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Abstract. Chebyshev criterion is a powerful tool in the study of limit cycle

bifurcations in dynamical systems based on Abelian integrals, but it is difficult

when the Abelian integrals involve parameters. In this paper, we consider the
Abelian integrals on the periodic annuli of a Hamiltonian with one parameter,

arising from the generalized Liénard system, and identify the parameter values

such that the Abelian integrals have Chebyshev property. In particular, the
bounds on the number of zeros of the Abelian integrals are derived for differ-

ent parameter intervals. The main mathematical tools are transformations and
polynomial boundary theory, which overcome the difficulties in symbolic com-

putations and analysis, arising from large parametric-semi-algebraic systems.

1. Introduction and main result. The classical Liénard system,

ẍ+ f(x)ẋ+ x = 0, (1)

was proposed to model oscillating circuits at the primary development of radio
and vacuum tube technology [17]. It has extensive applications in science and
engineering, for example, the Van der Pol oscillator, ẍ + (1 − x2)ẋ + x = 0 in
which f(x) = 1− x2, was proposed by Van der Pol [29] to model the oscillation of
electrical circuits, by Fitzhugh [7] and Nagumo [21] to model the action of potentials
of neurons, and later by Cartwright et al. [3] to model dynamical behaviours of
other physical and biological systems, such as the two plates in a geological fault.
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On the other hand, many researchers have realized that system (1) has limitation
on modeling most recently developed nonlinear problems due to the linear restoring
force. Therefore, the system (1) was generalized to a more general version with
nonlinear restoring force,

ẍ+ f(x)ẋ+ g(x) = 0, (2)

where f(x) and g(x) are univariate polynomials. System (2) is usually called gener-
alized Liénard system and used to model various kinds of oscillations such as limit
cycles in natural sciences [6]. In reality, the planar form,

ẋ = y, ẋ = −g(x)− f(x)y, (3)

is often obtained by simplifying higher dimensional dynamical systems to study
local bifurcations, such as Bogdanov-Takens bifurcation investigated in a recent
unified SIR and HIV disease Model [35]. Even though system (3) has a simple
expression, it is still very difficult to determine the number of limit cycles and their
location bifurcating in this system. As a matter of fact, Smale proposed [22] 18
open mathematical problems for the 21th century, formally in reply to a request
from Arnold (Arnold’s inspiration came from Hilbert’s problems [13]), one of them
asks for the number of limit cycles that system (1) can have. However, even for
the simplest version of the Hilbert’s 16th problem, it is still not easy to solve.
Arnold proposed [1] a weaker version of Hilbert’s 16th problem, which, instead
of considering general polynomial differential systems, studies the number of limit
cycles emerging from the periodic annuli by perturbing Hamiltonian systems. The
corresponding system is

ẋ = Hy(x, y) + εp(x, y), ẋ = −Hx(x, y) + εq(x, y), (4)

where ε > 0 is sufficiently small, H(x, y), p(x, y) and q(x, y) are polynomials. Sys-
tem (4)ε=0 is a Hamiltonian system with the first integral or Hamiltonian function
H(x, y), which defines a family of periodic orbits {Γh} = {(x, y)|H(x, y) = h}. The
number of limit cycles of system (4) is estimated by a return map constructed on
the periodic annulus [11], and further can be estimated by the zeros of its first order
approximation, called Abelian integral or Melnikov function, defined as

M(h) =

∮
Γh

q(x, y)dx− p(x, y)dy, h ∈ J, (5)

where J is an open interval ensuring that H(x, y) = h ∈ J defines a family of closed
orbits. So far, only quadratic systems of (4) have been completely solved, see [4].
Based on Smale’s version (3) and Arnold’s version (4), a further simpler version has
been studied on the Poincaré bifurcation of limit cycles for the following generalized
Liénard system with a weak damping effect,

ẋ = y, ẋ = −g(x)− εf(x)y, (6)

which belongs to the perturbed Hamiltonian system (4) with p = 0 and q(x, y) =

f(x)y, and so H(x, y) = y2

2 +
∫
g(x)dx. The corresponding Abelian integral is

reduced to the simple form,

A(h) =

∮
Γh

f(x)dy, h ∈ J. (7)

There have been many works reported on system (6) which has degrees 2, 3,
4, and degrees 5 and 7 with symmetry. The results are summarized in a recent
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publication [26]. When system (6) has symmetry and degree 7, it has the following
normal form,

ẋ = y, ẏ = ζx(x2 − 1)(x2 + α)(x2 + β) + ε(a0 + a1x
2 + a2x

4 + a3x
6)y, (8)

where ζ = ±1, α and β are real numbers. The Hamiltonian of system (8)ε=0 is

H(x, y) =
y2

2
+
ζαβ

2
x2 +

ζ(α+ β − αβ)

2
x4 +

ζ(1− α− β)

4
x6 − ζ

2
x8. (9)

We assume system (8)ε=0 has at least one unique heteroclinic loop, which has eight
different topological phase portraits, as shown in Table 1.

Table 1. Eight different topological phase eortraits of system (8)ε=0

with heteroclinic loops (red curves).

(a) ζ = 1, α, β > 0 (b) ζ = 1, α = β < −1 (c) ζ = 1, β < α = −1 (d) ζ = β = −1, α > 0

(e) ζ = 1, α = β = −1 (f) ζ = β = −1, α = 0 (g) ζ = 1, α > 0, β = 0 (h) ζ = 1, α = β = 0

The case (a) of system (8) was considered in [23] to show that the Abelian
integral of system (8) has at most 4 zeros when α = β = 2, and 4 zeros can be
detected by considering the asymptotic expansion of the Abelian integral near the
boundary of the periodic annulus, see [9, 10, 12, 25]. Recently, Zhu et al. pointed
out that the corresponding Abelian integral has at most 4 zeros, but only 3 zeros
were obtained by choosing α = 1 and β = 2, see [36]. For case (b), Yang et al. [33]
fixed α = β = −2 and proved that the corresponding Abelian integral has at most
4 zeros which can be detected by applying the same method used in [23], and in the
same article, the exact same result was obtained for case (c) by fixing α = −2 and
β = −1. For cases (e) and (f), it has been proved that the corresponding Abelian
integrals have at most 4 zeros but only 3 zeros have been reached, see [14, 24, 27]. It
should be noted that all of these results were obtained by applying the Chebyshev
criterion [8, 19]. A combination of techniques has been used in [23, 27] to show the
advantage in solving the problem. The bounds given in [23, 33, 36] were obtained
only for system (8) with the parameters α and β being fixed. It is unknown whether
the bounds on the number of zeros of Abelian integrals depend on the parameters
α and β, and if it does, then what is the parameter values such that the Abelian
integrals have Chebyshev property?

In this paper, we study system (8) for cases (a), (b) and (d), restricted to one
parameter α. This parameter α involved in the Hamiltonian causes a great deal of
difficulty in bounding the number of zeros of the Abelian integral. For convenience,
in the following, we use the notations for all cases (a), (b) and (d) of system (8):
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(1) H(x, y) for the Hamiltonian of system (8)ε=0;
(2) Υ† for the heteroclinic loop, satisfying H(Υ†) = H(−1, 0);
(3) Υh for the closed orbits, satisfying Υh = {(x, y)|x ∈ (−1, 1), H(x, y) = h, 0 <

h < H(Υ†)};
(4) Υ∗ for the center at (0, 0), satisfying H(0, 0) = 0.
(5) P for the periodic annulus formed by {Υh}.
The corresponding Abelian integral constructed on P as the bifurcation function

of the perturbed system (8) is given by

I(h, δ) =

∮
Υh

(a0 + a1x
2 + a2x

4 + a3x
6)ydx

:= a0 I0(h) + a1 I1(h) + a2 I2(h) + a3 I3(h),

(10)

for h ∈ (0,H(Υ†)), where δ = (a0, a1, a2, a3), Ii(h) =
∮

Υh
x2iydx, i = 0, 1, 2, 3.

Our main results are stated in the following three theorems.

Theorem 1.1. For ζ = β = −1 and h ∈ (0, 1+4α
24 ), with multiplicity counted, I(h, δ)

has at most three zeros if α ∈ [1, 3] and four zeros if α ∈ (3,+∞).

Theorem 1.2. For ζ = 1, β = α and h ∈ (0, 1+4α+6α2

24 ), with multiplicity counted,
I(h, δ) has at most three zeros if α ∈ (α4, α10) and four zeros if α ∈ (−∞, α4) ∪
(α10,−1) ∪ (α∗,+∞), where α4, α10 and α∗ are given in the proof.

Theorem 1.3. For ζ = β = 1 and h ∈ (0, 3+8α
24 ), I(h, δ) has at most four zeros

counting multiplicity if α ∈
[

3
8 ,+∞

)
.

With system (8), Theorem 1.1 is for case (d) with α ≥ 1; Theorem 1.2 covers case
(b), and case (a) with β = α > α∗ > 0; and Theorem 1.3 gives the bounds for part
of case (a) with β = 1 and α ≥ 3

8 . Combining Poincaré-Pontryagin Theorem and
Theorems 1.1, 1.2 and 1.3, we can also obtain the number of limit cycles emerging
from P.

We have noticed that the zero problem on the Abelian integral I(h, δ) is more
difficult due to the parameter α. The main mathematical tool used in proving
our main results is Grau’s criterion [8, 19] on a set of integrals. This idea reduces
the problem to detecting the roots of some semi-algebraic sets. The parameter α
in H(x, y) also appears in the semi-algebraic sets. However, it is not easy to de-
termine the roots of a parametric semi-algebraic set even if some methodologies
have been developed, such as parametric regular chains [5], zero classification and
zero counting [34]. These methods are applicable to parametric-semi-algebraic set
systems with fewer variables and fewer terms. We have experienced a larger para-
metric semi-algebraic set with more than 1000 terms, causing computers to crash
on symbolic computation. In this work, in order to overcome the difficulty, we will
introduce a series of variable transformations, to show the positivity of some rel-
ative polynomials. We will also utilize the polynomial boundary theory to detect
the branch points of the parametric semi-algebraic system. It will be shown that
the transformations (even if they are simple) and the polynomial boundary theory
are very powerful, with which the parameter range ensuring the integrals to have
Chebyshev property is obtained. We have thus simplified the complicated symbolic
computations and made concise proofs.

The rest of the paper is organized as follows. Definitions, Chebyshev criterion
and polynomial boundary theory are presented in the next section. In section 3, we
prove Theorem 1.1 for which we mainly determine the range of the parameter α in
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H(x, y) such that {I0(h), I1(h), I2(h), I3(h)} has the Chebyshev property. In section
4, we prove Theorem 1.2, and in section 5, we give an outline of proof for Theorem
1.3. Finally, conclusion is drawn in section 6.

2. Preliminary. The main tool used in this paper is an algebraic method to bound
the number of zeros of linear combination of a set of integrals on a family of closed
orbits, see [8, 19]. It is a general version of the method of determining the mono-
tonicity of two Abelian integrals [16, 18]. A brief introduction is given below.

Definition 2.1. A set of analytic functions {l0(x), l1(x), l2(x), ..., ln−1(x)} for x
belonging to some interval J is called a Chebyshev system (T-system for short) if
any nontrivial linear combination,

k0l0(x) + k1l1(x) + · · ·+ kn−1ln−1(x),

has at most n − 1 isolated zeros on J ; called a T-system with accuracy k if any
nontrivial linear combination,

k0l0(x) + k1l1(x) + · · ·+ kn−1ln−1(x),

has at most n − 1 + k isolated zeros accounting multiplicity on J ; and called ex-
tended complete Chebyshev system (ECT-system for short) if any nontrivial linear
combination,

k0l0(x) + k1l1(x) + · · ·+ ki−1li−1(x),

has at most i− 1 isolated zeros accounting multiplicity on J for all i = 1, · · · , n.

One sufficient condition ensuring that {l0(x), l1(x), l2(x), ..., ln−1(x)} is an ECT-
system is non-vanishing of the Wronskians W [l0(x), · · · , li(x)], i = 0, 1, · · · , n − 1,
that is,

W [l0(x), · · · , li(x)] 6= 0, for i = 0, 1, · · · , n− 1.

Let the analytic Hamiltonian have the form H(x, y) = Ψ(x) + 1
2y

2 and define
a family of closed curves {Lh} = {(x, y)|H(x, y) = h}. The closed curves { Lh}
surround an element center at the origin and form an annulus. H(x, y) has a local
minimum assumed to be 0 at (0, 0). The projection of { Lh} on the x-axis is an
interval (xl, xr) with xl < 0 < xr. There exists an analytic involution z(x) such
that Φ(x) = Φ(z(x)) for all x ∈ (xl, xr), with (x∗, 0) and (z(x∗), 0) being the
intersection points of the closed curve Lh∗ with the x-axis, satisfying H(x∗, 0) =
H(z(x∗), 0) = h∗. In particular, we have z(x) = −x if Ψ(x) is an even function and
the related system is symmetric with respect to the y-axis.

Let ξi(x), i = 0, 1, . . . , n− 1, be analytic on (xl, xr) and the ordered integral set
{A0(h), A1(h), · · · , An−1(h)} are well defined on {Lh} by

Ai(h) =

∫
Lh

ξi(x)y2s−1dx, i = 0, 1, 2, · · · , n− 1,

where s ∈ N, h ∈ (H(0, 0),H(xr, 0)) := (0, h0). Further define

li(x) :=
ξi(x)

Φ′(x)
− ξi(−x)

Φ′(−x)
. (11)

Then, we have

Lemma 2.2. [8] {A0(h), A1(h), · · · , An−1(h)} is an ECT-system on (0, h0) if s >
n− 2, and {l0(x), l1(x), · · · , ln−1(x)} is an ECT-system on (xl, 0) or (0, xr).
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Lemma 2.3. [19] {A0(h), A1(h), · · · , An−1(h)} is a T-system with accuracy k on
(0, h0) if s > n − 2 + k, {l0(x), l1(x), · · · , ln−2(x)} is an ECT-system, and the
WronskianW [l0(x), l1(x), · · · , ln−1(x)] has k zeros accounting multiplicity on (xl, 0)
or (0, xr).

We give a brief introduction of polynomial boundary theory. Let k be a field,
x1 ≺ x2 ≺ · · · ≺ xn be n ordered variables and R = k[x1, · · · , xn] be the polynomial
ring on k. The greatest variable xi in f(x1, · · · , xi) is called its main variable,
denoted by mvar(f). The coefficient of the main variable of f is called the leading
coefficient, denoted by lc(f ).

Definition 2.4. (Semi-Algebraic Systems). A semi-algebraic system (SAS for
short) is a conjunctive polynomial formula of the following form,

SAS, S :


p1(x1, · · · , xn) = 0, · · · , ps(x1, · · · , xn) = 0,
g1(x1, · · · , xn) ≥ 0, · · · , gr(x1, · · · , xn) ≥ 0,
gr+1(x1, · · · , xn) > 0, · · · , gt(x1, · · · , xn) > 0,
h1(x1, · · · , xn) 6= 0, · · · , hm(x1, · · · , xn) 6= 0,

(12)

where n, s ≥ 1, t ≥ r ≥ 0, m ≥ 0, and all pi, gi, hi ∈ R(u, x) are polynomials with
integer coefficients.

An SAS is called a parametric SAS if s < n (s indeterminates are viewed as
independent variables and the other n−s indeterminates are treated as parameters,
denoted by u = (xs+1, · · · , xn)). An SAS is usually denoted by [F,N, P,H], where
F = [p1, · · · , ps], N = [g1, · · · , gr], P = [gr+1, · · · , gt] and H = [h1, · · · , hm].

There exist several well-known methods, such as the Ritt-Wu method, Gröbner
basis method and subresultant method [2, 30, 31], which enable us to transform an
SAS (12) equivalently to one or more triangular sets: T1, · · · ,Tj in the form of

Tj :



f j1 (u, x1) = 0,

f j2 (u, x1, x2) = 0,

f j3 (u, x1, x2, x3) = 0,
...

f js (x1, · · · , xs) = 0,

g1(x1, · · · , xn) ≥ 0, · · · , gr(x1, · · · , xn) ≥ 0,

gr+1(x1, · · · , xn) > 0, · · · , gt(x1, · · · , xn) > 0,

h1(x1, · · · , xn) 6= 0, · · · , hm(x1, · · · , xn) 6= 0,

(13)

where {f j1 (u, x1), f j2 (u, x1, x2), f j3 (u, x1, x2, x3), · · · , f js (x1, x2, x3, · · · , xs)} is a tri-
angular set (TS for short), or a normal ascending chain.

Let dis(fi) denote the discriminant of a polynomial fi with respect to xi, res(·, �, xj)
denote the Sylvester resultant of · and � with respect to xj , and gcd(f1, f2, · · · , fi)
denote the greatest common factor of f1, f2, · · · , fi.

Definition 2.5. (Border Polynomial of TS) Consider the TS Tj. For conve-

nience, f ji is denoted by fi(only for this definition). The following polynomial is
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called border polynomial of (13):

BTj = lc(f1)dis(f1)
∏

2≤i≤s

res(lc(fi)dis(fi); fi−1, · · · , f1)
∏

1≤j≤t

res(gj ; fs, · · · , f1)

×
∏

1≤k≤m

res(hk; fs, · · · , f1),

where

res(∗; fi, · · · , f1) = res(· · · (res(res(∗, fi, xi), fi−1, xi−1), · · · ), f1, x1).

For two TSs: Tj and Tj̃, let

rjj̃i = gcd
(
res(f ji ; f j̃i , f

j̃
i−1, · · · , f

j̃
1 ), res(f j̃i ; f ji , f

j
i−1, · · · , f

j
1 )
)
, 1 ≤ i ≤ s,

and
Cjj̃ = gcd(rjj̃1 , · · · , rjj̃s ).

Definition 2.6. (Border Polynomial of an SAS) If a parametric SAS S is
transformed equivalently to regular TSs {T1, · · · ,Tl}, then

BS =
∏

1≤j≤j̃≤l

Cjj̃

l∏
j=1

BTj

is called the border polynomial of S.

Lemma 2.7. [32, 34] The number of distinct real solutions of the semi-algebraic
system S is invariant in each connected component of the complement of BS = 0 in
Rn−s.

Remark 2.8. When the parameter values satisfy the boundary BS = 0, it is usually
called degenerate case, for which it should be analyzed by other methods, see [32,
34]. Based on the above described idea, Yang and Xia [32, 34] developed a practical
method for computing the border polynomial of S, which has been included into
the Maple software package.

3. Proof of Theorem 1.1. In this section, we first study the Abelian integral of
system (8) for case (d) and determine the range of α, such that the sets {I0(h), I1(h),
I2(h), I3(h)} is a T-system by Lemma 2.2. We rewrite

E(x) = H(x, 0) =
α

2
x2 +

1− 2α

4
x4 +

α− 2

6
x6 +

x8

8
.

The projection of the period annulus P on the x-axis is (−1, 1). Note that xE′(x) >
0 for all x ∈ (−1, 1) \ {0}. There exists an analytic involution z(x) = −x defined by
E(x) = E(z(x)). Our goal is to prove that the vector space {I0(h), I1(h), I2(h), I3(h)}
has Chebyshev property by applying Lemma 2.2. However, the condition s > n−2 in
Lemma 2.2 is not satisfied and thus the power in the integrand of Ii(h) (i = 0, 1, 2, 3)
needs to be increased. To achieve this, we have the following result.

Lemma 3.1. For i = 0, 1, 2, 3, we have

8h3Ii(h) =

∫
Υh

fi(x)y7dx := Ii(h),

where fi(x)=
x2i

15∑
j=0

pj(α)x2j

181440(x2−1)9(x2+α)6
and pj(α), i = 0, 1, · · · , 15, are polynomials in α.
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Proof. First, note that 2E(x) + y2 = 2h holds on each closed curve Υh. Thus we
obtain

8h3Ii(h) =

∫
Υh

(2E(x) + y2)3x2iydx

=

∫
Υh

8x2iE3(x)ydx+

∫
Υh

12x2iE2(x)y3dx+

∫
Υh

6x2iE(x)y5dx+

∫
Υh

x2iy7dx,

(14)

for i = 0, 1, 2, 3. Noticing that the functions 8x2iE3(x)
E′(x) are analytic near x = 0, and

applying Lemma 4.1 in [8] we have∫
Υh

8x2iE3(x)ydx =

∫
Υh

Gi(x)y7dx,

∫
Υh

12x2iE2(x)y3dx =

∫
Υh

Gi(x)y7dx,

∫
Υh

6x2iE(x)y5dx =

∫
Υh

Gi(x)y7dx,

(15)

where

Gi(x) =
x2igi(x)

181440(x2 − 1)9(x2 + α)6
,

Gi(x) =
x2igi(x)

1680(x2 − 1)6(x2 + α)4
,

Gi(x) =
x2igi(x)

28(x2 − 1)3(x2 + α)2
,

in which the polynomials gi(x), gi(x) and gi(x) have degrees 30, 20 and 10, respec-
tively, which are omitted here for brevity. Combining (14) and (15) finishes the
proof of Lemma 3.1.

By Lemma 3.1, we need only determine the range of α such that {I0, I1, I2, I3}
forms a Chebyshev system on (0, 4α+1

24 ). In order to apply Lemma 2.2, we set

Li(x) =
( fi
E′
)

(x)−
( fi
E′
)

(z(x)), i = 0, 1, 2, 3, (16)

where 0 < x < 1 and z(x) = −x. Then, for i = 0, 1, 2, 3,

Li(x) = − 2x2 ili(x)

181440 (x2 − 1)
11

(x2 + α)
7
x
,

with li(x) being a univariate polynomial of degree 30 in x with parameters α and i.
Now we only need to analyze the related Wronskians to verify if the ordered

set of the criterion functions {L1(x),L2(x),L3(x),L0(x)} form an ECT-system. A
direct computation leads to the following lemma.
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Lemma 3.2.
W [L1(x)] =

xw1(x, α)

90720 (x2 − 1)
11

(x2 + α)
7 ,

W [L1(x),L2(x)] =
x3w2(x, α)

4115059200 (x2 − 1)
22

(x2 + α)
13 ,

W [L1(x),L2(x),L3(x)] =
x6w3(x, α)

3110984755200 (x2 − 1)
32

(x2 + α)
18 ,

W [L1(x),L2(x),L3(x),L0(x)] =
x2w4(x, α)

1175952237465600 (x2 − 1)
42

(x2 + α)
22 ,

where the univariate polynomials w1(x, α), w2(x, α), w3(x, α) and w4(x, α) have
degrees 30, 58, 82 and 104, respectively, and α is a positive parameter.

We have the following result.

Lemma 3.3. The Wronskians on L0(x), L1(x), L2(x) and L3(x) have the following
properties:

(i) both the Wronskians W [L1(x)] and W [L1(x),L2(x)] do not vanish for x ∈
(0, 1) when α ∈ (0,+∞);

(ii) W [L1(x),L2(x),L3(x)] does not vanish for x ∈ (0, 1) when α ∈ [1,+∞);
(iii) W [L1(x),L2(x),L3(x),L0(x)] has no zeros for x ∈ (0, 1) when α ∈ [1, 3], and

has exact one simple zero when α ∈ (3,+∞).

Proof. Due to Lemma 3.2, it is suffice to prove that the results hold for wi(x, α),
i = 1, 2, 3, 4. We first prove assertion (i). Introducing x = 1

1+X ∈ (0, 1) with X > 0,
we have

w1(x, α) = w1

( 1

1 +X
,α
)

=
1

(1 +X)30

30,6∑
i=0,j=0

ci,jX
iαj ,

with all the coefficients cij being nonnegative and not zero identically. Therefore,
w1( 1

1+X , α) has no zeros on {(X,α)|X > 0, α > 0}. This implies that w1(x, α) has

no zeros for x ∈ (0, 1) when α ∈ (0,+∞). Similarly,

w2(x, α) = w2

( 1

1 +X
,α
)

=
1

(1 +X)58

58,11∑
i=0,j=0

ci,jX
iαj ,

with all the coefficients cij being nonnegative and not zero identically. Then,
w2( 1

1+X , α) has no zeros on {(X,α)|X > 0, α > 0}. This implies that w2(x, α)

has no zeros for x ∈ (0, 1) when α ∈ (0,+∞).
Next, consider w3(x, α) for assertion (ii). A direct substitution yields

w3(0, α) = 266294200054579200α15, w3(1, α) = 1146880 (α−1)(α+1)5(4α+1)9,

and so

w3(0, α)w3(1, α) < 0 if α ∈ (0, 1).

Hence, w3(x, α) has at least one zero for x ∈ (0, 1) when α ∈ (0, 1).
When α ∈ [1,+∞), we introduce α = b+1 with b ≥ 0 and x = 1

1+X into w3(x, α)
to obtain

w3(x, α) = w3

( 1

1 +X
, 1 + b

)
=

−1

(1 +X)82

82,15∑
i=0,j=0

c̃i,jX
ibj ,
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with all the coefficients c̃ij ≥ 0 and c̃i0 6= 0. Then, w3

(
1

1+X , 1 + b
)

has no positive

zeros on {(X, b)|X > 0, b ≥ 0}. Therefore, w3(x, α) has no zeros for x ∈ (0, 1) when
α belongs to [1,+∞).

Finally, we prove assertion (iii). A direct computation shows that

w4(0, α) = 17670004903461613731840α18,

w4(1, α) = −7340032 (α− 3) (α+ 1)
5

(4α+ 1)
12
,

and so,

w4(0, α) > 0, w4(1, α) < 0 for α ∈ (3,+∞).

Hence, for x ∈ (0, 1), w4(x, α) has at least one zero when α ∈ (3,+∞), and maybe
no zeros when α ∈ [1, 3].

When α ∈ [1, 3], we introduce x = 1
1+X and α = b+ 1 with X > 0 and b ∈ [0, 2]

into w4(x, α) to obtain

w4(x, α) = w4

( 1

1 +X
, 1 + b

)
=

1

(1 +X)104

104,18∑
i=0,j=0

ĉi,jX
ibj ,

where the coefficients ĉij ’s have different signs, which can be rewritten as

104,18∑
i=0,j=0

ĉi,jX
ibj =

104∑
i=0

gi(b)X
i,

where gi(b), i = 0, 1, · · · , 104, are polynomials and have the degrees less than or
equal to 18. The coefficients in gi(b) for i = 14, 15, · · · , 104 are all positive, implying
that

gi(b) ≥ 0 on [0, 2] for i = 14, 15, . . . , 104.

The coefficients in each gi(b), i = 0, 1, · · · , 13, have different signs. g0(b), g1(b) and
g2(b) are given below, others are omitted for briefness.

g0(b) = −7340032 (b− 2)(b+ 2)5 (4 b+ 5)
12
,

g1(b) = −7340032 (100 b+ 171) (b− 2) (b+ 2)
4

(4 b+ 5)
12
,

g2(b) = −917504
(
39375 b3 + 55178 b2 − 156567 b− 229058

)
(b+ 2)

3
(4 b+ 5)

12
.

Applying Sturm’s Theorem with a sample point b∗ ∈ (0, 2) to gi(b) (i = 0, 1, 2, 3, 4,
· · · , 13), we have,

gi(b) ≥ 0 on [0, 2] for i = 0, 1, 2, . . . , 13.

So, all gi(b)’s are nonnegative. Then
∑104
i=0 gi(b)X

i has no positive roots for X ∈
(0,+∞) if b ∈ [0, 2]. This implies that w4(x, α) has no zeros for x ∈ (0, 1) when
α ∈ [1, 3].

When α ∈ (3,+∞), we have

∂w4

∂x
(x, α) =

∂w4

∂x

( 1

1 +X
, 1 + b

)
= − 1

(1 +X)103

102,18∑
i=0,j=0

c†i,jX
ibj ,

where the coefficients c†ij ’s are nonnegative. Therefore, ∂w4

∂x (x, α) ≤ 0 and so

w4(x, α) is monotone on (0, 1) when α ∈ (3,+∞). Hence, w4(x, α) has a unique
simple zero in (0, 1) when α ∈ (3,+∞).

The proof of Lemma 3.3 is complete.
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Proof. (Theorem 1.1) Lemma 3.3 shows that {L1(x),L2(x),L3(x),L0(x)} is an
ECT-system for x ∈ (0, 1) when α ∈ [1, 3], and a Chebyshev system with accuracy
1 when α ∈ (3,+∞). Then, Theorem 1.1 is proved by applying Lemmas 2.2 and
2.3.

Remark 3.4. (i) In the above analysis, we mainly apply Lemma 3.1 with the for-
mula 8h3Ii(h)=

∫
Υh

fi(x)y7dx to prove not only for that {L1(x),L2(x),L3(x),L0(x)}

is an ECT-system for x ∈ (0, 1) when α ∈ [1, 3], but also for that it is a T-system
with accuracy 1 when α∈ (3,+∞). It should be pointed out that one may use the
simpler formula 4h2Ii(h) =

∫
Υh

f∗i (x)y5dx, where f∗i (x) is some relative function, to

verify the former, but not applicable for the latter. Therefore, we have used the
same formula 8h3Ii(h)=

∫
Υh

fi(x)y7dx in the analysis for brievity.

(ii) The Chebyshev system theory is invalid for case (d) when α ∈ (0, 1), and so
the upper bound is unknown for this case. However, we may study the asymptotic
expansion of I(h) near the center and apply the zero bifurcation in [11] to prove
that I(h) has three zeros near h = 0.

4. Proof of Theorem 1.2. In this section, we prove Theorem 1.2. For briefness,
we omit the details on the portraits of system (8)α=β and the construction of the
Wronskians, since they are similar to that for proving Theorem 1.1, and the methods
and arguments are completely same. Similar to (16) and Lemma 3.3, we denote
the determining functions for system (8)α=β as Li(x), i = 0, 1, 2, 3, and the four
Wronskians are obtained by direct computation, as given below.

Lemma 4.1. W [L1(x)] =
xm1(x, α)

90720 (x− 1)
7

(x+ 1)
7

(x2 + α)
11 ,

W [L1(x),L3(x)] =
x5m2(x, α)

2057529600 (x− 1)
13

(x+ 1)
13

(x2 + α)
22 ,

W [L1(x),L3(x),L0(x))] =
x2S1(x, α)

3110984755200 (x−1)18(x+1)18(x2+α)32
,

W [L1(x),L3(x),
(
λL0(x) + L2(x)

)
] =

x2(λS1(x, α) + S2(x, α))

3110984755200 (x−1)18(x+1)18(x2+α)32
,

where m1(x, α), m2(x, α), S1(x, α) and S2(x, α) are polynomials having the degrees
39, 58, 82 and 86, respectively.

Furthermore, we have the following result.

Lemma 4.2. The Wronskians on L0(x), L1(x), L2(x) and L3(x) have the following
properties:

(i) W [L1(x)] does not vanish for x ∈ (0, 1) when α ∈ (−∞,−1) ∪ (0,+∞);
(ii) W [L1(x),L3(x)] does not vanish for x ∈ (0, 1) when α ∈ (−∞,−1)∪ [1,+∞);

(iii) W [L1(x),L3(x),L0(x))] does not vanish when α ∈ (−∞,−1) ∪ (α∗,+∞),
where α∗ is isolated in

[
2835
2048 ,

5671
4096

]
.

(iv) When α ∈ (−∞, α1) ∪ (α∗,+∞), W [L1(x),L3(x),
(
λL0(x) + L2(x)

)
] has ex-

actly two simple zeros for x ∈ (0, 1) if λ ∈ (0, λ∗] ∪ [λ∗∗, λr), one simple zero
if λ ∈ (λr, 0], and no zeros if λ ∈ (λ∗,+∞)∪ (−∞, λ∗∗), where α1 is given in
(17), λ∗, λ∗∗ and λr are given in the proof.
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(v) W [L1(x),L3(x),
(
λL0(x) + L2(x)

)
] has at most two zeros for x ∈ (0, 1) when

α ∈ (α1, α4) ∪ (α10,−1), where α1, α4 and α10 are given in (17).
(vi) When α ∈ (α4, α10), W [L1(x),L3(x),

(
λL0(x) + L2(x)

)
] has one zero for x ∈

(0, 1) if λ ∈ (0, λr), and no zeros if λ ∈ (−∞, 0] ∪ [λr,+∞).

There are some αi’s appearing in the following discussion, which are isolated in
some smaller intervals with the estimated values, as given in (17). These αi’s divide
the parameter space R into several connected components.

α1 ≈ −15.73222285 ∈
[
− −4124109

262144 , − 2062053
131072

]
,

α2 ≈ −6.186140508 ∈
[
− 415147741

67108864 , −
207571399
33554432

]
,

α3 ≈ −6.185783063 ∈
[
− 25337

4096 , −
101347
16384

]
,

α4 ≈ −4.037807739 ∈
[
− 16539

4096 , −
264621
65536

]
,

α5 ≈ −4.013960571 ∈
[
− 65765

16384 , −
16441
4096

]
,

α6 ≈ −3.679527580 ∈
[
− 120571

32768 , −
60285
16384

]
,

α7 ≈ −3.637824056 ∈
[
− 3814535

1048576 , −
61032557
16777216

]
,

α8 ≈ −3.623110488 ∈
[
− 15934611303989

4398046511104 , −
3983650523795
1099511627776

]
,

α9 ≈ −3.195096115 ∈
[
− 1756523309131

549755813888 , −
14052177264239
4398046511104

]
,

α10 ≈ −3.138081101 ∈
[
− 102829

32768 , −
205655
65536

]
,

α† ≈ 0.327886656 ∈
[

2750511
8388608 ,

1375257
4194304

]
,

α†† ≈ 1.000000079 ∈
[
1, 2097153

2097152

]
,

α‡ ≈ 1.000670638 ∈
[

33576653
33554432 ,

134308967
134217728

]
.

(17)

For being concise for the proof of Lemma 4.2, we give four claims, based on which
we first prove Lemma 4.2, and then the four claims.

Claim 1: S1(x, α) has no zeros for x ∈ (0, 1) if α ∈ (α∗,+∞), where α∗ is isolated
in
[

2835
2048 ,

5671
4096

]
and given in the proof.

Claim 2: S3(x, α), which is given in (18), has two zeros counting multiplicity
x∗(α), x∗∗(α) ∈ (0, 1) if α ∈ (−∞, α1) ∪ (α∗,+∞).

Claim 3: S3(x, α) has a unique zero x∗(α) ∈ (0, 1) if α ∈ (α1, α4) ∪ (α10,−1).
Claim 4: S3(x, α) has no zeros for x ∈ (0, 1) if α ∈ (α4, α10).

Proof. (Lemma 4.2) It is suffice to show that the conclusions are true for the
main numerators of four Wronskians, m1(x, α), m2(x, α), S1(x, α) and S2(x, α).
We prove the six cases one by one.

(i) Introducing x = 1
1+X ∈ (0, 1) with X > 0, we have

m1(x, α) = m1

( 1

1 +X
,α
)

=
1

(1 +X)20

20,6∑
i=0,j=0

di,jX
iαj ,

with all coefficients dij ≥ 0. Therefore, m1( 1
1+X , α) has no zeros on {(X,α)|X

> 0, α > 0}, implying that m1(x, α) has no zeros on {(x, α)|0 < x < 1, α > 0}.
Similarly, the transformation, x = 1

1+X , α = −1 − b with X, b > 0, is

introduced to prove that m1(x, α) has no zeros on {(x, α)|0 < x < 1, α < −1}.
Hence, assertion (i) holds.
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(ii) Substituting x = 0 and x = 1 into m2(x, α) shows that

m2(0, α) = −2407897497600α18

m2(1, α) = −5760 (α− 1) (α+ 1)
5 (

6α2 + 4α+ 1
)6
.

Therefore, m2(x, α) has at least one zero for x ∈ (0, 1) if α ∈ (0, 1). When
α ∈ [1,+∞), we introduce α = b + 1 and x = 1

1+X with b ≥ 0 and X > 0 to
obtain

m2(x, α) = m2

( 1

1 +X
, 1 + b

)
=

−1

(1 +X)58

58,18∑
i=0,j=0

d̃i,jX
ibj ,

with all coefficients d̃i,j ≥ 0 and some d̃i,0 > 0. Therefore,
∑58,18
i=0,j=0 d̃i,jX

ibj

has no positive zeros on {(X, b)|X > 0, b ≥ 0}, and thus m2(x, α) has no zeros
on {(x, α)|x ∈ (0, 1), α ≥ 1}.

Similarly, introducing the transformation, x = 1
1+X , α = −1 − b with

X, b > 0, shows that m2(x, α) has no zeros on {(x, α)|0 < x < 1, α < −1}.
Hence, the conclusion (ii) is true.

(iii) For α < −1, we can introduce the transformation, x = 1
1+X , α = −1− b with

X, b > 0, to prove that S1(x, α) has no zeros on {(x, α)|0 < x < 1, α < −1}
as follows:

S1(x, α) = S1

( 1

1 +X
,−1− b

)
=

1

(1 +X)82

82,26∑
i=0,j=0

d̂i,jX
ibj ,

where the coefficients d̂ij ’s have different signs, 25 of them are negative, and
other 2201 ones are positive. We rewrite the polynomial as

82,26∑
i=0,j=0

d̂i,jX
ibj =

82∑
i=0

ĝi(b)X
i,

where ĝi(b), i = 0, 1, · · · , 104, are lengthy polynomials with degrees less than
or equal to 26. The coefficients in ĝi(b) for i = 8, 9, · · · , 104 are all positive,
implying that

ĝi(b) > 0 in (0,+∞) for i = 8, 9, · · · , 104.

The coefficients in each gi(b) for i = 0, 1, · · · , 7, have different signs. However,
applying Sturm’s Theorem with a sample point b∗ ∈ (0,∞) to ĝi(b) (i =
0, 1, · · · , 7), we have,

ĝi(b) > 0 in (0,∞) for i = 0, 1, · · · , 7.

So, all gi(b)’s are positive. Thus,
∑82
i=0 ĝi(b)X

i has no positive roots for
X ∈ (0,+∞) if b ∈ (0,∞), namely S1(x, α) has no zeros for x ∈ (0, 1) when
α ∈ (−∞,−1).

For α > 0, we only need to consider α > 1 because we know that the
Wronskians W [L1(x),L3(x)] do not vanish by applying the Chebyshev crite-
rion. We cannot obtain any exact partition for α > 1 by the existing methods.
We will apply polynomial boundary theory in computer algebra to S1(x, α),
resulting in Claim 1 to be proved, and so the proof for (iii) is complete.

(iv) We have shown that S1(x, α) > 0 for x ∈ (0, 1) if α ∈ (−∞,−1) ∪ (α∗,+∞).
Then λS1(x, α) + S2(x, α) = 0 well defines a smooth function λ(x, α) for
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x ∈ (0, 1) with a parameter α ∈ (−∞,−1)∪ (α∗,+∞), as λ(x, α) = −S2(x,α)
S1(x,α) ,

which has the derivative,

λ′(x, α) =
4x3(x2 − 1)S3(x, α)

(S1(x, α))2
, (18)

where S3(x, α) is a polynomial with 1590 terms and has the degree 162 in x
and 52 in the parameter α. The following results are obtained from a direct
computation,

λ(0+, α) = 0+, λ(1−, α) = − 3α3 + 33α2 − 23α+ 27

15α3 + 85α2 + 45α− 265
,

and λ′(0+, α) = 0+.
Assume α ∈ (−∞, α1) ∪ (α∗,+∞) and thus Claim 2 holds. Then we can

show that λ(x, α) is increasing from (0, 0) to a maximum point (x∗, λ∗), then
decreasing to a minimum point (x∗∗, λ∗∗), and then increasing again to the
right endpoint (1, λr), where λ∗ = λ(x∗, α) > 0, λ∗∗ = λ(x∗∗, α) < 0 and

λr = λ(1−, α) = − 3α3+33α2−23α+27
15α3+85α2+45α−265 < 0. For any fixed λ, the number of

roots of λS1(x, α)+S2(x, α) is exactly the number of intersection points of the
curve {(x, λ) : λ = λ(x, α), x ∈ (0, 1)} with the segment {(x, λ) : x ∈ (0, 1)}.
Thus, the conclusion (iv) in Lemma 4.2 holds.

(v) Assume α ∈ (α1, α4)∪(α10,−1) and Claim 3 holds. We can prove that λ(x, α)
is increasing from (0, 0) to a maximum point (x∗, λ∗), then decreasing to the
right endpoint (1, λr), where λ∗ = λ(x∗, α) > 0. For any fixed λ, the number of
roots of λS1(x, α)+S2(x, α) is exactly the number of intersection points of the
curve {(x, λ) : λ = λ(x, α), x ∈ (0, 1)} with the segment {(x, λ) : x ∈ (0, 1)}.
Thus, the assertion (v) in Lemma 4.2 is true.

(vi) Furthermore, assume α ∈ (α4, α10) and Claim 4 holds. Then, we obtain
that λ(x, α) is monotone in (0, 1), increasing from (0, 0) to the right endpoint
(1, λr). Hence, the item (vi) in Lemma 4.2 is proved.

The remaining part in proving Lemma 4.2 is to prove Claims 1-4. We will prove
these claims by applying the polynomial boundary theory in computer algebra to
parametric semi-algebraic systems {S1(x, α), x > 0, 1 − x > 0} and {S3(x, α), x >
0, 1− x > 0}.

Proof. (Claim 1) Computing the boundary of the parametric semi-algebraic sys-
tem, {S1(x, α), x > 0, 1− x > 0}, we obtain seven polynomials,

bp1(α) = α,

bp2(α) = α+ 1,

bp3(α) = α+ 4,

bp4(α) = α2 +
2

3
α+

1

6
,

bp5(α) = 3α3 + 17α2 + 9α− 53,

and bp6(α) and bp7(α) are lengthy polynomials with degrees 72 and 250, respectively.
The boundary set {bpi(α)} has a total of two roots in (0,+∞): α? and α∗, dividing
the parameter space R into 3 intervals, where α? (≈ 1.384385705240) is the root of
bp5(α), isolated in[438729342548815344426106865133

316912650057057350374175801344
,

1754917370195261377704427460613

1267650600228229401496703205376

]
,
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and α∗ (≈ 1.384385814301) is the root of bp7(α), isolated in[104601234701043336700915

75557863725914323419136
,

52300617350521668350471

37778931862957161709568

]
.

Taking any three sample points from the three intervals, (0, α?), (α?, α∗) and
(α∗,+∞), and applying Sturm’s theorem show that S1(x, αsample) has respectively
one, two and zero simple roots in (0, 1). Hence, S1(x, α) has no zeros in (0, 1) when
α ∈ (α∗,+∞) by applying polynomial boundary theory (Lemma 2.7).

Proof. (Claims 2-4) Consider the parametric semi-algebraic system {S3(x, α), x >
0, 1 − x > 0}. We obtain its boundary set consisting of 12 polynomials in α. The
bifurcation roots of the boundary set in R are

α1, α2, α3, α4, α5, −4, α6, α7, α8, α9, α10 − 1, 0, α†,
1

3
, 1, α††, α‡,

where the estimated values and bounded intervals are given in (17).
To prove the three claims, we first study the number of roots of S3(x, α) when

α > 0, and we only need to consider α ∈ (α∗,+∞) ⊂ (α‡,+∞) since it has been
shown in the proofs for (iv)–(vi) of Lemma 4.2 that S1 6= 0. Choosing a sample
point α� ∈ (α∗,+∞) shows that S3(x, α�) has two simple zeros in (0, 1). Hence,
S3(x, α) has two simple zeros in (0, 1) when α ∈ (α∗,+∞) by Lemma 2.7.

Next, we determine the number of roots of S3(x, α) when α ∈ (−∞,−1). Since
αi, i = 1, 2, · · · , 10, and −4 divide the interval (−∞,−1) into 12 open subintervals:
(−∞, α1), (αi, αi+1), i = 1, 2, . . . , 9, (α10,−1), we choose one sample point from
each of the open intervals and applying Lemma 2.7 to obtain the following results.
S3(x, α) has two simple zeros in (0, 1) when α ∈ (−∞, α1), a unique simple zero in
(0, 1) when α ∈ (α1, α2)∪ (α2, α3)∪ (α3, α4)∪ (α10,−1), and no zeros in (0, 1) when
α ∈ (α4, α5) ∪ (α5,−4) ∪ (−4, α6) ∪ (α6, α7) ∪ (α7, α8) ∪ (α8, α9) ∪ (α9, α10).

As discussed above, the number of roots of a parametric semi-algebraic system
when the parameter is on the boundary needs further analysis. However, the bound-
ary points αi cannot be determined exactly, and also it is not reliable to count the
zeros of S3(x, αi) by using the estimated values of αi, i = 0, 1, · · · , 10.

To complete the proof for Claim 3, we show that S3(x, αi) for i = 2, 3 has a
unique zero in (0, 1). Applying the polynomial boundary theory, we can show that
dS3
dx (x, α) has a unique zero in (0, 1) when α is located in an open integral (α∗1, α

∗
4)

which contains (α1, α4), implying that S3(x, α) has a unique critical point. A direct
computation shows that S3(0+, α) < 0, S3(1−, α) > 0 and S ′3(0+, α) > 0. Hence,
S3(x, α) has a unique zero when α ∈ (α1, α4). This completes the proof for Claim
3.

Finally, to finish the proof for Claim 4, we introduce the transformations, α =

αl10 +
(αr

4−α
l
10)

1+b and x = 1
1+X , where αr4 is the right-end point of the interval isolating

α4, and αl10 is the left-end point of the interval isolating α10, b > 0 and X > 0.
With these transformations, we obtain,

S3(x, α) =
Q(X, b)

(1 + y)162(1 + b)52
.

The coefficients of the polynomial Q(X, b) are nonnegative and not identically zero.
Thus, Q(X, b) has no roots in {(X, b)|X > 0, b > 0}, and so S3(x, α) has no zeros
in (0, 1) when α ∈ (α4, α10).

Therefore, the proof for Lemma 4.2 is finished.



5676 XIANBO SUN, ZHANBO CHEN AND PEI YU

Proof. (Theorem 1.2) Consider the Abelian integral given in (10). When a2 = 0,
I(h, δ) = a1I1(h) + a3I3(h) + a0I0(h) has at most two zeros by combining (i)-(iii)
in Lemma 4.2 with Lemma 2.2; when a2 6= 0, without loss of generality, we assume
a2 = 1. Further, we introduce a combination and replace a0 by λ, then I(h, δ) =
a1I1(h) +a3I3(h) + (λI0(h) + I2(h)). Combining (i), (ii) and (iv)–(vi) in Lemma 4.2
with Lemma 2.3 finishes the proof of Theorem 1.2.

Remark 4.3. (i) To prove Theorem 1.2, a combination of two Abelian integrals has
been introduced in I(h, δ) to obtain an upper bound as 4 on the number of zeros of
I(h). It is noted that the combination has advantage over directly applying Lemma
2.3 and the symbolic computation analysis to the set {I0(h), I1(h), I2(h), I3(h)} for
analyzing the zeros of the wronskian of four determining functions similar as L1,
L3, L0 and L2. A direct application of Lemma 2.3 and the symbolic computation
analysis can only reach the upper bound to be 5, when α ∈ (−∞, α1)∪(α∗,+∞).
The combination introduced leads to a comprehensive analysis on the ratio of the
two Wronskians and its derivative, which includes the major factor S3(x, α) given
in (18). It is surprising to find that S3(x, α) can be factorized as S3(x, α) =
5W [L1,L3]W [L1,L3,L0,L2]. For briefness, we do not present the very lengthy
forms of W [L1,L3] and W [L1,L3,L0,L2]. Trying other combinations such as
a2I2 + I0 has also been carried out, however no better results than that in the
proof of Theorem 1.2 are obtained on the range of α and on the number of zeros of
I(h).

(ii) When α ∈ [α4, α10] ∪ (−1, 0) ∪ (0, α∗), the upper bound in Theorem 1.2 is
unknown because the second Wronskian has a zero and so the Chebyshev criterion
is not applicable. However, it is not difficult to find three zeros of I(h) near h = 0
by applying the asymptotic expansion of I(h) near h = 0, and the zero bifurcation
method [11].

5. An outline of proof for Theorem 1.3. In this section, we outline the proof
for Theorem 1.3. The related determination functions for system (8)β=1 are denoted

by Li(x), i = 0, 1, 2, 3. Similarly, we have two preliminary lemmas.

Lemma 5.1.
W [L2(x)] =

x3q1(x, α)

90720 (x− 1)
7

(x+ 1)7 (x2 + α)
7 ,

W [L2(x),L3(x)] =
x7q2(x, α)

4115059200 (x− 1)
13

(x+ 1)
13

(x2 + α)
13 ,

W [L2(x),L3(x),L0(x))] =
x4S1(x, α)

3110984755200 (x−1)18(x+1)18(x2+α)18
,

W [L2(x),L3(x),
(
a0L0(x)+L1(x)

)
] =

x4(ηS1(x, α) + S2(x, α))

3110984755200 (x−1)18(x+1)18(x2+α)32
,

where q1(x, α), q2(x, α), S1(x, α) and S2(x, α) are polynomials with degrees 36, 66,
90 and 92, respectively.

Lemma 5.2. (i) W [L2(x)] does not vanish for x ∈ (0, 1) when α ∈ (0,+∞);
(ii) W [L2(x),L3(x)] does not vanish for x ∈ (0, 1) when α ∈ (αz,+∞), where

αz ∈ [0, 1
256 ];

(iii) W [L2(x),L3(x),L0(x))] does not vanish when α ∈ ( 3
8 ,+∞);
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(iv) if α ∈ (αz,+∞), there exist some values a∗0, a
∗∗
0 and ar0 depending on α such

that W [L1(x),L3(x),
(
a0L0(x) + L2(x)

)
] has two zeros when a0 ∈ [a∗0, 0) ∪

(ar0, a
∗∗
0 ], one zero when a0 ∈ [0, λr], and no zeros when a0 ∈ (−∞, a∗0) ∪

(a∗∗0 ,+∞).

Proof. (Theorem 1.3) When a1 = 0, it can be shown by Lemmas 5.2 that the set
{L2(x),L3(x),L0(x)} is a Chebyshev system for x ∈ (0, 1) provided α ∈ ( 3

8 ,+∞).
When a1 6= 0, without loss of generality, we assume a1 = 1. Lemma 5.2 shows that
the set {L2(x),L3(x), (a0L0(x) + L1(x))} is a Chebyshev system with accuracy 1
provided α ∈ ( 3

8 ,+∞). Then Theorem 1.3 is proved by applying Lemma 2.3.

Remark 5.3. An upper bound on the maximal number of zeros of the Abelian
integral cannot be obtained by using the Chebyshev criterion. However, it is not
difficult to show that I(h) has at least three zeros near h = 0 by applying the
asymptotic expansion and the zero bifurcation method [11].

6. Conclusion. In this paper, the parameter range ensuring the Abelian integrals
on a symmetric Hamiltonian to have Chebyshev property is bounded. The bounds
on the number of zeros of the Abelian integrals of parametric Hamiltonians have
not been well studied by directly using Chebyshev criterion, due to the difficulty
in computation and analysis. We have developed a new method to overcome the
difficulty arising from the large parametric-semi-algebraic systems, for which the
traditional techniques in symbolic computation fail. We provide a rigorous proof
that the exact bound on the number of zeros of the Abelian integral of system
(8) is three for case (d), when the parameter α in the Hamiltonian is located in a
bounded interval. In addition, the results in [14, 23, 36] by fixing parameters in
(8) are extended to one-parametric system (8). The analytical tools used in this
paper are a series of transformations of variables and polynomial boundary theory
in computer algebra. However, for system (8) there exist more open problems on
the number of zeros of I(h, δ), which needs further research: (1) what is the bound
and the parameter range for case (a) when system (8) has two free parameters α
and β? (2) what is the number of zeros of I(h, δ) on the periodic annulus outside
the cusp-cycle for cases (c) and (d)? (3) what is the exact bound for cases (e) and
(f), 3 or 4? (4) how to bound the number of the zeros of I(h, δ) for cases (g) and (h),
for which the algebraic method fails? To solve these problems, new methodologies
and efficient symbolic algorithms need to be developed.
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901–912.
[18] C. Liu and D Xiao, The monotonicity of the ratio of two Abelian integrals, Trans. Amer.

Math. Soc., 365 (2013), 5525–5544.

[19] F. Mañosas and J. Villadelprat, Bounding the number of zeros of certain Abelian integrals,
J. Differential Equations, 251 (2011), 1656–1669.
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