2 + 90b2

2 + 270b3 − 126b5 − 50a2b2b5 − 110b2
2b5 − 360b3b5 − 120b2

5 + 20a2b2b2
5

+ 20b2
2b2

5 + 120b3b2
5 + 72b3

5 − 45a2b6 + 45b2b6 + 30a2b5b6 − 150b2b5b6 − 270b2
6

)
π,

λ5 = 32(a2 + b2)2

14175

(
27a2 − 135b2 − 20a2

2b2 − 40a2b2
2 − 20b3

2 + 36a2b5 + 144b2b5 + 20a2
2b2b5 + 40a2b2

2b5 + 20b3
2b5

− 36a2b2
5 − 36b2b2

5 + 162b6 + 30a2
2b6 + 60a2b2b6 + 30b2

2b6 − 108b5b6

)
;

(ia) If b5 �= 1
18 (27 + 5(a2 + b2)

2),

λ6 = (a2 + b2)

92160
(
27 + 5a2

2 + 10a2b2 + 5b2
2 − 18b5

)2
(−3 + 2b5)(1 + 2b5)f1π,

λ7 = 8(a2 + b2)3(a2 − b2)3(−3 + 2b5)(1 + 2b5)(36 + 5(a2 + b2)2)

567
(
12 + 35a2

2 + 70a2b2 + 35b2
2

)(
27 + 5a2

2 + 10a2b2 + 5b2
2 − 18b5

)3
f2;

(ib) If b5 = 1
18 (27 + 5(a2 + b2)

2),

λ5 = − 32

25515
(a2 − b2)(a2 + b2)

3
(

36 + 5a2
2 + 10a2b2 + 5b2

2

)
,

λ6 = 1

933120b2

( − 15309b2
2 − 59805b4

2 − 173400b6
2 + 14000b8

2 − 91854b2b6

− 51030b3
2b6 + 340200b5

2b6 − 137781b2
6 + 229635b2

2b2
6

)
π,

λ7 = 4096

14467005
(−3 + 5b2

2

)b3
2

(
567 − 6b2

2 + 35b4
2

)(
9b2 + 20b3

2 + 27b6

)
;

(ii) When b5 = 3
2 ,

λ3 = −16

45
(a2 + b2)(b2 + 3b6),

λ4 = − 5

64
(a3 − b3)(b2 + 3b6)π,

λ5 = λ6 = 0,

λ7 = −759285

16384
a3

2a2
3b2

2b6π.

In the above expressions of λk, we have used λ1 = λ2 = ��� = λk − 1 = 0, for k = 2, ���, 7. Here,

f1 = − 69984 − 366120a2
2 − 40200a4

2 + 875a6
2 − 187920a2b2 − 312000a3

2b2 − 26250a5
2b2 − 366120b2

2

− 543600a2
2b2

2 − 112875a4
2b2

2 − 312000a2b3
2 − 171500a3

2b3
2 − 40200b4

2 − 112875a2
2b4

2 − 26250a2b5
2 + 875b6

2

+ 93312b5 + 289440a2
2b5 + 50400a4

2b5 + 578880a2b2b5 + 201600a3
2b2b5 + 289440b2

2b5 + 302400a2
2b2

2b5

+ 201600a2b3
2b5 + 50400b4

2b5 − 31104b2
5 − 90720a2

2b2
5 − 181440a2b2b2

5 − 90720b2
2b2

5,

f2 = 9072−24a2
2+35a4

2−48a2b2+140a3
2b2−24b2

2+210a2
2b2

2+140a2b3
2+35b4

2.

Next, we discuss the center conditions of system (4.13). From Theorem 4.4 we obtain the following result.
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Proposition 4.2. The first seven Lyapunov constants at the origin of system (4.13) become zero if and only if one of the following

conditions is satisfied:

a5 = b5, a3 = b3, a6 = −b6, a2 = −b2; (4.14)

a5 = b5 = a3 = b3 = −1

2
, a6 = a2, b6 = b2; (4.15)

a5 = b5 = 3

2
, a6 = a2 = 0, b2 = −3b6; (4.16)

a5 = b5 = 3

2
, a6 = −a2

3
, b2 = −3b6, a3 = 0. (4.17)

They are also the conditions for the origin of system (4.13) being a center.

Proof. When the conditions in (4.14) hold, system (4.13) becomes⎧⎪⎪⎨
⎪⎪⎩

du

dt
= −v − 3

2
(2 + u)uv − b2(1 + u)v2 + b3v3,

dv

dt
= u + 3

2
u2 + 1

2
u3 + b5(1 + u)v2 − b6v3,

(v > 0),

⎧⎪⎪⎨
⎪⎪⎩

du

dt
= −v − 3

2
(2 + u)uv + b2(1 + u)v2 + b3v3,

dv

dt
= u + 3

2
u2 + 1

2
u3 + b5(1 + u)v2 + b6v3,

(v < 0),

(4.18)

showing that the system is symmetric with the u-axis.

When the conditions in (4.15) are satisfied, system (4.13) can be rewritten as⎧⎪⎪⎨
⎪⎪⎩

du

dt
= −v − 3

2
(2 + u)uv + a2(1 + u)v2 − 1

2
v3,

dv

dt
= u + 3

2
u2 + 1

2
u3 − 1

2
(1 + u)v2 + a2v3,

(v > 0),

⎧⎪⎪⎨
⎪⎪⎩

du

dt
= −v − 3

2
(2 + u)uv + b2(1 + u)v2 − 1

2
v3,

dv

dt
= u + 3

2
u2 + 1

2
u3 − 1

2
(1 + u)v2 + b2v3,

(v < 0).

(4.19)

The upper half plane has an analytic first integral,

H1(u, v) = 1

4(1 + 2u + u2 + v2)
{1 + 2a2v + 2a2uv + 2v2 − 2a2(1 + 2u + u2 + v2)arctan

v

1 + u

+ (1 + 2u + u2 + v2) log[(1 + u)2 + v2]},
and the lower half plane has an analytic first integral,

H2(u, v) = 1

4(1 + 2u + u2 + v2)
{1 + 2b2v + 2b2uv + 2v2 − 2b2(1 + 2u + u2 + v2)arctan

v

1 + u

+ (1 + 2u + u2 + v2) log[(1 + u)2 + v2]},
showing that H1(u, 0) = H2(u, 0). So the origin of system (4.13) is a center.

When the conditions in (4.16) are satisfied, system (4.13) can be rewritten as⎧⎪⎪⎨
⎪⎪⎩

du

dt
= −v − 3

2
(2 + u)uv + a3v3,

dv

dt
= u + 3

2
u2 + 1

2
u3 + 3

2
(1 + u)v2,

(v > 0),

⎧⎪⎪⎨
⎪⎪⎩

du

dt
= −v − 3

2
(2 + u)uv − 3b6(1 + u)v2 + b3v3,

dv

dt
= u + 3

2
u2 + 1

2
u3 + 3

2
(1 + u)v2 + b6v3,

(v < 0).

(4.20)

The upper half plane of this system has an analytic first integral,

H3(u, v) = u2 + v2 + 1

2
u3 + 1

8
u4 − 1

4
a3v4 + 3

2
uv2 + 3

4
u2v2,

and the lower half plane has an analytic first integral,

H4(u, v) = u2 + v2 + 1

2
u3 + 1

8
u4 + b6v3 + b6uv3 − 1

4
b3v4 + 3

2
uv2 + 3

4
u2v2,
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indicating that H3(u, 0) = H4(u, 0), and so the origin of system (4.13) is a center.

When the conditions in (4.17) hold, system (4.13) becomes

⎧⎪⎪⎨
⎪⎪⎩

du

dt
= −v − 3

2
(2 + u)uv + a2(1 + u)v2,

dv

dt
= u + 3

2
u2 + 1

2
u3 + 3

2
(1 + u)v2 − a2

3
v3,

(v > 0),

⎧⎪⎪⎨
⎪⎪⎩

du

dt
= −v − 3

2
(2 + u)uv − 3b6(1 + u)v2 + b3v3,

dv

dt
= u + 3

2
u2 + 1

2
u3 + 3

2
(1 + u)v2 + b6v3.

(v < 0).

(4.21)

The upper half plane of this system has an analytic first integral,

H5(u, v) = u2 + v2 + 1

2
u3 + 1

8
u4 + 3

2
uv2 + 3

4
u2v2 − 1

3
a2(1 + u)v3,

and the lower half plane has an analytic first integral,

H6(u, v) = u2 + v2 + 1

2
u3 + 1

8
u4 − 1

4
b3v4 + b6(1 + u)v3 + 3

2
uv2 + 3

4
u2v2.

So H5(u, 0) = H6(u, 0), implying that the origin of system (4.13) is also a center. �

4.2.2. Bifurcation of limit cycles in system (4.12)

In this section, we study bifurcation of limit cycles in system (4.12). First, we consider the limit cycles bifurcating from the

symmetric singular points (±1, 0). From Theorem 4.4 we obtain the following result.

Theorem 4.5. The singular point (1, 0) or (− 1, 0) is a 7th-order weak focus of (4.12) if and only if

a5 = b5,

a6 = −27b2+5a2(27+4(a2+b2)2)−4(9b2+a2(36+5(a2+b2)2))b5+36(a2+b2)b2
5

6(27 + 5(a2 + b2)2 − 18b5)
,

a3 = − 1

20(27 + 5(a2 + b2)2 − 18b5)2

{
1000a3

2b2 + 324(3 − 2b5)
2(4 + 3b5)

− 125a4
2(1 + 6b5)+ 25b4

2(19 + 18b5)

− 720b2
2

(
−6 + b5 + 6b2

5

)
+ 30a2

2

[
36 − 168b5 + b2

2(95 + 90b5)
]

+ 40a2b2

[
b2

2(55 + 60b5)+ 9(33 + 4(5 − 3b5)b5)
]}

,

b3 = − 1

20(27 + 5(a2 + b2)2 − 18b5)2

{
360b2

2(3−14b5)+ 324(3−2b5)
2(4+3b5)

− 125b4
2(1 + 6b5)+ 200a3

2b2(11 + 12b5)+ 25a4
2(19 + 18b5)

+ 40a2b2

[
25b2

2 + 9(33 + 4(5 − 3b5)b5)
]

+ 30a2
2

[
b2

2(95 + 90b5)− 24
(
−6 + b5 + 6b2

5

)]}
,

b6 = 1

6(27 + 5(a2 + b2)2 − 18b5)

{
135b2+20a2

2b2(1−b5)+ 4b2

[
5b2

2(1 − b5)

− 9(4 − b5)b5] + a2

[
40b2

2(1 − b5)− 9(3 − 2b5)(1 + 2b5)
]}

,

with [b5 − 1
18 (27 + 5(a2 + b2)

2)](b5 − 3
2 )(a2 + b2)(2b5 + 1)(6b5 − 13) �= 0.

Proof. When [b5 − 1
18 (27 + 5(a2 + b2)

2)](b5 − 3
2 )(a2 + b2)(2b5 + 1)(6b5 − 13) �= 0, solving λ1 = λ2 = λ3 = λ4 = λ5 = 0 (λi, i =

1, 2, . . . , 5, given in Theorem 4.4) yields the solutions given in Theorem 4.5. Moreover, it is easy to verify that there is no real

solutions for f2 = 0, which implies that (0, 0) is a 7th-order weak focus of (4.13), so (1, 0) and (−1, 0) are 7th-order weak focuses

of (4.12). �

Further, we have the following theorem.
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Theorem 4.6. When (0, 0) is a 7th-order weak focus points, seven small-amplitude limit cycles can bifurcate from the origin (0, 0) of

the perturbed system of (4.13):⎧⎪⎪⎨
⎪⎪⎩

du

dt
= δ1u − v − 3

2
(2 + u)uv + a2(1 + u)v2 + a3v3,

dv

dt
= u + δ1v + 3

2
u2 + 1

2
u3 + a5(1 + u)v2 + a6v3,

(v > 0),

⎧⎪⎪⎨
⎪⎪⎩

du

dt
= δ2u − v − 3

2
(2 + u)uv + b2(1 + u)v2 + b3v3,

dv

dt
= u + δ2v + 3

2
u2 + 1

2
u3 + b5(1 + u)v2 + b6v3,

(v < 0),

(4.22)

where 0 < δ1, δ2 � 1.

Proof. When the origin of is a 7th-order weak focus, we find that

det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dλ1

da5

dλ1

da6

dλ1

da3

dλ1

db3

dλ1

db6

dλ1

db5

dλ2

da5

dλ2

da6

dλ2

da3

dλ2

db3

dλ2

db6

dλ2

db5

dλ3

da5

dλ3

da6

dλ3

da3

dλ3

db3

dλ3

db6

dλ3

db5

dλ4

da5

dλ4

da6

dλ4

da3

dλ4

db3

dλ4

db6

dλ4

db5

dλ5

da5

dλ5

da6

dλ5

da3

dλ5

db3

dλ5

db6

dλ5

db5

dλ6

da5

dλ6

da6

dλ6

da3

dλ6

db3

dλ6

db6

dλ6

db5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dλ1

da5

dλ1

da6

dλ1

da3

dλ1

db3

dλ1

db6

0
dλ2

da6

dλ2

da3

dλ2

db3

dλ2

db6

0 0
dλ3

da3

dλ3

db3

dλ3

db6

0 0 0
dλ4

db3

dλ4

db6

0 0 0 0
dλ5

db6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

× dλ6

db5

= 8(a2 + b2)2
(
27 + 5a2

2 + 10a2b2 + 5b2
2 − 18b5

)
(−3 + 2b5)2π2

42525
f3,

where

f3 = 35(a2 − b2)2
(−12 + 5a2

2 + 10a2b2 + 5b2
2

)
8

(
12 + 35a2

2 + 70a2b2 + 35b2
2

) (
36 + 5a2

2 + 10a2b2 + 5b2
2

)
× ( − 93312 − 434160a2

2 − 40200a4
2 + 875a6

2 − 324000a2b2 − 312000a3
2b2

− 26250a5
2b2 − 434160b2

2 − 543600a2
2b2

2 − 112875a4
2b2

2 − 312000a2b3
2

− 171500a3
2b3

2 − 40200b4
2 − 112875a2

2b4
2 − 26250a2b5

2 + 875b6
2

+ 62208b5 + 198720a2
2b5 + 50400a4

2b5 + 397440a2b2b5 + 201600a3
2b2b5

+ 198720b2
2b5 + 302400a2

2b2
2b5 + 201600a2b3

2b5 + 50400b4
2b5

)
.

Moreover, we obtain

Resultant [f1, f3, b2]
= 114829757638306762275116811878400000000000000000000000000

× (
3 + 35a2

2

)2(
27 + 20a2

2 − 18b5

)4
(2b5 − 3)6(2b5 + 1)10(6b5 − 13)4 �= 0.

This shows that for 0 < δ1, δ2 � 1, seven small-amplitude limit cycles can bifurcate from the origin (0, 0) of the perturbed system

of (4.13). �
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x

y

Fig. 8. Distribution of 15 limit cycles in system (4.12).
Theorem 4.6 yields that seven small-amplitude limit cycles can bifurcate from (1, 0) of system of (4.12). So seven small-

amplitude limit cycles can bifurcate from (−1, 0) of system of (4.12) because the upper and lower half planes of this system are

Z2 equivalent. Now, for the conditions under which there exist 14 limit cycles around (±1, 0), we show that the origin of system

(4.12) may be a center or focus. More precisely, we can prove that the first Lyapunov constant evaluated at the origin is given by

u1 = −1

4
(8a2 + 24a6 − b2 − 3b6)π. (4.23)

Then, it is easy to verify that when (±1, 0) are 7th-order weak focus points,

u1 = 2b5 − 3

8(27 + 5(a2 − b2)2 − 18b5)

(
513a2 + 80a3

2 − 135b2 + 150a2
2b2 + 60a2b2

2 − 10b3
2 − 126a2b5 − 126b2b5

)
π �= 0,

implying that when (±1, 0) of system (4.12) are 7th-order weak focus points, the origin is a first-order weak focus. Hence, system

(4.12) can have at least 15 limit cycles, with 14 of them around the two symmetric singular points (±1, 0) and one around the

origin (0, 0).

Summarizing the above results gives the following theorem.

Theorem 4.7. System (4.12) can have 15 limit cycles with the 7
⋃

1
⋃

7 distribution around the singular points, (−1, 0), (0, 0) and (1,

0), respectively.

The distribution of the 15 limit cycles is illustrated in Fig. 8.

5. Conclusion

In this paper, a modified, computationally efficient method is present for computing the focal values and period constants of

switching systems associated with elementary singular points. We have proved using our method that a cubic switching system

can have at least 15 limit cycles. This is a new best result obtained so far for cubic switching systems.
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