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Abstract

This paper concerns the exact bound on the number of zeros of Abelian integrals associated with two 
hyper-elliptic Hamiltonian systems of degree 4. The upper and lower bounds for the two systems have been 
obtained in several previous works, however the sharp bounds are still unknown. In this paper, we provide 
a proof to show that the exact bound is 3 for both systems. The basic idea of our method is to bound the 
parameter space in R3 to obtain two parameter sets, which might yield maximal 4 zeros of Abelian integrals 
corresponding to the two sets. Further, we show that the existence of 4 zeros on the two sets is not possible, 
and thus the sharp bound is 3.
© 2019 Elsevier Inc. All rights reserved.
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1. Introduction

Hilbert’s 16th problem [1] asks for the maximal number of limit cycles and their distribution 
for a polynomial planar vector field of degree n. It is extremely difficult and still unsolved even 
for n = 2. In order to reduce the difficulty, general polynomial systems are restricted to the 
following perturbed Hamiltonian systems,
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ẋ = Hy(x, y) + εp(x, y), ẏ = −Hx(x, y) + εq(x, y), (1)

where p(x, y) and q(x, y) are polynomials of degree n ≥ 2, ε is sufficiently small, H(x, y) is 
a polynomial of degree n + 1 which has at least one family of closed orbits denoted by �h for 
the unperturbed system (1)ε=0, parameterized by {(x, y)|H(x, y) = h, h ∈ J }, where J is an 
open interval. The perturbations destroy integrability and most periodic orbits of (1)ε=0 become 
spirals. Only a finite number of isolated closed orbits with small deformation persist as limit 
cycles of (1). The main idea for studying the “persisting limit cycles” is to investigate the zeros of 
Poincaré map or return map on the period annulus. Hence, the “persisting limit cycles” generated 
by perturbation is usually called Poincaré bifurcation. When the perturbation parameter ε is close 
to zero, the return map is approximated by the following Abelian integral,

A(h) =
∮
�h

q(x, y)dx − p(x, y)dy, h ∈ J. (2)

The zeros of A(h) correspond to the number of the persisting limit cycles of system (1) in the 
sense of first order Poincaré bifurcation, see [2]. Studying the maximal number of zeros of A(h)

is called weak Hilbert’s 16th problem and was proposed by Arnold [3]. In fact, most of results 
on Hilbert’s 16th problem were obtained from studying system (1).

However, the weak version is still very difficult, and up to now only the case n = 2 has been 
completely solved, see a unified proof in [4] and references therein. A much weaker case is 

defined by H(x, y) = y2

2 +∫
g(x)dx, p = 0 and q = f (x)y, for which the perturbed Hamiltonian 

system is given by

ẋ = y, ẏ = −g(x) + εf (x)y, (3)

which has a simpler form of the Abelian integral,

I(h) =
∮
�h

f (x)ydx.

Note that a special form of system (3) is the classical Liénard system (with ε = −1, g(x) = x),

ẍ + f (x)ẋ + x = 0, (4)

and Smale proposed to study the maximal number of limit cycles of system (4) as one of the 
mathematical problems for the 21th century [5].

Although system (3) has a simple form, it is important in studying the weak Hilbert’s 16th 
problem and has many applications in the real word. System (3) has been used to generate a new 
perturbed Hamiltonian system by replacing the first equation in system (3) with ẋ = y(y2 − a2), 
and the zeros of I(h) for system (3) plays an important role in studying the zeros of Abelian 
integral of the new system. In fact, the best result of 13 limit cycles for cubic systems was 
obtained by such a transform [6]. Also, it is noted that system (3) often appears in studying local 
bifurcations such as Bogdanov-Takens bifurcation with higher codimension [7], and often occurs 
in many application [8].
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For convenience, we call system (3) type (m, n) if g(x) and f (x) are of degrees m and n, 
respectively. Type (m, m −1) implies that the degree of the perturbation is the same as that of the 
unperturbed system. Dumortier and Li [9–12] obtained the sharp bounds on the number of zeros 
of the corresponding Abelian integrals for five cases of system (3) with type (3, 2), for which 5
is the sharp bound on the number of isolated zeroes of Abelian integrals when the unperturbed 
system has a figure eight loop, while 2 is the sharp bound for the saddle-loop case. The main 
tools used in their study are Picárd-Focus equations and Riccati equations in algebraic geometry, 
which transferred the problem to studying the intersections of the related line with a curve. For 
type (5, 4) of system (3) with symmetry, the perturbation still has three terms, and the dimension 
of Picárd-Focus equations is the same as that of type (3, 2). It has been proved that 2 is the sharp 
bound for the cases of heteroclinic loop [13–16] and for double homoclinic loop (corresponding 
to each bounded period annulus) [17]. The methods used there include Picárd-Focus equations 
and Chebyshev criterion [18,19]. The later is a generalization of Li and Zhang’s criterion [20]
for determining the Chebyshev property of two Abelian integrals. The advantage of using the 
criterion is to change the complicated geometric study to a purely algebraic analysis.

A difficulty will arise if the Hamiltonian has degree more than 4 without symmetry, implying 
that there will be more than three generating elements in I(h). Thus, the Picárd-Focus equa-
tions and Riccati equations have higher dimensions, which increases difficulty in investigating 
the intersection of the related plane and surface. Many results have been obtained for the least 
upper bounds on the number of zeros of I(h) by Chebyshev criterion, see [21–28] for type (5, 4)

without symmetry and [29–31] for type (7, 6) with symmetry. However, it is noted that the upper 
bounds, obtained in almost all above mentioned results, are not the exact upper bounds or sharp 
bounds. Therefore, the sharp bounds are still open, even for I(h) of type (4, 3) except one case to 
be discussed below. The type (4, 3) of system (3) is the following perturbed Hamiltonian system 
of degree 4,

ẋ = y, ẏ = μx(x − 1)(x − α)(x − β) + ε(α0 + α1x + α2x
2 + α3x

3)y, (5)

where μ = ±1, (α, β) ∈ R2. The unperturbed system (5) has 11 cases according to the outside 
boundaries of the period annulus, determined by the values of α and β , see [7]. We would not 
list all 11 cases of the topological classification except the following cases that have results on 
zeros of Abelian integrals:

(I) a cusp-saddle cycle (α = 1 and β = − 2
3 , μ = −1),

(II) a nilpotent-saddle loop (α = β = 1, μ = 1),
(III) a saddle loop surrounding a nilpotent center (α = β = 0, μ = 1),
(IV) a saddle loop with a cusp outside but near the saddle (α = −1, β < −1, μ = 1).

For the cases (I), (II) and (III), it has been proved that 4, 4 and 5 are respectively their least 
upper bounds. However, only 3 zeros have been obtained for the three cases, see the reports 
in [21–26]. The bounds on the number of zeros of Abelian integrals for the cases (I) and (II) 
were first investigated in [21,24], in which the verification of Chebyshev property was based on 
numerical computation. It was pointed out in [23] that 3 was not reliable to be considered as the 
sharp bound and it was claimed in [23,25] that a least upper bound on the number of zeros of the 
Abelian integral is 4 based upon interval analysis and symbolic computation. Therefore, whether 
3 or 4 is the sharp bound for the two cases (I) and (II) is still unknown.
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Fig. 1. Phase portraits of system (5) showing (a) a cusp-saddle cycle for α = 1, β = − 2
3 , μ = −1, and (b) a nilpotent-

saddle loop for α = β = 1, μ = 1.

For case (I), the corresponding Hamiltonian of system (5)ε=0 with α = 1, β = − 2
3 and μ = −1

is

H(x, y) = y2

2
+ x2

3
− x3

9
− x4

3
+ x5

5
. (6)

The phase portrait corresponding to H = h for h ∈ (0, 4
45 ) and x ∈ (− 2

3 , 1), is given in Fig. 1(a), 
showing a family of closed orbits �h surrounded by a heteroclinic cycle � 4

45
, connecting a hy-

perbolic saddle at (− 2
3 , 0) and a nilpotent cusp of order 1 at (1, 0). The corresponding Abelian 

integral is given by

A(h) = α0I0(h) + α1I1(h) + α2I2(h) + α3I3(h), (7)

where

Ii(h) =
∮
�h

xiydx, i = 0, 1, 2, 3. (8)

For case (II), the Hamiltonian of system (5)ε=0 with α = β = 1 and μ = 1 is

H∗(x, y) = y2

2
+ x2

2
− x3 + 3x4

4
− x5

5
. (9)

The phase portrait corresponding to H∗ = h for h ∈ (0, 1
20 ) and x ∈ (− 1

4 , 1), is depicted in 
Fig. 1(b), indicating a family of closed orbits Lh surrounded by a homoclinic loop L 1

20
, with a 

nilpotent saddle of order 1 at (1, 0). Similarly, we obtain the Abelian integral for this case,

M(h) = α0I 0(h) + α1I 1(h) + α2I 2(h) + α3I 3(h), (10)

where

I i(h) =
∮
Lh

xiydx, i = 0, 1, 2, 3. (11)

In this work, we will prove that the sharp bound on the number of zeros of A(h) and M(h)

is 3. The main results are stated in the following two theorems.
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Theorem 1. The Abelian integral A(h) for Case (I) of system (5) has at most 3 zeros on (0, 4
45 )

for all possible (α0, α1, α2, α3) ∈ R4, and this is the sharp bound.

Theorem 2. The Abelian integral M(h) for Case (II) of system (5) has at most 3 zeros on (0, 1
20 )

for all possible (α0, α1, α2, α3) ∈ R4, and this is the sharp bound.

The main mathematical tools that we will apply to prove the two theorems are the Chebyshev 
criterion and asymptotic property of the Abelian integrals. However, we will not directly apply 
the Chebyshev criterion to {Ii(h), i = 0, 1, 2, 3} and {I i(h), i = 0, 1, 2, 3}, since that leads to 
an upper bound 4, see [22–25]. Instead, we combine the generating elements {Ii(h)} or {I i(h)}
(i = 0, 1, 2, 3) and treat one perturbation parameter as a parameter in the algebraic Chebyshev 
systems. The range of this parameter is then bounded to yield a bounded 3-dimensional param-
eter set via three different combinations, on which a further analysis is given to exclude the 
possibility of 4 zeros of the Abelian integrals. Properly combining the generating elements plays 
a crucial role in obtaining the sharp bound. The detailed proof is only given for Theorem 1, since 
Theorem 2 can be similarly proved.

The rest of this paper is organized as follows. In section 2, we present expansions of Abelian 
integrals near the centers and briefly introduce the Chebyshev criterion. The proof of Theorem 1
is given in section 3, and an outline for proving Theorem 2 is given in section 4. Conclusion is 
drawn in section 5.

2. Asymptotic expansions and Chebyshev criterion

The asymptotic expansions of Abelian integrals are proposed to study its zeros near the end-
points of the annuluses, and these zeros correspond to limit cycles near the centers, homoclinic 
loops and heteroclinic loops, see a survey article [32]. In our work, we will use it to study the 
dynamics of the Abelian integrals on the whole period annulus.

2.1. Asymptotic expansions of A(h) and M(h) near the centers

Near the center (x, y) = (0, 0), A(h) and M(h) have the following expansions (see [33]):

A(h) =
∑
i≥0

bih
i+1 and M(h) =

∑
i≥0

bih
i+1, (12)

for 0 < h � 1. The coefficients of bi and bi can be obtained by using the program developed in 
[33] as

b0 = √
6π α0, b1 =

√
6π

32
(41α0 + 12α1 + 24α2)

b2 =
√

6π

3072
(17017α0 + 5736α1 + 10320α2 + 2880α3)

and

b0 = 2π α0, b1 = π

4
(21α0 + 12α1 + 4α2) ,

b2 = π
(1379α0 + 872α1 + 440α2 + 160α3) .
32
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Using the expansions in (12), we can easily find the limit of the ratios of two integrals such as 
lim
h→0

I2(h)
I0(h)

. They will be used in our proof.

2.2. Chebyshev criterion

In this subsection, we present some results on Chebyshev criterion, which are needed for 
proving our main theorems.

Definition 3. Suppose the analytic functions l0(x), l1(x) and lm−1(x) are defined on a real open 
interval J .

(A) The continuous Wronskian of {l0(x), l1(x), . . . , li−1(x)} for x ∈ J is

W [l0(x), l1(x), . . . , li−1(x)] =

∣∣∣∣∣∣∣∣
l0(x) l1(x) · · · li−1(x)

l′0(x) l′1(x) · · · l′i−1(x)

· · · · · · · · · · · ·
l
(i−1)
0 (x) l

(i−1)
1 (x) · · · l

(i−1)
i−1 (x)

∣∣∣∣∣∣∣∣
,

where l(j)
i (x) is the j th order derivative of li(x), j ≥ 2.

(B) The set {l0(x), l1(x), . . . , lm−1(x)} is called a Chebyshev system if any nontrivial linear 
combination,

κ0l0(x) + κ1l1(x) + · · · + κm−1lm−1(x),

has at most m − 1 isolated zeros on J , while W [l0(x), l1(x), . . . , lm−1(x)] 	= 0 is one suffi-
cient condition assuring {l0(x), l1(x), . . . , lm−1(x)} forms a Chebyshev system.

(C) The ordered set {l0(x), l1(x), . . . , lm−1(x)} is called extended complete Chebyshev system 
(ECT-system) if for each i ∈ {1, 2, · · · , m} any nontrivial linear combination,

κ0l0(x) + κ1l1(x) + · · · + κi−1li−1(x),

has at most i − 1 zeros with multiplicities accounted.

Let H(x, y) = U(x) + y2

2 be an analytic function. Assume there exists a punctured neigh-
borhood N of the origin (0, 0) foliated by closed curves �h ⊆ {(x, y)|H(x, y) = h, h ∈
(0, h∗), h∗ = H(∂N )}. The projection of N on the x-axis is an interval (xl, xr) with xl < 0 < xr , 
and xU ′(x) > 0 for all x ∈ (xl, xr)\{0}. U(x) = U(z(x)) defines an analytic involution z = z(x)

for all x ∈ (xl, xr). Let

Ii (h) =
∮
�h

ηi(x)y2s−1dx, for h ∈ (0, h∗), (13)

where s ∈ N and ηi(x) is analytic functions on (xl, xr), i = 0, 1, . . . , m − 1. Further, define

li (x) := ηi(x)

′ − ηi(z(x))

′ . (14)

U (x) U (z(x))
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Then, we have

Lemma 4 ([18]). Consider the integrals (13) and the functions (14). {I0, I1, · · · , Im−1} is an 
ECT system on (0, h∗) if s > m − 2 and {l0, l1, · · · , lm−1} is an ECT system on (xl, 0) or (0, xr).

Lemma 5 ([19]). Consider the integrals (13) and the functions (14). If the following conditions 
hold:

(a) W [l0, l1, . . . , li] does not vanish on (0, xr) for i = 0, 1, · · · , m − 2,
(b) W [l0, l1, . . . , lm−1] has k zeros on (0, xr) with multiplicities counted, and
(c) s > m + k − 2,

then any nontrivial linear combination of {I0, I1, · · · , Im−1} has at most m + k − 1 zeros on 
(0, h∗) with multiplicities counted. In this case, we call {I0, I1, · · · , Im−1} a Chebyshev system 
with accuracy k on (0, h∗).

3. Proof of Theorem 1

3.1. Partition of the parameter space

In this section, we divide the parameter space for A(h) to obtain a subset which is the 
only set for A(h) to might have 4 zeros on (0, 4

45 ). We write H(x, y) = y
2 + U(x). Then, 

q(x, z) = U(x)−U(z)
x−z

= 0 defines the involution z(x), x ∈ (0, 1) on the period annulus. We have 
the following result.

Lemma 6. The following equations hold:

8h3Ii(h) =
∮
�h

Si(x)y7dx ≡ Ĩi (h), i = 0, 1, 2, 3,

where Si(x) = xigi (x)

354375(2+3x)6(x−1)9 , in which each polynomial gi(x) has degree 15.

Proof. First, multiplying Ii(h) by y
2+2U(x)

2h
= 1 yields

8h3Ii(h) =
∮
�h

(2U(x) + y2)3xiydx

=
∮
�h

8xiU3(x)ydx +
∮
�h

12xiU2(x)y3dx

+
∮
�h

6xiU(x)y5dx +
∮
�h

xiy7dx, i = 0,1,2,3.

(15)

Then, applying Lemma 4.1 in [18] to (15) to increase the power of y in the first three integrals to 
7 proves the lemma. �
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Without loss of generality, we assume that α3 = 1 when α3 	= 0. Further, introduce the fol-
lowing combinations:

I23(h) =
∮
�h

(
α2x

2 + x3
)
ydx,

I13(h) =
∮
�h

(
α1x + x3

)
ydx,

I03(h) =
∮
�h

(
α0 + x3

)
ydx.

(16)

Then,

A(h) = α0I0(h) + α1I1(h) + I23(h)

= α0I0(h) + α2I2(h) + I13(h)

= α1I1(h) + α2I2(h) + I03(h).

The following lemma directly follows Lemma 6.

Lemma 7. The following equations hold:

8h3I23(h) =
∮
�h

(α2S2(x) + S3(x))y7dx
�= Ĩ23(h),

8h3I13(h) =
∮
�h

(α1S1(x) + S3(x))y7dx
�= Ĩ13(h),

8h3I03(h) =
∮
�h

(α0S0(x) + S3(x))y7dx
�= Ĩ03(h).

Now, let

Li(x) =
( Si

U ′
)
(x) −

( Si

U ′
)
(z(x)),

Li3(x) =
(αiSi + S3

U ′
)
(x) −

(αiSi + S3

U ′
)
(z(x)).

(17)

Then,

d

dx
Li(x) = d

dx

( Si

U ′
)
(x) − d

dz

[( Si

U ′
)
(z(x))

]
× dz

dx
,

d

dx
Li3(x) = ∂

∂x
(Li3(x)) + ∂

∂z
(Li3(x)) × dz

dx
,

where dz = − qx(x,z) . Direct computations yield

dx qz(x,z)
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W [L0](x) = (x−z)Q0(x,z)

118125 xz(2+3 x)7(x−1)11(2+3 z)7(z−1)11 ,

W [L1](x) = (x−z)Q1(x,z)

118125 (2+3 x)7(x−1)11(2+3 z)7(z−1)11 ,

W [L0(x),L1(x)] = (x−z)3Q01(x,z)

13953515625x2z2(z−1)22(3 z+2)13(x−1)22(3 x+2)13P0(x,z)
,

W [L0(x),L2(x)] = (x−z)3Q02(x,z)

13953515625x2z2(z−1)22(3 z+2)13(x−1)22(3 x+2)13P0(x,z)
,

W [L1(x),L2(x)] = (x−z)3Q12(x,z)

13953515625x2z2(z−1)22(3 z+2)13(x−1)22(3 x+2)13P0(x,z)
,

W [L0(x),L1(x),L23] = (x−z)6M1(x,z,α2)

c∗x3z3(x−1)32(3 x+2)18(z−1)32(3 z+2)18P 3
0 (x,z)

,

W [L0(x),L2(x),L13] = (x−z)6M2(x,z,α1)

c∗x3z3(x−1)32(3 x+2)18(z−1)32(3 z+2)18P 3
0 (x,z)α1

,

W [L1(x),L2(x),L03] = (x−z)6M3(x,z,α0)

c∗x3z3(x−1)32(3 x+2)18(z−1)32(3 z+2)18P 3
0 (x,z)α0

,

(18)

where Q0, Q1, Q01, Q02 and Q12 are polynomials of degree 34, 33, 66, 67 and 64, respectively, 
c∗ = 1648259033203125, and z = z(x) is determined by q(x, z) = 0, and

P0(x, z) = 9x3 + 18x2z + 27xz2 + 36 z3 − 15x2 − 30xz − 45 z2 − 5x − 10 z + 15.

Applying Sturm’s Theory to the resultant between q(x, z) and P0(x, z) with respect to z shows 
that the resultant has no roots for x ∈ (0, 1), which implies that P0(x, z) does not vanish for 
x ∈ (0, 1). Hence, the Wronskians are well defined.

The following result indicates that we only need to discuss the case when α3 	= 0.

Proposition 8. When α3 = 0, A(h) has at most 2 zeros on (0, 4
45 ).

The proof of Proposition 8 relies on computing and verifying the non-vanishment of Wron-
skians W [L0], W [L0, L1] and W [L0, L1, L2], and then the application of Lemma 5. Since the 
computation and verification are straightforward, we omit the proof here for briefness.

To prove Theorem 1, we need to show non-vanishing of certain numerators and denomina-
tors of the related Wronskians in (18) for x ∈ (0, 1). Taking the numerator Q01(x, z) of the 
Wronskian W [L0, L1] for example, we only need to prove that the two-dimensional system 
{Q01(x, z), q(x, z)} does not vanish on {(x, z)| − 2

3 < z < 0 < x < 1}, because z in Q01(x, z) is 
determined by q(x, z) = 0, and z(x) ∈ (− 2

3 , 0) when x ∈ (0, 1). To do this, we apply triangular-
decomposition and root isolating to {Q01(x, z), q(x, z)} to decompose the nonlinear system into 
several triangular systems, and then isolate the roots of each triangular-decomposed system. 
Since all roots of these triangular systems are the roots of the original system {Q01(x, z), q(x, z)}, 
we only need to check if these decomposed systems have roots on {(x, z)| − 2

3 < z < 0 < x < 1}. 
This idea has been successfully applied to determine the zeros of Abelian integrals, see [25–27,
34]. Instead of the triangular-decomposition method, one may also use the interval analysis [23], 
which computes two resultants between Q01(x, z) and q(x, z) with respect x and z, respectively, 
yielding several two dimensional regions. Finally, one verifies if Q01(x, z) vanishes on these 
regions by determining the intersection of the curves Q01(x, z) and q(x, z), see [23] for details.
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By applying the triangular-decomposition and root isolating to the numerators of the Wron-
skians, we obtain the following result.

Lemma 9. Each of the Wronskians, W [L0], W [L1], W [L0, L1], W [L0, L2] and W [L1, L2], 
does not vanish for x ∈ (0, 1).

Next, we investigate the last three Wronskians in (18). Their numerators have the forms,

M1(x, z,α2) = α2β2(x, z) − β1(x, z),

M2(x, z,α1) = α1γ2(x, z) − γ1(x, z),

M3(x, z,α0) = α0δ2(x, z) − δ1(x, z),

where β1, β2, γ1, γ2, δ1 and δ2 are polynomials of degrees 98, 97, 99, 97, 100 and 97, re-
spectively. Note that in addition to the variables x and z, Mi contains α3−i which are arbitrary 
real constants. In order to satisfy Mi = 0, we treat α3−i as a function in x and z determined 
from Mi = 0, and then investigate the property of these functions. Thus, Mi(x, z, α3−i ) = 0
(i = 1, 2, 3) defines three functions:

α2(x, z) = β1(x, z)

β2(x, z)
, α1(x, z) = γ1(x, z)

γ2(x, z)
, α0(x, z) = δ1(x, z)

δ2(x, z)
,

and their derivatives with respect to x are given by

α2(x, z) = ∂α2(x, z)

∂x
+ ∂α2(x, z)

∂z
× dz

dx
= β1(x, z)

β2(x, z)
,

α1(x, z) = ∂α1(x, z)

∂x
+ ∂α1(x, z)

∂z
× dz

dx
= γ 1(x, z)

γ 2(x, z)
,

α0(x, z) = ∂α0(x, z)

∂x
+ ∂α0(x, z)

∂z
× dz

dx
= δ1(x, z)

δ2(x, z)
.

The denominators β2(x, z), γ2(x, z), δ2(x, z), β2(x, z), γ 2(x, z) and δ2(x, z) do not vanish for 
x ∈ (0, 1), because they do not have common roots with q(x, z) for (x, z) ∈ (0, 1) × (− 2

3 , 0)

by triangular-decomposition and root isolating. Hence, all of the functions αi(x, z) and αi(x, z)
(i = 2, 1, 0) are well defined for x ∈ (0, 1).

We have the following lemma.

Lemma 10.

(i) α2(x, z(x)) is decreasing from (0, 52 ) to a minimum (x∗, α∗
2) and then increasing to (1, − 4

3);

(ii) α1(x, z(x)) is increasing from (0, −5) to a maximum (x†, α†
2) and then decreasing to 

(1, − 1
3 );

(iii) α0(x, z(x)) is increasing from (0, 0) to a maximum (x‡, α‡
2) and then decreasing to (1, 23), 

where

x∗, x†, x‡ ∈
[ 108804604063

137438953472
,

3400143877

4294967296︸ ︷︷ ︸
10

]
,

1/10
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and

α∗
2 ∈

[
− 64307 . . .30528

32922 . . .64125
,−44191 . . .26125

22624 . . .29984

]
︸ ︷︷ ︸

1/106

≈ [−1.95327706,−1.95327692],

α
†
1 ∈

[11707 . . .14473

17176 . . .36512
,

84772 . . .81309

12437 . . .49248

]
︸ ︷︷ ︸

1/107

≈ [0.06815643778,0.06815645227],

α
‡
0 ∈

[68092 . . .44807

73774 . . .11552
,

78889 . . .10781

85472 . . .94528

]
︸ ︷︷ ︸

1/107

≈ [0.9229843148,0.9229843212].

Proof. We only prove case (i), since the cases (ii) and (iii) can be proved similarly. A direct 
computation shows that

lim
x→0

α2(x, z(x)) = 5

2
, lim

x→1
α2(x, z(x)) = −4

3
.

On {(x, z)| − 2
3 < z < 0 < x < 1}, β1(x, z) and q(x, z) have a unique common root (x∗, z∗) ∈ D0, 

where

D0 =
[108804604063

137438953472
,

3400143877

4294967296

]
×

[
− 41095301255

68719476736
,− 82190602509

137438953472

]
.

x∗ is the unique simple zero of α2(x, z(x)) by verifying that d
dx

α2(x, z(x)) has no zeros in 
[ 108804604063

137438953472 , 3400143877
4294967296 ]. Therefore, x∗ is the unique critical point of α2(x, z(x)), and thus the 

monotonicity of α2(x, z(x)) on (0, x∗) 
⋃

(x∗, 1) can be easily determined by comparing the val-
ues of α2(x, z(x)) at x = 0, x∗, 1 as 5

2 , −1.953277, − 4
3 . Alternatively, using

lim
x→0+ α2(x, z(x)) = 0−, and lim

x→0+
d

dx
(α2(x, z(x))) = −441

40
< 0,

we know that α2(x, z(x)) is monotonically deceasing on (0, x∗) and monotonically increasing 
on (x∗, 1).

It can be further shown that the resultant between ∂βi (x,z)
∂x

(for i = 1, 2) and q(x, z) with 
respect to z has no roots in the interval [ 108804604063

137438953472 , 3400143877
4294967296 ] by Sturm’s Theorem. Hence, 

βi(x, z) (i = 1, 2) reaches its maximal and minimum values at the boundaries of D0. Direct 
computation gives

min
D0

β1(x, z) = − 44292...44113
16265...68512 ≈ −2.723190846 × 1013,

max
D0

β1(x, z) = − 13257...78375
48683...66176 ≈ −2.723190757 × 1013,

min
D0

β2(x, z) = 98768...92375
70844...04416 ≈ 1.394165169 × 1013,

max
D0

β2(x, z) = 52797...66369
37870...34272 ≈ 1.394165228 × 1013.

Then, we obtain
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α∗
2 = α2(x

∗, z(x∗)) ∈
[min

D0
β1(x,z)

min
D0

β2(x,z
,

max
D0

β1(x,z)

max
D0

β2(x,z)

]

=
[
− 64307 . . .30528

32922 . . .64125
,−44191 . . .26125

22624 . . .29984

]
︸ ︷︷ ︸

1/106

≈ [−1.95327706,−1.95327692]. �
Note in the above proof that the exact rational numbers are obtained from symbolic com-

putation, demonstrating the accuracy of computation. It is also noted that the critical point 
(x∗, α2(x

∗, z(x∗))) divides the curve {(x, α2(x, z(x)))|0 < x < 1} into two simple segments 
(curves). The points on the two curves correspond to the simple root of M1(x, z(x), α2(x, z(x))), 
while x∗ is a root of multiplicity 2. The following lemma follows from Lemma 10.

Lemma 11. For x ∈ (0, 1), when α2 belongs to the intervals [α∗
2 , − 4

3 ), [− 4
3 , 52 ) and

(−∞, α∗
2) 

⋃[ 5
2 , +∞), W [L0, L1, L23] has 2, 1 and 0 roots with multiplicities counted, respec-

tively.

Combining Lemmas 9 and 11 and applying Lemma 5, we have the following result.

Proposition 12. A(h) has at most 4, 3, 2 zeros in (0, 4
45 ) when α2 is located in the intervals 

[α∗
2 , − 4

3 ), [− 4
3 , 52 ), and (−∞, α∗

2) 
⋃[ 5

2 , +∞), respectively.

Similarly, we have

Proposition 13. A(h) has at most 4, 3, 2 zeros in (0, 4
45 ) when α1 belongs to the intervals 

(− 1
3 , α†

1], (−5, − 1
3 ], and (−∞, −5] ⋃(α

†
1, +∞), respectively.

Proposition 14. A(h) has at most 4, 3, 2 zeros in (0, 4
45 ) when α0 is located in the intervals 

( 2
3 , α‡

0], (0, 23 ], and (−∞, 0] ⋃(α
‡
0, +∞), respectively.

Define

D‡ =
{
(α0, α1, α2)|α0 ∈

(2

3
, α

‡
0

]
, α1 ∈

(
− 1

3
, α

†
1

]
, α2 ∈

[
α∗

2 ,−4

3

)}
.

Then, Propositions 12, 13 and 14 imply that

Proposition 15. A(h) may have 4 zeros only if (α0, α1, α2) ∈ D‡.

3.2. Non-existence of 4 zeros of A(h) on D‡

Finally, we prove that A(h) cannot have 4 zeros when (α0, α1, α2) ∈ D‡. First, we have

Lemma 16. For h ∈ (0, 4
45 ), the following holds:

(1) the generating element I0(h) is positive;
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(2) the ratio I1(h)
I0(h)

is increasing from 0 to 2
27 ;

(3) the ratio I2(h)
I0(h)

is increasing from 0 to 116
891 ; and

(4) the ratio I3(h)
I0(h)

is increasing from 0 to 136
3861 .

Proof. By Green formula, I0(h) = ∮
�h

ydx = ∫∫
D dxdy, where D is the region bounded by �h

(periodic annulus), and therefore, I0(h) > 0. The non-vanishing property of W [L0], W [L0, L1], 
W [L0, L2] and W [L0, L3] proved in Lemma 9 implies that I1(h)

I0(h)
, I2(h)

I0(h)
and I3(h)

I0(h)
are monotonic 

on (0, 4
45 ). By the expansion of A(h) near h = 0, we have

lim
h→0

I1(h)

I0(h)
= lim

h→0

I2(h)

I0(h)
= lim

h→0

I3(h)

I0(h)
= 0.

Taking the limit as h → 4
45 yields

lim
h→ 4

45

I1(h)

I0(h)
= lim

h→ 4
45

∮
�h

xydx∮
�h

ydx
=

∮
� 4

45

xydx∮
� 4

45

ydx
= 2

27
,

lim
h→ 4

45

I2(h)

I0(h)
= lim

h→ 4
45

∮
�h

x2ydx∮
�h

ydx
=

∮
� 4

45

x2ydx∮
� 4

45

ydx
= 116

891
,

and

lim
h→ 4

45

I3(h)

I0(h)
= lim

h→ 4
45

∮
�h

x3ydx∮
�h

ydx
=

∮
� 4

45

x3ydx∮
� 4

45

ydx
= 136

3861
. �

Proposition 17. A(h) > 0 for (α0, α1, α2) ∈ D‡.

Proof. When (α0, α1, α2) ∈ D‡, by the results obtained in Lemma 16, it is easy to show that

α0 + α2
I2(h)
I0(h)

> 2
3 + 116

891α∗
2 ≥ 2

3 + 116
891 × (− 64307...30528

32922...64125 ) > 2
3 + 116

891 × (−2) = 362
891 ,

and

α1
I1(h)

I0(h)
> −1

3
× 2

27
= − 2

81
.

Then, using the results for I3(h)
I0(h)

and I0(h) in Lemma 16, we have, for h ∈ (0, 4
45 ), that

A(h) =
[(

α0 + α2
I2(h)

I0(h)

)
+ α1

I1(h)

I0(h)
+ I3(h)

I0(h)

]
I0(h)

>
(362

891
− 2

81
+ 0

)
I0(h)

= 340
I0(h) > 0.
891
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So A(h) has no zeros for (α0, α1, α2) ∈ D‡. �
Proof of Theorem 1. Combining Propositions 8, 15 and 17 proves Theorem 1.

4. An outline of the proof for Theorem 2

Theorem 2 can be similarly proved as that for Theorem 1. Hence, we give an outline of the 
proof for Theorem 2. Similar to Propositions 8, 15 and Lemma 16, we have the following results.

Proposition 18. When α3 = 0, M(h) has at most 2 zeros on (0, 1
20 ).

Proposition 19. M(h) may have 4 zeros only if (α0, α1, α2) ∈ D∗, where

D∗ =
{
(α0, α1, α2)|α0 ∈ [α‡

0,−1), α1 ∈ (3, α
†
1], α2 ∈ [α∗

2 ,−3)
}

with

α∗
2 ∈

[
− 60508 · · ·90001

17339 · · ·00000
,−55031 · · ·00000

15770 · · ·80367

]
︸ ︷︷ ︸

1/109

≈ [−3.4896007790,−3.4896007772],

α
†
1 ∈

[61748 · · ·00000

15770 · · ·80367
,−23327 · · ·84791

59578 · · ·00000

]
︸ ︷︷ ︸

1/109

≈ [3.9154855416,3.9154855436],

α
‡
0 ∈

[
− 23405 · · ·41729

16376 · · ·00000
,−22538 · · ·00000

15770 · · ·80367

]
︸ ︷︷ ︸

1/109

≈ [−1.4291710471,−1.4291710464].

Lemma 20. For h ∈ (0, 1
20 ), the ratio I1(h)

I0(h)
increases from 0 to 1

6 , and the ratio I3(h)
I2(h)

increases 

from 0 to 19
39 .

Proposition 21. M(h) < 0 when (α0, α1, α2) ∈ D∗.

Proof. When (α0, α1, α2) ∈ D∗, considering the above intervals expressed by fractions, I1(h)
I0(h)

∈
(0, 16 ) and I3(h)

I2(h)
∈ (0, 19

39 ) in Lemma 20, it is obvious that

α0 + α1
I1(h)

I0(h)
< 0 and α2 + I3(h)

I2(h)
< 0.

By Green formula, Ii(h) = ∮
�h

ydx = ∫∫
D† xidxdy, where D† is the region (periodic annu-

lus) surrounded by �h, therefore, I0(h) > 0 and I2(h) > 0. Hence, we have

M(h) =
(
α0 + α1

I1(h)

I0(h)

)
I0(h) +

(
α2 + I3(h)

I2(h)

)
I2(h) < 0.

So M(h) has no zeros when (α0, α1, α2) ∈ D∗. �
Combining Propositions 18, 19 and 21 proves Theorem 2.
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5. Conclusion

In this work, we have given a further investigation on the works [21–25] and proved that the 
sharp bound is 3 on the number of zeros of the Abelian integrals of system (3) for the cases with 
a cusp-saddle and a nilpotent-saddle loop. Previous works have obtained 3 zeros and an upper 
bound 4. Our approach narrows the parameters to a set which is the only set to possibly have 4
zeros of the Abelian integrals. Then, we rule out the possibility of 4 zeros and thus proved the 
sharp bound to be 3. This completely solved the upper bound problem for the cases (I) and (II). 
For case (III), it has been shown in [23,26] that a least upper bound is 5 but only 3 zeros have 
been obtained. We can apply the method developed in this paper to investigate case (III) and to 
show that a least upper bound is 4. However, whether 4 is the sharp bound for case (III) needs a 
further study.
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