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We report a new result on the traveling wave solutions of a biological invasion model with
density-dependent migrations and Allee effect. It has been shown in the literature that such a
model can exhibit one periodic wave solution by using Hopf bifurcation theory. In this paper,
global bifurcation theory is applied to prove that there exists maximal one periodic solution
which can be reached in a large feasible parameter regime. The basic idea used in our technique
is to examine the monotonicity of the ratio of related Abelian integrals. Especially, the existence
condition for the solution near a homoclinic loop is obtained.
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1. Introduction

Once a new species appears in the new environment,
its survival is the main issue: will the popula-
tion density eventually increase, or will the pop-
ulation become extinct soon because of hostility
of the new environment? If the species survives,
then what is the population dynamics, and in par-
ticular, is there any oscillating motion? To under-
stand this nonlinear phenomenon, researchers have
studied the traveling front propagation in the popu-
lation dynamical models for the single-species inva-
sion [Hengeveld, 1989; Davis, 2009; Petrovskii & Li,

2006; Petrovskii & Venturino, 2008]. To be more
realistic, such models should allow for migrations,
due to environmental effects (density-independent)
and biological mechanisms (also density-dependent)
as well as the Allee effect on population growth.

Allee effect guarantees the growth of the bio-
logical invasion when the per capita growth rate
is larger than some density value. When the Allee
effect is sufficiently strong, the population experi-
ences extinction when the rate is below some critical
threshold [Schreiber, 2003]. In contrast, the popu-
lation with a weak Allee effect does not have such
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a threshold and it surpasses to grow. The dynamics
of the corresponding mathematical models reveal
that an Allee effect can change or slow the pattern of
range expansion, see [Davis et al., 2004]. Some the-
oretical studies [Kot et al., 1996; Lewis & Kareiva,
1993] and empirical results [Veit & Lewis, 1996]
have shown that the Allee effect can adversely affect
invasion rate of the spreading species. When consid-
ering the single-species invasion, the diffusion equa-
tion is the best tool. However, due to the complexity
of the environment many other terms should be
included in the simplified model. Petrovskii and
Li [2003] built the following nonlinear advection-
diffusion-reaction transport equation, describing
the propagation of traveling population fronts of
single-species invasion:

∂U(X,T )
∂T

+ (A0 + 2A1U)
∂U

∂X

= D
∂2U

∂X2
+ αU(U − U0)(K − U), (1)

whose physical behavior can vary strongly depend-
ing on the parameter values. Here, U denotes the
population density, K is the species carrying capac-
ity (therefore K > U > 0), and U0 measures the
Allee effect (U0 satisfies 0 < U0 < K if considering
strong Allee effect and U0 = K is a limit case), α is
a coefficient, and the parameters A0 and A1 repre-
sent respectively the speed of advection due to the
impact of water or wind current and the speed of
migration due to biological mechanisms.

Petrovskii and Li [2003] obtained the analyt-
ical solutions and show that the direction of the
front propagation can be different depending on the
parameter values and thus on the relative inten-
sity of the density-dependent factors. In [Sherratt,
2012], an efficient numerical continuation method
was developed to study small-amplitude periodic
traveling waves due to Hopf bifurcation for a more
generalized system of (1). In [Almeida et al., 2006],
a finite element method is applied to (1) to show,
from the view point of numerical computation, that
the density-dependent character plays the major
role in obtaining more accurately approximate solu-
tions for the biological meaningfulness.

For simplicity, assuming D > 0, α > 0, A0 > 0,
A1 > 0 and introducing the transformation,

u =
U

K
, t = TαK2, x = X

√
αK2

D
,

into (1) yields the dimensionless model,

ut + (a0 + a1u)ux

= uxx − βu + (1 + β)u2 − u3, (2)

where the new parameters are defined as β =
U0K

−1, a0 = A0K
−1(αD)−1/2 and a1 = 2A1K

−1 ×
(αD)−1/2. Obviously, all β, a0 and a1 take positive
values. However, for being biologically meaningful,
β must be chosen from the interval [0, 1].

An interesting pattern of the propagation about
the species invasion is the periodic oscillation on the
density of invasion population, which is modeled by
the periodic traveling waves, see [Sherratt & Smith,
2008]. Wang and Huang [2014] studied Hopf bifur-
cation in system (1) and proved that system (1) can
have at most one small-amplitude periodic traveling
wave solution near the steady state (φ, y) = (1, 0)
for the parameter values satisfying [see system (7)]

ea0+a1−c − 1 �
∣∣∣∣a1(1 − ρ2)π

2ρ5

∣∣∣∣, a1(1 − ρ2)π
2ρ5

< 0,

(3)

where ρ2 = β−1, by assuming that a0 is sufficiently
close to c, and |a1| is sufficiently small. Note that
ρ2 ≥ 0 implies β ≥ 1, and thus the result may only
have mathematical interest.

Even though some good results have been
obtained for system (1), it is still a major concern
to assess the physical behavior regarding species
invasion for interplay among diffusion, advection
and reaction phenomena. In this paper, we pay
attention to the periodic oscillation on the den-
sity of invasion population caused by the interac-
tion between the advection due to the impact of
wind or water current and the migration due to bio-
logical mechanisms. We consider the global bifur-
cation and prove that system (1) can have maxi-
mal one bounded periodic traveling wave for any
β ∈ (0, 1). This indicates that the solution we obtain
is global, unlike that obtained due to Hopf bifurca-
tion which is restricted to the vicinity of the Hopf
critical point. Moreover, our analysis shows that
the largest amplitude of periodic solutions can be
reached near the solitary solution. In order to give
a comparison with the result given in [Wang &
Huang, 2014], we take the same assumption used in
[Wang & Huang, 2014] that a0 is sufficiently close
to c, and |a1| is sufficiently small. Our results reveal
that the ratio between a0−c and a1 should be in an
interval depending on β, for which the invasion pop-
ulation density can have oscillation; the amplitude
and distribution of the periodic wave depend on
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the ratio; the periodic wave tends to have Hopf
bifurcation and homoclinic bifurcation when the
ratio is at the boundary of the interval, see Sec. 3;
and the variation of invasion population density
must approximate the periodic oscillation with time
and distance.

In the next section, we deduce system (7)
from (1), and present the global bifurcation theory.
In Sec. 3, we prove our main results. Simulation is
given in Sec. 4, and finally, conclusion is drawn in
Sec. 5.

2. System Reduction and Poincaré
Bifurcation

To study the traveling waves that system (1) [or (2)]
may exhibit, assume a continuous traveling solution
of model (1) is given in the form of

u(x, t) = φ(ξ), ξ = x − ct, (4)

for ξ ∈ (−∞,+∞), satisfying

lim
ξ→∞

φ(ξ) = m, lim
ξ→−∞

φ(ξ) = n, (5)

where c is the propagation speed of a wave. Substi-
tuting (4) into (2) we obtain

φ′′(ξ) = (a0 − c + a1u(ξ))φ′(ξ) + βφ(ξ)

− (1 + β)φ2(ξ) + φ3(ξ). (6)

Further, let φ = u(ξ), y = φ′(ξ). Then, (6) becomes
a dynamical system described by the following ordi-
nary differential equations:

dφ

dξ
= y,

dy

dξ
= φ(φ − 1)(φ − β) + (a0 − c + a1φ)y.

(7)

u(x, t) is a solitary wave solution if m = n and a
kink or anti-kink solution if m �= n. The solitary

wave solution of (1) corresponds to a homoclinic
orbit of (7), while the kink (or anti-kink) wave solu-
tion of (1) corresponds to a heteroclinic orbit (or
so-called connecting orbit) of (7). A periodic orbit
of (7) corresponds to a periodic traveling wave solu-
tion of (1). A limit cycle (isolated periodic orbit)
of (7) corresponds to an isolated periodic traveling
wave solution of (1).

It is easy to see that system (7) has three
singular points (0, 0), (1, 0) and (β, 0) denoted by
Si(φi, 0), i = 1, 2, 3, respectively. Since the popula-
tion density U is positive and it is easy to verify that
(0, 0) is a saddle for β > 0, we only need to inves-
tigate the dynamics of system (7) on the right-half
plane of the φ–y plane, and in particular to focus
on the dynamical behavior near the three singular
points. Because in this paper, we are restricted to
the parameter values when a0 is sufficiently close
to c, and |a1| is sufficiently small, we may take the
following rescaling,

a0 − c = εα0 and a1 = εα1, (8)

where α0 and α1 are bounded parameters, and
0 < ε � 1 denotes small perturbations. Then sys-
tem (7) can be rewritten as

dφ

dξ
= y,

dy

dξ
= φ(φ − 1)(φ − β) + ε(α0 + α1φ)y.

(9)

The unperturbed system (9)ε=0 has the Hamilto-
nian function,

H(φ, y) =
y2

2
− β

2
φ2 +

β + 1
3

φ3 − 1
4
φ4. (10)

By the theory of planar dynamical systems (e.g. see
[Guckenheimer & Holmes, 1983; Han & Yu, 2012;
Chow & Hale, 1981]), the phase portraits of sys-
tem (9)ε=0 can be classified into five cases with the
closed orbits defined by the following functions:

Γh : H(φ, y) = h




(a) h ∈
(

β3(β − 2)
12

, 0
)

for β ∈
(

0,
1
2

)
,

(b) h ∈
(
− 1

64
, 0

)
for β =

1
2
,

(c) h ∈
(

β3(β − 2)
12

,
1 − 2β

12

)
for β ∈

(
1
2
, 1

)
,

(d) No closed orbits for β = 0,

(e) No closed orbits for β = 1.

(11)
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(d
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st
em

(9
) ε

=
0

fo
r

(a
)

β
=

2 5
∈

(0
,

1 2
),

(b
)

β
=

1 2
,
(c

)
β

=
3 5
∈

(
1 2
,1

),
(d

)
β

=
0

a
n
d

(e
)

β
=

1
.
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Five typical graphs are shown in Fig. 1, each of them
corresponds to one value of β taken from one of the
five intervals.

In this paper, we concentrate on general cases,
and leave the degenerate cases β = 1 and β = 0
(each has a nilpotent critical point) for further
study. These critical cases may exhibit some inter-
esting dynamical behaviors. Therefore, in the fol-
lowing we only study the Cases (a)–(c). For Case
(a), H(φ, y) = β3(β−2)

12 defines an elementary center
(β, 0) and H(φ, y) = 0 defines a homoclinic loop,
denoted by Γh∗ passing through the hyperbolic sad-
dle (0, 0). For Case (c), H(φ, y) = β3(β−2)

12 defines an
elementary center (β, 0) and H(φ, y) = 1−2β

12 defines
a homoclinic loop, denoted by Γh∗ passing through
the hyperbolic saddle (1, 0).

Now, suppose one closed orbit of system (9)
is transversal to the positive φ-axis at A(h) =
(a(h), 0), where the positive φ-axis can be parame-
terized by h. Let B(h) = (b(h), 0) be the first inter-
section point of the closed orbit starting from A(h)
with the positive φ-axis. Then, the displacement
function of system (9) can be obtained as [Han &
Yu, 2012]

d(h, ε) =
∫

dAB
dH = ε(I(h, δ) + O(ε)), (12)

where δ = (α0, α1), and

I(h, δ) =
∮

Γh

(α0 + α1φ)ydφ

= α0I0(h) + α1I1(h), (13)

with I0 =
∮

ydφ and I1(h) =
∮
φydφ. By Poincaré

bifurcation theory [Han & Yu, 2012], the number of
zeros of I(h, δ) corresponds to the number of limit
cycles of system (9), which is the number of isolated
periodic traveling waves. If the ratio I1(h)/I0(h)
is monotonic, then I(h, δ) has at most one zero,
which can be reached. In fact, we have the following
result.

Theorem 1. For system (9), the ratio I1(h)/I0(h)
is monotonic for β ∈ (0, 1).

To prove Theorem 1, we will apply a result
obtained by Li and Zhang [1996] in the study of the
weak Hilbert’s 16th problem. In [Li & Zhang, 1996],
a criterion is given for determining the monotonic-

ity of the ratio,
H
Γh

f2(x)ydxH
Γh

f1(x)ydx
, where Γh is a family of

ovals described by

H(x, y) = Φ(x) + Ψ(y),

which surrounds the origin, and Φ(x) and Ψ(x) are
polynomials. Then, Γh represents a closed orbit of
the Hamiltonian system,

ẋ = Ψ′(y), ẏ = −Φ′(x).

As an application, the following result is obtained
in [Li & Zhang, 1996].

Lemma 1 [Li & Zhang, 1996]. Let Γh be the ovals
surrounding the origin of H(x, y) = y2

2 + ax2 +
bx3 + cx4, where a > 0 and b, c < 0. Then,

the ratio
H
Γh

xydxH
Γh

ydx
is monotonic on (0, h1), where

h1 = H(x1, 0) with x1 > 0 satisfying Hx(x1, y) = 0.

3. Proof of Theorem 1

Proof of Theorem 1. We first prove Cases (a) and (c),
and then Case (b). For Case (a): 0 < β < 1

2 , intro-
ducing the transformation w = −φ + β and t = −τ
into system (9) yields

dw

dτ
= y,

dy

dτ
= w(w − β)(w − β + 1)

+ ε(−α0 − βα1 + α1w)y,

(14)

with the following Hamiltonian function for the
unperturbed system (14)ε=0,

H̃(w, y) = H(β − w, y)

=
β3(β − 2)

12
+

y2

2
+

β(1 − β)
2

w2

+
2β − 1

3
w3 − 1

4
w4. (15)

The Abelian integral of (14) is

Ĩ(h) = α0

∮
Γ̃h

−ydw + α1

∮
Γ̃h

(−β + x)ydw

≡ α0Ĩ0(h) + α1Ĩ1(h), (16)

where Γ̃h = {H̃ = h |h ∈ (β3(β−2)
12 , 0)}.

We will prove

Ĩ0(h) = I0(h), Ĩ1(h) = I1(h).
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From the transformation, we have

Ĩ0(h) =
∮

Γ̃h

−ydw =
∮

Γ̃h

−y2dτ =
∮

Γ̃h

y2dt

=
∮

Γh

y2dt =
∮

Γh

ydφ = I0(h)

and

Ĩ1(h) =
∮

Γ̃h

(−β + w)ydw =
∮

Γ̃h

(−β + w)y2dτ

=
∮

Γ̃h

(β − w)y2dt =
∮

Γh

φy2dt

=
∮

Γh

φydφ = I1(h).

Therefore,

I1(h)
I0(h)

=
Ĩ1(h)
Ĩ0(h)

=

∮
Γ̃h

(−β + w)ydw

∮
Γ̃h

−ydw

= β −

∮
Γ̃h

wydw

∮
Γ̃h

ydw

.

Then, by Lemma 3.1, we know that
H
Γ̃h

wydwH
Γ̃h

ydw
is

monotonic, and thus I1(h)/I0(h) is monotonic.
For Case (c): 1

2 < β < 1, under the transforma-
tion w = φ − β, system (9) becomes

dw

dt
= y,

dy

dt
= w(w + β)(w + β − 1)

+ ε(α0 + βα1 + α1w)y.

(17)

Then, by applying the same procedure used in prov-
ing Case (a), to system (17), we can show that
I1(h)/I0(h) is monotonic.

Finally, we consider Case (b): β = 1
2 . Similarly,

we introduce the transformation w = φ − 1
2 into

system (9) to obtain

dw

dt
= y,

dy

dt
= w

(
w +

1
2

)(
w − 1

2

)

+ ε
(
α0 +

α1

2
+ α1w

)
y,

(18)

with the Hamiltonian function,

H(w, y) = H

(
w +

1
2
, y

)

= − 1
64

+
y2

2
+

1
8
w2 − w4

4
, (19)

for the unperturbed system (18)ε=0. The Abelian
integral of system (18) is given by

I(h) = α0

∮
Γh

ydw + α1

∮
Γh

(
1
2

+ w

)
ydw

≡ α0I0(h) + α1I1(h), (20)

where Γh = {H = h |h ∈ (− 1
64 , 0)}.

We will prove

I0(h) = I0(h), I1(h) = I1(h).

With the transformation, a direct computation
shows that

I0(h) =
∮

Γh

ydw =
∮

Γh

y2dτ =
∮

Γh

y2dt

=
∮

Γh

y2dt =
∮

Γh

ydφ = I0(h)

and

I1(h) =
∮

Γh

(
1
2

+ w

)
ydw =

∮
Γh

(
1
2

+ w

)
y2dτ

=
∮

Γh

(
1
2

+ w

)
y2dt =

∮
Γh

φy2dt

=
∮

Γh

φydφ = I1(h).

Hence,

I1(h)
I0(h)

=
I1(h)
I0(h)

=

∮
Γh

(
1
2

+ w

)
ydw

∮
Γh

ydw

=
1
2

+

∮
Γh

wydw

∮
Γh

ydw

.

By symmetry of the unperturbed system (18)ε=0,∮
Γh

wydw = 0, and thus,

I1(h)
I0(h)

≡ 1
2
.

This completes the proof for Theorem 1. �
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(i) Existence of periodic solution for Cases (a)
and (c). For Cases (a) and (c),

lim
Γh→Γc

I1(h)
I0(h)

= β and lim
Γh→Γh

I1(h)
I0(h)

= f∗(β).

Therefore, I1(h)
I0(h) ∈ (β, f∗(β)). Because

I(h) = α0I0(h) + α1I1(h)

= I0(h)
(

α0 + α1
I1(h)
I0(h)

)

= α1I0(h)
(

α0

α1
+

I1(h)
I0(h)

)
,

I(h) has a zero at h∗ if choosing

α0

α1
= −I1(h∗)

I0(h∗)
. (21)

The Implicit Function Theorem shows that d(h, ε)
has a zero near h∗. Therefore, there exists a unique
limit cycle for system (7), and so system (1) has a
unique periodic wave.

It follows from [Han & Yu, 2012] that α0
α1

=
−β is the critical value for Hopf bifurcation, and
α0
α1

= −f∗(β) is the critical value for homoclinic
bifurcation.

(ii) Nonexistence of periodic solution for Case (b).
For Case (b),

I(h) = α0I0(h) + α1I1(h)

≡
(
α0 +

α1

2

)
I0(h)

=
3α0I0(h)

2
.

Because

I ′0(h) =
∮

Γh

dt > 0 and lim
h→β3(β−2)

12

I0(h) = 0,

we conclude that I0(h) �= 0. Hence, I(h) �= 0 if
α0 + α1

2 �= 0.
When α0 + α1

2 = 0, system (18) is time
reversible. Therefore, (0, 0) is a center of sys-
tem (18) surrounded by a family of closed orbits,
which implies that (β, 0) is a center of system (9)
surrounded by a family of closed orbits in the
annulus {Γh}.

4. Simulations

In this section, we present simulations to verify
the theoretical results we obtained in the previous
sections. It has been shown that there exists a peri-
odic solution if taking ε sufficiently small, β = 1

4
and αi satisfying α0

α1
∈ (−0.25,−0.2202322892). In

the following, we fix β = 1
4 and choose three dif-

ferent initial values (x, 0) to get their correspond-
ing Hamiltonian values, and then obtain the ratio
of the Abelian integrals, by which we will decide
the ratio of α0 and α1 according to the relation-
ship (21). For simplicity, we choose α1 = 1. Using

0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29
-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

y

(a)

0 100 200 300 400 500 600 700 800 900 1000
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

(b)

Fig. 2. Simulated periodic solution of system (9) with β =
1
4 , ε = 0.001, α0 = −0.2489121908, α1 = 1 and the initial

value (w, y) = ( 5
24 , 0).
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0.1 0.15 0.2 0.25 0.3 0.35
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

y

0 100 200 300 400 500 600
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x
y

(a) (b)

Fig. 3. Simulated periodic solution of system (9) with β = 1
4 , ε = 0.001, α0 = −0.2409185309, α1 = 1 and the initial value

(w, y) = ( 1
8 , 0).

the fixed values of α0 and α1, we solve (9) numeri-
cally. The following three simulations correspond to
the three cases (a)–(c), as shown in (11).

(a) Taking w = 5
24 , we get H( 5

24 , 0) = − 2825
1327104 .

A direct computation shows that

I1

(
− 2825

1327104

)

I0

(
− 2825

1327104

) ≈ 0.2489121908.

Then we take ε = 0.001, α0 = −0.2489121908, α1 =
1 and choose the initial value (φ, y) = ( 5

24 , 0) to
obtain the simulation, as shown in Fig. 2.

(b) Taking w = 1
8 , we have H(1

8 , 0) = − 59
49152 ,

and

I1

(
− 59

49152

)

I0

(
− 59

49152

) ≈ 0.2409185309.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

y

0 100 200 300 400 500 600 700 800 900 1000
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x
y

(a) (b)

Fig. 4. The periodic solution of (9) with β = 1
4 , ε = 0.001, α0 = −0.2280338310, α1 = 1 and the initial value (w, y) = ( 1

20 , 0),
t ∈ (0, 1000).

1750192-8

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

7.
27

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
IT

Y
 U

N
IV

E
R

SI
T

Y
 O

F 
H

O
N

G
 K

O
N

G
 o

n 
12

/1
8/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



December 5, 2017 15:53 WSPC/S0218-1274 1750192

Global Existence and Uniqueness of Periodic Waves in a Population Model

Then we take ε = 0.001, α0 = −0.2409185309, α1 =
1 with the initial value (φ, y) = (1

8 , 0) to obtain the
simulation, as shown in Fig. 3.

(c) Taking w = 1
20 , we get H( 1

20 , 0) = − 503
1920000 and

I1

(
− 503

1920000

)

I0

(
− 503

1920000

) ≈ 0.2280338310.

Further, taking ε = 0.001, α0 = −0.2280338310,
α1 = 1 and the initial value (φ, y) = ( 1

20 , 0), we
obtain the simulation, as shown in Fig. 4.

The results shown in Figs. 2–4 indicate a good
agreement between the simulation and analytical
prediction.

5. Conclusion

In this paper, we have extended the existing local
result on oscillation (periodic traveling wave) of
invasion population density to a global result. It
has been shown that in a population model with
density-dependent migrations and Allee effect, max-
imal one oscillation (periodic traveling wave) can
exist globally.

Moreover, when the invasion speed c of exotic
species close enough to the values a0 and a1 is
relatively small, we have shown that (i) the ratio
between a0 − c and a1 should be in an interval
depending on β, for which the invasion popula-
tion density can have oscillation; (ii) the amplitude
and distribution of the periodic wave depend on
the ratio; (iii) the periodic wave tends to the Hopf
bifurcation and homoclinic bifurcation; and (iv) the
variation of invasion population density approxi-
mates the periodic oscillation with distance and
time. Since a0 corresponds to the speed of advection
A0 due to the impacts of wind and water current,
etc., a1 to the speed of migration A1 due to the bio-
logical mechanisms, and β represents the “measure”
of the Allee effect, the special patterns of invasion
spread found from the analysis in this paper can be
discovered in reality.
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