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In this paper, the impact of the strong Allee effect and ratio-dependent Holling–Tanner func-
tional response on the dynamical behaviors of a predator–prey system is investigated. First, the
positivity and boundedness of solutions of the system are proved. Then, stability and bifurcation
analysis on equilibria is provided, with explicit conditions obtained for Hopf bifurcation. More-
over, global dynamics of the system is discussed. In particular, the degenerate singular point
at the origin is proved to be globally asymptotically stable under various conditions. Further,
a detailed bifurcation analysis is presented to show that the system undergoes a codimension-1
Hopf bifurcation and a codimension-2 cusp Bogdanov–Takens bifurcation. Simulations are given
to illustrate the theoretical predictions. The results obtained in this paper indicate that the
strong Allee effect and proportional dependence coefficient have significant impact on the fun-
damental change of predator–prey dynamics and the species persistence.

Keywords : Strong Allee effect; Hopf bifurcation; saddle-node bifurcation; Bogdanov–Takens
bifurcation; global dynamics.

1. Introduction

There are many interaction forms between species
in the ecological environment, such as competi-
tion, predation, cooperation and so on. Predator–
prey interaction, which is regarded as the most
important basic interspecies relations whenever in

ecological or social respects, has been explored
for many years. Lotka [1925] and Volterra [1926]
constructed the predator–prey differential equation
model (called Lotka–Volterra equation) in 1920s,
which was the first attempt for people to discover
ecological laws. After their pioneering work, the
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traditional predator–prey models attracted the
interest of many researchers [Berryman, 1992;
Bazykin, 1998; Freedman, 1980; Huo & Li, 2004;
Ruan & Xiao, 2000; Yan & Li, 2006; Zeng et al.,
2020].

For the most predator–prey models, the prey
is usually assumed to grow with a Logistic pattern.
However, in 1930s, Allee and Aggregations [1931]
posed a critical question: Does there exist a minimal
number for a species, which guarantees its survival
in nature? Allee discussed the significant impact of
crowding on demography and life disposition, and
found that the growth rate of small density is not
always positive, nor can it decrease as much as the
Logistic model. Therefore, species may have the
growth rate of Allee effect due to mate restriction,
cooperative feeding between species, dispersion of
species in space and habitat change [Arancibia-
Ibarra & Flores, 2021; Sen et al., 2022]. Mathemati-
cally, the most common continuous growth equation
with the Allee effect takes the form:

dx

dt
= r

(
1 − x

K

)
(x − A)x,

where x = x(t) represents the prey size for t ≥
0, and A measures the Allee effect. The so-called
strong Allee effect and weak Allee effect are defined
by the positive (A > 0) or the negative (A < 0) crit-
ical threshold, respectively [Sen et al., 2022; Wang
et al., 2011; Wang & Kot, 2002]. A strong Allee
effect implies that the per capita growth rate is neg-
ative in the limit of a low density; while if the per
capita growth is positive when it has a zero den-
sity, then it is called weak Allee effect. The Allee
effect can emerge at the population level due to
a variety of mechanisms including enhancement in
foraging efficiency, reproductive facilitation, collec-
tive defense and the modification of environmental
conditions by organisms. Generally speaking, the
Allee effect indicates that the prey population has
a positive density-dependent growth rate when it
has a low density, which is recognized as the prey
may have a growth rate [Boukal et al., 2007; Gas-
coigne & Lipcius, 2004; Lewis & Kareiva, 1993;
Morozov et al., 2006]. It should be noted that
the Allee effect may have different forms in differ-
ent cases. For instance, the well-known depensation
phenomenon in fishing models generates a negative
competition effect in the case where the growth rate
of the population is negative, leading to the exis-
tence of an extinction threshold [Ni & Wang, 2017;
Zeng & Yu, 2022; Verma & Misra, 2018].

Among the widely used mathematical models in
theoretical ecology, the Leslie–Gower prey–predator
model plays a special role because of its fundamen-
tal dynamics, and it is considered as a prototypi-
cal prey–predator system [May, 1998; Pielou, 1969;
Pal & Mandal, 2014]. The classical Leslie–Gower
prey–predator model proposed by Leslie and stud-
ied by [Leslie & Gower, 1960] is described by the
following equations:






u̇ = u(1 − u) − βuv,

v̇ = cv
(
1 − v

u

)
,

(1)

where the dot represents differentiation with respect
to time t, u = u(t) and v = v(t) denote the
population densities of the prey and the predator
at time t, respectively. The positive constants β
and c denote the maximum per capita consump-
tion rate of predators and the intrinsic growth rate
of the predator, respectively. It is known that sys-
tem (1) has a globally asymptotically stable equi-
librium [Korobeinikov, 2001] and many research
results have been obtained [Ni & Wang, 2017; Song
et al., 2009].

The predatory functional response is often
used to describe the transfer of nutrient levels
between prey and predator populations, and many
well-known functional response functions including
Holling types I, II, III [Holling, 2004] have been
widely applied in research. In reality, they are func-
tions that reflect differences in energy transfer pat-
terns in nature or the ability of predators to capture
prey. A more realistic functional response function
should be not only related to the prey, but also
related to the predator [Artidi & Ginzburg, 1989;
Boukal et al., 2007; Hsu et al., 2001a, 2001b]. The
discussion on the historical biological relevance of
the classical prey-dependent model and the ratio-
dependent model is available [Arino et al., 2004].
Furthermore, many authors analyzed the biological
significance of the ratio-dependent response func-
tion [Kuang & Beretta, 1998], and showed that
it could be derived from the Michaelis–Menten
(or the Holling type II) functional response mvx

a+x
[Freedman, 1980]. When x = u

v , it generates the
ratio-dependent response functional in the form
of muv

u+av . Moreover, they also discussed that the
ratio-dependent predator–prey models exhibit rich
dynamics in boundary-value problems. Modeling
and analysis of predator–prey systems in each
particular case should be further developed in
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accordance with ratio dependence theory, which
have been studied for the last 30 years [Beretta &
Kuang, 1998; Lajmiri et al., 2018; Mainul, 2009;
Xiao & Ruan, 2018; Zhang et al., 2022].

In this paper, we will consider the Leslie–Gower
predator–prey model which has a ratio-dependent
functional response and involves the strong Allee
effect for the predator consuming the prey. The
model is given as follows:






u̇ = u

[
1
b
(1 − u)(u − b) − mv

u + av

]
,

v̇ = cv
(
1 − v

u

)
,

u(0) = u0 ≥ 0, v(0) = v0 ≥ 0,

(2)

where all parameters a, b, c and m take positive
values. m is the capturing rate of prey by predator.
a and c, respectively, represent the saturation rate
of the predator and a measure of the growth rate
of the predator. The parameter b is restricted to
b ∈ (0, 1), representing the Allee threshold value: A
strong Allee effect introduces a population thresh-
old, and the population must surpass this threshold
to grow.

The role of the strong Allee effect in population
dynamics has been largely addressed in the the-
oretical literature. In this paper, we will consider
the dynamics of system (2). In order to simplify
the analysis of system, a feedback control law is
obtained which stabilizes the closed loop system
[Arancibia-Ibarra et al., 2019; Arancibia-Ibarra &
Flores, 2021]. Since system (2) includes the ratio-
dependent functional responses muv

u+av and v
u , it is

challenging to study the local topological structure
near the origin since it is a degenerate singular
point and usually the blow-up approach is applied.
We will establish the positivity and boundedness
of the solutions of system (2), and give a detailed
study on the stability and bifurcation of equilibrium
solutions. There exist a trivial equilibrium at the
origin, two boundary equilibria and one or two pos-
itive (interior) equilibria. In particular, the degen-
erate singular point at the origin is proved to be
globally asymptotically stable under various condi-
tions. Moreover, we will show that both Hopf and
Bogdanov–Takens (BT) bifurcations can occur from
the positive equilibrium, and prove that the codi-
mension of the Hopf bifurcation is one, implying
that there does not exist generalized Hopf bifur-
cation. The codimension of the BT bifurcation is

shown as two and detailed bifurcation curves on
the saddle-node, Hopf and homoclinic loop bifur-
cations are given. Numerical simulations are pre-
sented to illustrate the theoretical results, including
the global trapping region, typical bifurcation dia-
grams, showing the global dynamical behaviors of
system (2).

The rest of the paper is organized as follows.
In Sec. 2, the positivity and boundedness of the
solutions of system (2) are established. In Sec. 3,
we give analysis on the stability and bifurcation
of equilibria. Section 4 is devoted to consider the
topological structure of the origin and derive the
conditions under which (0, 0) is globally asymptot-
ically stable, and discuss the dynamical properties
of the solutions of system (2). In Sec. 5, we fur-
ther study saddle-node, Hopf and BT bifurcations,
and pay attention to their codimensions. Simula-
tions are present in Sec. 6, and the conclusion is
drawn in Sec. 7.

2. Positivity and Boundedness
of Solutions

The solutions of a biological system are usually
positive and bounded. Thus, in this section, we
prove the following theorem for the positivity and
boundedness of the solutions of system (2).

Theorem 1. The solutions of system (2) are posi-
tive provided the initial conditions are positive, and
they are bounded.

Proof. It is easy to show that the solutions of
system (2) are positive provided that the initial
conditions are positive. By variation of parameters,
we can write the solutions of system (2) as

u(t) = u(0)e
R t
0[

1
b (1−u(s))(u(s)−b)− mv(s)

u(s)+av(s) ]ds
, t > 0

v(t) = v(0)ce
R t
0[1−

v(s)
u(s) ]ds, t > 0,

which clearly indicates that for t > 0, u(t) > 0 if
u(0) > 0 and v(t) > 0 if v(0) > 0.

Proving the boundedness of the solutions is not
straightforward. First, note that the u-axis (v = 0)
is invariant, and that du

dt → 0+ and dv
dt → −∞ as

u → 0+. This implies that trajectories of system (2)
cannot cross the u-axis and v-axis. Thus, we con-
struct a triangle trapping region, bounded by the
u-axis, v-axis and the line:

L : u +
4am

c(a + 1)2
v = k,
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where the positive constant k is to be determined.
Let

Q(u, v) = u +
4am

c(a + 1)2
v,

which is positive definite and radially unbounded,
with Q(0, 0) = 0. Then, differentiating Q with
respect to time t and evaluating it along the tra-
jectory of system (2), we obtain

dQ

dt

∣∣∣∣
(2)

=
du

dt
+

4am

c(a + 1)2
dv

dt

=
u

b
(1 − u)(u − b) − muv

u + av

+
4am

(a + 1)2
v
(
1 − v

u

)

=
u

b
(1 − u)(u − b) − 4a2m v

(a + 1)2u(u + av)

×
(

v − a − 1
2a

u

)2

.

It is obvious that dQ
dt |(2) < 0 for u ∈ (0, b] ∪ [1,∞)

and v ∈ (0,∞). Thus, we only need to consider
u ∈ (b, 1) for two cases: a ≤ 1 and a > 1.

When a ≤ 1, we have u(u + av) < 1 + v and
v + 1−a

2a u ≥ v. Moreover, it is easy to show that the
term u

b (1 − u)(u − b) has its maximal value,

α1 =
(1 + b)(2 − b)(1 − 2b) + 2(1 − b + b2)

3
2

27b

> 0, (3)

for 0 < b < 1. Hence, we obtain dQ
dt |(2) < α1− a2mv3

1+v ,
for which there exists ṽ1 > 0 such that

dQ

dt

∣∣∣∣
(2)

< α1 −
a2mv3

v + 1

= − a2m

v + 1

[
v3 − α1

a2m
(v + 1)

]

< 0

for v > ṽ1. To determine ṽ1, we use the equation:

ṽ3
1 −

α1

a2m
(ṽ1 + 1) > ṽ3

1 − ṽ1 −
α1

a2m
(ṽ1 + 1)

= (ṽ1 + 1)
(
ṽ2
1 − ṽ1 −

α1

a2m

)

≥ 0,

which yields

ṽ1 ≥ 1
2

(
1 +

√
1 +

4α1

a2m

)
,

and thus ṽ1 can be taken as

ṽ1 =
1
2

(

1 +
√

1 +
4α1

a2m

)

. (4)

Therefore, for a ≤ 1, we choose k for the line L as

k1 = 1 +
4am

c(a + 1)2
ṽ1

= 1 +
2am

c(a + 1)2

(
1 +

√
1 +

4α1

a2m

)
. (5)

Next, consider a > 1. We take v > a−1
2a u, and

obtain v
u+av > a−1

a(a+1) . Then,

dQ

dt

∣∣∣∣
(2)

<
u

b
(1 − u)(u − b)

− 4a(a − 1)m
(a + 1)3u

(
v − a − 1

2a
u

)2

=
1
u

[
u2

b
(1 − u)(u − b)

− 4a(a − 1)m
(a + 1)3

(
v − a − 1

2a
u

)2
]

<
1
u

[
α2 −

4a(a − 1)m
(a + 1)3

(
v − a − 1

2a
u

)2
]
,

where α2 is the maximal value of u2

b (1 − u)(u − b)
in b < u < 1, given by

α2 =
27(1 + b4) − 36b(1 + b2) + 2b2 + (1 + b)(9 − 14b + 9b2)

3
2

512b
> 0 (6)

for 0 < b < 1. This again shows that there exists ṽ2 > 0 such that

dQ

dt

∣∣∣∣
(2)

<
1
u

[
α2 −

4a(a − 1)m
(a + 1)3

(
v − a − 1

2a
u

)2
]
≤ 0
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for v > ṽ2. To determine ṽ2, we use the equation:
(

ṽ2 −
a − 1
2a

u

)2

≥ (a + 1)3α2

4a(a − 1)m
⇒ ṽ2

≥ a − 1
2a

u +
a + 1

2

√
(a + 1)α2

a(a − 1)m
,

and thus we can take

ṽ2 =
a − 1
2a

+
a + 1

2

√
(a + 1)α2

a(a − 1)m
. (7)

Hence, for a > 1, we choose k for the line L as

k2 = 1 +
4am

c(a + 1)2
ṽ2

= 1 +
2am

c(a+ 1)2

(
a− 1

a
+ (a+ 1)

√
(a+ 1)α2

a(a− 1)m

)
.

(8)
Now, we use (5) and (8) to take k = max{k1,

k2}, and then construct the trapping region, defined
by

Ω0 =
{

(u, v) |u ≥ 0, v ≥ 0, u +
4am

c(a + 1)2
v ≤ k

}
,

(9)
which attracts all trajectories starting from any ini-
tial points in the first quadrant of the u–v plane.
The trapping area is shown in Fig. 1.

This finishes the proof for Theorem 1. !

Thus, in the following analysis, we only need to
consider the solutions restricted to Ω0. Note that

Fig. 1. The trapping region Ω0 for system (2), bounded by
the u-axis, v-axis and the straight line L in the first quadrant
of the u–v plane, where ṽ = ṽ1 for 0 < a ≤ 1 and ṽ = ṽ2 for
a > 1.

the triangle trapping region Ω0 may be reduced to
the Trapezoidal region Ω̃0, defined by

Ω̃0 =
{

(u, v) | 0≤ u≤ 1, v≥ 0, u+
4am

c(a+ 1)2
v≤ k

}
.

(10)

3. Stability and Bifurcation
of Equilibria

In this section, we focus on investigating the exis-
tence and stability conditions of the equilibria of
system (2). To achieve this, letting the right-hand
side of system (2) equal zero, we have

u

b
(1 − u)(u − b) − muv

u + av
= 0 and

cv
(
1 − v

u

)
= 0,

which yields the following equilibrium solutions:

E0 : (0, 0), Trivial equilibrium,

E1 : (1, 0), Boundary equilibrium,

E2 : (b, 0), Boundary equilibrium,

E3 : (u3, u3), Positive equilibrium,

(11)

where u3 is the positive root of the quadratic
polynomial:

F1(u3) = u2
3 − (b + 1)u3 + b

(
1 +

m

a + 1

)
. (12)

The equilibrium (0, 0) is a degenerate singular
point. The topological structure near this singular
point is complex and will be discussed in the follow-
ing section using the “blow-up” approach.

Define

m∗ =
(a + 1)(1 − b)2

4b
, ∆ = 4b(a + 1)(m∗ − m),

(13)

and the parameter space,

Γ4 = {γ = (a, b,m, c) |

a > 0, c > 0,m > 0, 0 < b < 1}. (14)

Then, for the existence and stability of the nonzero
equilibria Ek, k = 1, 2, 3, we have the following
theorem.

Theorem 2. For system (2), the equilibria E1 and
E2 exist for any feasible parameter γ ∈ Γ4, while
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the equilibrium E3 exists for γ ∈ Γ4 and if





m = m∗ : u3 =
1
2
(1 + b),

yielding one equilibrium: E3 = (u3, u3) or

m < m∗ : u3± =
1
2

(

1 + b ±
√

∆
a + 1

)

,

yielding two equilibria: E3± = (u3±, u3±),

(15)

satisfying b < E3, E3± < 1. E1 is a saddle and E2

is an unstable node for any γ ∈ Γ4. When m < m∗,
E3 does not exist. When m = m∗, E3 is a degener-
ate stable (unstable) node if c > cu (c < cu). When
m < m∗, E3− is a saddle point, while E3+ is Locally
Asymptotically Stable (LAS) if one of the following
three conditions holds: (i) c ≥ cu, (ii) c < cu when
m ≤ m∗, (iii) c < min{1 − b, cu} or c ∈ [1 − b, cu)
with b < 1

4a+5 when m∗ < m < mH(< m∗), and is
unstable for mH < m < m∗. Hopf bifurcation occurs
from E3+ at the critical point m = mH . Here,

cu =
(1 − b)2

4b(a + 1)
=

m∗

(a + 1)2
,

m∗ =
[(1 − b)2 + 2bc](a + 1)2

2b(2a + 3)
,

mH =
1

2b(2a + 3)2
{(a + 1)2[(a + 2)(1 − b)2

− 4b(a + 1) + 2bc(2a + 3)] +
√

∆1},

∆1 = (a + 1)4(1 + b)2[a2(1 + b)2 + 4a(1 + b2)

+ 4(1 − b + b2) − 4bc(2a2 + 5a + 3)].
(16)

Proof. The existence conditions for the equilibria
E1 and E2 are obvious. For the equilibrium E3,
it suffices to consider the real positive solutions
of F1 = 0, which depends upon ∆: when ∆ < 0
(m > m∗), F1 = 0 has no real roots; when ∆ = 0
(m = m∗), F1 = 0 has one positive real root; and
when ∆ > 0 (m < m∗), F1 = 0 has two positive
real roots. This gives the equilibrium E3 and E3±
in (15). It is obvious that b < u3 < 1. Moreover, a
direct computation shows that

b < u3− < u3+ < 1 for m < m∗.

To find the stability of equilibria, we calculate
the Jacobian of system (15) to obtain

J(u, v) =





−1
b
[3u2 − 2(1 + b)u + b] − mav2

(u + av)2
− mu2

(u + av)2

cv2

u2
c

(
1 − 2v

u

)




. (17)

Evaluating J at E1 and E2 yields

J(E1) =




1 − 1

b
−m

0 c



,

J(E2) =

[
1 − b −m

0 c

]
,

which clearly indicates that E1 is a saddle point and
E2 is an unstable node for any γ ∈ Γ4.

Next, evaluating J at E3, which exists for m =
m∗, gives the trace and determinant of J(E3) as

Tr(J(E3)) = −(c − cu), det(J(E3)) = 0, (18)

showing that E3 is a degenerate singular point. We
apply center manifold theory to further consider the
stability of E3. We introduce the transformation,

(
u

v

)
=





1
2
(1 + b)

1
2
(1 + b)




+

[
1 cu

1 c

](
x1

x2

)
, (19)

into (2) to obtain the following system:





ẋ1 = − c (1 + b)
4b(a + 1)(c − cu)

×
[
2(a + 1)x2

1 +
(1 − b)2

b
x1x2 + · · ·

]
,

ẋ2 = −(c − cu)x2 +
c(1 + b)

4b(a + 1)(c − cu)

×
[
2(a + 1)x2

1 +
(1 − b)2

b
x1x2 + · · ·

]
.
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Assume the center manifold is expressed as x2 =
h2x2

1. Then, using ẋ2 = 2h2x1ẋ1 together with the
above equations we find h2, leading to the center
manifold,

CM =
{

(x1, x2)
∣∣∣∣

x2 =
8b(1 + b)(a + 1)2

[4b(a + 1)(c − cu)]2
x2

1 + O(x3
1)
}

,

(20)

and the differential equation describing the dynam-
ics on the CM, given by

ẋ1 = − 2c(1 + b)(a + 1)
4b(a + 1)(c − cu)

x2
1 + O(x3

1), (21)

which, together with (18), clearly shows that E3

is a degenerate stable (unstable) node for c > cu

(c < cu). When m = m∗ and c = cu, the system
undergoes BT bifurcation, which will be discussed
later in Sec. 5.3.

Now, consider the stability of E3− and E3+

which exist for m < m∗. Evaluating J at E3−, we
obtain the determinant

det(J(E3−))

= − 2c

(a + 1)(a + 1 + m)

[

1 +
(1 + b)

√
a + 1√

4b(m∗ − m)

]

< 0,

implying that E3− is a saddle. Similarly, evaluating
the Jacobian at E3+ we have

det(J(E3+))

=
c
√

m∗ − m√
b(a + 1)

[

1 + b +
√

4b
a + 1

(m∗ − m)

]

> 0.

Hence, the stability of the equilibrium E3+ is deter-
mined by the trace of J(E3+), which is given by

Tr(J(E3+)) = − 1
2b

[
(1 − b)2 + 2bc − 2bm(2a + 3)

(a + 1)2

+ (b + 1)
√

4b
a + 1

(m∗ − m)

]

.

In the following, we derive the stability of E3+

and the condition for Hopf bifurcation from E3+,

expressed in terms of the system parameters. First,
it is easy to see that Tr(J(E3+)) < 0 for

(1 − b)2 + 2bc − 2bm(2a + 3)
(a + 1)2

≥ 0,

which is combined with m < m∗ to yield

c < cu, m ≤ m∗ or c ≥ cu, m < m∗, (22)

under which E3+ is asymptotically stable, where cu,
m∗ and m∗ are given in (15) and (16), respectively.

On the other hand, when

(1 − b)2 + 2bc − 2bm(2a + 3)
(a + 1)2

< 0,

we have

m∗ < m < m∗, which requires c < cu.

Then,

Tr(J(E3+)) ≷ 0

⇔ (b + 1)
√

(1 − b)2 − 4bm
a + 1

+ (1 − b)2

+ 2bc − 2bm(2a + 3)
(a + 1)2

≶ 0,

which is equivalent to G̃1 = − 4b
(a+1)2 G1 ≶ 0, where

G1 = b(2a + 3)2m2 − (a + 1)2[(a + 2)(1 − b)2

− 4b(a + 1) + 2bc(2a + 3)]m

+ (c + b − 1)(1 − b + bc)(a + 1)4. (23)

Thus,

Tr(J(E3+)) ≷ 0 ⇔ G1 ≷ 0.

The discriminant of G1 equals ∆1 given in (16). A
direct computation shows that

∆1 > ∆1|c=cu = (a + 1)6(b + 1)4 > 0,

implying that G1 always has two real roots,
denoted by

m± =
1

2b(2a + 3)2
{(a + 1)2[(a + 2)(1 − b)2

− 4b(a + 1) + 2bc(2a + 3)] ±
√

∆1}.

We consider two cases for G1: (i) c + b − 1 < 0
yielding c < min{1 − b, cu}, and (ii) c + b − 1 ≥ 0,
giving c ∈ [1 − b, cu), which requires b < 1

4a+5 . For
the case (i), m− < 0 < m+. Further, it can be
shown that

G1|m=m∗ < 0, G1|m=m∗ > 0,

2450092-7

In
t. 

J. 
Bi

fu
rc

at
io

n 
Ch

ao
s 2

02
4.

34
. D

ow
nl

oa
de

d 
fro

m
 w

w
w

.w
or

ld
sc

ie
nt

ifi
c.

co
m

by
 T

H
E 

U
N

IV
ER

SI
TY

 O
F 

W
ES

TE
RN

 O
N

TA
RI

O
 o

n 
07

/2
4/

24
. R

e-
us

e 
an

d 
di

str
ib

ut
io

n 
is 

str
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s a

rti
cl

es
.



June 6, 2024 16:31 WSPC/S0218-1274 2450092

W. Lou et al.

implying that m∗ < m+ < m∗, since G1 is a
quadratic polynomial in m, leading to a graph of
parabola open in the upwards direction. Hence, for
the case (i), we have

E3+






LAS for c < min{1 − b, cu},
m∗ < m < mH ,

unstable for c < min{1 − b, cu},
mH < m < m∗,

(24)

where

mH = m+.

Next, consider the case (ii). We first show that
under the conditions c ∈ [1 − b, cu) and b < 1

4a+5 ,

the following holds:

(a + 2)(1 − b)2 − 4b(a + 1) + 2bc(2a + 3)

> (a + 2)(1 − b)2 − 4b(a + 1)

+ 2b(1 − b)(2a + 3)

=
1 + b

2b(2a + 3)
[a + 2 − (3a + 4)b]

>
4

(4a + 5)2
(a + 1)(2a + 3)2

> 0,

indicating that G1 has two positive roots: 0 <
m− < mH . It has been shown in the above that
m∗ < mH < m∗. Further, a direct calculation shows

(a) (b)

(c)

Fig. 2. Bifurcation diagrams: (a) with one perturbation parameter projected on the m-u plane without Hopf bifurcation;
(b) with one perturbation parameter projected on the m–u plane with Hopf bifurcation; and (c) with two perturbation param-
eters plotted on the m–c plane with fixed a = b = 0.1. The solid and dashed curves in (a) and (b) denote, respectively, the
stable and unstable equilibria. SD, H, BT, S, US, LC and HL represent the saddle-node bifurcation, Hopf bifurcation, BT
bifurcations, stable, unstable, limit cycle and homoclinic loop, respectively.
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that m− < m∗. Therefore, we have the results for
the case (ii):

E3+






LAS for b <
1

4a + 5
, c ∈ [1 − b, cu),

m∗ < m < mH ,

unstable for b <
1

4a + 5
, c ∈ [1 − b, cu),

mH < m < m∗.

(25)

Summarizing the above results proves Theorem 2.
!

Using Theorem 2, typical bifurcation diagrams
with one perturbation parameter m are obtained,
as shown in Figs. 2(a) and 2(b), one without Hopf
bifurcation [Fig. 2(a)] and one with Hopf bifurcation
[Fig. 2(b)]. These two bifurcation diagrams clearly
indicate the relation between the equilibrium solu-
tions and the bifurcation parameter m. It is cer-
tainly possible to have more parameters involved in
bifurcation diagram. Such a bifurcation diagram, as
the one given in Fig. 2(c) using m and c as two bifur-
cation parameters (with fixed a = b = 0.1 to match
the numerical bifurcation diagram shown in Fig. 7),
can show bifurcation relation between more param-
eters (with more freedom), but its shortcoming is
not able to directly demonstrate the relation of the
perturbation parameters with the state variables. It
is shown in Fig. 2(c) that the saddle-node bifurca-
tion occurs from the red critical line (m = m∗), and
no positive equilibria exist for m > m∗. Two pos-
itive equilibria E3± emerge from the saddle-node
bifurcation, and E3− is always a saddle, while Hopf
bifurcation happens from E3+ at the blue critical
curve (m = mH). E3+ is asymptotically stable in
the region on the left side of the blue and red curves,
and unstable in the region bounded by the blue and
red curves. The BT bifurcation occurs at the inter-
section point of the saddle-node and Hopf bifurca-
tions, where the two positive equilibria E3± coin-
cide into a single positive equilibrium E3. Note that
the numerical bifurcation diagram given in Fig. 7,
obtained by using MATCONT, shows the homo-
clinic loop bifurcation curve, while Fig. 2(c) does
not show this curve. The Hopf and BT bifurca-
tions and their simulations will be discussed in more
detail in the following two sections.

4. Global Dynamical Properties
of the Solutions

In the previous section, we focused on the local
dynamical behaviors of system (2) near equilibrium
solutions. In this section, we will discuss some global
properties on the solutions of system (2) and pro-
vide estimates for the solutions to verify the popu-
lation threshold. Since the positivity and bounded-
ness of the solutions of system (2) have been proved
in Sec. 2, with the attracting region Ω0 defined
in (9), in the following, we only need to consider
the solutions bounded by Ω0.

For convenience, we list here some notations
used in Sec. 3

m∗ =
(a + 1)(1 − b)2

4b
, cu =

m∗

(a + 1)2
,

∆ = 4b(a + 1)(m∗ − m), u3 = v3 =
1
2
(1 + b),

u3± = v3± =
1
2

(

1 + b ±
√

∆
a + 1

)

.

First, it is noted from the reaction terms muv
u+av and

v
u that system (2) is not well defined at the origin
(0, 0). However, considering the biological meanings
of (0, 0), it is important to discuss the dynamical
behavior around the singular point (0, 0). So, we
redefine system (2) as






u̇ = u

[
1
b
(1 − u)(u − b) − mv

u + av

]
,

v̇ = cv
(
1 − v

u

)
,

u̇ = v̇ = 0, when (u, v) = (0, 0).

(26)

It is easy to show that system (26) is continuous and
satisfies the Lipschitz condition in the closed first
quadrant in the u–v-plane, denoted by I = {(u, v) :
u ≥ 0, v ≥ 0}. However, system (26) cannot be lin-
earized at (0, 0), and thus the local stability of (0, 0)
cannot be studied. Since we are only interested in
the dynamics of system (26) in the interior of the
first quadrant, namely, in I+ = {(u, v) : u > 0, v >
0}, with the blow-up approach we can make a time
rescaling, dt = u(u + av)dτ , such that system (26)
is equivalent to the following system in I+:

du

dτ
= U3(u, v) + Φ(u, v),

dv

dτ
= V3(u, v), (27)
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where U3 and V3 are the third-degree homogeneous
polynomials in u and v, and Φ is a higher-degree
polynomial, given by

U3(u, v) = −u2[u + (a + m)v],

V3(u, v) = c v
(
1 − v

u

)
, (28)

Φ(u, v) =
1
b
u3(1 + b − u)(u + av).

It is easy to see that system (27) is analytic in a
neighborhood of the origin. By Theorem 3.10 in
[Zhang et al., 1991], we know that any orbit of (27)
tending to the origin must reach it spirally or along
a fixed direction, which depends on the characteris-
tic equation of system (27). More precisely, we have
the following result.

Theorem 3. All orbits of system (27) near the ori-
gin in I+ tend to (0, 0) along the direction θ = θ1,
where θ1 is determined by

tan θ1 =
1

2ac
[m + a + (a − 1)c

+
√

(m + a + (a − 1)c)2 + 4ac(1 + c)]
(29)

for θ1 ∈ (0, π
2 ).

Proof. We introduce the polar coordinates: u =
r cos θ, v = r sin θ into system (27), and then define
the characteristic equation as

G(θ) = cos θ V3(cos θ, sin θ)− sin θ U3(cos θ, sin θ)

= sin θ cos θ{[1 + (a + 1)c] cos2 θ

+ [m + a + (a − 1)c] sin θ cos θ − ac}

= −sin θ cos3 θ{ac tan2 θ

− [m + a + (a − 1)c] tan θ − (c + 1)}.
(30)

Besides the two trivial solutions: θ = 0, π
2 , G(θ) = 0

has a unique solution θ = θ1 ∈ (0, π
2 ), where

θ1 is determined by (29). It is easy to show that
tan θ1 > 1, i.e. θ1 ∈ (π

4 , π
2 ). The two trivial solu-

tions agree with that discussed in Sec. 2: the u-axis
is invariant, and that du

dt → 0+ and dv
dt → −∞ as

u → 0+, implying that the trajectories of system (2)
cannot cross the u-axis and v-axis. Hence, we

have

G(θ)






> 0, for 0 < θ < θ1,

< 0, for θ1 < θ <
π

2
.

(31)

Further, we use the formula,

dr

dθ
= r

H(θ) + o(1)
G(θ)

, as r → 0, (32)

where

H(θ) = sin θ V3(cos θ, sin θ) + cos θ U3(cos θ, sin θ)

= −[1 + (a + 1)c] cos4 θ

− sin θ cos3 θ[m + a + (a − 1)c]

+ c(2a + 1) cos2 θ + c(a − 1) sin θ cos θ − ac

= −cos4 θ{m tan θ + [c tan2 θ(tan θ − 1) + 1]

× (a tan θ + 1)}. (33)

It is obvious that

H(θ) < 0, for θ1 ≤ θ <
π

2
, due to θ1 ∈

(π

4
,
π

2

)
.

In addition, we have

G(θ) = − sin θ cos3 θ

× {
√

[m + a + (a − 1)c]2 + 4ac(1 + c)

× (tan θ − tan θ1) + o(| tan θ − tan θ1|)}

= −[sin θ1 cos3 θ1 + O(|θ − θ1|)]

× {
√

[m + a + (a − 1)c]2 + 4ac(1 + c)

× (θ − θ1) + o(|θ − θ1|)}

= C(θ − θ1) + o(|θ − θ1|), (34)

where

C = − sin θ1 cos3 θ1

×
√

[m + a + (a − 1)c]2 + 4ac(1 + c)

< 0. (35)

Now applying Theorem 3.4 in [Zhang et al., 1991]
with k = 1, l = 1, C < 0 and H(θ1) < 0 proves that
any orbit tending to the origin must be along the
direction θ = θ1. Moreover, in the sector θ1 < θ < π

2
near the origin, it follows from G(θ) < 0 and
H(θ) < 0 that all orbits will move to the origin
along the direction θ = θ1. For the sector 0 < θ < θ1

near the origin, on the other hand, G(θ) > 0, but
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H(θ) is not necessarily less than 0. Nevertheless, we
can show that the following holds:

either (a) H(θ) < 0 for 0 < θ < θ1

or (b) H(θ3) = H(θ2) = 0 (θ3 < θ2)

such that

H(θ) < 0 for θ ∈ (0, θ3) ∪ (θ2, θ1) and

H(θ) > 0 for θ ∈ (θ3, θ2).

The special case θ3 = θ2 (a repeated root) can be
included in the case (a). For the case (a), it is obvi-
ous that all orbits in the sector 0 < θ < θ1 will
move to the origin along the direction θ = θ1. For
the case (b), due to the continuity of solutions, all
orbits in the sector 0 < θ < θ1 will also move to the
origin along the direction θ = θ1.

To prove the existence of θ3 and θ2, we consider
the function in the script bracket of H(θ), denoted
by

H1(w) = mw + [cw2(w − 1) + 1](aw + 1),

where

w = tan θ,

which is a fourth-degree polynomial in w. We need
to determine the number of roots of H1(w) in 0 <
w < 1. It is easy to show that

lim
w→±∞

H1(w) = ∞, H1

(
−1

a

)
= −m

a
,

H1(0) = 1, H1(1) = m + a + 1,

dH1

dw

∣∣∣∣
w=0

= m + a,

dH1

dw

∣∣∣∣
w=1

= m + a + (a + 1) c,

d2H1

dw2

∣∣∣∣
w=0

= −2c,
d2H1

dw2

∣∣∣∣
w=1

= 2(3a + 2),

which indicates that H1(w) has two real roots in
w ∈ (−∞, 0), and may have no roots, correspond-
ing to the case (a), or two roots in 0 < w < 1,
corresponding to the case (b). To have two roots of
H1(w) in 0 < w < 1, the necessary condition is

H2(w) $ cw2(w − 1) + 1 < 0.

It is easy to see that H2(w) reaches its minimal
value at w = 2

3 , given by H2(2
3 ) = 1 − 4c

27 . Hence,

when c ≤ 27
4 , H1(w) > 0 for 0 < w < 1, and so

H(θ) < 0 for 0 < θ < π
4 , leading to the case (a).

When c > 27
4 , we have

H1

(
2
3

)
=

2
3

[
m −

(
a +

3
2

)(
4c
27

− 1
)]

.

Thus, for c > 27
4 and m ≥ (a + 3

2)( 4c
27 − 1),

H1(w) > 0 for 0 < w < 1, which again leads to
the case (a). For c > 27

4 and m < (a + 3
2)( 4c

27 − 1),
we have H1(2

3 ) < 0, and then there are two roots
0 < w3 = tan(θ3) < w2 = tan(θ2) < 1 such that
H1(w3) = H1(w2) = 0, yielding H1(w) > 0 for w ∈
(0, w3) ∪ (w2, 1) and H1(w) < 0 for w ∈ (w3, w2).
This leads to the case (b).

Summarizing the above discussions proves
Theorem 3. !

As an illustration of Theorem 3, we present two
examples by taking the following parameter values:

Example 1

a =
1
10

, b =
1
10

, m =
11
5

, c =
27
20

,

tan θ1 =
217 +

√
97849

54
⇒ θ1 ≈ 1.4692234

≈ 84.18◦,

3267
1600

= m∗ < m < mH ,

mH =
257125 + 1331

√
21553

204800
< m∗ =

891
400

,

9
10

= 1 − b < c < cu =
81
44

, b <
1

4a + 5
=

5
27

,

u3+ = v3+ =
3
5
.

Example 2

a = 3, b =
1
10

, m = 1, c = 10,

m < m∗ =
81
10

(
< m∗ =

562
45

)
, c > cu =

81
160

,

u3+ = v3+ =
11 + 4

√
71

20
,

tan θ1 =
675 +

√
1368537

1596
⇒ θ1 ≈ 1.155918

≈ 66.23◦,
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tan θ2 = 0.812892 ⇒ θ2 ≈ 0.682553 ≈ 39.11◦,

tan θ3 = 0.479461 ⇒ θ3 ≈ 0.447082 ≈ 25.62◦.

By Theorem 2, it is seen that the equilibrium
E3+ is asymptotically stable for both the examples,
but the first example has Hopf bifurcation occur-
ring at m = mH , leading to an unstable limit cycle
as shown in Fig. 4(a) (belonging to the case (iii)
in Theorem 2), while the second example does not
have Hopf bifurcation (belonging to the case (i) in
Theorem 2). The simulated phase portraits for the
first example are shown in Figs. 3(a) and 3(b), and
that for the second example is depicted in Fig. 3(c),
where the blue lines in Figs. 3(a) and 3(c) denote
the direction θ = θ1, and the green lines in Fig. 3(c)
represent the directions θ = θ3 and θ = θ2. Note
that the diagram in Fig. 3(c) purposely makes a
perfect square so one can observe from this figure

that the trajectories in the sector θ3 < θ < θ2 are
slightly increasing, i.e. dr

dθ > 0.
Now, based on boundedness property (Theo-

rem 1) and the local attraction of the origin (Theo-
rem 3), it is easy to obtain the following corollaries.

Corollary 4.1. The equilibrium E0 (the origin) of
system (2) is globally asymptotically stable in the
region

Ω1 = {(u, v) | 0 < u ≤ b, v > 0}

for any γ ∈ Γ4.

Proof. First, by Theorem 1, we know that all solu-
tion trajectories of system (2) converge to the trap-
ping region Ω0. Note that on the line u = b, ẋ < 0,
implying that all trajectories of system (2) moves
into the region Ω1. Also note that in the region Ω1

there are only two boundary equilibria E0 and E2,

(a) (b)

(c)

Fig. 3. Simulated phase portraits in the neighborhood of the origin of system (2) in I+ of the u–v plane for (a) Example 1:
a = b = 1

10 , c = 27
20 and m = 11

5 , showing the local attraction of (0, 0); (b) showing the global attraction of (0, 0) for Example 1

in the region {(u, v) | 0 < u < b, v > 0}; and (c) Example 2: a = 3, b = 1
10 , c = 10 and m = 1, showing the local attraction

of (0, 0).
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but E2 is an unstable node. Thus, by Theorem 3,
the only stable equilibrium in the region Ω1 is E0.
Therefore, any solution trajectory starting from an
initial point in the region Ω1 will eventually con-
verge to E0. !

Corollary 4.2. The equilibrium E0 (the origin) of
system (2) is globally asymptotically stable in I+ if
m > m∗.

Proof. The proof is similar to that for Corol-
lary 4.1. When m > m∗, the equilibria E3 or E3± do
not exist, and the two boundary equilibria E1 and
E2 are unstable. Thus, in the whole region I+, the
only stable equilibrium is the origin. By Theorems 1
and 3, we know that any solution of system (2)
starting in I+ will eventually converges to E0. !

In the following, we discuss more complex cases
when m ≤ m∗. We have several results on the global
property of solutions of system (2). For convenience,
we use the following notations:

ΓE2E3− , ΓE2E3, ΓE0E1, ΓE1E3− ,

ΓE1E3+ , ΓE0E3, ΓE0E3− , ΓE3−E3+ ,

where, for example, ΓE2E3− denotes the heteroclinic
orbit connecting the unstable node E2 and the sad-
dle E3−, and similar definitions for others.

Proposition 1. Assume that m < m∗ for system
(2). Then, there exists ΓE2E3− joining the equilibria
E2 and E3−.

Proof. First, we prove that on the line segment
u = u3−, 0 < v < v3−, u̇ > 0 and v̇ > 0, since

u̇ = u3−

[
1
b
(1 − u3−)(u3− − b) − mv

u3− + av

]

= u3−

[
1
b
(1 − u3−)(u3− − b) − mv3−

u3− + av3−

+
mv3−

u3− + av3−
− mv

u3− + av

]

= − mu3−(v − v3−)
(a + 1)(u3− + av)

> 0,

v̇ = c u3−

(
1 − v

u3−

)
= c u3−

(
1 − v

v3−

)
> 0.

(36)

Since E3− is a saddle point, we need to prove that
the slope, s1, of the tangent line to the stable man-
ifold of E3− is larger than 1 (s1 > 1), that is,
the trajectory moving into E3− must be below the
line v = u; and the slope, s2, of the tangent line
to the unstable manifold of E3− is smaller than 1
(0 < s2 < 1), that is, the trajectory moving out
E3− must be above the line v = u. Therefore, there
must exist a heteroclinic orbit ΓE2E3− joining E2

and E3−, rather than connecting E1 and E3−. In
other words, the heteroclinic orbit ΓE1E3− cannot
connect E3− from below if it exists. Otherwise, sup-
pose ΓE1E3− connects E3− from below, then the
trajectories below E3− and near the line segment
u = u3−, 0 < v < v3− must cross this line seg-
ment from the left to the right and then have to go
back to cross this same line segment again from the
right to the left due to the uniqueness of solutions
(avoiding intersection with the curve connecting E1

and E3−). But this is obviously impossible, as seen
from Fig. 4.

With the variation of the parameter c, it is
observed from Fig. 4 that a heteroclinic orbit not
only exists between the unstable node E2 and
the saddle E3− (ΓE2E3−), but also exists between
the saddle E1 and the degenerate stable node E0

(ΓE0E1), or between the saddle E1 and the stable
focus E3− (ΓE1E3−), or between the saddle E1 and
the stable focus E3+ (ΓE1E3+), depending upon the
values of c. One can use Theorem 2 to verify that
E3+ is AS for all the values of c taken in the four
diagrams in Fig. 4. In fact, for the parameter val-
ues a = b = 0.1, m = 2.2, the critical value of
c for E3 becomes unstable at c ≈ 1.218182. Tak-
ing c = 1.15 we will get a similar diagram as that in
Fig. 4(a), which has unstable focus E3+ and no limit
cycle, and still has the heteroclinic orbit connect-
ing the saddle E1 and the degenerate stable node
E0 (ΓE0E1). This implies that there exists a critical
value of c = c∗, when a, b and m are fixed, such that
ΓE0E1 exists for c < c∗, ΓE1E3− exists for c = c∗,
and ΓE1E3+ exists for c > c∗. For a = b = 0.1,
m = 2.2, c∗ = 1.8277664183. But the heteroclinic
orbit ΓE2E3− always exists for any γ ∈ Γ4.

Now, we prove the properties mentioned above
about the stable and unstable manifolds of E3−. Let
J3− be the Jacobian of system (2) evaluated at E3−,
denoted by

J(E3−) =

[
p11 + p12 −p12

c −c

]
,
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(a) (b)

(c) (d)

Fig. 4. Simulated phase portraits of system (2) with a = b = 0.1, m = 2.2, showing a heteroclinic orbit connecting the
unstable node E2 and the saddle E3− (E3+ being a stable focus) with different topological structures: (a) c = 1.35 yield-
ing an unstable limit cycle from a subcritical Hopf bifurcation; (b) c = 1.3660350289 yielding an unstable homoclinic loop;
(c) c = 1.8277664183 yielding another heteroclinic orbit connecting the two saddles E1 and E3−; and (d) c = 2.2 yielding
another heteroclinic orbit connecting the saddle E1 and the stable focus E3+. The green curve is the orbit connecting the
equilibria E2 and E3−, and the green vertical line is the line segment u = u3−, 0 < v < v3−.

where

p11 =
1
b

√
b

a + 1
(m∗ − m)

×
[
1 + b −

√
(1 − b)2 − 4mb

a + 1

]
> 0 and

p12 =
m

(a + 1)2
> 0,

for m < m∗. Then,

Tr(J(E3−)) = p11 + p12 − c,

and

det(J(E3−)) = −cp11 < 0

(which is the same as that given in Theorem 2). The
two eigenvalues of J(E3−) are given by

λ1 =
1
2
[Tr(J(E3−))

−
√

Tr(J(E3−))2 − 4 det(J(E3−))] < 0,

λ2 =
1
2
[Tr(J(E3−))

+
√

Tr(J(E3−))2 − 4 det(J(E3−))] > 0,

and the corresponding eigenvectors are

v1 = (c + λ1, c)T , v2 = (c + λ2, c)T .

It is obvious that the slope of the eigenvector v2

equals s2 = c
c+λ2

satisfying s2 ∈ (0, 1). For the
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eigenvector v1, its slope is equal to s1 = c
c+λ1

. A direct computation yields that

c + λ1 =
1
2
[Tr(J(E3−)) + 2c −

√
Tr(J(E3−))2 − 4 det(J(E3−))]

=
2 c p12

p11 + p12 + c +
√

p11(p11 + 2p12 + 2c) + (p12 − c)2

> 0,

which implies that s1 ∈ (1,∞). This can be seen
from Fig. 4, where the green curve is the hetero-
clinic orbit ΓE2E3− , and the green vertical line is
the line segment u = u3−, 0 < v < v3−.

The proof is finished. !

Proposition 2. Assume that m = m∗ for system
(2). Then, the positive equilibrium E3 = (u3, v3) of
this system is a cusp point of order two.

Proof. Eliminating m from the two equations: u̇ =
v̇ = 0, we obtain the solution for m and a resultant
as follows:

m =
(1 − u)(u − b)(u + av)

b v
,

R23 = cv(u − v)(u + av).

It is obvious that the nonzero solution to R23 = 0
is v = u. Using R23 = 0, we find

dv

du
= −

∂R23

∂u
∂R23

∂v

=
av(3v − 2u) + u(2v − u)

v(2u − v + av)

⇒ dv

du

∣∣∣∣
v=u

= 1,

which shows that the orbits connecting E3 have a
common tangent line, implying that E3 is a cusp
point of order two. Moreover, note that this com-
mon tangent line has a constant slope 1 for any
parameter value. It is easy to verify that m = m∗

at E3 = (1
2(1 + b), 1

2(1 + b)). !

Theorem 4. Assume that m < m∗ for system (2).
Then, limt→∞(u(t), v(t)) = (0, 0) when u0 ≤
min{u3−, v0} and (u0, v0) -= (u3−, v3−).

Proof. This is equivalent to proving that the trajec-
tories of system (2) starting from any initial points
in the region Ω2 converges to (0, 0), where Ω2 is

defined as

Ω2 = {(u, v) | v ≥ u, 0 ≤ u ≤ u3−}.

In other words, Ω2 is bounded by the v-axis, and
the lines u = v and u = u3−. By Theorems 1 and 3,
we only need to show that the trajectories of sys-
tem (2) move into Ω2 when they pass through the
two lines u = v and u = u3−.

On the line u = v, it is obvious that v̇ = 0, and
it is easy to obtain that

u̇ = u

[
1
b
(1 − u)(u − b) − mu

u + au

]

= −u

b

[
u2 − (1 + b)u + b

(
1 +

m

a + 1

)]

< 0,

for 0 < u < u3− since the term in the square bracket
is the polynomial F1 in (2), and u3− is the smaller
positive root of F1.

On the line segment u = u3−, v > v3−, similar
to the proof for Proposition 1, we can use (36) to
show that u̇ < 0 and v̇ < 0, which implies that Ω2

is invariant and thus the conclusion of Theorem 4
is true. !

It should be pointed out that the conclusion
in Theorem 4 is conservative. It can be seen from
Fig. 4 that the trapping region Ω2 can be defined
larger, but then the definition will depend on the
parameter values, making it more complex. While
the conclusion in Theorem 4 is independent of the
parameters (i.e. it is true for any γ ∈ Γ4).

Theorem 5. Assume that m = m∗ for system (2).
Then, limt→∞(u(t), v(t)) = (0, 0) provided that
(u0, v0) /∈ ΓE2E3 .

Proof. By Proposition 2, we know that the equilib-
rium E3 = (u3, v3) of system (2) is a cusp point of
order two when m = m∗. Then, similar to the proof
for Proposition 1, we consider the dynamics on the
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(a) (b)

Fig. 5. Simulated phase portraits of system (2) for a = b = 0.1, m = m∗ = 2.2275, showing that the equilibrium E3 is a cusp
point of order two: (a) c = 1.5 < cu ≈ 1.8409; and (b) c = 2 > cu. The green orbit ΓE2E3 connects E2 and E3, and the green
vertical line is the line segment u = u3, 0 < v < v3.

line segment u = u3, 0 < v < v3 to obtain v̇ > 0
and that

u̇ = u3

[
1
b
(1 − u3)(u3 − b) − mv

u3 + av

]

= u3

[
1
b
(1 − u3)(u3 − b) − mv3

u3 + av3

+
mv3

u3 + av3
− mv

u3 + av

]

=
mu3(v3 − v)

(a + 1)(u3 + av)

> 0, for v < v3,

which indicates that the trajectories passing
through the line segment u = u3, 0 < v < v3 must
be from the left to the right. Also, note that the tra-
jectory moving to the cusp point (the stable man-
ifold of E3) must be below the line v = u, while
the trajector leaving the cusp point (the unstable
manifold of E3) must be above the line v = u. Since
E1 = (1, 0) is a saddle point, and E2 = (b, 0) is an
unstable node, and note that b < u3 < 1, there must
exist an orbit connecting E2 and E3, rather than
connecting E1 and E3. Otherwise, there are at least
two trajectories moving into the cusp point. Hence,
a trajectory starting from any (u0, v0) /∈ ΓE2E3−
must converge to E0 = (0, 0) since in this case the
origin is the unique stable equilibrium in I+. !

Two illustrative examples showing the cusp
point E3 are given in Fig. 5, for which the parameter
values are taken as a = b = 0.1, m = m∗ = 2.2275,

and c = 1.5 for Fig. 5(a) and c = 2 for Fig. 5(b),
with cu = 81

44 ≈ 1.8409. In the figure, the green
curve is the heteroclinic orbit ΓE2E3 , and the green
vertical line is the line segment u = u3, 0 < v < v3.
It is seen from the figure that the cusp point E3

does not change its topological structure regardless
whether c < cu or c > cu, which implies that it is
irrelative to the dynamics on the center manifold
(see Theorem 2).

In summary, we have shown in this section that
if system (2) has no positive equilibria, then all tra-
jectories in I+ converge to (0, 0) and (0, 0) is glob-
ally asymptotically stable. If system (2) has two
positive equilibria E3±, then when the initial value
of the prey u with strong Allee effect is smaller than
that of predator, the solution trajectories converge
to (0, 0), implying that both predator and prey will
become extinct under these situations. On the con-
trary, when the initial value of the prey with strong
Allee effect is bigger than that of predator, the situ-
ation becomes complicated. Namely, the population
of a species will coexist, die out or tend to peri-
odic fluctuations [Lu et al., 2021]. If system (2) has
only one positive equilibrium E3, then almost all the
solutions of the system converge to (0, 0), except one
orbit connecting the equilibria E2 and E3, implying
that both predator and prey will almost become
extinct in this situation.

5. Bifurcation Analysis

This section is devoted to further bifurcation anal-
ysis on the equilibrium solutions of system (2). Our
particular attention is focused on the bifurcations
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of the interior equilibrium, including saddle-node
bifurcation, Hopf bifurcation and BT bifurcation.

5.1. Saddle-node bifurcation

In this section, we apply center manifold theory to
derive the conditions for the saddle-node bifurca-
tion of system (2) which occurs from the positive
equilibrium E3 at

m = m∗ =
(a + 1)(1 − b)2

4b
,

with c -= cu = (1−b)2

4b(a+1) . We have the following result.

Theorem 6. System (2) undergoes a saddle-node
bifurcation from the equilibrium E3 = (u3, u3) =
(1
2 (1 + b), 1

2(1 + b)) at the critical point m = m∗

with c -= cu.

Proof. In Sec. 3, we have applied center manifold
theory to find the center manifold CM (20) at the
critical point m = m∗ and the differential equation
(21) on the CM. Now, we want to find the center
manifold and associated differential equation on the
center manifold under the perturbation of m. Let
m = m∗ + µ. Then, using the transformation (19),
we obtain






ẋ1 = − c(1 + b)
4b(a + 1)(c − cu)

[
2bµ + 2(a + 1)x2

1 +
(1 − b)2

b
x1x2 +

(1 − b)2

b
x1µ

+
4bc(a + 1) + a(1 − b)2

(a + 1)2(1 + b)
x2µ + · · ·

]
,

ẋ2 = −(c − cu)x2 +
(1 + b)

4b(a + 1)(c − cu)

[
2bµ + 2(a + 1)x2

1 +
(1 − b)2

b
x1x2 +

4b
1 + b

x1µ

+
4bc(a + 1) + a(1 − b)2

(a + 1)2(1 + b)
x2µ + · · ·

]
.

Assume the center manifold is given by x2 = h20x2
1 + h11x1µ + h02µ2. Then, using ẋ2 = (2h20x1 + h11µ)ẋ1

together with the above equations we find the center manifold CMµ and the differential equation describing
the dynamics on the CMµ:

ẋ1 = − 2bc(1 + b)
4b(a + 1)(c − cu)

[
µ +

(a + 1)
b

x2
1 +

2
1 + b

x1µ + · · ·
]
,

which clearly shows that the saddle-node bifurca-
tion occurs when m is varied to pass through the
critical point m = m∗ with c -= cu. No tran-
scritical bifurcation or pitchfork bifurcation can
happen. !

It follows from (15) that when m crosses the
critical point m = m∗, the number of equilibrium
solutions changes from zero to two, or from two to
zero. When m = m∗ and c = cu, BT bifurcation
occurs, which will be discussed in Sec. 5.3.

5.2. Hopf bifurcation

The detailed linear analysis on Hopf bifurcation has
been given in Sec. 3, with the Hopf critical point
mH given in (16). In this section, we will consider
the limit cycles arising from the Hopf bifurcation. In
particular, we want to ask: What is the codimension
of the Hopf bifurcation? That is, what is maximal
number of limit cycles which can cause bifurcation

from the equilibrium E3+ at the critical point mH?
We will show that the Hopf bifurcation is subcriti-
cal, and the bifurcating limit cycle is unstable, since
the first focus value v1 > 0 for any γ ∈ Γ4. In other
words, the codimension of the Hopf bifurcation is
one. We have the following theorem.

Theorem 7. The model (2) undergoes Hopf bifurca-
tion from the positive equilibrium E3+, yielding an
unstable limit cycle. The codimension of the Hopf
bifurcation is one.

Proof. In order to calculate the first focus value v1,
instead of u, we use the parameter m to solve the
polynomial equation F1 = 0 to obtain

m =
a + 1

b
(1 − u3)(u3 − b), (37)

which requires

b < u3 < 1, due to m > 0. (38)
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We then use the parameter c to solve the trace
equation Tr(J(E3)) = 0 to obtain

cH = − 1
b(a+ 1)

[(2a+ 3)u2
3 − (a+ 2)(b+ 1)u3 + b],

(39)
where cH indicates the Hopf critical point. To have
cH > 0, it needs 0 < u3− < u3 < u3+, where

u3± =
1

2(2a + 3)
[(a + 2)(b + 1)

±
√

a2(b + 1)2 + 4a(b2 + 1) + 4(1 − b + b2)].
It can be shown that u3− < b < u3+ < 1. Thus,

we have the restrict condition on u3:
b < u3 < u3+. (40)

At the critical point c = cH , we obtain

det(J(E3)) =
(a + 1)2u4

3

b2
[bu3cH(2u3 − 1 − b)],

which defines the critical frequency at the Hopf
critical point as

ωc =
(a + 1)u2

3

b

√
bu3cH(2u3 − 1 − b) (41)

that needs u3 > 1
2(1 + b). Hence, the restrict condi-

tion (40) becomes

1
2
(1 + b) < u3 < u3+. (42)

Now, we first multiply u(u + av) to system (2)
and then introduce the affine transformation,

(
u

v

)
=

(
u3

u3

)
+




1 0

b(a + 1)cH

(1 − u3)(u3 − b)
bωc

(a + 1)u2
3(1 − u3)(u3 − b)





(
x1

x2

)
, (43)

into system (2) to obtain the system





ẋ1 = ωcx2 +
(a+ 1)x2

3[(4a+ 3)x3
3 − 4(b+ 1)(a+ 1)x2

3 + ((a+ 1)b2 + (2a+ 5)b+ a+ 1)x3 − b(1+ b)]
b(1− x3)(x3 − b)

x2
1

+
ωc[2(a − 1)x2

3 + (2 − a)(b + 1)x3 − 2b]
x3(1 − x3)(x3 − b)

x1x2 + · · · ,

ẋ2 = −ωcx1 +
ωc[(12a+ 11)x3

3 − 2(1+ b)(6a+ 7)x2
3 + ((3a+ 4)b2 +3(2a+ 5)b+ 3a+ 4)x3 − 3b(1+ b)]

x3(2x3 − 1− b)(1− x3)(x3 − b)
x2

1

+
ω2

cb(5a + 2)
x3

3(a + 1)(1 − x3)(x3 − b)
x1x2 +

ω3
cb

2(2a + 1)
x6

3(2x3 − 1 − b)(a + 1)2(1 − x3)(x3 − b)
x2

2 + · · · ,

(44)

whose linear part is in the Jordan canonical form,

J(0, 0) =

[
0 ωc

−ωc 0

]

.

Next, we apply the Maple program [Yu, 1998; Yu &
Bi, 1998] for computing the normal form of Hopf
and generalized Hopf bifurcation to system (44) to
get the first focus value:

v1 = − u3

8b(a + 1)(2u3 − 1 − b)
ṽ1, where

ṽ1 = 4a(a + 4)u2
3 − (b + 1)(3a2 + 16a + 1)u3

+ 3a(b + 1)2.
(45)

Note that ṽ1 is a quadratic polynomial in u3, hav-
ing the opposite sign as that of v1. In the following,
we show that ṽ1 < 0 (i.e. v1 > 0) for any γ ∈ Γ4.
To have bifurcation of multiple limit cycles, i.e. the
codimension of the Hopf bifurcation is higher than
one, v1 must be equal to zero. Thus, solving ṽ1 = 0
yields two solutions:

u±
3 =

1
8a(a + 4)

[(b + 1)(3a2 + 16a + 1)

± (a + 1)(b + 1)
√

9a2 + 30a + 1].
However, a direct computation shows that

u+
3 − u3+

= 2(2a+ 3)[6(1+ b)2a5 + (35b2 + 102b+ 35)a4
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+ 64(b2 + 6b+ 1)a3 + 2(13b2 + 282b+ 13)a2

+ 66(1+ b)2a+ 3(1+ b)2 + (a+ 1)2(b+ 1)2

× (2a2 + 15a + 3)
√

9a2 + 30a + 1] > 0,

1
2
(1 + b) − u−

3

= (a+ 1)(b+ 1)[
√

9a2 + 30a+ 1+ a− 1] > 0,

implying that u−
3 < 1+b

2 < u3+ < u+
3 , namely, the

two solutions u±
3 to v1 = 0 are outside the feasible

parameter interval (1+b
2 , u3+). Moreover, ṽ1 < 0 for

u3 ∈ (1+b
2 , u3+), and so v1 > 0, indicating that the

Hopf bifurcation is subcritical, and the bifurcating
limit cycle is unstable. !

5.3. Bogdanov–Takens bifurcation

In this section, we consider BT bifurcation. As
shown in Sec. 3, BT bifurcation must happen at

m = m∗ =
(a + 1)(1 − b)2

4b
from the equilibrium

E3 = (u3, v3), with u3 = v3 =
1
2
(1 + b),

at which det(J(E3)) = 0, and

Tr(J(E3)) =
1

4b(1 + a)
[(1 − b)2 − 4bc(1 + a)].

Then, solving Tr(J(E3+)) = 0 with m = m∗ yields

(1 − b)2 − 4bc(1 + a) = 0,

(1 + a)(1 − b)2 − 4bm = 0,
(46)

where (a, m, b, c) represents the BT critical point
at which the equilibrium is given by E3 = (1

2 (1 +
b), 1

2(1 + b)). The two equations in (46) may be
solved by six combinations of choosing two parame-
ters from the four parameters. In order to definitely
determine the BT critical point, without loss of gen-
erality, one may solve a and m to obtain

a =
(1 − b)2 − 4bc

4bc
,

m =
(1 − b)4

16b2c
,

(
c <

(1 − b)2

4b

)
.

(47)

The other five combinations lead to the same result.
Now, taking perturbation on the critical param-

eter values, we let

a = a + µ1, m = m + µ2,

b = b + µ3, c = c + µ4,
(48)

and introduce an affine transformation:

u =
1 + b

2
+ cx1 + x2,

v =
1 + b

2
+ cx1,

(49)

into the original system (2) to obtain a new system
up to second-order terms:






ẋ1 = x2 −
2

1 + b
x2

2 + O(|(x1, x2, µ)|3),

ẋ2 = −c2(1 + b)
2b

x2
1 −

c(1 + b)
b

x1x2 −
(1 − b2 − 4b c)2 + 16b2c(1 − b)

2b(1 + b)(1 − b)2
x2

2 +
c(1 + b)

2
µ1

− 2b c(1 + b)
(1 − b)2

µ2 −
2b c2(1 + b)

(1 − b)2
µ2

1 +
8b2c2(1 + b)

(1 − b)4
µ1µ2 −

(1 − b)(1 + b)2

8b2
µ3

+
(1 − b)(1 + b)2

8b3
µ2

3 + c2

(
µ1 −

4b
(1 − b)2

µ2

)
x1 +

c(1 + b)(3b − 1)
4b2

µ3x1

+ c

[
(1 − b)2 − 8b c

(1 − b)2
µ1 −

4b[(1 − b)2 − 4b c]
(1 − b)4

µ2

]
x2 +

[
(1 + b)(3b − 1)

4b
µ3 − µ4

]
x2

+ O(|(x1, x2, µ)|3),

(50)
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where µ = (µ1, µ2, µ3, µ4). To determine the codi-
mension of the BT bifurcation, we let µ1 = µ2 =
µ3 = µ4 = 0 in (50), which gives a = a, m = m,
b = b, c = c, and take the following nonlinear trans-
formation up to second order,





x1 = y1 −
(1 − b2 − 4bc)2 + 16b2c(1 − b)

4b(1 + b)(1 − b)2)
y2

1,

x2 = y2 −
(1 − b2 − 4bc)2 + 16b2c(1 − b)

2b(1 + b)(1 − b)2
y1y2

+
2

1 + b
y2
2,

(51)
into (50)|µ1=µ2=0 to obtain the normal form up to
second-order terms:

ẏ1 = y2 + O(|(y1, y2)|3),

ẏ2 = C20y
2
1 + C11y1y2 + O(|(y1, y2)|3),

(52)

where

C20 = −c2(1 + b)
2

< 0, C11 = −c(1 + b)
b

< 0,

(53)

implying that the codimension of the BT bifur-
cation is two, which is usually called a cusp BT
bifurcation.

Next, we want to find unfolding to the nor-
mal form (52). To get a general result, we keep µ
(including the four perturbations) in the system,
and take the relation in (47), which implies that b
and c can be chosen arbitrary, leading to the simple
notation b = b, c = c. Next, introducing the nonlin-
ear state transformation






x1 =
2b

c2(1 + b)
y1 +

(1− b2)2 − 4bc[(1− b)2 − 4bc]
4c(1+ b)(1− b)2

µ1 −
b{(1 − b2)2 − 4bc[(1 − b)2 − 4bc]}

c(1 − b)4(1 + b)
µ2

− (1 − b2)2 + 4bc(b2 + 4bc − 1)
16b2c2(1 − b)

µ3 − Q(µ)y1 −
(1− b2)2 − 8bc[(1− b)2 − 2bc]

c4(1− b)2(1+ b)3
y2

1,

x2 =
2b

c2(1 + b)
y2 − Q(µ)y2 −

2b{(1 − b2)2 − 8bc[(1 − b)2 − 2bc]}
c4(1 − b)2(1 + b)3

y1y2 +
8b2

c4(1 + b)3
y2

2,

(54)

where

Q(µ) =
(1 − b2)4 − 16bc{(1 + b)2(1 − b)4 − bc[3(3b2 + 2b + 3)(1 − b)2 − 16bc((1 − b)2 − bc)]}

8c3(1 + b)3(1 − b)4
µ1

− b{(1 − b2)2 − 4bc[(1 − b)2 − 4bc]}{(1 − b2)2 − 4bc[3(1 − b)2 − 4bc]}
2c3(1 + b)3(1 − b)6

µ2

− (1 − b2)4 − 16bc[(1 − b)2 − bc][(1 − b2)2 + 16b2c2]
32b2c4(1 + b)2(1 − b)3

µ3 (55)

into (50) yields the following normal form with unfolding up to second order:

ẏ1 = y2 + O(|(y1, y2, µ)|3), ẏ2 = β1(µ) + β2(µ)y2 − y2
1 −

2
c
y1y2 + O(|(y1, y2, µ)|3).

Finally, introducing the transformation: y1 → y1, y2 + O(|(y1, y2, µ)|3) → y2 into the above system, we
obtain

ẏ1 = y2, ẏ2 = β1(µ) + β2(µ)y2 − y2
1 −

2
c
y1y2 + O(|(y1, y2, µ)|3), (56)

where

β1(µ) =
c3(1 + b)2

4b
µ1 −

c3(1 + b)2

(1 − b)2
µ2 −

(1 − b)(1 + b)3c2

16b3
µ3 −

c3(b + 2)(1 + b)
4b(1 − b)

µ1µ3 −
c3(1 + b)
b(1 − b)3

µ2µ3,

β2(µ) = −(1 − b2)2 + 48b2c2

4b(1 − b)2
µ1 +

(1 − b2)2 + 32b2c2

(1 − b)4
µ2 +

(1 + b)[(1 − b2)2 + 16b2c2]
16b3c(1 − b)

µ3 − µ4.

(57)
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Let

detij = det
[
∂(β1,β2)
∂(µi, µj)

]

µ1=µ2=0

.

Then, we have

det12 = − 4bc5(1 + b)2

(1 − b)4
, det13 = − c4(1 + b)3

2b2(1 − b)
,

det14 = −c3(1 + b)2

4b
, det23 =

c4(1 + b)3

b(1 − b)3
,

det24 =
c3(1 + b)2

(1 − b)2
, det34 =

c2(1 − b)(1 + b)3

16b3
,

(58)

showing that detij -= 0 for any of the six combi-
nations. This shows that we can choose any two
parameters from the six combinations such that
system (56) with (β1,β2) ≈ (0, 0) for (x, y) near
(0, 0) is topologically equivalent to system (2) with
(µi, µj) ≈ (0, 0) for (u, v) near (u3, v3) = (1

2 (1 + b),
1
2(1 + b)).

Since (56) is in the standard form of
the BT bifurcation [Guckenheimer & Holmes,
1993; Kuznetsov, 1995], we apply the standard
codimension-2 BT bifurcation theory to obtain the
following result.

Theorem 8. For model (2), codimension-2 BT
bifurcation occurs from the equilibrium E3 : (u, v) =
(1
2 (1 + b), 1

2(1 + b)) when a = (1−b)2−4bc
4bc and m =

(1−b)2

4b(1+a) for 0 < b < 1 and c < (1−b)2

4b . Moreover,
three local bifurcations with the representations of
the bifurcation curves are given below.

(1) Saddle-node bifurcation occurs from the bifur-
cation curve:

SN = {(β1,β2) |β1 = 0, β2 > 0}.

(2) Hopf bifurcation occurs from the bifurcation
curve:

H =
{

(β1,β2)
∣∣∣∣ β1 =

c2

4
β2

2,β2 > 0, subcritical
}

.

(3) Homoclinic loop bifurcation occurs from the
bifurcation curve:

HL =
{
(β1,β2)

∣∣∣∣ β1 =
49
25

c2

4
β2

2,β2 > 0, unstable
}

.

The above formulas for bifurcation curves can
be easily expressed in terms of the original pertur-
bation parameters µ1 and µ2 by using (57). The

Fig. 6. Bifurcation diagrams for the codimension-2 BT
bifurcation based on the normal form (56).

bifurcation diagram is depicted in Fig. 6. It can
be seen from the item (2) in Theorem 8 that the
Hopf bifurcation is subcritical, which agrees with
Theorem 7.

The numerical simulations for the BT bifurca-
tion based on the original system (2) are shown in
Figs. 2(c) and 4, where the values of parameters a
and b are fixed, for which (47) becomes

m = m∗ =
(1 + a)(1 − b)2

4b
,

c =
(1 − b)2

4b(1 + a)
, (0 < b < 1).

(59)

Then, the new formulas in (54)–(57) can be easily
obtained by substituting the above solution of c into
these equations. For the fixed values a = b = 1

10 ,
the equilibrium E3 becomes E3 = (0.55, 0.55). The
BT bifurcation critical point is given by (m, c) =
(m∗, cu) = (891

400 , 81
44 ) = (2.2275, 1.840909 . . .). For

simplicity, we take m = 2.2 < m∗, and treat
the parameter c as the bifurcation parameter.
As shown in the bifurcation diagram given in
Fig. 2(c), we choose 5 values of c near the BT
bifurcation point along the vertical line m = 2.2:
c = 1.15, 1.35, 1.366035, 1.827766, 2.2. It can be
seen from this figure that for the point (m, c) =
(2.2, 1.15), E3+ is unstable, while E3+ is asymp-
totically stable at all other four points. Since
Hopf bifurcation occurs at the point (m, c) =
(2.2, 1.218182), an unstable limit cycle bifurcates
from the point (m, c) = (2.2, 1.35), with the simula-
tion depicted in Fig. 4(a). The unstable homoclinic
loop appears at the point (m, c) = (2.2, 1.366035),
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with the simulation shown in Fig. 4(b). The hetero-
clinic orbits connecting the saddle E1 and the saddle
E3− happen at the point (m, c) = (2.2, 1.840909),
as shown in Fig. 4(c), while that connecting the
saddle E1 and the stable focus E3+ occurs for
c > 1.840909 (m = 2.2), with the simulated exam-
ple shown in Fig. 4(d) by taking m = c = 2.2.

6. Numerical Simulations

In this section, we present numerical simulations to
illustrate the analytical results obtained in the pre-
vious sections. The simulation results are obtained
using the numerical bifurcation package MAT-
CONT [Dhooge et al., 2003] with the fixed values
a = b = 1

10 . First, we present a numerical bifurca-
tion diagram of system (2) on the two-dimensional
m–c parameter plane, as shown in Fig. 7, where
SN, H, BT and HL denote the saddle-node, Hopf,
BT and homoclinic bifurcations, respectively. This
bifurcation diagram is similar to that shown in
Fig. 2(c), but here, the homoclinic loop bifurcation
curve is numerically obtained. The three bifurcation
curves (SN, H and HL) divide the parameter plane
into four regions with different colors: red for region
I, blue for region II, black for region III and green
for region IV.

Note that system (2) always has the asymptoti-
cally stable trivial equilibrium E0 and two unstable

Fig. 7. Bifurcation diagram of system (2), obtained using
MATCONT, plotted on the m–c parameter plane for a =
b = 1

10 , where SN, H, BT and HL represent the saddle-
node, Hopf, BT and homoclinic loop bifurcations, respec-
tively. The system undergoes a saddle-node bifurcation from
E3 at m = m∗(c $= cu), and a codimension-2 BT bifurca-
tion occurs from E3 at (m, c) = (m∗, cu). For m < m∗, Hopf
bifurcation occurs from E3+, and homoclinic loop bifurcation
curve is determined by the BT bifurcation.

(a)

(b)

Fig. 8. Simulated phase portraits of system (2), obtained
using MATCONT, for a = b = 0.1, m = 2.2: (a) when c = 1.2
showing the saddle point E1, unstable node E2, saddle point
E3− and unstable focus E3+; and (b) when c = 1.5 showing
the saddle point E1, unstable node E2, saddle point E3− and
stable focus E3+; The stable manifold of E3− connects E2

to form the heteroclinic orbit ΓE2E3− .

boundary equilibria E1 and E2. The bifurcation dia-
gram given in Fig. 7 shows different bifurcations
from the positive equilibria. In the region I (red
color), there do not exist positive equilibria. When
the parameter m is varied to cross the boundary
line m = m∗ (c -= cu), the saddle-node bifurcation
occurs from the equilibrium E3, yielding two pos-
itive equilibria E3± in the regions II, III and IV,
and the equilibrium E3− is always unstable (a sad-
dle point). The BT bifurcation appears at the crit-
ical point (m, c) = (m∗, cu) at which the regions I,
II and III intersect at one point. The positive equi-
librium E3+ is asymptotically stale in the region II
(blue color), and loses its stability on the Hopf crit-
ical curve, and becomes unstable in the region III
(black color). The homoclinic loop (HL) bifurcation
occurs near the BT bifurcation point, and the small
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green region IV corresponds to the area between the
H and HL curves in the BT bifurcation diagram in
Fig. 6, where an unstable limit cycle exists. It should
be pointed that in general the unstable limit cycle
bifurcates from any critical point on the H curve.

According to different bifurcation results given
in Theorems 2, 7 and 8, various parameter values
are chosen to illustrate different bifurcation phe-
nomena. Besides the simulations shown in Figs. 4
and 5, we choose two more sets of parameter values
to give the simulations as depicted in Fig. 8, where
the red and blue curves represent the predator and
nullclines, respectively. For Figs. 4 and 8, we choose
a = b = 0.1, m = 2.2 and vary c, while for Fig. 5(a),
we also change m from m = 2.2 to m = 2.2275.
Only Fig. 4(a) shows bifurcation of an unstable
limit cycle, while other figures demonstrate different
dynamical behaviors of system (2). Figure 5 shows a
single positive equilibrium E3 which is a cusp point,
while all other figures show two positive equilibria
E3±. Figure 8(a) shows that all equilibria, except
E0, are unstable, while Fig. 8(b) depicts a hete-
roclinic curve, connecting E2 and E3−. It is seen
from this figure that when the initial value of the
prey with strong Allee effect is smaller than that of
the predator, the solution trajectories converge to
(0, 0), which implies that both predator and prey
will become extinct. On the contrary, when the ini-
tial value of the prey with strong Allee effect is big-
ger than that of the predator, the solution trajec-
tories converge to (0, 0) or E3+, implying that both
predator and prey will become extinct or coexist.

7. Conclusion

In this paper, we have investigated the bifurca-
tion and dynamics of a Leslie–Gower predator–
prey system with strong Allee effect in prey and
ratio-dependent functional response. The positivity
of the solutions and their boundedness are estab-
lished. The system can have at most five equilib-
ria. The trivial solution E0 = (0, 0) is a degen-
erate singular point, and is proved asymptotically
stable by using the blow-up approach. Moreover, a
number of results relative to the global dynamics of
the system connected to the property of the origin
are established. Two unstable boundary equilibria
always exist, but positive equilibria may exist under
certain parameter conditions. Various bifurcations
can occur, including the saddle-node, Hopf and BT
bifurcations. It is proved that the Hopf bifurcation
has codimension-1, implying that no multiple limit

cycle bifurcation can happen. The codimension-2
BT bifurcation occurs only for certain set of param-
eters. Finally, numerical simulations are presented
to illustrate the theoretical results.

Various bifurcations obtained in this paper for
the predator–prey model with strong Allee effect
and ratio-dependent functional reveal that the Allee
effect greatly influences the dynamical behaviors of
the system. In particular, it has been shown the
system gets more chance for both the predator and
prey to become extinct when the density level of
the prey is below the critical threshold u = b.
When positive (coexisting) equilibria exist, the sys-
tem may exhibit bistable phenomenon, that is, both
E0 and E3, or E0 and E3− are stable. For the lat-
ter case, an unstable limit cycle arises from Hopf
bifurcation, implying the predator and prey in a
oscillating phase. Our findings indicate that even
when the system exists in the oscillating model, the
system still has great possibility for both predator
and prey to become extinct due to the impact of
the Allee effect.

The methodology discussed in this paper is a
complement to the existing approaches, and may
be applied to study complex dynamics and bifurca-
tions for other biological and physical systems.
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