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Abstract. This paper is concerned with chaos of a family of logistic maps. It is first

proved that a regular and nondegenerate snap-back repeller implies chaos in the sense of

both Devaney and Li-Yorke for a map in a metric space. Based on this result, it is shown

that the logistic system is chaotic in the sense of both Devaney and Li-Yorke, and has

uniformly positive Lyapunov exponents in an invariant set for a certain parameter interval

with a lower bound less than a specific value, at which the unique 3-periodic orbit appears.

In addition, it shows the exact parameter range for the existence of an asymptotically sta-

ble 3-periodic point, and consequently the exact parameter range for the biggest periodic

window, i.e., 3-periodic window, in the period-doubling bifurcation diagram.
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1 Introduction

The well-known logistic system is given by

xn+1 = f(xn), n ≥ 0, (1)

where f(x) := r x (1 − x) is the logistic map and r > 0 is a parameter.
System (1) has been extensively studied for a very long time. The logistic

model, first developed by the sociologist and mathematician, P. F. Verhulst,
was to describe a population growth with limited resources from year n to
year n+1. The first term, r xn, represents the reproduction tendency that is
proportional to the nth-year population and the second term, 1−xn, denotes
the need of coexistence and the sharing of the limited resources.

System (1) has been used in many books as a prototype of dynamical
systems because it is not only one of the simplest nonlinear systems, but
also exhibits amazingly rich dynamical phenomena. The global behavior of
the process in dependence on the parameter was first studied in 1976 by R.
M. May [15]. Over the last three decades, the logistic map and unimodal
maps have attracted a great deal of interest from many mathematicians and

1The author for correspondence (Email: ymshi@sdu.edu.cn).



On Chaos of the Logistic Maps 176

scientists, and many good results have been obtained, as summarized in
recent papers and monographs (cf. [2, 3, 5, 8, 9, 13, 15, 19, 20, 25]). However,
there are still some unsolved problems about system (1) due to its complexity.

In recent years, logistic maps often appeared in many partial difference
equations (cf. e.g. [6, 7, 16, 17, 26]). Therefore, it is very important to study
the dynamics of system (1) in more detail not only because of mathematical
interest but also because such studies could provide more useful information
for analyzing practical problems and for a better understanding of nonlinear
dynamical systems in general.

For convenience, in the following we first briefly review some known and
outstanding results (see [4, 5, 19]).

The dynamical behaviors of system (1) are very simple for x < 0 and
x > 1, that is, fn(x) → −∞ as n → ∞ for all x ∈ (−∞, 0)∪ (1,∞) and for
r > 1. So, all possible interesting and complex dynamical behaviors occur in
the unit interval [0, 1]. System (1) has exactly two fixed points,

z1 := 0, z2 := 1 − r−1.

Obviously, z2 ∈ (0, 1) for r > 1. The fixed point z1 is unstable for r > 1,
while the other fixed point z2 is asymptotically stable for r ∈ (1, 3], but
unstable for r > 3. The 2-periodic bifurcation begins at r2 := 3. The unique
2-periodic orbit is asymptotically stable for r ∈ (3, r4], where r4 := 1+61/2,
and unstable for r > r4. The 22-periodic orbit starts at r = r4 and is
asymptotically stable for r ∈ (r4, r8] with r8 ≈ 3.54409 but unstable for
r > r8. This process of period-doubling bifurcation continues to periods
23, 24, 25, . . ., and finally gives rise to chaos at r∞ ≈ 3.569946. This is
the famous period-doubling scenario leading to chaos. However, this is only
confirmed by numerical simulation results, as shown in Figure 1, and has not
been proved rigorously. We shall point out that a system may not be chaotic
in general if it has only periodic points of order {2j}∞j=1. Smital [23] has
shown that there are continuous interval maps f and g such that f and g
have only periodic points of order {2j}∞j=1, f is but g is not chaotic in the
sense of Li-Yorke (see Definition 2).

Based on the result in [24], completely proved by Graczyk and Swiatek [9],
the set of parameter values of r such that system (1) has an asymptotically
stable periodic orbit is dense in (0, 4] and consists of countably infinitely
many nontrivial intervals. So, there are countably infinitely many periodic
windows in the period-doubling bifurcation diagram. It is noted that the
3-periodic window is the biggest periodic window (see Figure 1). An asymp-
totically stable 3-periodic orbit bifurcates at r3 := 1 + 81/2 ≈ 3.828427 (cf.
[2, 5, 20]). Recently, Gordon [8] gave an upper bound for the values of r
that support stable 3-periodic orbits, r = r̂3, where

r̂3 : = 1 +

[

11

3
+

(

1915

54
+ 5

√
201

2

)1/3

+
(

1915

54
− 5

√
201

2

)1/3
]1/2

≈ 3.841499.
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Is the value r̂3 the infimum of those upper bounds? Does an asymptoti-
cally stable 3-periodic orbit always exists for every r ∈ [r3, r̂3)? These two
questions are related to the exact range of parameter r for the 3-periodic
window. It turns out that the answers are positive and detailed proofs are
given in Section 3.

When r ≥ r3, 3-periodic orbits always exist (see Theorem 3). So, by the
well-known Li-Yorke theorem [12], periodic orbits of all orders always exist
and system (1) is chaotic in the sense of Li-Yorke for every r ≥ r3. Is it also
chaotic in the sense of Devaney (see Definition 3) in this case? By Proposition
52 in [3, Chapter VI], a continuous map g in an interval I has a periodic point
whose period is not a power of 2 if and only if there exist a positive integer
n and an infinite closed subset X ⊂ I such that X is invariant under gn

and the restriction of gn to X is topological mixing, and consequently gn

is topologically transitive in X . Based on the results in [1], [3, Chapter
VI, Lemma 41], and [27], a continuous map with topological transitivity in
an interval has a dense set of periodic points and sensitive dependence on
initial conditions in this interval. This means that a continuous map with
topological transitivity in an interval is chaotic in the sense of Devaney. It
is noted that the connectedness of the interval is very important in their
proofs. However, the above closed subset X is not connected in general. So,
it is not certain whether the map g is chaotic in the sense of Devaney if g
has a periodic point whose period is not a power of 2. Therefore, it can
not be assured that system (1) is chaotic in the sense of Devaney for every
r3 ≤ r ≤ 4. It is known that system (1) is chaotic on a Cantor set in the
sense of Devaney and has a dense orbit in the Cantor set for r > 4 (see [4] for
r > 2+51/2, and [11, 18] for r > 4). In addition, it is seen from Figure 2 that
the Lyapunov exponents are negative for 3 < r < r∞, and oscillate between
positive and negative values for r∞ < r < 4. For the special value r = 4,
the Lyapunov exponent is equal to ln 2 [18]. In Section 4, by employing
snap-back repellers, we shall prove that there exists a compact and perfect
invariant set D containing a Cantor set such that system (1) is chaotic in
the sense of both Devaney and Li-Yorke, with a dense orbit in the invariant
set D for every r ∈ [r0, 4], where r0 = 3+(2

3
)1/2 ≈ 3.816496 < r3. Further,

it will be shown that system (1) has uniformly positive Lyapunov exponents
in the invariant set D for every r ∈ [r0, 4].

2 Preliminaries

In this section, we introduce some concepts and lemmas, which will be used
in the following sections.

Definition 1. [5, Chapter 1, Definitions 1.4 and 1.5]. Let F : I → I be a
map and I be an interval in R.

(i) A point x0 ∈ I is said to be a k-periodic point of F if F k(x0) = x0
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and F j(x0) 6= x0 for 1 ≤ j ≤ k − 1. Further, the set {xj}
k−1

j=0 is said
to be a k-periodic orbit of F , where xj+1 = F (xj) for 0 ≤ j ≤ k − 2.

(ii) Let x0 be a k-periodic point of F . Then x0 is said to be stable if it
is a stable fixed point of F k; x0 is said to be asymptotically stable if
it is an asymptotically stable fixed point of F k; and x0 is said to be
unstable if it is an unstable fixed point of F k.

An asymptotically stable periodic point is also called an attracting pe-
riodic point or a periodic sink. A periodic point (orbit) of map F is also
called a periodic point (orbit) of the corresponding system:

xn+1 = F (xn), n ≥ 0.

Lemma 1. [5, Chapter 1, Theorem 1.6]. Let F : I → I be a map and I
be an interval in R. And let x0 ∈ I be a k-periodic point of F and F
be continuously differentiable at each point of the periodic orbit. Then the
following statements hold:

(i) the periodic point x0 is asymptotically stable if |(F k)′(x0)| < 1;

(ii) the periodic point x0 is unstable if |(F k)′(x0)| > 1.

Now we present the definitions of chaos in the sense of Li-Yorke and
Devaney, which have often been used in recent years.

Definition 2. Let S ⊂ X be a set with at least two points and a map
F : S → X , where (X, d) is a metric space. Then S is called a scrambled
set of F if for any two different points x, y ∈ S,

(i) lim inf
n→∞

d(Fn(x), Fn(y)) = 0;

(ii) lim sup
n→∞

d(Fn(x), Fn(y)) > 0.

F is said to be chaotic in the sense of Li-Yorke if there exists an uncountable
scrambled set S of F .

Note that there are three conditions in the original characterization of
chaos in Li-Yorke’s theorem [12]. Besides the above conditions (i) and (ii),
the third one is that for all x ∈ S and for all periodic points p of F ,

lim sup
n→∞

d (Fn(x), Fn(p)) > 0.

But conditions (i) and (ii) together imply that the scrambled set S contains
at most one point x that does not satisfy the above condition. So, the third
condition is not essential and can be removed.

Definition 3 [4]. Let V be a subset of a metric space (X, d). A map
F : V ⊂ X → V is said to be chaotic on V in the sense of Devaney if
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(i) F is topologically transitive;

(ii) the periodic points of F are dense in V ;

(iii) F has sensitive dependence on initial conditions.

Properties (i) and (ii) together imply property (iii) if F is continuous in
V [1]. So, property (iii) is redundant in the above definition. Under some
conditions, chaos in the sense of Devaney is stronger than that in the sense
of Li-Yorke.

For convenience, some definitions of relevant concepts given in [21] are
listed below. Denote by B̄s(z) = {x ∈ X : d(x, z) ≤ s}, Bs(z) = {x ∈ X :
d(x, z) < s} the closed ball and the open ball of radius s > 0 centered at z,
respectively.

Definition 4 [21, Definitions 2.1-2.6]. Let F : X → X be a map, where
(X, d) is a metric space.

(i) A point z ∈ X is called an expanding fixed point of F in B̄s(z) for
some constant s > 0, if F (z) = z and there exists a constant λ > 1
such that

d(F (x), F (y)) ≥ λ d(x, y), ∀ x, y ∈ V,

where the constant λ is called an expanding coefficient of F on V .
Furthermore, z is called a regular expanding fixed point of F in B̄s(z)
if z is an interior point of F (Bs(z)).

(ii) Assume that z is an expanding fixed point of F in B̄s(z) for some
s > 0. Then z is said to be a snap-back repeller of F if there exists
a point x0 ∈ Bs(z) with x0 6= z and Fm(x0) = z for some positive
integer m. Furthermore, z is said to be a nondegenerate snap-back
repeller of F if there exist positive constants µ and s0 such that
Bs0

(x0) ⊂ Bs(z) and

d(Fm(x), Fm(y)) ≥ µ d(x, y), ∀x, y ∈ B̄s0
(x0);

z is called a regular snap-back repeller of F if F (Bs(z)) is open and
there exists a positive constant δ0 such that Bδ0

(x0) ⊂ Bs(z) and z
is an interior point of Fm(Bδ(x0)) for any positive constant δ ≤ δ0.

Lemma 2 [21, Theorem 4.2]. Let (X, d) be a metric space in which each
bounded and closed subset is compact. Assume that F : X → X has a regular
and nondegenerate snap-back repeller z, associated with x0, m, and s as
specified in Definition 4, F is continuous in B̄s(z), and Fm is continuous
in a neighborhood of x0. Then, for each neighborhood U of z, there exist
a positive integer n and a Cantor set ∧ ⊂ U such that Fn : ∧ → ∧ is
topologically conjugate to the one-sided symbolic dynamical system σ :

∑+

2
→

∑+

2
. Consequently, Fn is chaotic on ∧ in the sense of Devaney.
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Theorem 1. Let all the assumptions in Lemma 2 hold. Further, assume that
F is continuous in some neighborhoods of x1, . . . , xm−1, where xj = F j(x0)
for 1 ≤ j ≤ m − 1. Then there exists a compact and perfect invariant set
D ⊂ X containing a Cantor set such that F is chaotic in the sense of
Devaney on D as well as in the sense of Li-Yorke, and it has a dense orbit
in D.

Proof. By Lemma 2 and the proof of [21, Theorem 4.1], there exist a Cantor
set ∧ and an integer n > m such that Fn : ∧ → ∧ is topologically conjugate
to the one-sided symbolic dynamical system σ :

∑+

2
→

∑+

2
, and F j is

continuous in ∧ for 1 ≤ j ≤ n. Since (σ,
∑+

2
) has a dense set of periodic

points and a dense orbit [4, Part 1, Proposition 6.6], Fn has also a dense set
of periodic points and a dense orbit in ∧. Set

D = {F j(x) : x ∈ ∧, 0 ≤ j ≤ n − 1}.

Then D ⊃ ∧ and F is continuous in D. It is easy to verify that D
is a compact and perfect invariant set of F by the continuity of F , the
compactness and perfectness of the Cantor set ∧, and the invariance of ∧
under Fn.

Next, consider the denseness of the periodic point set of F in D. For
any point x ∈ D and any neighborhood V of x, there exist y ∈ ∧ and
an integer j, 0 ≤ j ≤ n − 1, such that F j(y) = x. By the continuity of
F , (F j)−1(V ) is a neighborhood of y. So, there exists a k-periodic point
p ∈ ∧ of Fn such that p ∈ (F j)−1(V ) . This implies that F j(p) ∈ V and
Fnk(F j(p)) = F j(Fnk(p)) = F j(p). So, F j(p) ∈ D is a periodic point of F
and is in V . Therefore, the periodic point set of F is dense in D.

Finally, we show that F has a dense orbit in D. Suppose {(Fn)i(y0)}
∞
i=0

is a dense orbit of Fn in ∧. One can prove that {F i(y0)}
∞
i=0 is dense in D by

applying a similar argument to that used in the above discussion. Therefore,
F has a dense orbit in D and, consequently, is topologically transitive in
D. Hence, F is chaotic in the sense of Devaney on D. In addition, since
∧ is infinite and compact, and F is continuous, surjective, topologically
transitive, and has a periodic point in ∧, F is chaotic in the sense of Li-
Yorke by Theorem 4.1 in [10]. This completes the proof.

Now, we turn to study the Lyapunov exponents of the map F in D in
Theorem 1 for the special case of X = R.

Definition 5. Let F : R → R be a map and O+(x0) = {xj}
∞
j=0 be the

(forward) orbit of a point x0 ∈ R, where xj+1 = F (xj) for j ≥ 0. Assume
that F is differentiable at every point on the orbit. Then

λF (x0) = lim sup
k→∞

1

k
ln

∣

∣(F k)′(x0)
∣

∣ = lim sup
k→∞

1

k

k−1
∑

j=0

ln |F ′(xj)|

is called the Lyapunov exponent of F at x0 or on the orbit O+(x0).
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Theorem 2. Let F : R → R be a map with a fixed point z ∈ R. Assume
that

(i) F is continuously differentiable in (z − a, z + a) and |F ′(x)| > 1 for
all x ∈ (z − a, z + a) for some constant a > 0;

(ii) z is a snap-back repeller of F with Fm(x0) = z for some x0 ∈ (z −
a, z + a), x0 6= z, and some positive integer m. Furthermore, F is
continuously differentiable in some neighborhoods of x0, x1, . . . , xm−1,
and F ′(xj) 6= 0, where xj = F (xj−1) for 0 ≤ j ≤ m − 1.

Then there exists a compact and perfect invariant set D containing a Cantor
set such that F is chaotic in the sense of Devaney on D as well as in the
sense of Li-Yorke, and the Lyapunov exponent of F is uniformly positive in
D, bounded from below by n−1 lnλ > 0 for some integer n > m and some
constant λ > 1.

Proof. By assumptions (i) and (ii), z is a regular and nondegenerate snap-
back repeller. Further, by Theorem 4.4 in [22] and the proof of Theorem
4.1 in [21] (these results are related to maps in Banach and complete metric
spaces), there exist a Cantor set ∧ ⊂ (z − a, z + a) and a positive integer
n > m such that Fn : ∧ → ∧ is topologically conjugate to the symbolic
dynamical system σ :

∑+

2
→

∑+

2
, F j is continuously differentiable in ∧ for

1 ≤ j ≤ n, and Fn is expanding in distance in ∧; that is,

|Fn(x) − Fn(y)| ≥ λ |x − y| ∀x, y ∈ ∧ (2)

for some constant λ > 1. It follows from (2) and the perfectness of ∧ that

|(Fn)′(x)| ≥ λ ∀x ∈ ∧,

which implies that the Lyapunov exponent of Fn at every point in ∧ is
larger than or equal to lnλ > 0.

By the proof of Theorem 1, D = {F j(x) : x ∈ ∧, 0 ≤ j ≤ n − 1} is a
compact and perfect invariant set of F , containing the Cantor set ∧, and
F is chaotic in the sense of Devaney on D as well as in the sense of Li-
Yorke. Since F j is continuously differentiable in ∧ for 1 ≤ j ≤ n, F is
continuously differentiable in D. For every point y0 ∈ D, there exist x0 ∈ ∧
and j, 0 ≤ j ≤ n− 1, such that y0 = F j(x0). Denote by O+(x0) = {xi}

∞
i=0

the orbit of x0 for the map F , where xi+1 = F (xi) for i ≥ 0. It is evident
that {xin}

∞
i=0 is the orbit of x0 for the map Fn. From

(F i)′(x) = F ′(F i−1(x))F ′(F i−2(x)) · · ·F ′(x),

it follows that for i ≥ 0,

ln |(Fn)′(xin)| =

n−1
∑

l=0

ln |F ′(xin+l)| .
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Hence,

λF n(x0) = lim sup
k→∞

1

k

k−1
∑

i=0

ln |(Fn)′(xin)| = n lim sup
k→∞

1

kn

kn−1
∑

i=0

ln |F ′(xi)| ,

which implies that

λF (y0) = λF (x0) ≥ n−1 λF n(x0) ≥ n−1 lnλ > 0.

The proof is finished.

3 Exact Parameter Range for the Existence of

an Asymptotically Stable 3-Periodic Point

In this section, the exact parameter range is studied for the existence of an
asymptotically stable 3-periodic point of system (1). The parameter r is
restricted to r > 3 throughout this section.

We first discuss the existence of 3-periodic orbits. Obviously, x ∈ [0, 1]
is a 3-periodic point of system (1) if and only if f3(x) = x, f(x) 6= x, and
f2(x) 6= x. Setting

g(x) :=
f3(x) − x

f(x) − x
,

we have

g(x) = r6x6 − (3 r + 1) r5x5 + r4(3 r2 + 4 r + 1)x4

−r3(r3 + 5 r2 + 3 r + 1)x3 + r2(2 r3 + 3 r2 + 3 r + 1)x2

−r (r3 + 2 r2 + 2 r + 1)x + r2 + r + 1.

Then x ∈ [0, 1] is a 3-periodic point of system (1) if and only if x is a real
root of the following equation:

g(x) = 0. (3)

By the algebraic fundamental theory, Eq. (3) has six roots, xk (1 ≤ k ≤ 6),
which may be complex.

Next, consider some general properties of the roots of Eq. (3). Let x be
a root of Eq. (3). Then x satisfies f3(x) = x and f j(x) 6= x for j = 1, 2.
This implies that f(x) and f2(x) are also roots of Eq. (3), and x, f(x) ,
and f2(x) are mutually different roots of Eq. (3). So, any root of Eq. (3)
is at most of multiplicity 2. If Eq. (3) has a real root of multiplicity 2, then
it has exactly three different real roots, which are all of multiplicity 2 and
consist of the only 3-periodic orbit of system (1). Since all the coefficients
of Eq. (3) are real, complex roots of Eq. (3) appear in complex conjugation
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when Eq. (3) has complex roots. Therefore, all the roots are real if Eq. (3)
has a real root.

Now, we show that Eq. (3) has a real root if and only if r ≥ r3 = 1+81/2.
Assume the contrary, suppose that Eq. (3) has no real roots. Let x3 = f(x1),
x5 = f(x3), x2 = x̄1, x4 = f(x2), x6 = f(x4), and xj = αj + iβj for
j = 1, 3, 5. Then βj 6= 0 and xj+1 = x̄j for j = 1, 3, 5. The discriminant
of g is

d =
∏

1≤i<j≤6

(xi − xj)
2. (4)

Expanding the right-hand side of the above equation yields

d = −43β2
1 β2

2 β2
3 |x1 − x3|

4
|x1 − x̄3|

4
|x1 − x5|

4

× |x1 − x̄5|
4
|x3 − x5|

4
|x3 − x̄5|

4
,

which indicates that d is non-positive. It is seen that d < 0 for all r ≥ r3

if and only if Eq. (3) has no repeated complex roots for all r ≥ r3. Since
x1, x3 , and x5 are mutually different, it suffices to show that x1 6= x̄3,
x1 6= x̄5 , and x3 6= x̄5. We only prove that the inequality x1 6= x̄3 holds.
The other two inequalities can be proved with similar arguments. Suppose
that x1 = x̄3. It then follows from x3 = f(x1) that x1 = f(x̄1), that is,

α1 + i β1 = r (α1 − i β1) (1 − α1 + i β1).

By comparing the real and imaginary parts in the above equation, we get

α1 = r (α1 − α2
1 + β2

1), β1 = r β1 (2 α1 − 1). (5)

From the second relation in (5) and noticing β1 6= 0, we have

α1 =
1 + r

2 r
.

Substituting the above result into the first relation in (5) yields

β2
1 =

(1 + r) (3 − r)

4 r2
,

which contradicts the assumption r ≥ r3. Hence, d < 0 for all r ≥ r3. On
the other hand, the discriminant d can be found as (with the aid of Maple)

d = r30(r2 − 5 r + 7)2 (r2 − 2 r − 7)3 (r2 + r + 1)2, (6)

which suggests that d ≥ 0 when r ≥ r3. This is a contradiction. Therefore,
Eq. (3) has a real root when r ≥ r3. Conversely, if Eq. (3) has a real root,
then all its roots are real. So, it follows from (4) and (6) that d ≥ 0, implying
r ≥ r3. Hence, Eq. (3) has a real root if and only if r ≥ r3.

Further, it is seen from (6) that Eq. (3) has six different real roots if and
only if r > r3. Consequently, system (1) has two different 3-periodic orbits
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if and only if r > r3. It is evident that these 3-periodic orbits fall in the
interval (0, 1). In addition, again from (6), it follows that d = 0 if and only
if r = r3, that is, Eq. (3) has repeated roots if and only if r = r3. This
implies that system (1) has a unique 3-periodic orbit in this case, which was
first proved by Myrberg in 1958. Later, Saha and Strogatz [20], Bechhoeffer
[2], and Gordon [8] simplified the proof.

In summary, the following result has been obtained.

Theorem 3. System (1) has a unique 3-periodic orbit if and only if r =
1 + 81/2 and it has two different 3-periodic orbits if and only if r > 1 + 81/2.

We turn to the stability of the 3-periodic orbits. It has been shown that
the value r̂3 ≈ 3.841499 (defined as in Section 1) is an upper bound for the r
values that support stable 3-periodic orbits [8]. We further prove that system
(1) has an asymptotically stable 3-periodic orbit for any r ∈ (r3, r̂3).

For convenience, first recall some results of [8]. Let {x1, x2, x3} be a
3-periodic orbit of system (1), where x2 = f(x1), x3 = f(x2). Then they
can be written as

xn = µ + β ωn + β̄ ω̄n, n = 1, 2, 3,

where ω is a complex cubic root of unity, and µ and β are constants,
satisfying

2 β β̄ = (1 −
1

r
)µ − µ2,

β̄2 = (1 − 2µ −
ω

r
)β,

β2 = (1 − 2 µ −
ω̄

r
) β̄,

which yields

µ =
3 r + 1 ± (r2 − 2 r − 7)1/2

6 r
,

2 |β|2 = (1 −
1

r
)µ − µ2,

(7)

where the signs “±” determine two different 3-periodic orbits when r > r3.
Denote

h(r) := (f3)′(x1).

Then
h(r) = f ′(x1) f ′(x2) f ′(x3) = r3 (1 − 2A + 4B − 8C),

where A = x1 + x2 + x3, B = x1 x2 + x1 x3 + x2 x3, and C = x1 x2 x3. By
the result of [8], A = 3 µ, B = 3 (µ2 − |β|2), and C = 1−A+B− r−3, which
together with the second relation in (7) implies that

h(r) = r3

(

−7 + 24 µ− 18 µ2 −
6 µ

r
+

8

r3

)

.
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Substituting the first relation in (7) into the above equation yields

h1(r) := h(r) = − r (r − 2) (r2 − 2r − 7)1/2 − (r2 − 2 r − 8) (8)

for choosing “−” in the first relation of (7) and

h2(r) := h(r) = r (r − 2) (r2 − 2r − 7)1/2 − (r2 − 2 r − 8) (9)

for choosing “+” in the first relation of (7). By the result of [8] and by a
direct calculation, one can obtain

h1(r̂3) = −1, hj(r3) = 1, j = 1, 2. (10)

By (8), the derivative of h1(r) with respect to r can be obtained as

h′
1(r) = − (r − 1) (r2 − 2r − 7)−1/2

×
[

3 (r2 − 2 r − 7) + 2 (r2 − 2 r − 7)1/2 + 7
]

,

which indicates that h′
1(r) < 0 when r > r3. Thus, h1 is decreasing in

the interval (r3, ∞) and consequently, |h1(r)| < 1 for r ∈ (r3, r̂3) and
h1(r) < − 1 for r > r̂3 by using (10). Therefore, the corresponding 3-
periodic point is asymptotically stable for r ∈ (r3, r̂3) by Lemma 1 and for
r = r3 by [5, Page 43], and thus it is true for any r ∈ [r3, r̂3).

Similarly, it follows from (9) that

h′
2(r) = (r − 1) (r2 − 2r − 7)−1/2

×
[

3 (r2 − 2 r − 7) − 2 (r2 − 2 r − 7)1/2 + 7
]

,

which implies that h′
2(r) > 0 when r > r3. Hence, h2 is increasing in the

interval (r3, ∞) and consequently, h2(r) > 1 for r ∈ (r3, ∞) in view of (10).
Thus, the corresponding 3-periodic point is unstable for any r ∈ (r3, ∞) by
Lemma 1. Summarizing the above discussions gives the following result.

Theorem 4. System (1) has an asymptotically stable 3-periodic point for
any r ∈ [r3, r̂3) and has no stable 3-periodic points for any r > r̂3.

Remark 1. It is known that all the periodic windows in the bifurcation
diagrams (see Figure 1) represent the attracting periodic points of system (1)
that occur at those parameter values. So, Theorem 4 implies that the range of
the parameter r for the 3-periodic window is exactly between r3 ≈ 3.828427
and r̂3 ≈ 3.841499 (see Figure 3). This result can clarify some non-precise
statements in the literature on the estimation of the parameter range for the
3-periodic window based on computer simulations (cf. e.g. [5 (page 43), 19
(page 340)]).
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4 Chaos

In this section, we study chaos of system (1) and discuss its Lyapunov expo-
nent.

The following result is a direct consequence of Theorem 3 by the Li-Yorke
theorem [12].

Theorem 5. For any r ∈ [r3,∞), the following results hold:

(i) for every positive integer k, there is a k-periodic point in [0, 1];

(ii) there is an uncountable scrambled set S ⊂ [0, 1], containing no periodic
points, which satisfies the following conditions:

(ii1) for every p, q ∈ S with p 6= q,

lim sup
n→∞

|fn(p) − fn(q)| > 0

and
lim inf
n→∞

|fn(p) − fn(q)| = 0;

(ii2) for every p ∈ S and periodic points q ∈ [0, 1],

lim sup
n→∞

|fn(p) − fn(q)| > 0.

Consequently, system (1) is chaotic in the sense of Li-Yorke for any r ≥ r3.

It is known that system (1) has an invariant Cantor set on which it is
chaotic in the sense of Devaney and has a dense orbit for any r > 4 (in-
troduced in Section 1). By Theorem 5, system (1) is chaotic in the sense of
Li-Yorke for any r ≥ r3. However, it is not known if there is an invariant
set, which is a Cantor set or contains a Cantor set, on which system (1) is
chaotic in the sense of Devaney and it has a dense orbit for some values of
r ≤ 4. We now study this problem by finding a snap-back repeller of the
system.

Throughout the rest of this section, the parameter r is restricted to
3 < r ≤ 4.

It is obvious that f is continuously differentiable in R with f ′(x) =
r (1 − 2 x). For r > 3,

f ′(z1) = r > 1, f ′(z2) = 2 − r < − 1.

So, they are both expanding fixed points of f . The maximal open ex-
panding subintervals of [0, 1] near z1 and z2 are I1 :=

(

0, 2−1(1 − r−1)
)

and I2 :=
(

2−1(1 + r−1), 1
)

, respectively. Especially, the interval J :=
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(

2−1(1 + r−1), 2−1(3 − 5 r−1)
)

⊂ [0, 1] is an open ball of radius δ = 2−1(1−
3 r−1) centered at z2.

Lemma 3. For every r ∈ [r0, 4] with r0 := 3 + (2/3)1/2, there exists a
point x0 ∈ J such that f4(x0) = z2 and f ′(xi) 6= 0, where xi = f(xi−1)
for i = 1, 2, 3. Consequently, z2 is a nondegenerate and regular snap-back
repeller of f for every r ∈ [r0, 4].

Proof. The proof is divided into four steps.
(i) Firstly, consider the following equation:

f(x) = r x (1 − x) = z2, (11)

which has two solutions; one is z2 and the other is

y1 :=
1

r
.

It is easy to verify that y1 ∈ I1 and

f ′(y1) = r − 2 6= 0. (12)

(ii) Secondly, consider the following equation:

r x (1 − x) = y1, (13)

which can be rewritten as

(

x −
1

2

)2

=
1

4
−

1

r2
.

So, Eq. (13) has two solutions,

x =
1

2
±

(

1

4
−

1

r2

)1/2

.

Set

y2 :=
1

2
+

(

1

4
−

1

r2

)1/2

. (14)

Then
1

2

(

3 −
5

r

)

< y2 < 1, (15)

which implies that y2 /∈ J . In fact, the second inequality in (15) is easily
derived from (14) and the first inequality is equivalent to

3 r2 − 20 r + 29 = 3

(

r −
10 + 131/2

3

) (

r −
10 − 131/2

3

)

< 0,
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due to the facts that (10−131/2)/3 < 3 and 4 < (10+131/2)/3. In addition,

f ′(y2) 6= 0. (16)

(iii) Thirdly, consider the following equation:

r x (1 − x) = y2, (17)

which can be rewritten as

(

x −
1

2

)2

=
1

4
−

y2

r
.

This equation has real solutions not equal to 1

2
if and only if

y2 <
r

4
, (18)

which, due to Eq. (14), is equivalent to

r4 − 4 r3 + 16 = (r − 2) g1(r) > 0, (19)

where g1(r) := r3−2 r2−4 r−8. Since g′1(r) = 3 (r−2) (r+ 2

3
) > 0, g1(r) is

increasing in the interval (3, 4]. A direct computation shows that g1(r) = 0
has only one real root,

r1 : =
2

3
+

2

3

(

19 + 3 × 331/2
)1/3

+
8

3

(

19 + 3 × 331/2
)−1/3

≈ 3.678573.

It then follows that g1(r) > 0 for all r ∈ (r1, 4]. Therefore, inequality
(19), i.e. inequality (18), holds for all r ∈ (r1, 4]. Consequently, for every
r ∈ (r1, 4], Eq. (17) has two solutions,

x =
1

2
±

(

1

4
−

y2

r

)1/2

.

Set

y3 :=
1

2
+

(

1

4
−

y2

r

)1/2

. (20)

It then follows from (20) and (15) that for every r ∈ (r1, 4],

1

2
< y3 < z2 (21)

and
f ′(y3) 6= 0. (22)
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(iv) Finally, consider the following equation:

r x (1 − x) = y3, (23)

which can be rewritten as
(

x −
1

2

)2

=
1

4
−

y3

r
.

Similarly to the above discussion, this equation has real solutions not equal
to 1

2
if and only if

y3 <
r

4
. (24)

It then follows from (20) that inequality (24) is equivalent to

y2 > g2(r), (25)

where g2(r) := 16−1 r2 (4 − r). Since g′2(r) = 16−1 r (8 − 3 r) < 0 for
r ∈ [3, 4], g2(r) is decreasing in [3, 4] and, consequently, g2(r) < g2(3) = 9

16

for all r ∈ (3, 4]. On the other hand, it is seen from (14) that for any
r ∈ (3, 4],

y2 >
1

2
+

(

1

4
−

1

32

)1/2

=
1

2
+

51/2

6
> g2(3).

Hence, for all r ∈ (3, 4], inequality (25), i.e. inequality (24), holds. This
suggests that for all r ∈ (r1, 4], Eq. (23) has the following two real solutions:

x =
1

2
±

(

1

4
−

y3

r

)1/2

.

Set

x0 :=
1

2
+

(

1

4
−

y3

r

)1/2

. (26)

Now, we show that for all r ∈ [r0, 4],

z2 < x0 <
1

2

(

3 −
5

r

)

. (27)

Obviously, r0 > r1. On the one hand, the first inequality in (27) is equivalent
to y3 < z2 from (26) and by using z2 = 1 − r−1. This, together with (21),
implies that the first inequality holds for all r ∈ [r0, 4]. On the other hand,
it follows again from (26) that the second inequality in (27) is equivalent to

y3 > 5 −
3 r

4
−

25

4 r
. (28)

Further, inequality (28) is equivalent to

(

1

4
−

y2

r

)1/2

> g3(r) (29)
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by using (20), where

g3(r) :=
9

2
−

3 r

4
−

25

4 r
= −

3

4 r

(

r − 3 −
(2

3

)1/2
) (

r − 3 +
(2

3

)1/2
)

.

It can be seen that g3(r) ≤ 0 for all r ∈ [r0, 4]. Hence, inequality (29), i.e.
inequality (28), holds for all r ∈ [r0, 4]. Consequently, (27) is proved.

Setting x1 = y3, x2 = y2, and x3 = y1, one has that f(xi−1) = xi and
f ′(xi) 6= 0 for i = 1, 2, 3 from (12), (16), and (22); and f4(x0) = z2. Hence,
x0 is a nondegenerate and regular snap-back repeller. This completes the
proof.

The following result is a consequence of Lemmas 2 and 3.

Theorem 6. For every r ∈ [r0, 4], r0 = 3 + (2/3)1/2 and for each neigh-
borhood U ⊂ [0, 1] of z2 = 1− r−1, there exist a positive integer n > 4 and
a Cantor set Λ ⊂ U such that fn : Λ → Λ is topologically conjugate to the
symbolic dynamical system σ :

∑+

2
→

∑+

2
. Consequently, fn is chaotic on

Λ in the sense of Devaney.

The following result is a consequence of Lemma 3 and Theorem 2.

Theorem 7. For every r ∈ [r0, 4], where r0 = 3 + (2/3)1/2, there exists
a compact and perfect invariant set D ⊂ [0, 1], containing a Cantor set,
such that system (1) is chaotic in the sense of Devaney on D as well as in
the sense of Li-Yorke, with a dense orbit in D, and has uniformly positive
Lyapunov exponents in D.

5 Conclusion and Discussion

In this paper, it has been proved that two 3-periodic orbits always exist when
the parameter r of the logistic map f(x) = r x (1 − x) is larger than r3 =
1 + 81/2, at which a unique 3-periodic orbit appears. The exact parameter
range of the existence of an asymptotically stable 3-periodic point is obtained
and, consequently, the exact parameter range for the biggest periodic window,
i.e., 3-periodic window, in the period bifurcation diagram is given. This result
can clarify some non-precise statements in the literature about the parameter
range for the 3-periodic window based on computer simulations.

It has been shown that the corresponding logistic map is chaotic in the
sense of both Devaney and Li-Yorke, and has a dense orbit in a compact
and perfect invariant set D, which contains a Cantor set, for the parameter
interval [r0, 4] with r0 = 3+(2/3)1/2 < r3. Further, it has been proved that
the system has uniformly positive Lyapunov exponents in the invariant set D
for the whole parameter interval [r0, 4]. In addition, it has been proved that
a regular and nondegenerate snap-back repeller implies chaos in the sense of
both Devaney and Li-Yorke for a map in a metric space.
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Figure 1: Bifurcation diagram of the logistic map for 2.8 ≤ r ≤ 4.



On Chaos of the Logistic Maps 194

-1

-0.5

 0

 0.5

 1

 2.9  3  3.1  3.2  3.3  3.4  3.5  3.6  3.7  3.8  3.9  4

 

r

Figure 2: Lyapunov exponents for the logistic map when 2.9 ≤ r ≤ 4.
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Figure 3: Bifurcation diagram of the logistic map for 3.8 ≤ r ≤ 3.86.


