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Abstract. In this paper, we consider a generalized BBM equation with weak

backward diffusion, dissipation and Marangoni effects, and study the existence
of periodic and solitary waves. Main attention is focused on periodic and

solitary waves on a manifold via studying the number of zeros of some linear

combination of Abelian integrals. The uniqueness of the periodic waves is
established when the equation contains one coefficient in backward diffusion

and dissipation terms, by showing that the Abelian integrals form a Chebyshev
set. The monotonicity of the wave speed is proved, and moreover the upper

and lower bounds of the limiting wave speeds are obtained. Especially, when

the equation involves Marangoni effect due to imposed weak thermal gradients,
it is shown that at most two periodic waves can exist. The exact conditions

are obtained for the existence of one and two periodic waves as well as for the

co-existence of one solitary and one periodic waves. The analysis is mainly
based on Chebyshev criteria and asymptotic expansions of Abelian integrals

near the solitary and singularity.

1. Introduction. Traveling waves in nonlinear wave equations can model many
nonlinear complex phenomena in physics, chemistry, biology, mechanics, optics,
etc. The wave profiles of long waves in shallow water with different conditions can
be modeled by the famous Korteweg-de Vries (KdV) [26], Benjamin-Bona-Mahony
[4], the Green-Naghdi [15] and Camassa-Holm [6] equations. In solving real world
problems, certain relatively weak influences due to the existence of uncertainty or
perturbation are unavoidable, for example in describing the shallow water waves
in nonlinear dissipative media [8] and dispersive media [23]. In other words, one
should add certain type of small terms in modelling the problems. Topper and
Kawahara [41] studied the wave motions on a liquid layer over an inclined plane
and established the following Partial Differential Equation (PDE),

ut + uux + αuxx + βuxxx + γuxxxx = 0, (1)

for which the wave motion is assumed depending only on the gradient direction.
When the inclined plane is relatively long and the surface tension is relatively weak,
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the uxx and uxxxx terms are relatively small, and the following equation is more
appropriate for describing the real situation,

ut + uux + uxxx + ε(uxx + uxxxx) = 0, (2)

where 0 < ε � 1 represents small perturbations to the system. When ε = 0,
the backward diffusion (uxx) and dissipation (uxxxx) vanish and (2) becomes the
classical KdV equation [26], and so (2) is usually called a perturbed KdV equation.
The KdV equation has played an important role in describing various physical
problems, and many researchers have studied this equation and particularly paid
attention to solitary and periodic waves. In 1993, Derks and Gils [9] discussed the
uniqueness of traveling waves of equation (2). A year later, Ogawa [36] studied the
existence of solitary and periodic waves of equation (2).

When the Marangoni effect is considered on the surface of a thin layer, additional
nonlinearity in the form of (uux)x appears, see [12, 20]. For this model, Velarde et.al.
[43] showed the consistent way of incorporating the Marangoni effect (heating the
liquid layer from the air side) into the one-way long-wave assumption and derived
the following equation:

ut + 2α1uux + α2uxx + α3uxxx + α4uxxxx + α5(uux)x = 0, (3)

which contains the nonlinear term (uux)x due to the Marangoni effect, describing
the opposite to the Bénard convection [35, 44]. For the sake of completeness here,
we notice that different cases by setting some parameters αi = 0 in Eq. (3) have
been considered in many other works, for example [10, 24, 27, 28]. In particular,
Mansour [31] studied the existence of solitary in Eq. (3) with all small non-vanishing
parameters α2, α4 and α5, and in addition established the existence of solitary for
the following equation [32].

ut + α1u
2ux + α2uxx + α3uxxx + α4uxxxx + α5(uux)x = 0.

It has been noted that solitary and traveling waves with periodic spatial profiles
are very sensitive to weak external influence. For example, stationary periodic pat-
terns in thermal convection may not be observed in a weakly windy circumstance
[5]. However, the weak Marangoni effect may destabilize the waves [21], and dif-
ferent perturbations may generate different dynamics of systems, leading to, for
example, broking the periodic traveling waves, changing its stability and yielding
quasi-periodic motions on invariant tori, etc. One efficient way to deal with such
problems is to apply bifurcation techniques from the view point of dynamical sys-
tems by taking the weak external effects as perturbations, and many good results
have been obtained for certain nonlinear wave problems, see [48, 17, 22, 13].

In general, perturbations to a dynamical system may be classified into three
types: periodic or quasi-periodic forcing, singular perturbation and regular pertur-
bation. When a PDE is perturbed by quasi-periodic forcing terms, one method
developed to investigate dynamics (quasi-periodic motion on some invariant tori) of
the system is based on an infinite dimensional KAM theory. This theory is an exten-
sion of the well-known classical KAM theory, which was established by Kolmogorov
[25], Anorld [2] and Moser [34]. It asserts that the majority of tori is persistent
under perturbations if the Kolmogorov non-degenerate condition is satisfied.

When a perturbed system can be reduced to a singularly perturbed system,
the first question is about the existence of traveling wave solutions of the system.
There are lots of publications on this topic, such as singularly perturbed KdV
equations [36, 3, 16, 30, 40], the perturbed dispersive-dissipative equations and
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reaction-diffusion systems [1, 49, 42]. One classical method to deal with singular
perturbations is to apply Fenichel’s theory (e.g. see [11]), which assures the existence
of an invariant manifold and then the problem is reduced to a regular perturbed
system on this manifold, see [36, 3, 16, 30, 40]. In these cases, the perturbation
always has only one or two terms with lower degrees on the invariant manifold, see
above mentioned references and also the works of Derks and Gils [9] and Ogawa
[36, 38, 37].

However, very few problems can be directly reduced to regularly perturbed sys-
tems. Thus, perturbations are usually not restricted on manifolds. Moreover, there
exist fewer mathematical tools which can be used to study the dynamics of per-
turbed systems, and yet, the analysis and computation based on these approaches
are difficult to be used for proving the existence of periodic traveling waves. Thus,
when Zhou et al studied the Burgers-Huxley equation [52] and Burgers-Fisher equa-
tion [53], they assumed that one coefficient in the equation and the wave speed are
small so that these two small terms can be treated as two perturbations, which
greatly simplifies the analysis and the proof on the existence of periodic waves
[52, 53]. In general, if three or more perturbation terms are involved, the analysis
becomes much more difficult.

After the works of Derks and Gils [9] and Ogawa [36], in 2014 Yan et al. [47]
investigated the perturbed generalized KdV equation,

ut + (un)x + uxxx + ε(uxx + uxxxx) = 0.

When ε = 0 and n = 2, the above equation is reduced to the classical KdV equation,

ut + (u2)x + uxxx = 0.

Yan et al. [47] proved that there exists one periodic wave by choosing some wave
speed c for sufficiently small ε > 0. However, the uniqueness of the periodic wave
is still open.

Another well-known model describing the propagation of surface water waves in
a uniform channel is the Benjamin-Bona-Mahony (BBM) equation,

ut + uux − uxxt = 0.

This model describes surface waves of long wavelength in liquids, acoustic-gravity
waves in compressible fluids, hydromagnetic waves in cold plasma, acoustic waves
in harmonic crystals, see [33]. Due to its wide applications and rich dynamics,
researchers have developed many different forms of BBM equations which are usu-
ally called generalized BBM equations, see [46, 39, 51] and the reference therein.
Wazwaz studied the following generalized BBM equation [46],

(um)t + (un)x + (ul)xxx = 0, (4)

and found its compaction of dispersive structures.
More recently, Chen et al. [7] investigated a perturbed generalized BBM equa-

tion,

(u2)t + (u3)x + uxxx + ε(uxx + uxxxx) = 0, (5)

and established the existence of solitary waves and uniqueness of periodic waves.
Both of the works [47] and [7] studied the perturbation problems restricted on
manifolds, by using geometric singular perturbation theory. In [7], the authors
applied Picard-Focus equations to determine the existence of periodic waves, and
developed a good approach to prove that the dominating factor of the Melnikov
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function is monotonic, see Lemma 4.10 in [7]. Using the same approach, they also
proved that the perturbed generalized defocusing mKdV equation,

ut − u2ux + uxxx + ε(uxx + uxxxx) = 0,

has a unique periodic wave. However, this approach failed to deal with the unper-
turbed equation having a nilpotent saddle or more degenerate cusp, corresponding
to m > 2 in (4). This is because, taking m = 3 for example, one needs to consider
more terms in Lemma 4.10 in [7] in order to find some combination of the terms in
order to prove the monotonicity of the dominating part of the Melnikov function.
However, in general this is very difficult in higher degenerate cases, which is similar
to dealing with the cases when more than two perturbation terms are involved in
the equations.

In this paper, we study the BBM equation (4) for m = 3, n = 4 and l = 1 with
two different kinds of weak dissipative effects P1 and P2, described by

(u3)t + (u4)x + uxxx + εPi = 0, i = 1, 2, (6)

where

P1 = uxx + uxxxx, P2 = ((α0 + α1u+ α2u
2)ux)x, (7)

in which α0, α1 and α2 are bounded parameters. P1 describes the weak second and
fourth derivative diffusions without Marangoni effect. P2 describes a generalized
Marangoni effect. The unperturbed problem has a more degenerate singularity
which is a nilpotent saddle. Especially, for the case with weak Marangoni effect P2,
the problem is not restricted on a manifold but is reduced to a regular problem with
more parameters. It can be seen from our reduction of the problem with P1 that
the weak Marangoni effect P2 is equivalent to the compound dissipative-Marangoni
effect γ0uxx +γ1uxxxx +γ2(uux)x. The main mathematical tools we will use in this
paper are based on the relatively new theory of weak Hilbert’s 16th problem and
bifurcation theory.

The rest of this paper is organized as follows. In section 2, we give a reduction
analysis and state our main results. In section 3, we present some perturbation
theories and derive a special form of Abelian integral, also called Melnikov function,
for periodic and solitary waves. It will be shown that our method without using
Picard-Focus Equation is more effective compared to that used in the existing works.
In section 4, we study the problem with perturbation P1 by applying the Chebyshev
criteria [14]. In section 5, we investigate the problem with perturbation P2 and
obtain the conditions on the existence of periodic waves. In particular, we derive
the exact conditions on the existences of one and two periodic waves. Further, we
establish a criterion on the co-existence of one solitary wave and one unique periodic
wave. Conclusion is drawn in section 6.

2. Main results. In this section, we present our main results for system (6). First,
we consider system (6) with perturbation P1, that is,

(u3)t + (u4)x + uxxx + ε(uxx + uxxxx) = 0. (8)

Taking ξ = x− ct into (8) yields

−3cu2(ξ)u′(ξ) + 4u3(ξ)u′(ξ) + u′′′(ξ) + ε(u′′(ξ) + u′′′′(ξ)) = 0.

Then, integrating this equation and omitting the integral constant, we obtain

− cu3 + u4 + u′′(ξ) + ε(u′(ξ) + u′′′(ξ)) = 0. (9)
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Further introducing the transformations ξ = τ

c
3
2

and u = cµ into (9) yields

− µ3(τ) + µ4(τ) + µ′′(τ) + ε(c−
3
2u′(τ) + c

3
2u′′′(τ)) = 0. (10)

Similarly, system (6) with perturbation P2 can be transformed to

− µ3(τ) + µ4(τ) + µ′′(τ) + ε(a0 + a1µ(τ) + a2µ
2(τ))µ′(τ) = 0, (11)

where a0 = c−
3
2α0, a1 = c−

1
2α1 and a2 = c

1
2α2. Because α′is are independent, we

will use a′is in our analysis for convenience.
Correspondingly, the unperturbed system of (6) (with ε = 0) is given by −µ3(τ)+

µ4(τ) + µ′′(τ) = 0, which is equivalent to the system,

dµ

dτ
= ν,

dν

dτ
= µ3 − µ4,

(12)

which has a hyper-elliptic Hamiltonian function, given by

H(µ, ν) =
ν2

2
− µ4

4
+
µ5

5
, (13)

satisfying H(1, 0) = − 1
20 and H(0, 0) = H( 5

4 , 0) = 0. The function H = h for

h ∈ (− 1
20 , 0) and µ ∈ (0, 5

4 ), depicted in Figure 1, shows a family of closed orbits
surrounded by a homoclinic loop Γ0, with a nilpotent saddle of order 1 at the origin.

Γ0

Figure 1. The portrait of system (12).

In order to state our main results clearly and systematically, we use the following
notations: Γh denoting the closed curve defined by H(µ, ν) = h; µ(τ, h) representing
the closed orbit of system (12) corresponding to Γh; µ(τ, ε, h, c(ε, h)) being the
periodic wave of system (10) near Γh under the condition c = c(ε, h); µ(τ, ε, h)
denoting the traveling wave of system (11) near Γh. Our main results are given in
the following Theorem 2.1 and Theorem 2.2.

Theorem 2.1. For the perturbed BBM equation (6) with perturbation P1, the fol-
lowing holds.

(i) For any sufficiently small ε > 0 and any h ∈ (− 1
20 , 0), there exists a smooth

function c(ε, h) in ε and h such that system (6) has one unique isolated periodic



970 XIANBO SUN AND PEI YU

wave in a sufficiently small neighborhood of Γh, given by u = cµ(τ, ε, h, c(ε, h)),
satisfying

lim
ε→0

µ(τ, ε, h, c) = µ(τ, h),

∂
∂τ µ(0, ε, h, c) = ∂2

∂τ2µ(0, ε, h, c) = 0, ∂3

∂τ3µ(0, ε, h, c) < 0,

and
lim
ε→0

c(ε, h) = c(h),

where c(h) is a monotonically increasing function in h satisfying 1 < c(h) <(
39
25

) 1
3 .

(ii) For any sufficiently small ε > 0, there exists a critical wave speed c = ( 39
25 )

1
3 +

O(ε) such that system (6) has one solitary wave in a sufficiently small neigh-
borhood of Γ0.

Theorem 2.2. For any sufficiently small ε > 0, the perturbed BBM equation (6)
with perturbation P2 has at most two isolated periodic waves. More precisely, we
have the following results.

(i) The Abelian integral M(h) (given in (3.11)) has one unique simple zero for
any h∗ ∈ (− 1

20 , 0) if and only if

a1 = λ ∈ (−∞,− 5
3 ]
⋃

[− 10
11 ,+∞) and a0 = −κ(h∗, λ),

where κ(h, λ) is defined in (45). Therefore, for any sufficiently small ε > 0,
system (6) has one unique isolated periodic wave u = cµ(τ, ε, h∗), in suffi-
ciently small neighborhood of any closed curve Γh∗ by taking a1 = λ + O(ε)
and a0 = −κ(h∗, λ) +O(ε), satisfying

lim
ε→0

µ(τ, ε, h∗) = µ(τ, h∗),

∂
∂τ µ(0, ε, h∗) = ∂2

∂τ2µ(0, ε, h∗) = 0, ∂3

∂τ3µ(0, ε, h∗) < 0.

(ii) The Abelian integral M(h) has exactly two simple zeros h1 and h2 if and only
if

a1 = λ ∈
(
− 5

3 ,−
10
11

)
and a0 = −κ(h1, λ) = −κ(h2, λ),

where

κ(h1, λ) = κ(h2, λ) ∈
(

min
h∈(− 1

20 ,0)
{κ(h, λ)}, min{κ(− 1

20 , λ), κ(0, λ)}
)
,

under which, for any sufficiently small ε > 0, system (6) has exactly two
isolated periodic waves u1 = cµ(τ, ε, h1) and u2 = cµ(τ, ε, h2), in sufficiently
small neighborhoods of the closed curves Γh1 and Γh2 by choosing a1 = λ∗ +
O(ε) and a0 = −κ(h1, λ) +O(ε), satisfying

lim
ε→0

µ(τ, ε, hi) = µ(τ, hi),

∂
∂τ µ(0, ε, hi) = ∂2

∂τ2µ(0, ε, hi) = 0, ∂3

∂τ3µ(0, ε, hi) < 0, i = 1, 2.

(iii) The Abelian integral M(h) has a unique zero at h = 0 if and only if

a0 = − 5
6a1 − 25

33 , (14)

and further, under (14), M(h) has a unique simple zero in (− 1
20 , 0) if and

only if a1 = λ∗∗ ∈ (− 16
11 ,−

10
11 ). Therefore, for any sufficiently small ε > 0,

system (6) can have a solitary wave by taking a0 = − 5
6a1 − 25

33 + O(ε), and
co-existence of a solitary wave and a unique periodic wave by choosing a0 =
− 5

6λ
∗∗ − 25

33 +O(ε) and a1 = λ∗∗ +O(ε).
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Before further analysis, in the next section we will present some definitions and
lemmas in perturbation theory, which are needed for proving Theorems 2.1 and 2.2.

3. Perturbation theory and analysis.

Lemma 3.1 (Fenichel Criteria). Consider the system

ẋ = f1(x, y, ε),

ẏ = εf2(x, y, ε),
(15)

where x ∈ Rm, y ∈ Rl and 0 < ε� 1 is a real parameter, f1 and f2 are C∞ on the
set V × I, V ⊆ Rn+1, I is an open interval containing zero. Assume that for ε = 0,
system (15) has a compact normally hyperbolic manifold M0 which is contained in
the set f1(x, y, 0) = 0. The manifold M0 is said to be normally hyperbolic if the
linearization of (15) at each point in M0 has exactly dim(M0) eigenvalues on the
imaginary axis. Then, for any 0 < r < +∞, there exists a manifold Mε for ε
sufficiently small such that the following conclusions hold.

(i) Mε is locally invariant under the flow of (15).
(ii) Mε is Cr in x, y and ε.

(iii) Mε = {(x, y)|x = hε(y)} for some Cr function hε, and y in some compact set
K.

(iv) There exist locally invariant stable and unstable manifolds Ws(Mε), Wu(M ε),
that lie within O(ε) of, and are diffeomorphic to Ws(M0) and Wu(M0).

Definition 3.2. Suppose f0(x), f1(x), . . . , fn−1(x) are analytic functions on an real
open interval J .

(i) The family of sets {f0(x), f1(x), . . . , fn−1(x)} is called a Chebyshev system
(T-system for short) provided that any nontrivial linear combination,

k0f0(x) + k1f1(x) + · · ·+ kn−1fn−1(x),

has at most n− 1 isolated zeros on J .
(ii) An ordered set of n functions {f0(x), f1(x), . . . , fn−1(x)} is called complete

Chebyshev system (CT-system for short) provided any nontrivial linear com-
bination,

k0f0(x) + k1f1(x) + · · ·+ ki−1fi−1(x),

has at most i − 1 zeros for all i = 1, 2, · · · , n. Moreover it is called extended
complete Chebyshev system (ECT-system for short) if the multiplicities of
zeros are taken into account.

(iii) The continuous Wronskian of {f0(x), f1(x), . . . , fn−1(x)} at x ∈ R is

W [f0(x), f1(x), . . . , fk−1(x)] =

∣∣∣∣∣∣∣∣
f0(x) f1(x) · · · fk−1

f
′

0(x) f
′

1(x) · · · f
′

k−1(x)
· · · · · · · · · · · ·

f
(k−1)
0 (x) f

(k−1)
1 (x) · · · f

(k−1)
k−1 (x)

∣∣∣∣∣∣∣∣ ,
where f ′(x) is the first order derivative of f(x) and f (i)(x) is the ith or-
der derivative of f(x), i ≥ 2. The definitions imply that the function tuple
{f0(x), f1(x), · · · , fk−1(x)} is an ECT-system on J , so it is a CT-system on
J , and thus a T-system on J . However the inverse is not true.

Let res(f1, f2) denote the resultant of f1(x) and f2(x), where f1(x) and f2(x)
are two univariate polynomials of x on rational number field Q. As it is known,
res(f1(x), f2(x)) = 0 if and only if f1(x) and f2(x) have at least one common root.
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Let res(f, g, x) and res(f, g, z) denote respectively the resultants between f(x, z)
and g(x, z) with respect to x and z, where f(x, z) and g(x, z) are two polynomials in
{x, z} on rational number field. res(f, g, x) is a polynomial in z and res(f, g, z) is a
polynomial in x. About the relation between the common roots of two polynomials
and their resultants, the following result can be found in many works on polynomial
algebra, such as [45]. For completeness we give a short proof.

Lemma 3.3 ([45]). (i) Let (x0, z0) be a common root of f(x, z) and g(x, z). Then,
res(f, g, x0) = 0 and res(f, g, z0) = 0. However, the inverse is not true.

(ii) Let res(f, g, z) have a unique real root on some open interval (α, β), and
res(f, g, x) have a unique real root on some open interval (γ, θ). Then, there exists
at most one common real root of f(x, z) and g(x, z) on (α, β)× (γ, θ).

Proof. (ii) is obvious if (i) is true. So we only prove (i). A two-variable polynomial
can be treated as one univariate polynomial of one variable with the other treated
as a parameter. Taking f(x, z) = fz(x) and g(x, z) = gz(x) which are polynomials
of x with parameter z. Let x0 be the common root of fz0(x) and gz0(x). Then,
res(fz0(x), gz0(x)) = res(f, g, z0) = 0, where z0 is the common root of fx0

(z) and
gx0

(z), and therefore, res(fx0
(z), gx0

(z)) = res(f, g, x0) = 0.

Let H(x, y) = A(x)+ y2

2 be an analytic function. Assume there exists a punctured
neighborhood P of the origin foliated by ovals Γh ⊆ {(x, y)|H(x, y) = h, h ∈
(0, h0), h0 = H(∂P)}. The projection of P on the x-axis is an interval (xl, xr) with
xl < 0 < xr. Under these assumptions it is easy to verify that xA′(x) > 0 for all
x ∈ (xl, xr)\{0}, and A(x) has a zero of even multiplicity at x = 0 and there exists
an analytic involution z(x), defined by A(x) = A(z(x)), for all x ∈ (xl, xr). Let

Ii(h) =

∮
Γh

fi(x)y2s−1dx, for h ∈ (0, h0), (16)

where fi(x), i = 0, 1, . . . , n−1, are analytic functions on (xl, xr) and s ∈ N . Further,
define

li(x) :=
fi(x)

A′(x)
− fi(z(x))

A′(z(x))
.

Then, we have

Lemma 3.4 ([14]). Under the above assumption, {I0, I1, · · · , In−1} is an ECT
system on (0, h0) if {l0, l1, · · · , ln−1} is an ECT system on (xl, 0) or (0, xr) and
s > n− 2.

Lemma 3.5 ([29]). Under the above assumption, if the following conditions are
satisfied:
(i) W [l0, l1, . . . , li] does not vanish on (0, xr) for i = 0, 1, · · · , n− 2,
(ii) W [l0, l1, . . . , ln−1] has k zeros on (0, xr) with multiplicities counted, and
(iii) s > n+ k − 2,
then, any nontrivial linear combination of {I0, I1, · · · , In−1} has at most n+ k− 1
zeros on (0, h0) with multiplicities counted. In this case, {I0, I1, · · · , In−1} is called
a Chebyshev system with accuracy k on (0, h0), where W [l0, l1, . . . , li] denotes the
Wronskian of {l0, l1, . . . , li}.

Now we consider system (10), which can be rewritten in the form of

dµ

dτ
= ν,
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dν

dτ
= ω,

εc
3
2
dω

dτ
= µ3 − µ4 − ω − ε

c
3
2

ν.
(17)

Introducing the time scaling σ = τ
ε into (17) yields

dµ

dσ
= εν,

dν

dσ
= εω,

c
3
2
dω

dσ
= µ3 − µ4 − ω − ε

c
3
2

ν.

(18)

When ε > 0, system (17) is equivalent to (18). System (17) is called the slow system,
while system (18) is called the fast system.

The slow system (17) determines its critical manifold, which is a two-dimensional
submanifold in R3:

M0 = { (µ, ν, ω) ∈ R3
∣∣ω = µ3 − µ4}.

The Jacobian matrix of the fast system (18) restricted on M0 is given by 0 0 0
0 0 0

c−
3
2 (3µ2 − 4µ3) 0 −c−3/2


which has three eigenvalues λ1 = λ2 = 0, λ3 = −c−3/2, with λ1 and λ2 being on
the imaginary axis. Therefore, M0 is normally hyperbolic. Consequently, it follows
from Lemma 3.1 that for ε > 0 sufficiently small, there exists a two-dimensional
submanifold Mε in R3, which is invariant under the flow of system (17), within the
Hausdorff distance ε of M0.

Let

Mε = {(µ, ν, ω) ∈ R3 : ω = µ3 − µ4 + η(µ, ν, ε)},

where η(µ, ν, ε) is smooth in µ, ν and ε, satisfying η(µ, ν, 0) = 0, and expanded as

η(µ, ν, ε) = εη1(µ, ν) +O(ε2). (19)

Substituting (19) into the last equation of (17) and comparing its coefficients yields

η1(µ, ν) = c
3
2

[
(−3µ2 + 4µ3)ν − c−3ν

]
.

The dynamics of (17) on Mε is determined by

dµ

dτ
= ν,

dν

dτ
= µ3 − µ4 + εc

3
2 [(−3µ2 + 4µ3)ν − c−3ν] +O(ε2).

(20)

For any h ∈ (− 1
20 , 0), H(µ, ν) = h defines a periodic orbit Γh of (12) (or the

system (20) with ε = 0). Let (α(h), 0) denote the intersection point of Γh and the
positive µ-axis, T the period of Γh. Further, let Γh,ε be the positive orbit of (20)
starting from the point (α(h), 0) at time τ = 0, and (β(h, ε), 0) the first intersection
point of Γh,ε with the positive µ-axis at time τ = τ∗(ε). Let H∗(µ, ν) denote the
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small perturbation of H(µ, ν). Then, the difference between the two points is given
by

H∗((β(h, ε), 0))−H∗((α(h), 0)) =

∫
Γh,ε

dH∗ =

∫
Γh,ε

(
− µ3 + µ4

)
dµ+ νdv

=

∫ τ∗(ε)

0

{
(−µ3 + µ4)ν − ν

[
(−µ3 + µ4)− εc 3

2

(
− 3µ2ν + 4µ3ν − c−3ν

)]}
dτ

=

∫ τ∗(ε)

0

ενc
3
2

[(
− 3µ2+4µ3

)
ν−c−3ν

]
dτ = ε

∫ τ∗(ε)

0

c−
3
2

[
c3
(
− 3µ2+4µ3

)
ν2−ν2

]
dτ

4
= εF (h, ε).

By continuousness theorem, we have

lim
ε→0

Γh,ε = Γh, lim
ε→0

b(h, ε) = a(h), lim
ε→0

τ∗(ε) = T,

and thus,

F (h, ε) =

∫ T

0

c−
3
2 [c3(−3µ2 + 4µ3)ν2 − ν2]dτ +O(ε),

= c−
3
2

∫
Γh

[c3(−3µ2 + 4µ3)ν − ν]dµ+O(ε)

4
= c−

3
2M(h) +O(ε),

(21)

where M(h) is called Abelian integral or Melnikov function, given by

M(h) =

∫
Γh

[
c3(−3µ2 + 4µ3)ν − ν

]
dµ =

∫
Γh

[
− 1 + c3(−3µ2 + 4µ3)

]
νdµ. (22)

It has been noted that compared with the application of Picard-Focus equation
method (eg. see [7]) which is often used to derive the Abelian integral, here our
approach developed above is much simpler.

Similarly, for system (11), we take µ′(τ) = ν and follow the above procedure
to obtain the following regular perturbation problem which is not restricted on a
manifold,

dµ

dτ
= ν,

dν

dτ
= µ3 − µ4 + ε(a0 + a1µ+ a2µ

2)ν.

(23)

Let (α∗(h), 0) be the intersection point of Γh and the positive µ-axis, T the period
of Γh, Γ∗h,ε the positive orbit of (23) starting from the point (α∗(h), 0) at time τ = 0,

and (β∗(h, ε), 0) the first intersection point of Γh,ε with the positive µ-axis at time
τ = τ∗(ε). Then, the difference between the two points (α∗(h), 0) and (β∗(h, ε), 0)
can be expressed as

H∗(β∗(h, ε), 0)−H∗(α∗(h), 0) =

∫
Γ∗h,ε

dH∗

= ε

∫
Γh

(a0 + a1µ+ µ2)νdµ+O(ε)
4
= εM(h) +O(ε2),

(24)

where the Abelian integral M(h) is given by

M(h) =

∫
Γh

(a0 + a1µ+ µ2)νdµ. (25)
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To investigate the existence of periodic and solitary waves for the two perturba-
tion problems, we need study the zeros of the functions H∗(β(h, ε), 0)−H∗(α(h), 0)
and H∗(β∗(h, ε), 0)−H∗(α∗(h), 0) and their distributions. It follows from (21) and
(24) that it suffices to consider the Abelian integrals M(h) and M(h).

4. Analysis of system (6) with perturbation P1. In the section, we study
system (6) with perturbation P1. Based on the discussion in the previous sections,
we need only study the Abelian integral M(h). Let

Jn(h) =

∮
Γh

µnνdµ. (26)

Then,

M(h) = c3(−3J2 + 4J3)− J0.

Lemma 4.1. For h ∈ (− 1
20 , 0), J ′0(h) > 0 and J0(h) > 0.

Proof. It is easy to obtain

J ′0(h) =

∮
Γh

dµ

ν
=

∮
Γh

νdτ

ν
=

∫ T (h)

0

dτ = T (h) > 0,

where T (h) denotes the period of Γh.
Since ν → 0 as h→ − 1

20 , we have

J0(− 1

20
) = lim

h→− 1
20

∮
Γh

νdµ = lim
h→− 1

20

∫ T

0

ν2dτ = 0.

which, together with J ′0(h) > 0, implies J0(h) > 0 for h ∈ (− 1
20 , 0).

It follows from Lemma 4.1 that the following ratio is well defined,

X(h) =
−3J2 + 4J3

J0
. (27)

Then,

M(h) = J0(c3X(h)− 1). (28)

In the remaining of this section we mainly prove the following proposition, which
is needed for proving Theorem 2.1.

Proposition 1. For h ∈ (− 1
20 , 0), X ′(h) < 0. Moreover,

25
39 < X(h) < 1, lim

h→− 1
20

X(h) = 1, lim
h→0

X(h) = 25
39 .

To prove Proposition 1, we need the following lemmas.

Lemma 4.2. Suppose B(p, q) =
∫ 1

0
xp−1(1 − x)q−1dx is the Beta function with

p > 0 and q > 0. Then, the following holds:

J0(0) =
√

2
(

5
4

)3
B
(

3
2 , 3
)
, J2(0) =

√
2
(

5
4

)5
B
(

3
2 , 5
)
, J3(0) =

√
2
(

5
4

)6
B
(

3
2 , 6
)
.

In addition,
J2(0)
J0(0) = 25

33 ,
J3(0)
J0(0) = 625

858 ,
J3(0)
J2(0) = 25

26 .
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Proof. Let H− ν2

2 = 0. Then, we have

Jn(0) =
√

2

∫ 5
4

0

µn+2
√

1− 4
5µ dµ.

Let 1− 4
5µ = t, and so µ = 5

4 (1− t), dµ = − 5
4dt. Then, we obtain

Jn(0) =
√

2

∫ 1

0

(5

4

)n+3

(1− t)n+2t
1
2 dt =

√
2
(5

4

)n+3

B
(3

2
, n+ 3

)
,

which proves the first part of the lemma.
Next, it follows from

B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)
and Γ(s+ 1) = sΓ(s),

where Γ(s) =
∫ +∞

0
xs−1e−xdx, (s > 0) is the Gamma function, that

J2(0)

J0(0)
=

( 5
4 )5B( 3

2 , 5)

( 5
4 )3B( 3

2 , 3)
=

(
5

4

)2

×
Γ( 3

2 )Γ(5)

Γ( 13
2 )

×
Γ( 9

2 )

Γ( 3
2 )Γ(3)

=

(
5

4

)2

×
4× 3× Γ(3)× Γ( 9

2 )
11
2 ×

9
2 × Γ( 9

2 )× Γ(3)
=

25

33
.

Similarly, we obtain

J3(0)

J0(0)
=

625

858
and

J3(0)

J2(0)
=

25

26
.

Lemma 4.3. The following rates at h = − 1
20 hold:

J2(− 1
20 )

J0(− 1
20 )

= lim
h→− 1

20

J2(h)

J0(h)
= 1,

J3(− 1
20 )

J0(− 1
20 )

= lim
h→− 1

20

J3(h)

J0(h)
= 1,

J3(− 1
20 )

J2(− 1
20 )

= lim
h→− 1

20

J3(h)

J2(h)
= 1.

Proof. Let µ = r cos θ + 1, ν = r sin θ. Then, H− h = 0 becomes

F(r, ρ)
4
=
r5

5
cos5 θ +

3

4
r4 cos4 θ + r3 cos3 θ +

r2

2
− ρ2 = 0,

where ρ = (h+ 1
20 )

1
2 . Applying the implicit function theorem to F(r, ρ) at (r, ρ) =

(0, 0), we can show that there exist a smooth function r = χ(ρ) and a small positive
number δ, 0 < ρ < δ � 1 such that F(χ(ρ), ρ) = 0, and χ(ρ) can be expanded as

χ(ρ) =
√

2ρ− 2ρ2 cos3 θ +
√

2
(
− 3

2
cos4 θ + 5 cos6 θ

)
ρ3

+
(
− 4

5
cos5 θ + 18 cos7 θ − 32 cos9 θ

)
ρ4 +O(ρ5).

(29)

Therefore,

Jn(h) =

∮
Γh

µnνdµ =

∫∫
intΓh

µndµdν =

∫ 2π

0

dθ

∫ χ(ρ)

0

rn+1 cosn θdr. (30)
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Noticing ρ = (h+ 1
20 )

1
2 and substituting (29) into (30) yields

J0(h) = 2π(h+ 1
20 ) + 21π

4 (h+ 1
20 )2 +O((h+ 1

20 )3),

J1(h) = 2π(h+ 1
20 ) + 9π

4 (h+ 1
20 )2 +O((h+ 1

20 )3),

J2(h) = 2π(h+ 1
20 ) + π

4 (h+ 1
20 )2 +O((h+ 1

20 )3),

J3(h) = 2π(h+ 1
20 )− 3π

4 (h+ 1
20 )2 +O((h+ 1

20 )3),

(31)

for 0 < h+ 1
20 � 1. Therefore,

Ji(− 1
20 )

Jj(− 1
20 )

= lim
h→− 1

20

Ji(h)

Jj(h)
= 1, i, j = 0, 1, 2, 3.

This completes the proof of Lemma 4.3.

Lemma 4.4. Jn(h) =
n∑
i=0

(−1)iCinIi(h), where Ii(h) =
∮
H̃=h

µ̃iν̃dµ̃, in which µ̃ =

−µ+ 1, ν̃ = −ν, and

H̃(µ̃, ν̃) = H(1− µ̃,−ν̃). (32)

In particular,

J0(h) = I0(h),

J2(h) = I2(h)− 2I1(0) + I0(h),

J3(h) = −I3(h) + 3I2(0)− 3I1(h) + I0(h).

(33)

Proof. A direct computation shows that

Jn(h) =

∮
Γh

µnνdµ =

∮
H̃=h

(1− µ̃)n(−ν̃)d(1− µ̃)

=

∮
H̃=h

[ n∑
i=0

Cin(−1)iµ̃iν̃
]
dµ̃ =

n∑
i=0

Cin(−1)i
∮
H̃=h

µ̃iν̃dµ̃

=

n∑
i=0

(−1)iCinIi(h).

Then, substituting n = 0, 2, 3 respectively into Jn(h) yields (33).

Lemma 4.5. On (− 1
20 , 0), J2(h)

J0(h) is decreasing monotonically from 1 to 25
33 , and

J3(h)
J2(h) is decreasing monotonically from 1 to 25

26 .

Proof. By Lemmas 4.2 and 4.3, we need only prove that J2(h)
J0(h) and J3(h)

J2(h) are mono-

tonic on the interval (− 1
20 , 0), which implies that each of the linear combination

α1J0(h) + α2J2(h) and α∗1J2(h) + α∗2J3(h) has at most one zero on (− 1
20 , 0). Let

f0(µ̃) = 1, f2(µ̃) = µ̃2 − 2µ̃+ 1, f3(µ̃) = −µ̃3 + 3µ̃2 − 3µ̃+ 1.

By Lemma 4.4, we have

Jk(h) =

∮
H̃=h

fk(µ̃)ν̃dµ̃, k = 0, 1, 2, 3.

Then, for each fi(µ̃), i = 0, 2, 3, setting

li(µ̃) =

(
fi
A′

)
(µ̃)−

(
fi
A′

)
(z(µ̃)), (34)
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where z(µ̃) is an analytic involution defined by A(µ̃) = A(z(µ̃)) on (− 1
4 , 1), and

A(µ̃) = H̃(µ̃, ν̃)− ν̃2

2
. (35)

Factorizing A(µ̃)−A(z) gives − 1
20 (µ̃− z)q(µ̃, z), where

q(µ̃, z) = 4

4∑
i=0

µ̃iz4−i − 15

3∑
i=0

µ̃iz3−i + 20

2∑
i=0

µ̃iz2−i − 10(µ̃+ z).

In fact, z(µ̃) is defined implicitly by q(µ̃, z). Therefore,

d

dµ̃
li(µ̃) =

d

dµ̃

(
fi
A′

)
(µ̃) +

d

dz

[(
fi
A′

)
(z(µ̃))

]
dz

dµ̃

with
dz

dµ̃
= −∂q(µ̃, z)

∂µ̃

/
∂q(µ̃, z)

∂z
.

Further, a direct computation shows that

l0(µ̃) =
(µ̃− z)P1(µ̃)

µ̃ (µ̃− 1)
3
z (z − 1)

3 ,

W [l0(µ̃), l2(µ̃)] =

∣∣∣∣ l0(µ̃) l2(µ̃)
l′0(µ̃) l′2(µ̃)

∣∣∣∣ =
− (µ̃− z)3

P2(µ̃)

µ̃2z2 (z − 1)
5

(µ̃− 1)
5
P0(µ̃)

,

and

l2(µ̃) =
(x− z) (z + x− 1)

(z − 1) z (x− 1)x
,

W [l2(µ̃), l3(µ̃)] =

∣∣∣∣ l2(µ̃) l3(µ̃)
l′2(µ̃) l′3(µ̃)

∣∣∣∣ =
(µ̃− z)3

P3(µ̃)

µ̃2z2 (z − 1)
2

(µ̃− 1)
2
P0(µ̃)

,

where

P0(µ̃) = 4
3∑
i=0

(4− i)µ̃iz3−i − 15
2∑
i=0

(3− i)µ̃iz2−i + 20 µ̃+ 40 z − 10,

P1(µ̃) =
3∑
i=0

µ̃iz3−i − 3
2∑
i=0

µ̃iz2−i + 3(µ̃+ z)− 1,

P2(µ̃) = 8
(
4 µ̃4 + 3 µ̃3z + 6 µ̃2z2 + 3 µ̃z3 + 4 z4

)
(µ̃+ z)

3

+ 20 (µ̃+ z)
(
83 µ̃2 + 97 µ̃z + 83 z2

)
− (250 µ̃6 + 850 µ̃5z

+ 1398 µ̃4z2 − 1604 µ̃3z3 + 1398 µ̃2z4 + 850 µ̃z5 + 250 z6)

+ (µ̃+ z)
(
834 µ̃4 + 1683 µ̃3z + 2026 µ̃2z2 + 1683 µ̃z3 + 834 z4

)
− (1531 µ̃4 + 3997 µ̃3z + 5074 µ̃2z2 + 3997 µ̃z3 + 1531 z4)

− 5(211 µ̃2 + 350 µ̃z + 211 z2 + +360(µ̃+ z − 50,

P3(µ̃) = 4
(
µ̃2 + z2

) (
4 µ̃2 + 7 µ̃z + 4 z2

)
− (µ̃+ z)

(
61 µ̃2 + 38 µ̃z + 61 z2

)
+ 5(17 µ̃2 + 24 µ̃z + 17 z2)− 50(µ̃+ z) + 10.

Now, computing the resultant of z+µ̃−1 and q(µ̃, z) with respect to z, we obtain

res(z + µ̃− 1, q, z, ) = 4µ̃4 − 8µ̃3 + 6µ̃2 − 2µ̃− 1,

which has no real roots on (0, 1). This implies that l2(µ̃) does not vanish for
µ̃ ∈ (0, 1).

Similarly, computing the resultant of Pi(µ̃, z) and q(µ̃, z) with respect to z and
applying the Sturm’s Theorem, we can show that Pi(µ̃, z) (i = 0, 1, 2, 3) does
not vanish for µ̃ ∈ (0, 1). This means that l0(µ̃), W [l0, l2] and W [l2, l3] do not
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vanish for µ̃ ∈ (0, 1). By Lemma 3.3, we have shown that {J0, J2} and {J2, J3}
are all Chebyshev systems, and therefore, J2(h)

J0(h) and J3(h)
J0(h) are all monotonic on

(− 1
20 , 0).

Based on the above results, the proof for Proposition 1 is straightforward.

Proof. [For Proposition 1] Since J3(h)
J2(h) is decreasing monotonically from 1 to 25

26 ,

implying that −3 + 4J3(h)
J2(h) is positive and decreasing monotonically from 1 to 11

13 .

Because J2(h)
J0(h) is also positive and decreasing monotonically, we obtain that X(h) =

−3J2+4J3
J0

= J2
J0

(
− 3 + 4J3

J2

)
, which is decreasing monotonically on (− 1

20 , 0). This

implies that X ′(h) < 0, and so

25

39
= lim
h→0

X(h) < X(h) < lim
h→− 1

20

X(h) = 1.

Now, we are ready to prove Theorem 2.1.

Proof. [For Theorem 2.1] By (28), we choose c = c(h) = (X(h))
− 1

3 for each h ∈
(− 1

20 , 0), then M(h) = 0. The monotonicity of X(h) means that the zero h is
unique, and c(h) satisfies c′(h) > 0. Thus,

1 < c(h) <
(

39
25

) 1
3 , lim

h→− 1
20

c(h) = 1, lim
h→0

c(h) =
(

39
25

) 1
3 .

The above results, together with the implicit function theorem imply that choosing
c = c(h) + O(ε) leads to that M(h) + O(ε) has a unique zero near h. This proves

the first part of Theorem 2.1 since H(β(h, ε), 0)−H(α(h), 0) = ε
[
c−

3
2M(h) +O(ε)

]
.

The second part of the theorem is the limit case of M(h) as h → 0, which can be
proved similarly.

5. Analysis of system (6) with perturbation P2. In this section, we study the
BBM equation (6) with perturbation P2. As discussed in sections 2 and 3, we need
only consider the Abelian integralM(h). Using the same notation in (26), we have

M(h) = a0J0(h) + a1J1(h) + a2J2(h).

5.1. Asymptotic expansion of the Abelian integral. One efficient method for
studying the weak Hilbert’s 16th problem is to investigate the asymptotic expan-
sions of Abelian integrals, see [18, 50, 19]. M(h) has the following expansion (see
[50, 19]):

M(h) = c0(δ) + c1(δ)|h| 34 +
[
c2(δ) + b∗0c1(δ)

]
h ln |h|

+
[
c3(δ) + b∗1c1(δ) + b∗2c2(δ)

]
h+O((−h)

5
4 )

(36)

for 0 < −h� 1, where the coefficients cj(δ) are obtained by using the methods and
formulas developed in [19] as follows:

c0(δ) = 25
√

2
72072 (715 a1 + 650 a2 + 858 a0), c1(δ) = 4Ã0a0,

c2(δ) = −
√

2
2 a1, c3(δ) = 5

√
2a2,

with Ã0 < 0. Therefore, we obtain the expansions of J0, J1, J2, J3, J ′0, J ′1, J ′2 and
J ′3 as follows:
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J0(h) = 25
√

2
84 + 4Ã0|h|

3
4 + 4Ã0b

∗
0h ln(−h) + 4b∗1Ã0h+O((−h)

5
4 ),

J1(h) = 125
√

2
504 −

√
2

2 h ln |h| −
√

2
2 b
∗
2h+O((−h)

5
4 ),

J2(h) = 625
√

2
2772 + 5

√
2h+O((−h)

5
4 ),

J3(h) = 15625
√

2
72072 + 25

√
2

6 h+O((−h)
5
4 ),

(37)

and

J ′0(h) = − 3Ã0(−h)−
1
4 + 4Ã0b

∗
0 ln(−h) + 4Ã0b

∗
0 + 4Ã0b

∗
1 + h.o.t.,

J ′1(h) = −
√

2
2 ln(−h)−

√
2

2 −
√

2
2 b
∗
2 + h.o.t.,

J ′2(h) = 5
√

2h+ h.o.t.,

J ′3(h) = 25
√

2
6 + h.o.t.,

(38)

where h.o.t. denotes higher order terms.

5.2. Existence of periodic waves. It follows from Lemma 4.4 that

Ji(h) =

∮
H̃=h

fi(µ̃)ν̃dµ̃ =

i∑
j=0

(−1)jCji Ij(h),

where fi(µ̃) = (−µ̃+ 1)i, Ij(h) =
∮
H̃=h

µ̃j ν̃dµ̃. Then, we have

Lemma 5.1. 8
(
h+ 1

20

)3
Ij(h) =

∮
H̃=h

fj(µ̃)ν̃5dµ̃ ≡ Ĩj(h), where fj(µ̃) = µ̃j +

Gj(µ̃) + G̃j(µ̃), with Gj(µ̃) =
µ̃jgj(µ̃)

30(µ̃−1)4 and G̃j(µ̃) =
µ̃j g̃j(µ̃)

1500(µ̃−1)8 , in which gj(µ̃) and

g̃j(µ̃) are polynomials in µ̃.

Proof. Multiplying Ij(h) by ν̃2+2A(µ̃)

2(h+ 1
20 )

= 1 yields

Ij(h) =

∮
H̃=h

2A(µ̃) + ν̃2

2(h+ 1
20 )

µ̃j ν̃dµ̃

=
1

2(h+ 1
20 )

(∮
H̃=h

2µ̃jA(µ̃)ν̃dµ̃+

∮
H̃=h̃

µj ν̃3dµ̃
)
, i = 0, 1, 2, 3.

(39)

By Lemma 4.1 of [14] (with k = 3 and F (µ̃) = 2µ̃jA(µ̃)), we have∮
H̃=h

2µ̃jA(µ̃)ν̃dµ̃ =

∮
H̃=h

Gj(µ̃)ν̃3dµ̃, (40)

where Gj(µ̃) = d
3dµ̃

2µ̃jA(µ̃)
A′(µ̃) =

µ̃jgj(µ̃)
30(µ̃−1)4 with

gj(µ̃) = 4 jµ̃4 − 19 jµ̃3 + 4 µ̃4 + 35 jµ̃2 − 16 µ̃3 − 30 jµ̃+ 25 µ̃2 + 10 j − 20 µ̃+ 10.

Substituting (40) into (39) and multiplying 2A(µ̃)+ν̃2

2(h+ 1
20 )

= 1 gives

Ij(h) =
1

2(h+ 1
20 )

∮
H̃=h

(µ̃j +Gj(µ̃))ν̃3dµ̃

=
1

4(h+ 1
20 )2

∮
H̃=h

(2A(µ̃) + ν̃2)(µ̃j +Gj(µ̃))ν̃3dµ̃
(41)
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=
1

4(h+ 1
20 )2

∮
H̃=h

2A(µ̃)(µ̃j +Gj(µ̃))ν̃3dµ̃

+
1

4(h+ 1
20 )2

∮
H̃=h

(µ̃j +Gj(µ̃))ν̃5dµ̃.

Again by Lemma 4.1 of [14] (here k = 5 and F (µ̃) = 2A(µ̃)(µ̃j +Gj(µ̃))), we obtain∫
H̃=h

2A(µ̃)(µ̃j +Gj(µ̃))ν̃3dµ̃ =

∫
H̃=h

G̃j(µ̃)ν̃5dµ̃, (42)

where G̃j(µ̃) = d
5dµ̃ (

2A(µ̃)(µ̃j+Gj(µ̃))
A′(µ̃) ) =

µ̃j g̃j(µ̃)
1500(µ̃−1)8 , and g̃j(µ̃) is a lengthy polynomial

and omitted here for brevity. Substituting (42) into (41) proves Lemma 5.1.

Without loss of generality, we assume that a1 = λ and a3 = 1. Further, let

J1(h) =

∮
Γh

(
µ+

1

λ
µ2
)
νdµ. (43)

Then, M(h) = α0J0(h) + λJ1(h). By Lemma 5.1, we have

Lemma 5.2.

8
(
h+

1

20

)3

Ji(h) =

∮
H̃=h

f̃i(µ̃)ν̃5dµ̃
4
= J̃i(h),

and

8
(
h+

1

20

)3

J1(h) =

∮
H̃=h

(f̃1(µ̃) +
1

λ
f̃2(µ̃))ν̃5dµ̃

4
= J̃1(h),

where f̃i(µ̃) =
i∑

j=0

(−1)jCji fj(µ̃).

Now, let

Li(µ̃) =
( f̃i
A′

)
(µ̃)−

( f̃i
A′

)
(z(µ̃)),

L1(µ̃) =
( f̃1 + 1

λ f̃2

A′

)
(µ̃)−

( f̃2 + 1
λ f̃3

A′

)
(z(µ̃)).

Then,
d

dµ̃
Li(µ̃) =

d

dµ̃

( fi
A′

)
(µ̃)− d

dz

[( fi
A′

)
(z(µ̃))

]
× dz

dµ̃
,

d

dµ̃
Li(µ̃) =

∂

∂µ̃
(Li(µ̃)) +

∂

∂z
(Li(µ̃))× dz

dµ̃
,

and we obtain

W [L0](µ̃) = 3(µ̃−z)Q1(µ̃,z)
500µ̃z(µ̃−1)11(z−1)11 ,

W [L0(µ̃),L1(µ̃)] =

∣∣∣∣ L0(µ̃) L1(µ̃)
L′0(µ̃) L′1(µ̃)

∣∣∣∣ = −(µ̃−z)3Q2(µ̃,z)
250000µ̃2z2λ(z−1)22(µ̃−1)22P0(µ̃,z) ,

W [L0(µ̃), L1(µ̃)] =

∣∣∣∣ L0(µ̃) L1(µ̃)
L′0(µ̃) L′1(µ̃)

∣∣∣∣ = −(µ̃−z)3Q3(µ̃,z)
250000µ̃2z2(z−1)22(µ̃−1)22P0(µ̃,z) ,

where Q1(µ̃, z) is a two-variate polynomial of degree 19, Q2(µ̃, z) = S12(µ̃, z)λ −
S11(µ̃, z), in which S11(µ̃, z) and S12(µ̃, z) are two-variate polynomials of degree 41
and 40, respectively, and Q3(µ̃, z) is of degree 40.

Computing the resultant of Q1 and q with respect to z, and applying Sturm’s
Theorem, we can show that Q1 and q have no common zeros for µ̃ ∈ (0, 1). There-
fore, W [L0] does not vanish for µ̃ ∈ (0, 1).
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Similarly, computing the resultant of S12 and q with respect to z, and applying
Stuum’s Theorem, we can prove that S12 and q have no common zeros for µ̃ ∈ (0, 1).
Therefore, S12 does not vanish for µ̃ ∈ (0, 1). Solving S12(µ̃, z)λ − S11(µ̃, z) = 0
gives

λ(µ̃, z) =
S11(µ̃, z)

S12(µ̃, z)
, (44)

for which we have the following result.

Lemma 5.3. λ(µ̃, z) is monotonic for µ̃ ∈ (0, 1), and λ(µ̃, z) ∈ (− 5
3 , 0).

Proof. A direct computation shows that

λ′(µ̃, z) =
∂λ(µ̃, z)

∂µ̃
+
∂λ(µ̃, z)

∂z
× dz

dµ̃
=
S21(µ̃, z)

S22(µ̃, z)
.

Computing the corresponding resultant res(S22, q, z) and applying Sturm’s theo-
rem, we can show that S22(µ̃, z) has no zeros for µ̃ ∈ (0, 1). Similarly, comput-
ing the resultant res(S21, q, z) and applying Sturm’s Theorem, we can prove that
res(S21, q, z) has a unique zero in

[
40125
65536 ,

80251
131072

]
⊆ (0, 1). Further, computing the

resultant res(S21, q, x) and applying Sturm’s Theory show that res(S21, q, x) has
three zeros for z in the three intervals:[

− 64373
262144 ,−

128745
524288

]
,
[
− 125503

1048576 ,−
62751
524288

]
and

[
− 56117

524288 ,−
112233
1048576

]
.

Therefore, if S21 and q have common roots on (− 1
4 , 0)× (0, 1), the roots must lie in

one of the following three domains:

D1 :
[
− 64373

262144 ,−
128745
524288

]
×
[

40125
65536 ,

80251
131072

]
,

D2 :
[
− 125503

1048576 ,−
62751
524288

]
×
[

40125
65536 ,

80251
131072

]
,

D3 :
[
− 56117

524288 ,−
112233
1048576

]
×
[

40125
65536 ,

80251
131072

]
.

The resultant res( ∂q∂µ̃ ,
∂q
∂z , z) has no zeros in [ 40125

65536 ,
80251
131072 ], implying that q reaches

its extreme values on the boundary of Di. By Sturm’s Theorem, we know that
the derivatives of the four functions obtained by restricting q(x, z) on the four
boundaries of Di (i = 1, 2, 3) have no zeros. Therefore, q(µ̃, z) gets its maximal
and minimum values at the four vertexes on each Di. A direct computation yields

max
D1

q(µ̃, z) = 48507113359773182621
1180591620717411303424 , min

D1

q(µ̃, z) = 775590116374354945381
18889465931478580854784 ,

max
D2

q(µ̃, z) = − 306099632527480469877479
302231454903657293676544 , min

D2

q(µ̃, z) = − 19131393530721391794519
18889465931478580854784 ,

max
D3

q(µ̃, z) = − 20507964148271211547259
18889465931478580854784 , min

D3

q(µ̃, z) = − 328130217324045232444719
302231454903657293676544 .

The minimum and maximum values have the same signs on each Di. Hence, q
and S21 have no common zeros on each Di. Therefore, S21 does not vanish for
µ̃ ∈ (0, 1). This implies that λ′(µ̃, z) 6= 0 for µ̃ ∈ (0, 1). Thus, λ(µ̃, z) is monotonic
for µ̃ ∈ (0, 1), and so

lim
µ̃→0

= λ(µ̃, z) = − 5
3 , lim

µ̃→1
= λ(µ̃, z) = 0.

This completes the proof of Lemma 5.3.

Lemma 5.3 implies that when λ ∈ (− 5
3 , 0), W [L0,L1] has a simple root for

µ̃ ∈ (0, 1), and W [L0,L1] has no roots for µ̃ ∈ (0, 1) when λ ∈ (−∞,− 5
3 ]
⋃

(0,+∞).
By Lemmas 3.3 and 3.4, we have the following result.
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Lemma 5.4. M(h) has at most two zeros (counting multiplicities) for λ ∈ (− 5
3 , 0),

and at most one zero (counting multiplicity) for λ ∈ (−∞,− 5
3 ]
⋃

(0,+∞).

Let

κ(h) =
λJ1(h) + J2(h)

J0(h)
. (45)

Then,

M(h) = J0(h)(a0 + κ(h)).

Lemma 5.4 implies the following proposition.

Proposition 2. The ratio κ(h) is monotonic for λ ∈ (−∞,− 5
3 ]
⋃

[0,+∞).

Lemma 5.5. If κ′(h) has zeros, they must be simple. Moreover, κ′(h) has 2n + 1
simple zeros on (− 1

20 , 0) for any λ ∈ (− 5
3 ,−

10
11 ), and 2n simple zeros on (− 1

20 , 0)

for any λ ∈ (− 10
11 , 0).

Proof. Firstly, we give a short proof for the first assertion by using an argument of
contradiction. Let h∗ be a zero of κ′(h) with l multiplicities, l ≥ 2. Then there must
exist an a0 such that a0 + κ(h) has a zero at h = h∗ with l+ 1 (≥ 3) multiplicities.
Because J0(h) > 0, the relationship betweenM(h) and a0 +κ(h) implies thatM(h)
has a zero at h = h∗ with l + 1 (≥ 3) multiplicities. This contradicts Lemma 5.4.

With the expansion of Ji(h) near h = − 1
20 , given in (31), a direct computation

shows that

κ′(− 1
20 ) = lim

h→− 1
20

κ′(h) = lim
h→− 1

20

(λJ′1(h)+J′2(h))J0(h)−(λJ1(h)+J2(h))J′0(h)

J2
0 (h)

= − 3
2λ−

5
2 .

Further, using the expansions of Ji(h) and J ′i(h) near h = 0 given in (37) and (38),
we can prove that

κ′(0) = lim
h→0

κ′(h) = lim
h→0

(λJ′1(h)+J′2(h))J0(h)−(λJ1(h)+J2(h))J′0(h)

J2
0 (h)

= sign(Ã0(11λ+ 10))∞.

Because Ã0 < 0, it is obvious that κ′(h) has different signs at the two endpoints of
the interval (− 1

20 , 0) if λ ∈ (− 5
3 ,−

10
11 ), and has the same sign at the two endpoints

of (− 1
20 , 0) if λ ∈ (− 10

11 , 0). This completes the proof.

Proposition 3. κ′(h) has a unique simple zero on (− 1
20 , 0) for any λ ∈ (− 5

3 ,−
10
11 ),

namely, κ(h) decreases from κ(− 1
20 ) to a minimum value and then increases to κ(0)

for any λ ∈ (− 5
3 ,−

10
11 ).

Proof. By Lemma 5.5, for a fixed λ ∈ (− 5
3 ,−

10
11 ), if κ′(h) has three or more than

three simple zeros on (− 1
20 , 0), then there must exist an a0 such that a0 + κ(h) has

at least three zeros. This implies that M(h) can have at least three zeros, which
contradicts Lemma 5.4. Therefore, κ′(h) has a unique zero on (− 1

20 , 0) for any

λ ∈ (− 5
3 ,−

10
11 ). The signs of κ′(− 1

20 ) and κ′(0) when λ ∈ (− 5
3 ,−

10
11 ) determines the

property of κ(h).

Proposition 4. κ′(h) has no zeros on (− 1
20 , 0) for any λ ∈ (− 10

11 , 0), that is, κ(h)

is monotonic on (− 1
20 , 0) for any λ ∈ (− 10

11 , 0).
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Proof. By Lemma 5.5, for a fixed λ ∈ (− 10
11 , 0), if κ′(h) has four or more than four

zeros on (− 1
20 , 0), then there must exist an a0 such that a0 +κ(h) has at least three

zeros counting multiplicities. This contradicts Lemma 5.4.
Next, we prove that κ′(h) does not have two zeros. Suppose otherwise κ′(h)

has two zeros for λ ∈ (− 10
11 , 0). We have known that κ′(− 1

20 ) < 0, and κ′(0) < 0,

implies that κ(h) is decreasing at the endpoints of the interval (− 1
20 , 0). Further,

for λ ∈ (− 10
11 , 0), λ + 1 = κ(− 1

20 ) > κ(0) = 5
6λ + 25

33 . This clearly indicates that
there must exist an a0 such that a0 +κ(h) has at least three zeros. This contradicts
Lemma 5.4, and so the proof is complete.

5.3. Coexistence of one solitary and one periodic wave. In this section, we
will investigate the condition for the existence of one solitary wave, for which we need
study the condition satisfying H(β∗(h, ε), 0)−H(α∗(h), 0) = εM(h) +O(ε2) = 0 at
h = 0 (and so α∗(0) = 0). Firstly, solving M(0) =

∮
Γ0

(a0 + λµ+ µ2)νdµ = 0 gives

λ = − 10

11
− 6

5
a0, (46)

under which

κ(− 1

20
) =

1

11
− 6

5
a0, κ(0) = −a0. (47)

We need discuss two cases for λ. If λ ∈ (−∞,− 5
3 ]
⋃

[− 10
11 ,+∞), then (46) yields

a0 ∈ (−∞, 0]
⋃

[ 5
9 ,+∞), and κ(h) is monotonic by Propositions 2 and 4. Therefore,

a0 + κ(h) increases from 0 to 1
11 −

6
5a0 for a0 ∈ (−∞, 0), and decreases from 0

to 1
11 −

6
5a0 for a0 ∈ [ 5

9 ,+∞). Hence, M(h) = J0(h)(a0 + κ(h)) has no zeros for

λ ∈ (−∞,− 5
3 ]
⋃

[− 10
11 ,+∞) under the condition (46).

If λ ∈ (− 5
3 ,−

10
11 ), then it follows from (46) that a0 ∈ (0, 5

9 ). Further, we divide

the interval (0, 5
9 ) into three parts by using κ(− 1

20 ) and κ(0).

(i) When a0 = 5
11 , κ(− 1

20 ) = κ(0) = −a0. The property of κ(h) given in

Proposition 3 implies that a0 +κ(h) < a0 +κ(− 1
20 ) = a0 +κ(0) = 0 for h ∈ (− 1

20 , 0).
Thus, M(h) = J0(h)(a0 + κ(h)) has no zeros.

(ii) When a0 ∈ ( 5
11 ,

5
9 ), κ(− 1

20 ) ≤ κ(0) = −a0. The property of κ(h) given in

Proposition 3 shows that a0 + κ(h) < a0 + κ(0) = 0 for h ∈ (− 1
20 , 0). Thus,

M(h) = J0(h)(a0 + κ(h)) has no zeros.
(iii) When a0 ∈ (0, 5

11 ), κ(− 1
20 ) > κ(0) = −a0 and a0 + κ(− 1

20 ) > a0 + κ(0) = 0.
The property of κ(h) given in Proposition 3 shows that in the h-κ plane, the graph
of a0 +κ(h) decreases form the point (− 1

20 , a0 +κ(− 1
20 )), passing through the h-axis

at some h = h∗ ∈ (− 1
20 , 0), then to a minimum point and then increases to (0, 0).

This implies that a0 + κ(h) has a unique zero h = h∗ in (− 1
20 , 0). Summarizing the

above results gives the following proposition.

Proposition 5. M(h) has a zero at h = 0 and anther zero at h = h∗ ∈ (− 1
20 , 0) if

and only if a0 ∈ (0, 5
11 ) with λ = − 10

11 −
6
5a0.

Finally, we prove Theorem 2.2.
Proof. [For Theorem 2.2] With the above results, we have proved the first parts of
Theorem 2.2 (i), (ii) and (iii), as Propositions 2 and 4 for (i), Proposition 3 for (ii)
and Proposition 5 for (iii). The second parts of (i) (ii) and (iii) of Theorem 2.2 can
be directly proved by applying the implicit function theorem.
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6. Conclusion. In this paper, we have used bifurcation theory to study the exis-
tence of periodic and solitary waves in a BBM equation under weak dissipative in-
fluences and Marangoni effect. A special transformation given in (32) is introduced
so that the Chebyshev criteria can be applied to overcome the difficulty arising from
higher-order degenerate singularities, and then the exact condition on the number
of periodic waves is obtained for the case with regular multiple-parameter pertur-
bations. Also, the condition on the co-existence of one solitary and one periodic
waves is derived. The methodologies developed in this paper include the reduction
of three generating elements to special two ones, asymptotic expansion of Abelian
integrals, and asymptotic analysis on the dominating part of the Abelian integrals.
Combination of these methods is not only useful in the study of other types of wave
equations, but also has potential to be generalized to consider perturbations on
hyper-elliptic Hamiltonian systems.
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