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1. Introduction and main results

The well-known weak Hilbert’s 16th problem [1] asks for the maximal number of 
isolated zeros of the following Abelian integral,

I(h) =
∮
Γh

f(x, y)dx− g(x, y)dy, h ∈ Σ,

where f(x, y) and g(x, y) are polynomials of degree m, Γh is a compact component of 
the level set {H(x, y) = h, h ∈ Σ}, where Σ represents an interval and the Hamiltonian 
H(x, y) is an (n + 1)th-degree polynomial. This open problem is extremely difficult, and 
researchers choose some simpler forms of H(x, y), f(x, y) and g(x, y) to study, see [2] for 
a relatively new survey work.

Suppose that the Hamiltonian function H(x, y) has the form H(x, y) = y2 +Pn+1(x), 
where Pn+1(x) is a polynomial of degree n + 1. In this case, the Abelian integral is 
usually called elliptic integral if [n2 ] < 2, and hyperelliptic integral if [n2 ] ≥ 2. When 
n = 2, Petrov [3] proved that I(h) has at most m − 1 zeros and this upper bound is 
sharp for arbitrary m. When n = 3, Dumortier and Li [4–7] obtained the exact upper 
bound of the number of zeros of I(h) for m ≤ 3. Later, it was proved that the number of 
zeros of I(h) is linearly dependent on m, see [8,9] and references therein. When n > 3, 
I(h) is a hyperelliptic integral, and it is rather difficult to find the upper bound of the 
number of zeros of such an I(h). However, it is still very interesting and important to 
study the hyperelliptic integrals with some small m such as m = 2. In this respect, if 
the ratio of two Abelian integrals,

∮
Γ(h) ydx∮

Γ(h) xydx
,

is monotonic (in other words, the integrals 
∮
Γ(h) ydx and 

∮
Γ(h) xydx have Chebyshev 

property), then the Abelian integral I(h) has at most one isolated zero when f(x, y) =
(α0 + α1x)y and g(x, y) = 0.

In [10], Li and Zhang first provided a criterion to determine the monotonicity of the 
ratio of two Abelian integrals. It is very convenient to be used for determining the exact 
upper bound of the associated Abelian integral when m = 2. Grau et al. [11] generalized 
Li and Zhang’s criterion to deal with the Chebyshev property of m Abelian integrals 
with m > 2, see [12–15]. Gavrilov and Iliev [16] studied the hyperelliptic curve with 
H(x, y) = y2 + P5(x), and proved that the ratio of the two complete Abelian integrals 
of the first kind,

∮
Γ(h)

1
ydx∮
xdx

,

Γ(h) y
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is monotonic. Later, Liu and Xiao [17] established a more useful criterion for proving the 
monotonicity of the ratio of two Abelian integrals, 

∮
Γ(h) ydx and 

∮
Γ(h) xydx. Here Γ(h) is 

the compact component of y2 + Ψ(x) = h, when Ψ(x) is analytic with a local minimum 
at the center of the corresponding Hamiltonian system. As an application, they obtained 
the sufficient and necessary conditions for monotonicity of the ratio of 

∮
Γ(h) ydx and ∮

Γ(h) xydx on the hyperelliptic closed curves defined by {(x, y)|y2 + P5(x) = h}.
In [18], Wang et al. studied the monotonicity of the ratio of 

∮
Γ(h) ydx and 

∮
Γ(h) xydx

on the hyperelliptic curves, given by

H(x, y) = y2 +
∫
x(x− α)(x− β)(x− γ)(x− 1)dx (1.1)

and

H∗(x, y) = y2 −
∫
x(x− α)(x− β)(x− γ)(x− 1)dx. (1.2)

The corresponding Hamiltonian systems are respectively described by

ẋ = −2y, ẏ = x(x− α)(x− β)(x− γ)(x− 1) (1.3)

and

ẋ = 2y, ẏ = x(x− α)(x− β)(x− γ)(x− 1), (1.4)

where 0 ≤ α ≤ β ≤ λ ≤ 1.
Moreover, in [18], the authors gave a complete classification of hyperelliptic curves 

and investigated the monotonicity of the ratios of the two Abelian integrals on these 
hyperbolic curves. A number of good results were obtained in [18]. In particular, when 
α = β = 0 and λ < 1, system (1.3) is reduced to

ẋ = −2y, ẏ = x3(x− λ)(x− 1) (1.5)

with the Hamiltonian function,

H(x, y) = y2 + λ
4 x4 − 1+λ

5 x5 + 1
6 x

6. (1.6)

When β = λ = 0 and 0 < α < 1, system (1.3) becomes

ẋ = −2y, ẏ = x(x− α)(x− 1)3, (1.7)

with the Hamiltonian function

H(x, y) = y2 + α x2 − 1+3α x3 + 3+3α x4 − 3+α x5 + 1 x6. (1.8)
2 3 4 5 6
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Fig. 1. The level set of H(x, y) = h: (a) for system (1.5) and (b) for system (1.7).

The two compact components of the level sets of H(x, y) = h and H(x, y) = h surround-
ing the nilpotent point (0, 0) of systems (1.5) and the nilpotent point (1, 0) of system 
(1.7), are denoted by γ1(h) and γ2(h), as shown in Figs. 1(a) and 1(b), respectively. It 
should be pointed out that it is more difficult to analyze the bifurcation and related 
problems for these degenerate cases.

Let

I0(h) =
∮

γ1(h)
ydx, I1(h) =

∮
γ1(h)

xydx, I0(h) =
∮

γ2(h)
ydx, and I1(h) =

∮
γ2(h)

xydx.

It has been proved in [18] that

Theorem WXY. (i) I1(h)
I0(h) is monotonic in the interval (0, H(λ, 0)) for λ ∈ (0, 23 ], and

(ii) I1(h)
I0(h) is monotonic in the interval (H(1, 0), H(α, 0)) for α ∈ [ 13 , 1).

Note that no answers are given in [18] for part (i) of Theorem WXY when λ ∈ (2
3 , 1)

and for part (ii) when α ∈ (0, 13 ). Instead, the authors proposed the following conjecture.

Conjecture. (i) I1(h)
I0(h) is monotonic in the interval (0, H(λ, 0)) for λ ∈ (2

3 , 1), and
(ii) I1(h)

I0(h) is monotonic in the interval (H(1, 0), H(α, 0)) for α ∈ (0, 13 ).

The aim of this paper is to give a positive answer to the above conjecture. Our main 
results are given in the following two theorems.

Theorem A. I1(h)
I0(h) is monotonic in the interval (0, H(λ, 0)) for λ ∈ (2

3 , 1).

Theorem B. I1(h)
I0(h) is monotonic in the interval (H(1, 0), H(α, 0)) for α ∈ (0, 13 ).

Combining Theorems WXY, A and B shows that I1(h)
I0(h) is monotonic in the interval 

(0, H(λ, 0)) for λ ∈ (0, 1), and I1(h)
I0(h) is monotonic in the interval (H(1, 0), H(α, 0)) for 

α ∈ (0 1). Thus, any non-trivial linear combination, a0I0 + a1I1 (or a0I0 + a1I1), has 
at most one zero. By the Poincaré theorem (see [19]), system (1.5) (or system (1.7)) 
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perturbed by (a0 + a1x)y (or (α0 + α1x)y) can have at most one limit cycle, which can 
be reached.

Theorems A and B will be proved in Sections 2 and 3, respectively. The proofs are 
based on the criteria given in [17] and theory on the boundary of polynomial algebraic 
systems [20,21]. The techniques developed in this paper greatly simplify the analysis and 
can be applied to other types of differential equations.

2. Proof of Theorem A

Let

Φ(x) = H(x, y) − y2 = λ
4 x4 − 1+λ

5 x5 + 1
6 x

6.

It is not difficult to prove that Φ′(x)x > 0 and there exist two analytic functions μ(h)
and ν(h) satisfying

Φ(μ(h)) ≡ Φ(ν(h)) ≡ h, aλ < μ(h) < 0 < ν(h) < λ,

where λ ∈ (−0.43708017 · · · , 0) with Φ(aλ) = Φ(λ). Further, define the function

U(h) = μ(h) + ν(h).

Then, in the following, we will show that U ′(h) �= 0 in (0, H(λ, 0)) for λ ∈ (2
3 , 1), and 

thus the conclusion is true by using the criterion in [17].
Φ(ν) = h and Φ′(ν) > 0 imply that ν′(h) > 0 in (0, H(λ, 0)). Therefore, ν(h) has 

an inverse function h = h−1(ν), which is substituted into μ(h) to yield μ(h) = μ(ν), 
where μ(ν) is defined by Φ(μ) − Φ(ν) = 0, satisfying aλ < μ < 0 < ν < λ. Factorizing 
Φ(μ) − Φ(ν) gives −ν−μ

60 q(ν, μ, λ), where

q(ν, μ, λ) = 12 (λ + 1)(μ4 + μ3ν + μ2ν2 + μ ν3 + ν4) − 15λ(μ + ν)(μ2 + ν2)

− 10(μ + ν)(μ2 + ν2 + μν)(μ2 + ν2 − μν).

In fact, μ(ν) is determined by q(μ, ν, λ). Hence,

U ′(h) =
[
dμ
dν + 1

]
ν′(h) =

[
− qμ(ν,μ,λ)

qν(ν,μ,λ) + 1
]
ν′(h) = 2(μ− ν) U1(ν,μ,λ)

U2(ν,μ,λ)ν
′(h),

where

U1(ν, μ, λ) = 6(λ + 1)(3μ2 + 4μ ν + 3 ν2) − 15λ (μ + ν)

− 10 (2μ3 + 3μ2ν + 3μ ν2 + 2 ν3),

U2(ν, μ, λ) = 12λ (4μ3 + 3μ2ν + 2μ ν2 + ν3) − 15λ (3μ2 + 2μ ν + ν2)

− 10 (5μ4 + 4μ3ν + 3μ2ν2 + 2μ ν3 + ν4) + 12 (4μ3 + 3μ2ν + 2μ ν2 + ν3).
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It is suffice to prove Ui(ν, μ, λ) �= 0 for i = 1, 2 on

D :
{
(ν, μ, λ)

∣∣κλ < μ < 0 < ν < λ, 2
3 < λ < 1

}
.

Computing the resultant between U2 and q with respect to ν gives r0 =
−1296000000000μ12(μ − 1)4(λ − μ)4, which has no zeros on D. Therefore, U2 and q
have no common roots on D, which implies that U2(ν, μ, λ) �= 0 on D.

Similarly, computing the resultant between U1 and q with respect to μ and ν respec-
tively, we obtain

r1(ν, λ) = g(ν, λ) and r2(μ, λ) = g(μ, λ), (2.1)

where g(ω, λ) is a polynomial, given by

g(ω, λ)

= −54000ω4(λ + 1)
[
64λ2ω4(81λ4 − 162λ3ω + 261λ2ω2 − 300λω3 + 125ω4)

− 16λω3(648λ5 − 567λ4ω + 990λ3ω2 − 951λ2ω3 − 900λω4 + 875ω5)

+ 8ω2(648λ6 + 1620λ5ω − 1521λ4ω2 + 2790λ3ω3 − 5997λ2ω4 + 1800λω5 + 1000ω6)

− 12ω (270λ6 + 747λ5ω − 60λ4ω2 + 801λ3ω3 − 1860λ2ω4 − 1268λω5 + 1600ω6)

+ 18 (225λ6 + 210λ5ω + 303λ4ω2 + 40λ3ω3 − 676λ2ω4 − 880λω5 + 928ω6)

− 27 (325λ5 − 140λ4ω + 332λ3ω2 − 480λ2ω3 − 336λω4 + 384ω5)

+ 2 (2025λ4 − 1620λ3ω + 2592λ2ω2 − 5184λω3 + 2592ω4)
]
.

Taking ν = λ
1+t and λ = 3

4 + 1/4
1+s yields

g(ν, λ) = 3375(4+3s)8(8+7s)
10456576(1+s)15(1+t)12 g

∗(t, s),

where all coefficients of g∗(t, s) are positive with g∗(0, 0) = 1600. Therefore, g∗(t, s) > 0
on {(t, s)|t ∈ (0, +∞), s ∈ [0, +∞]}, which implies that U1 and q have no common roots 
on

D1 :
{
(ν, μ, λ)|κλ < μ < 0 < ν < λ, 3

4 ≤ λ < 1
}
.

Hence, U1(ν, μ, λ) �= 0 on D1, and so we have

Proposition 2.1. I1(h)
I0(h) is monotonic in the interval (0, H(λ, 0)) for λ ∈ [ 34 , 1).

The remaining task is to investigate the problem on the region:

D\D1 =
{
(ν, μ, λ)|κλ < μ < 0 < ν < λ, 2 < λ < 3}.
3 4
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We will apply the following techniques in polynomial theory, see [20,21] for more details.
Let k be a field, x1 ≺ x2 ≺ · · · ≺ xn be n ordered variables and R = k[x1, · · · , xn]

be the polynomial ring on k. The greatest variable xi in f(x1, · · · , xi) is called its main 
variable, denoted by mvar(f). The coefficient of the main variable of f is called leading 
coefficient, denoted by lc(f ).

Definition 2.1 (Semi-algebraic systems). A semi-algebraic system (SAS for short) is a 
conjunctive polynomial formula of the following form:

SAS, S :

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

p1(x1, · · · , xn) = 0, · · · , ps(x1, · · · , xn) = 0,

g1(x1, · · · , xn) ≥ 0, · · · , gr(x1, · · · , xn) ≥ 0,

gr+1(x1, · · · , xn) > 0, · · · , gt(x1, · · · , xn) > 0,

h1(x1, · · · , xn) �= 0, · · · , hm(x1, · · · , xn) �= 0,

(2.2)

where n, s ≥ 1, t ≥ r ≥ 0, m ≥ 0, all pi, gi, hi ∈ R(u, x) are polynomials with integer 
coefficients.

An SAS is called a parametric SAS if s < n (s indeterminates are viewed as indepen-
dent variables and the other n − s indeterminates are treated as parameters, denoted by 
u = (xs+1, · · · , xn)). An SAS is usually denoted by [F, N, P, H], where F = [p1, · · · , ps], 
N = [g1, · · · , gr], P = [gr+1, · · · , gt] and H = [h1, · · · , hm].

There exist several well-known methods, such as the Ritt-Wu method, Gröbner basis 
method and subresultant method [22–24], which enable us to transform an SAS (2.2)
equivalently to one or more TSAs: T1, · · · ,Tl in the form of

TSA, Tj :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

f j
1 (u, x1) = 0, f j

2 (u, x1, x2) = 0, f j
3 (u, x1, x2, x3) = 0, · · · ,

f j
s (x1, · · · , xs) = 0,

g1(x1, · · · , xn) ≥ 0, · · · , gr(x1, · · · , xn) ≥ 0,

gr+1(x1, · · · , xn) > 0, · · · , gt(x1, · · · , xn) > 0,

h1(x1, · · · , xn) �= 0, · · · , hm(x1, · · · , xn) �= 0,

(2.3)

where {f j
1 (u, x1), f j

2 (u, x1, x2), f j
3 (u, x1, x2, x3), · · · , f j

s (x1, x2, x3, · · · , xs)} is a triangu-
lar set, or a normal ascending chain.

Let dis(fi) denote the discriminant of a polynomial fi with respect to xi, res(·, 	, xj)
denote the Sylvester resultant of · and 	 with respect to xj , and gcd(f1, f2, · · · , fi) denote 
the greatest common factor of f1, f2, · · · , fi.

Definition 2.2 (Border polynomial of TSA). Consider the parametric semi-algebraic sys-
tem (2.3) TSA: Tj. For convenience, f j

i is denoted by fi (only for this definition). The 
following polynomial is called border polynomial of (2.3):
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BTj = lc(f1)dis(f1)
∏

2≤i≤s

res(lc(fi)dis(fi); fi−1, · · · , f1)
∏

1≤j≤t

res(gj ; fs, · · · , f1)

×
∏

1≤k≤m

res(hk; fs, · · · , f1),

where

res(∗; fi, · · · , f1) = res(· · · (res(res(∗, fi, xi), fi−1, xi−1), · · · ), f1, x1).

For two TSA: Tj and Tj̃, let

rjj̃i = gcd
(
res(f j

i ; f j̃
i , f

j̃
i−1, · · · , f

j̃
1 ), res(f j̃

i ; f j
i , f

j
i−1, · · · , f

j
1 )
)
, 1 ≤ i ≤ s, and

Cjj̃ = gcd(rjj̃1 , · · · , rjj̃s ).

Definition 2.3 (Border polynomial of SAS). If a parametric SAS S is transformed equiv-
alently to regular TSAs {T1, · · · ,Tl}, then

BS =
∏

1≤j≤j̃≤l

Cjj̃

l∏
j=1

BTj

is called the border polynomial of S.

Lemma 2.1. [20,21] The number of distinct real solutions of the semi-algebraic system S 
is invariant in each connected component of the complement of BS = 0 in Rn−s.

Remark 2.1. When the parameter values satisfy the boundary BS = 0, it is usually called 
degenerate case, for which it should be analyzed by other methods, see [20,21].

Based on the above described idea, Yang and Xia [20,21] developed a practical method 
for computing the border polynomial of S, which has been included into the computer 
algebra system – Maple.

To complete the proof of Theorem A, we construct the following semi-algebraic system 
to assure that the following semi-algebraic system,

SAS, SA :
{
q(ν, μ, λ) = 0, q(λ, κ, λ) = 0, U1(ν, μ, λ) = 0,

ν > 0, −μ > 0, λ− ν > 0, μ− κ > 0, −κ > 0,
(2.4)

has no roots. Computing its border polynomial we obtain

BSA =
(
λ9 − 5

2λ
8 + 41641λ7

24592 + 15855λ6

6148 − 693λ5

212 + 575721 λ4

196736 − 4279635 λ3

1573888

− 395847λ2
+ 1563705 λ − 133407

)

196736 393472 98368
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×
(
λ8 − 121λ7

38 + 337543λ6

57456 − 443339 λ5

57456 + 792185 λ4

76608 − 443339λ3

57456

+ 337543λ2

57456 − 121λ
38 + 1

)
×
(
λ6 − 4

3λ
5 − 13λ4

48 + 2939λ3

864 − 13λ2

48 − 4
3λ + 1

) (
λ2 − 7

4λ + 1
) (

λ2 + λ
2 + 1

)
× (λ + 1)

(
λ− 4

3
) (

λ− 3
2
) (

λ− 2
3
) (

−3
4 + λ

)
λ.

It can be shown that BSA = 0 has a unique root, λ∗ = 0.70513143 · · · , on (2
3 , 

3
4 ), which 

is actually the root of the first factor of BSA . Therefore, the complement of BSA = 0
restrict to λ ∈ (2

3 , 
3
4 ) is (2

3 , λ
∗) ∪ (λ∗, 34 ).

By Lemma 2.1, the number of zeros of (2.4) is invariant for λ ∈ (2
3 , λ

∗) and for 
λ ∈ (λ∗, 34 ). Therefore, we may choose a λ ∈ (λ∗, 34 ) to investigate if U1(ν, μ, λ) vanishes 
on

D2 =
{
(ν, μ, λ)|κλ < μ < 0 < ν < λ, λ∗ < λ < 3

4
}
,

and take a λ ∈ (2
3 , λ

∗) to investigate if U1(ν, μ, λ) vanishes on

D3 =
{
(ν, μ, λ)|κλ < μ < 0 < ν < λ, 2

3 < λ < λ∗}.
First, taking λ = 72

100 ∈ (λ∗, 34 ) and substituting it into (2.1) yields

r2(μ, 72
100 ) = 10336 x8

5 − 5333376 x7

625 + 5061371904 x6

390625 − 79435137024 x5

9765625 + 250937411616 x4

244140625

+ 190180493568 x3

244140625 − 50040379584 x2

244140625 + 4225074048 x
48828125 − 442158912

9765625 ,

which has no roots on (− 9
25 , 0) = (−0.36, 0), while

κλ = κ 72
100

∈
[
− 92651

262144 ,−
46325
131072

]
≈ [−0.3534355164,−0.3534317017]

when λ = 72
100 . Hence, r2(μ, 72

100 ) �= 0 on (κ 72
100

, 0) which implies that U1 and q have no 
common roots on D2, and so U1(ν, μ, λ) �= 0 on D2. Therefore, the following result holds.

Proposition 2.2. I1(h)
I0(h) is monotonic in the interval (0, H(λ, 0)) for λ ∈ (λ∗, 34 ).

Next, we choose a value of λ ∈ (2
3 , λ

∗) to investigate if U1(ν, μ, λ) vanishes on D3. 
Taking λ = 7

10 ∈ (2
3 , λ

∗) and substituting it into (2.1) gives

r1(ν, 7
10 ) = r(ν) and r2(μ, 7

10 ) = r(μ), (2.5)

where

r(ω) = 2120ω8 − 43248ω7

5 + 8172924ω6

625 − 26278668ω5

3125 + 46507833ω4

31250 + 7359912ω3

15625

− 1901151ω2
+ 157437ω − 64827 .
15625 3125 2500
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By applying Sturm’s Theorem, we obtain that r1(ν, 7
10 ) has a unique root ν1 ∈ [0, 7

10 ], and 
r2(μ, 7

10 ) has a unique root μ1 ∈ [κ 7
10
, 0]. By real root isolating, ν1 ∈ [ 57315

131072 , 
114631
262144 ] ≈

[0.4372787476, 0.4372825623], μ1∈[− 86919
262144 ,−

43459
131072 ]≈[−0.3315696716,− 0.3315658569], 

where κ 7
10

= −0.34603108 · · · . Therefore, if U1(ν, μ, 7
10 ) and q1(ν, μ, 7

10 ) have a common 
root on D3 with λ = 7

10 , the root must be in the regions defined by

D̃ :
[ 57315

131072 ,
114631
262144

]
×

[
− 86919

262144 ,−
43459
131072

]
.

In the following, we will prove that U1(ν, μ, 7
10 ) and q(ν, μ, 7

10 ) have no common roots by 
showing that q(ν, μ, 7

10 ) �= 0 on D̃.
The resultant res( ∂q

∂ν , 
∂q
∂μ , μ) has no roots on [ 57315

131072 , 
114631
262144 ] by Sturm’s Theorem, 

implying that there is no maximal or minimum value inside D̃. Thus, the maximal and 
minimum values of q(ν, μ, 7

10 ) are reached on the boundaries of D̃. However, a direct 
computation shows that q(ν, μ, 7

10 ) > 0 on the four boundaries of D̃ including the four 
intersections, indicating that both the maximal and minimum values of q(ν, μ, 7

10 ) are 
positive. Hence, q(ν, μ, 7

10 ) �= 0 on D̃, leading to U1(ν, μ, 7
10 ) �= 0 on D̃. The above 

discussion gives the following proposition.

Proposition 2.3. I1(h)
I0(h) is monotonic in the interval (0, H(λ, 0)) for λ ∈ (2

3 , λ
∗).

The rest of this section is to prove U1(ν, μ, λ∗) �= 0 on

D4 = {(ν, μ, λ)|κλ < μ < 0 < ν < λ, λ = λ∗}.

Recall that λ∗ is the root of the first factor of BSA , denoted by

w(λ) = λ9 − 5
2λ

8 + 41641λ7

24592 + 15855λ6

6148 − 693λ5

212 + 575721λ4

196736 − 4279635 λ3

1573888 − 395847λ2

196736

+ 1563705 λ
393472 − 133407

98368 .
(2.6)

By computation and Sturm’s Theorem, we can show that the resultant res(r2, w, λ) has 
a unique zero μ∗

1 = −0.34794635 · · · in (−1, 0), and the resultant res(p(κ, λ), w, λ) has a 
unique zero κλ∗ = −0.34794635 · · · in (−1, 0).

If μ∗
1 = κλ∗ , then r2(μ, λ∗) has no roots in the interval (κλ∗ , 0), implying that there 

are no common roots of U1(ν, μ, λ∗) and q(ν, μ, λ∗) on D4. Thus, U1(ν, μ, λ∗) �= 0 on D4. 
In fact, it is true that μ∗

1 = κλ∗ , because res(r2, w, λ) and res(p(κ, λ), w, λ) have only one 
common factor, given by

cf = 2477123436544μ18 − 22294110928896μ17 + 88660409909248μ16

− 208881731469312μ15 + 339714939006976μ14 − 439074987073536μ13

+ 503505982218240μ12 − 516729993408000μ11 + 456405726382272μ10

− 350788104117504μ9 + 238040277061248μ8 − 133699127790168μ7
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+ 58621983725097μ6 − 20391635790324μ5 + 3828815281827μ4

+ 1375428475098μ3 − 983422004562μ2 + 354781508544μ− 142379421192,

which has a unique root (= −0.34794635 · · · ) in (−1, 0), while other factors of 
res(r2, w, λ) and res(p, w, λ) have no common roots in (−1, 0). Thus, we have

Proposition 2.4. I1(h)
I0(h) is monotonic in the interval (0, H(λ, 0)) for λ = λ∗.

Combining Propositions 2.1–2.4, we have proved Theorem A.

3. Proof of Theorem B

In this section, we prove Theorem B corresponding to system (1.7). We simply trans-
form system (1.7) to (1.5), and then the proof for Theorem A also works for Theorem B. 
To achieve this, taking the transformation, x = −x̃+1, y = ỹ and dt = −dτ , into system 
(1.7), and still use x and y for x̃ and ỹ, we obtain a new system,

ẋ = −2y, ẏ = x3(x− (1 − α))(x− 1) (3.1)

with the Hamiltonian function, H̃(x, y) = y2 + 1−α
4 x4 − 1+1−α

5 x5 + 1
6x

6. The center level 
set γ2(h) of H(x, y) = h has been transformed to the origin, which is exactly the same as 
γ1(h). So it is obvious that system (3.1) is exactly the same as system (1.5) if denoting 
1 − α = λ, and I0(h) = I0(h), I1(h) = I1(h). Therefore, I1(h)

I0(h) on (H(1, 0), H(α, 0)) has 
the same monotonicity as I1(h)

I0(h) on (0, H(λ, 0)). The proof of Theorem B is complete.
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