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Abstract

In this paper, we study the cyclicity of periodic annulus and Hopf cyclicity in perturbing a quintic Hamil-
tonian system. The undamped system is hyper-elliptic, non-symmetric with a degenerate heteroclinic loop, 
which connects a hyperbolic saddle to a nilpotent saddle. We rigorously prove that the cyclicity is 3 for 
periodic annulus when the weak damping term has the same degree as that of the associated Hamiltonian 
system. This result provides a positive answer to the open question whether the annulus cyclicity is 3 or 4. 
When the smooth polynomial damping term has degree n, first, a transformation based on the involution of 
the Hamiltonian is introduced, and then we analyze the coefficients involved in the bifurcation function to 
show that the Hopf cyclicity is 

[ 2n+1
3

]
. Further, for piecewise smooth polynomial damping with a switching 

manifold at the y-axis, we consider the damping terms to have degrees l and n, respectively, and prove that 
the Hopf cyclicity of the origin is 

[ 3l+2n+4
3

]
(
[ 3n+2l+4

3

]
) when l ≥ n (n ≥ l).
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1. Introduction

Periodic motions appear in almost all natural and engineering dynamical systems. Determing 
the number of periodic solutions and their locations plays an important role in the study of dy-
namical systems. For example, in chemical reactions [18], it is important to determine what 
may cause oscillation and what may destroy oscillation, and what affects the period and am-
plitude of oscillation. However, it is not easy to determine all possible locations, periods and 
amplitudes even for the oscillations in a two-dimensional reactor. The relative open problem 
in mathematics is the well-known Hilbert’s 16th problem [24], which considers the maximal 
number of limit cycles, denoted by H(n), and their distribution in two-dimensional polynomial 
systems. This problem is still not completely solved even for quadratic polynomial systems (i.e., 
for the simplest case n = 2). Many theories and methodologies have been developed for solving 
the problem, and a lot of good results such as lower bounds on H(n) have been obtained, see a 
recent paper [1].

In order to overcome the difficulty in solving the Hilbert’s 16th problem, researchers have 
tried to study the relative weakened problems or weaker versions of the problem, for example, 
studying limit cycles arising from certain special bifurcations, or focusing on systems with sim-
per forms. Anorld’s version of Hilbert’s 16th problem [2] is equivalent to studying limit cycles by 
investigating the first-order Poincaré bifurcation of the following perturbed Hamiltonian system,

ẋ = Hy(x, y) + εP (x, y), ẏ = −Hx(x, y) + εQ(x, y), (1)

where P(x, y) and Q(x, y) are polynomials of degree n ≥ 2, ε > 0 is sufficiently small, H(x, y)

is a polynomial of degree n + 1 and has at least one family of closed orbits. Suppose the ovals, 
parameterized by {(x, y)|H(x, y) = h, h ∈ J } where J is an open interval, are periodic orbits of 
system (1)ε=0, forming a periodic annulus denoted by {�h}. The number of zeros of the Abelian 
integral,

A(h) =
˛

�h

Q(x, y)dx − P(x, y)dy, h ∈ J,

estimates the zeros of the return map that is constructed on the periodic annulus {�h}. Therefore, 
the zeros of A(h) provide the information on the persisting limit cycles of system (1) in the sense 
of the first order Poincaré bifurcation when ε is sufficiently small, see [23]. Studying the zeros 
of A(h) is so-called the weak Hilbert’s 16th problem, which has produced most of results on the 
Hilbert’s 16th problem. However, even the weak version of the Hilbert’s 16th problem is still 
very difficult to solve, and so far only the case n = 2 has been completely solved, see [8] and 
references therein.

Smale [33] proposed a simple version of the Hilbert’s 16th problem based on the classical 
polynomial Liénard system,

ẍ + f (x)ẋ + x = 0, (2)

where f (x) is a polynomial of degree n. Lins et al. [27] proved that system (2) has at most 
[

n
2

]
limit cycles for n = 1, 2 and conjectured that the result is true for all n ≥ 1. Li and Llibre [26]
proved that the conjecture is true for n = 3. However, in 2007, Dumortier et al. [17] proved that 
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there exist systems which have at least [n
2 ] + 1 limit cycles for even n ≥ 6. Four years later, 

Maesschalck and Dumortier [11] proved that there exist systems that have at least [n
2 ] + 2 limit 

cycles for n ≥ 5. Maesschalck and Huzak [12] proved the results to n − 2 for n ≥ 5, which 
improved [n

2 ] + 2 for n ≥ 9. In short, up to now, the sharp bound on the maximal number of limit 
cycles of (2) is still unknown and the conjecture of Lins et al. is still open for n = 4.

Recently, more interests have focused on the generalized Liénard system, which includes 
many various types of oscillators,

ẍ + f (x)ẋ + g(x) = 0, (3)

where g(x) and f (x) are polynomials with degrees m and n, respectively, usually called type 
(m, n). In Newtonian mechanics, f (x) is the damping term and g(x) is the restoring or potential 
term. The sharp bound on the number of limit cycles of system (3) depends on the degrees m
and n denoted by HL(m, n), where L represents Liénard system. It is more difficult to determine 
HL(m, n) for the generalized Liénard system (3) than that for system (2), because of the nonlin-
ear restoring term g(x). However, even when system (3) has a simple form, it still plays a very 
important role in studying limit cycles of general planar systems obtained from modifying (3), 
see [25,32]. Further, system (3) can be applied to model real world oscillating phenomena, see 
[10].

There are two different ways to study HL(m, n). One way is to consider the limit cycles via 
Poincaré bifurcation by assuming the damping term in the form of −εf (x)y. Then, system (3)
becomes a special form of (1),

ẋ = y, ẏ = −g(x) + εf (x)y, (4)

with P(x, y) = 0, Q(x, y) = f (x)y and the Hamiltonian H(x, y) = y2

2 + ´
g(x)dx. The corre-

sponding Abelian integral is in the simple form,

I(h) =
˛

�h

f (x)ydx.

It is known that the sharp bound on the maximal number of zeros of I(h) on a periodic annulus 
is the annulus cyclicity (for a concrete system) by Poincaré-Pontryagin-Andronov Theorem [23]. 
The cyclicity is denoted by ZL(m, n) with L representing the Liénard system. However, even for 
the simple form, it is not easy to determine the cyclicity ZL(m, n), which was only completely 
determined for type (m, m − 1) with m = 2, 3, see [13–16]. Type (m, m − 1) means that the 
perturbation term −εf (x)y and the restoring term g(x) have the same degree. For type (5, 4)

of system (4) with symmetry, since there are only three perturbation terms, the Picárd-Fuchs 
equation method can be applied. It has been proved that 2 is the sharp bound if the unperturbed 
system has a heteroclinic loop [3,4,37,44]. It becomes much more difficult when system (4)
is non-symmetric or has degree equal to or larger than 4, implying that I(h) has more than 
3 generating elements. Thus, the dimensions of the Picárd-Fuchs equation system and Ricatti 
equations are higher, which makes it trouble in determining the intersection of the related planes 
and surfaces. On the other hand, it has been shown that the Chybeshev criterion [19,31] can 
be applied to bound ZL(m, n) for Abelian integrals with more than 3 elements, see [6,34,35,
40–42,45] for type (4, 3), but only an upper bound of ZL(4, 3) was obtained for each system 



X. Sun, P. Yu / J. Differential Equations 269 (2020) 9224–9253 9227
investigated in these papers. Recently, Sun and Yu [38] improved the results by introducing a 
combination technique for two systems with a nilpotent singularity. There is no sharp bound 
reported for non-symmetric type (5, 4) systems.

Another way to study limit cycles of the generalized Liénard system (3) is to investigate the 
small limit cycles bifurcating from Hopf singularities. The exact bound on the maximal number 
of small limit cycles due to Hopf bifurcation is usually called Hopf cyclicity. For convenience, 
we denote the Hopf cyclicity of system (3) by Hs

L(m, n), where s represents small limit cycles. 
There are lots of results on Hs

L(m, n) which were obtained by computing Lyapunov coefficients. 
In 2006, it was proved by Yu and Han [43] that Hs

L(4, n) = Hs
L(n, 4) and Hs

L(5, n) = Hs(n, 5)

for n = 10, 11, 12, 13, and Hs
L(6, n) = Hs

L(n, 6) for n = 5, 6. Other exact values of Hs
L(m, n)

for some fixed values of m and n were summarized in Table 1 of [29]. We have noticed that 
these results were mainly obtained by studying g(x) in the form of g(x) = −x + εgm(x) with 
deggm(x) = m. In other words, they perturb a linear center. When the degrees m and n are not 
fixed, two better lower bounds on Hs

L(m, n) were estimated in [29] and [22]. The averaging 
method of order 1, 2 and 3 was applied in [29] to system (3) by assuming

(g(x), f (x)) =
(∑

k≥1

εkgk
m(x),

∑
k≥1

εkf k
n (x)

)
,

while g(x) = ḡm(x) + εgm(x) was taken in [22]. However, fewer results were reported on 
Hs

L(m, n) for arbitrary values of m or n. Up to now, we only know that, see [7,30],

Hs
L(m,n) = n

2
, if g(x) is an odd degree polynomial;

Hs
L(m,n) = n

2
, if f (x) is an even degree polynomial;

Hs
L(m,2n + 1) =

[m − 2

2

]
+ n, if f (x) is an odd degree polynomial;

Hs
L(2m,2) = m, if g(x) = x + ge(x) with ge(x) being an even degree polynomial.

The above results were obtained with a strict assumption on f (x) or g(x). Moreover, in the last 
three decades, few results were obtained with similar restrictions on the damping and restoring 
terms. The main difficulty comes from analyzing the dimension of the related algebraic variety 
of the set of the Lyapunov coefficients.

For fixed m = 2, it was proved respectively by Han [20,21], and Christopher and Lynch [9]
that

Hs
L(2, n) = Hs

L(n,2) =
[2n + 1

3

]
for all n ≥ 1. When m = 3, it was proved in [9] that system (3) with g(x) = −x(2 + 3x + 4bx2)

has the Hopf cyclicity at the origin,

Hs
L(3, n) = Hs

L(n,3) = 2
[3n + 2]

, 1 ≤ n ≤ 50.

8
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Recently, Tian et al. [39] studied an equivalent system to the one in [9] by taking g(x) = −x(x −
2x + ax2), and proved that the Hopf cyclicity near the origin is

Hs
L(3, n) =

[3n + 2

4

]
for n ≥ 1 if a = 8

9
.

It should be noted that when m ≥ 3, system (3) may have richful topological phase portraits due 
to the complicated topological phase portraits of the system ẍ + g(x) = 0, for example, there 
may exist more than one singularity of focus type except the singularity at the origin. Therefore, 
Hs

L(3, n) (n ≥ 1) only includes the number of small limit cycles bifurcating from the origin.
For fixed m ≥ 4, however, there are no results reported on the Hopf cyclicity for any type 

(m, n) of system (3) with arbitrary n ≥ 1 due to the difficulty arising from stronger nonlinear 
restoring term g(x).

In this paper, we study a non-symmetric system (3) with m = 5. It has a unique singularity 
of center-focus type and the undamped system (f (x) ≡ 0) has a unique periodic annulus. This 
periodic annulus is bounded by a non-symmetric heteroclinic loop connecting a degenerate sin-

gularity. We study the annulus cyclicity for f (x) = ε
4∑

i=0
αix

i with ε > 0 sufficiently small, for 

which the damping term εf (x)y has the same degree as that of the undamped system. We also 
study the small limit cycles near the origin and determine the Hopf cyclicity when the damping 
term is an nth degree smooth polynomial or piecewise smooth polynomials. The system is given 
in the form of

ẋ = y, ẏ = x(x − 1)3
(
x + 1

2

)
+ f (x)y, (5)

where f (x) = fi(x) (i = 1, 2, 3) with

f1(x) = ε(α0 + α1x + α2x
2 + α3x

3 + α4x
4),

f2(x) =
n∑

i=0

αix
i,

f3(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n∑
i=0

α+
i xi , x > 0,

l∑
i=0

α−
i xi , x < 0,

where ε > 0 is sufficiently small, αi and α±
i are bounded parameters. The undamped system (5)

is a Hamiltonian system with the Hamiltonian,

H(x, y) = y2

2
+ x2

4
− x3

6
− 3x4

8
+ x5

2
− x6

6
.

There is a family of closed orbits �h = {(x, y)|H(x, y) = h, h ∈ (0, 1
24 )}, which forms a unique 

periodic annulus {�h} bounded by a degenerate heteroclinic loop, denoted by �∗. The hetero-
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Fig. 1. The phase portrait of the undamped system (5).

clinic loop connects a hyperbolic saddle (− 1
2 , 0) and a nilpotent saddle (1, 0), see Fig. 1. For 

f (x) = f1(x), the associated Abelian integral is given by

A(h) = α0I0(h) + α1I1(h) + α2I2(h) + α3I3(h) + α4I4(h), (6)

where

Ii(h) =
˛

�h

xiydx, i = 0, 1, 2, 3, 4. (7)

As discussed above, the difficulty in studying the bifurcation of limit cycles of system (5)
arises from the non-symmetry, stronger nonlinearity of g(x) and the degeneracy, implying that 
one has to consider more than 3 generating elements in the Abelian integral for studying the an-
nulus cyclicity, which requires more efficient computation in dealing with the damping terms and 
their independence for studying the Hopf cyclicity. In fact, system (5) with f (x) = f1(x) was 
first studied by Ashegh et al. [5], who claimed that there are at most three limit cycles bifurcating 
from the periodic annulus by analyzing the first order Poincaré bifurcation, and the three limit 
cycles can be obtained near the boundary of the annulus. The result implies that the cyclicity 
of the periodic annulus is three when f (x) = f1(x). However, the result was questionable be-
cause there exists a discrepancy between the symbolic computation and numerical analysis. As a 
matter of fact, two years later, Sun et al. [36] reconsidered the problem and provided a rigorous 
proof, but only an upper bound was obtained. For convenience, the results obtained in [5,36] are 
summarized in the following theorem.

Theorem 1 ([5,36]). For system (5) with f (x) = f1(x),

(i) there exist no closed orbits enclosing three singularities (− 1
2 , 0), (0, 0) and (1, 0) for all 

possible bounded parameters (α0, α1, α2, α3, α4) ∈ R5;
(ii) A(h) has at most four zeros in (0, 1

24 ), and three zeros can be reached near the endpoints 
of the interval (0, 1

24 ), implying that there are at most four limit cycles bifurcating from the 
periodic annulus for sufficiently small ε > 0, and three limit cycles can be obtained either 
near the singularity (0, 0) or near the heteroclinic loop.

Therefore, it is still unknown whether the annulus cyclicity is three or four for system (5)
when f (x) = f1(x). In this paper, we will provide a rigorous proof to give a positive answer on 
the exact cyclicity. This result is stated in the following theorem.
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Theorem 2. For system (5) with f (x) = f1(x), the Abelian integral A(h) has at most three zeros 
in (0, 1

24 ) for all possible (α0, α1, α2, α3, α4) ∈ R5, and this is the sharp bound, i.e., the cyclicity 
of the periodic annulus is three.

In addition, we study the Hopf cyclicity of the unique center-focus singularity at the origin 
for different types of damping terms. In particular, for smooth dampings, we have the result on 
the Hopf cyclicity of the origin as follows.

Theorem 3. For system (5) with f (x) = f2(x), the Hopf cyclicity of the origin is 
[2n+1

3

]
.

When the damping term is a piecewise smooth polynomial in x of degree l and n, we have 
the following result.

Theorem 4. For system (5) with f (x) = f3(x), the Hopf cyclicity of the origin is 
[3n+2l+4

3

]
if 

n ≥ l or 
[ 3l+2n+4

3

]
if l ≥ n.

The main mathematical tools that we will apply to prove Theorem 2 are asymptotic property 
and Chebyshev criterion of the Abelian integrals {Ii(h)}4

i=0. We will introduce three combina-
tions of related two Abelian integrals to obtain three new integral systems including a parameter, 
and then apply the Chebyshev criterion to the new systems. The range of each parameter in the 
integral system is then bounded via the algebraic property of the curves and number of zeros 
of the algebraic system. The algebraic system is derived from the ratio of two Wronskians. The 
ranges of three parameters give a bounded 3-dimensional parameter set on which the full Abelian 
integral may have four zeros. A further analysis is carried out to exclude the possibility of 4 ze-
ros of the Abelian integrals. Properly combing the generating elements plays a crucial role in 
obtaining the sharp bound, since directly applying Chebyshev criterion fails [5,36]. To prove 
Theorems 3 and 4, we properly utilize the potential in the undamped system (5) to define an 
involution, and then to introduce two transformations composed of trigonometric functions for 
the two components of the involution. This makes it possible to analyze the independence of the 
elements in algebraic variety, finally yielding the Hopf cyclicity for the smooth and non-smooth 
damping system (5).

The rest of this paper is organized as follows. In section 2, we present some preliminaries, 
which contain certain new theories and methods on Poincaré bifurcation and Hopf bifurcation, 
and an extended Chebyshev criterion. We prove Theorems 2, 3 and 4 in sections 3, 4 and 5, 
respectively. Conclusion is drawn in section 6.

2. Chebyshev criterion and local bifurcation theory

2.1. Chebyshev criterion

In this subsection, we briefly present the Chebyshev criterion developed in [19,31], which are 
one of the basic tools for proving our main results.

Definition 5. Suppose s0(x), s1(x), · · · and sm−1(x) are analytic functions on a real open inter-
val �.
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(A) The continuous Wronskian of {s0(x), s1(x), . . . , si−1(x)} for x ∈ � is

W [s0(x), s1(x), . . . , si−1(x)] =

∣∣∣∣∣∣∣∣
s0(x) s1(x) · · · si−1(x)

s′
0(x) s′

1(x) · · · s′
i−1(x)

· · · · · · · · · · · ·
s
(i−1)
0 (x) s

(i−1)
1 (x) · · · s

(i−1)
i−1 (x)

∣∣∣∣∣∣∣∣ ,
where s(j)

i (x) is the j th order derivative of si(x), j ≥ 2.
(B) The set {s0(x), s1(x), . . . , sm−1(x)} is called a Chebyshev system if any nontrivial linear 

combination,

κ0s0(x) + κ1s1(x) + · · · + κm−1sm−1(x),

has at most m − 1 isolated zeros on �, while W [s0(x), s1(x), . . . , sm−1(x)] �= 0 is one suf-
ficient condition assuring {s0(x), s1(x), . . . , sm−1(x)} to form a Chebyshev system.

(C) The ordered set {s0(x), s1(x), . . . , sm−1(x)} is called extended complete Chebyshev (ECT) 
system if for each i ∈ {1, 2, · · · , m} any nontrivial linear combination,

κ0s0(x) + κ1s1(x) + · · · + κi−1si−1(x),

has at most i − 1 zeros with multiplicities accounted.

Let H(x, y) = V (x) + y2

2 be an analytic function with xV ′(x) > 0 and V (0) = 0. There 
exists a family of closed ovals {�h} ⊆ {(x, y)|H(x, y) = h, h ∈ (0, h∗)} surrounding the origin 
(0, 0), where h∗ = H(∂{�h}). The projection of {�h} on the x-axis is an interval (xl, xr) with 
xl < 0 < xr , for all x ∈ (xl, xr)\{0}. V (x) = V (z(x)) defines an analytic involution z = z(x) for 
all x ∈ (xl, xr). Let

Ii (h) =
˛

�h

ξi(x)y2n∗−1dx, for h ∈ (0, h∗), (8)

where n∗ ∈N and ξi(x) is analytic in (xl, xr), i = 0, 1, . . . , m − 1. Further, define

si(x) := ξi(x)

V ′(x)
− ξi(z(x))

V ′(z(x))
. (9)

Then, we have

Lemma 6 ([19]). Consider the integrals Ii in (8) and the functions si in (9). {I0, I1, · · · , Im−1}
is an ECT system in (0, h∗) if n∗ > m − 2 and {s0, s1, · · · , sm−1} is an ECT system in (xl, 0) or 
(0, xr).

Lemma 7 ([31]). Consider the integrals (8) and the functions (9). If the following conditions 
hold:

(a) W [s0, s1, . . . , si] does not vanish in (0, xr) for i = 0, 1, · · · , m − 2,
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(b) W [s0, s1, . . . , sm−1] has k zeros in (0, xr) with multiplicities counted, and
(c) n∗ > m + k − 2,

then, any nontrivial linear combination of {I0, I1, · · · , Im−1} has at most m + k − 1 zeros in 
(0, h∗) with multiplicities counted. In this case, we call {I0, I1, · · · , Im−1} a Chebyshev system 
with accuracy k in (0, h∗).

2.2. Hopf bifurcation theory for Liénard system

Computing and analyzing the Lyapunov coefficients of Poincaré map, which is locally con-
structed around a foci, is the classical method to study Hopf bifurcation of general planar 
differential systems. However, it is not an easy task for computing the Lyapunov coefficients, 
which are needed to analyze the algebraic varieties in order to determine Hopf cyclicity. For Lié-
nard type system, one equivalent method to computing the Lyapunov coefficients was developed 
in [20,21], which is summarized as follows.

Consider the system of the form,

ẋ = P(y) − F(x,η), ẏ = −g(x), (10)

where η is an n-dimensional parameter vector, P(y), F(x, η) and g(x) are analytic satisfying 
P ′(0)g′(0) > 0, F(0, η) = g(0) = P(0) = 0 and Fx(0, η∗) = 0 for some η∗ ∈ Rn. These as-
sumptions assure that the origin is a center or focus of system (10) for η chosen from a very 
small neighborhood of η∗. Then, one can construct the Poincaré map locally around the origin, 
which has the following expansion,

P(r, δ) =
∞∑
i=1

vi(η)ri, for |r| � 1 and |η − η∗| � 1, (11)

where vi(η) ∈ C∞. An isolated positive zero of P(r, η) near r = 0 corresponds to a small limit 
cycle of system (10) due to Hopf bifurcation. Therefore, it only needs to study the sharp upper 
bound on the maximal number of isolated positive zeros of P(r, η) for studying the Hopf cyclicity 
of a focus or a center. Particularly, we have the following expansion of the bifurcation function 
for the generalized Liénard system (10),

F(z(x), η) − F(x,η) =
∞∑
i=1

Bi(η)xi, for 0 < x � 1, (12)

where z(x) is the involution defined by the potential G(x) = ´
g(x)dx with G(z(x)) = G(x). It 

was proved in [20,21] that,

v1 = N1(B1)B1,

v2j = O(B1,B3, · · · ,B2j−1),

v2j+1 = N2j+1(B1)B2j+1 + O(B1,B3, · · · ,B2j−1),
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where N2j+1(B1) ∈ C∞. Therefore, we only need compute Bi and analyze its algebraic variety 
{Bi = 0} for all i ≥ 1 to study the Hopf cyclicity. The following Lemma [21] states the criterion.

Lemma 8. Consider system (10) and the expansion (12). Suppose there exists k ≥ 1 such that

F(z(x), η) ≡ F(x,η), B2j+1 = 0,

for j = 0, 1, · · · , k and there exists some η∗ ∈ Rn such that

B2j+1(η
∗) = 0, j = 0,1, · · · , k,

rank
∂(B1,B3, · · · ,B2k+1)

∂η

∣∣∣
η=η∗ = k + 1.

Then, the Hopf cyclicity of system (10) at the origin is k.

Liu and Han [28] extended the theory to study Hopf bifurcation of the following piecewise 
nonsmooth Liénard system,

(ẋ, ẏ) =
{

(P (y) − F+(x, η),−g+(x)), x > 0,

(P (y) − F−(x, η),−g−(x)), x < 0,
(13)

where η is an n dimensional parameter vector, P(y), g±(x) and F±(x) are analytic and satisfy

P(0) = F±(0, η) = g±(0) = 0,

and

(F±
x (0, η∗))2 − 4P ′(0)(g±)′(0) < 0,

for some η∗ ∈ Rn. Similarly, one can construct a Poincaré map expanded for η near η∗ as

d(ρ,η) = v1(η)ρ + v2(η)ρ2 + · · · + vj (η)ρj + · · · , 0 < ρ � 1,

and the bifurcation function similar to (12) is given by

F−(z(x), η) − F+(x, η) =
∞∑

j=1

Bj (η)xj , (14)

for 0 < x � 1, where z(x) is the involution defined by G+(z(x)) = G−(x) with G±(s) =´
g±(s)ds. Liu and Han [28] gave that,

v1(η) = W1(η)B1,

vj (η) = Wj(η)Bj + O(|B1,B2, · · · ,Bj−1|),
where Wj ∈ C∞ and Wj > 0 for B1 small. The following lemma gives the Hopf cyclicity.
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Lemma 9 ([39]). Let k positive integers satisfy r1 < r2 < · · · < rk and form the ordered sequence 
{ri}ki=1. If the following items are verified:

(i) Bj (η) ≡ 0 for 0 ≤ j < r1;
(ii) Bj (η) = O(Br1 , Br2 , · · · , Brs(j)

) where rs(j) = max{rs < j};
(iii) there exists some η∗ such that Brj (η

∗) = 0 for 0 ≤ j ≤ k and

rank
∂(Br1 ,Br2, · · · ,Brk )

∂η

∣∣∣
η=η∗ = k,

then the Hopf cyclicity of system (13) at the origin is k − 1.

3. Proof of Theorem 2

In this section, we prove Theorem 2. We divide the parameter space for A(h) to obtain a cube 
which is the only set for A(h) to might have 4 zeros on h ∈ (0, 1

24 ). As it was shown in [36] that 
I1(h) ≡ I2(h), therefore, A(h) is spanned by

{I0(h), I1(h), I3(h), I4(h)}.
Hence, it only needs to analyze the set {I0(h), I1(h), I3(h), I4(h)}.

We write V (x) = H(x, y) − y2

2 . Then,

v(x, z) := V (x) − V (z)

x − z
= 0

defines the involution z(x), x ∈ (0, 1) on the period annulus. We have the following result.

Lemma 10. The following equations hold:

8h3Ii(h) =
˛

�h

ρi(x)y7dx ≡ Ĩi (h), i = 0, 1, 3,4,

where ρi(x) = xigi (x)

22680(1+2x)6(x−1)12 , in which each polynomial gi(x) has degree 18.

Proof. First, multiplying Ii(h) by y
2+2V (x)

2h
= 1 yields

8h3Ii(h) =
˛

�h

(2V (x) + y2)3xiydx

=
˛

�h

8xiV 3(x)ydx +
˛

�h

12xiV 2(x)y3dx (15)

+
˛

�h

6xiV (x)y5dx +
˛

�h

xiy7dx, i = 0,1,3,4.
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Then, applying Lemma 4.1 in [19] to (15) to increase the power of y in the first three integrals to 
7 proves the lemma. �

Without loss of generality, we assume that α4 = 1 when α4 �= 0. Further, introduce the fol-
lowing combinations:

I34(h) =
˛

�h

(
α3x

3 + x4
)
ydx,

I14(h) =
˛

�h

(
α1x + x4

)
ydx, (16)

I04(h) =
˛

�h

(
α0 + x4

)
ydx.

Then,

A(h) = α0I0(h) + α1I1(h) + I34(h)

= α0I0(h) + α3I3(h) + I14(h)

= α1I1(h) + α3I3(h) + I04(h).

The following lemma directly follows Lemma 10.

Lemma 11. The following equations hold:

8h3I34(h) =
˛

�h

(α3ρ3(x) + ρ4(x))y7dx
�= Ĩ34(h),

8h3I14(h) =
˛

�h

(α1ρ1(x) + ρ4(x))y7dx
�= Ĩ14(h),

8h3I04(h) =
˛

�h

(α0ρ0(x) + ρ4(x))y7dx
�= Ĩ04(h).

Now, let

li (x) =
( ρi

V ′
)
(x) −

( ρi

V ′
)
(z(x)), i = 0,1,3,4.

Li4(x) =
(αiρi + ρ4

V ′
)
(x) −

(αiρi + ρ4

V ′
)
(z(x)), i = 0,1,3.

(17)

Then,
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d

dx
li(x) = d

dx

( ρi

V ′
)
(x) − d

dz

[( ρi

V ′
)
(z(x))

]
× dz

dx
,

d

dx
Li4(x) = ∂

∂x
(Li4(x)) + ∂

∂z
(Li4(x)) × dz

dx
, i = 0,1,3,

where dz
dx

= − vx(x,z)
vz(x,z)

. A direct computation yields

W [l0] = (x−z)W0(x,z)

11340xz(2x+1)7(x−1)15(2z+1)7(z−1)15 ,

W [l1] = (x−z)W1(x,z)

11340 (2x+1)7(x−1)15(2z+1)7(z−1)15 ,

W [l0, l1] = (x−z)3W01(x,z)

128595600x2z2(z−1)30(2 z+1)13(x−1)30(2x+1)13w0(x,z)
,

W [l0, l3] = (x−z)3W03(x,z)

128595600x2z2(z−1)30(2 z+1)13(x−1)30(2x+1)13w0(x,z)
,

W [l0, l4] = (x−z)3W04(x,z)

128595600x2z2(z−1)30(2 z+1)13(x−1)30(2x+1)13w0(x,z)
,

W [l1, l3] = (x−z)3W13(x,z)

128595600 (z−1)30(2 z+1)13(x−1)30(2x+1)13w0(x,z)
,

W [l0, l1, l3] = (x−z)6W013(x,z)

w∗x3z3(x−1)45(2x+1)18(z−1)45(2 z+1)18w3
0(x,z)

,

W [l0, l1,L34] = (x−z)6W3(x,z,α3)

w∗x3z3(x−1)45(2x+1)18(z−1)45(2 z+1)18w3
0(x,z)

,

W [l0, l3,L14] = (x−z)6W1(x,z,α1)

w∗x3z3(x−1)45(2x+1)18(z−1)45(2 z+1)18w3
0(x,z)

,

W [l1, l3,L04] = (x−z)6W0(x,z,α0)

w∗x3z3(x−1)45(2x+1)18(z−1)45(2 z+1)18w3
0(x,z)

,

(18)

where z = z(x) is the involution as defined by v(x, z) = 0, w∗ = 729137052000, w0(x, z) =
2x + 4z − 3, W0, W1, W01, W03, W04, W13 and W013 are polynomials of degrees 40, 39, 78, 80, 
81, 77 and 115, respectively, and the polynomials W3, W2 and W1 have the degrees 116, 118
and 119, respectively.

We claim that the Wronskians are well defined for x ∈ (0, 1), because w0(x, z) does not vanish 
for x ∈ (0, 1) by showing that the resultant between v(x, z) and w0(x, z) with respect to z has no 
roots for x ∈ (0, 1).

The following result indicates that we only need to discuss the case when α4 �= 0.

Proposition 12. When α4 = 0, A(h) has at most 2 zeros in (0, 1
24 ).

The proof of Proposition 12 relies on symbolic computation for verifying the non-vanishment 
of Wronskians W [l0], W [l0, l1] and W [l0, l1, l3] according to Lemma 7. Since the symbolic 
computation and verification are straightforward, we omit the proof here for briefness.

To prove Theorem 2, we need to show non-vanishing of certain denominators and numerators 
of the related Wronskians in (18) for x ∈ (0, 1). Taking the numerator W01(x, z) of the Wronskian 
W [l0, l1], for example, we only need to prove that the 2-dimensional system {W01(x, z), v(x, z)}
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does not vanish on {(x, z)| − 1
2 < z < 0 < x < 1}, because z in W01(x, z) is determined by 

v(x, z) = 0, and z(x) ∈ (− 1
2 , 0) when x ∈ (0, 1). To do this, we apply triangular-decomposition 

and root isolating to {W01(x, z), v(x, z)} to decompose the nonlinear system into several triangu-
lar systems, and then isolate the roots of each triangular-decomposed system. Since all roots of 
these triangular systems are the roots of the original system {W01(x, z), v(x, z)}, we only need 
to check if these decomposed systems have roots on {(x, z)| − 1

2 < z < 0 < x < 1}. This idea has 
been successfully applied to determine the zeros of Abelian integrals, see [34–36,38,45]. Instead 
of the triangular-decomposition method, one may also use the interval analysis [41], which com-
putes two resultants between W01(x, z) and v(x, z) with respect to x and z, respectively, yielding 
several two dimensional regions. Finally, one verifies if W01(x, z) vanishes on these regions by 
determining the intersection points of the curves W01(x, z) and v(x, z), see [41] for details.

By applying the triangular-decomposition and root isolating to the numerators of the Wron-
skians, we obtain the following result.

Lemma 13. All of the Wronskians, W [l0], W [l1], W [l0, l1], W [l0, l3], W [l0, l4] and W [l1, l3], do 
not vanish for x ∈ (0, 1).

Next, we investigate the last three Wronskians in (18). Their numerators have the forms,

W3(x, z,α3) = α3S2(x, z) − S1(x, z),

W1(x, z,α1) = α1S
‡
2(x, z) − S

‡
1(x, z),

W0(x, z,α0) = α0S
∗
2 (x, z) − S∗

1 (x, z),

where S1, S2, S‡
1 , S‡

2 , S∗
1 and S∗

2 , are polynomials of degrees 116, 115, 118, 115, 119 and 115, 
respectively. Wi (x, z, αi) = 0 (for i = 3, 1, 0) defines three functions,

α3(x, z) = S1(x, z)

S2(x, z)
, α1(x, z) = S

‡
1(x, z)

S
‡
2(x, z)

, α0(x, z) = S∗
1 (x, z)

S∗
2 (x, z)

,

and their derivatives,

α̃3(x, z) = ∂α3(x, z)

∂x
+ ∂α3(x, z)

∂z
× dz

dx
= S̃1(x, z)

S̃2(x, z)
,

α̃1(x, z) = ∂α1(x, z)

∂x
+ ∂α1(x, z)

∂z
× dz

dx
= S̃

‡
1(x, z)

S̃
‡
2(x, z)

,

α̃0(x, z) = ∂α0(x, z)

∂x
+ ∂α0(x, z)

∂z
× dz

dx
= S̃∗

1 (x, z)

S̃∗
2 (x, z)

.

Each of the denominators S2(x, z), S‡
2(x, z), S∗

2 (x, z), S̃2(x, z), S̃‡
2(x, z) and S̃∗

2 (x, z) does 
not vanish for x ∈ (0, 1), because they do not have common roots with v(x, z) for (x, z) ∈
(0, 1) × (− 1

2 , 0), verified by triangular-decomposition and root isolating. Hence, all of the func-
tions αi(x, z) and ̃αi(x, z) (i = 3, 1, 0) are well defined for x ∈ (0, 1).

We have the following lemma.
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Lemma 14.

(i) α3(x, z(x)) is decreasing from (0, − 3
5 ) to a minimum (x†, α†

3) and then increasing to 
(1, − 5

2 );

(ii) α1(x, z(x)) is increasing from (0, 0) to a maximum (x‡, α‡
1) and then decreasing to (1, 2);

(iii) α0(x, z(x)) is decreasing from (0, 0) to a minimum (x∗, α∗
0) and then increasing to (1, − 1

2), 
where

x†, x‡, x∗ ∈
[ 99571576491449

140737488355328
,

49785788245729

70368744177664︸ ︷︷ ︸
1/1013

]
,

and

α
†
3 ∈
[
− 44214 · · ·40352

12885 · · ·98125
,−55559 · · ·02475

16191 · · ·11584

]
︸ ︷︷ ︸

1/1010

≈ [−3.4312932408,−3.4312932406],

α
‡
1 ∈
[31388 · · ·59375

94249 · · ·82976
,

16836 · · ·18911

50552 · · ·20000

]
︸ ︷︷ ︸

1/1010

≈ [3.3303719012,3.3303719013],

α∗
0 ∈
[
− 66176 · · ·98433

72854 · · ·59040
,−53977 · · ·21875

59424 · · ·65344

]
︸ ︷︷ ︸

1/1011

≈ [−0.90833169736,−0.90833169731].

Proof. We only prove case (i), since other two cases (ii) and (iii) can be similarly proved. A 
direct computation shows that

lim
x→0

α3(x, z(x)) = −3

5
, lim

x→1
α3(x, z(x)) = −5

2
.

On {(x, z)| − 1
2 < z < 0 < x < 1}, ̃S1(x, z) and v(x, z) have a unique common root (x†, z†) ∈ D†, 

where

D† =
[ 99571576491449

140737488355328
,

49785788245729

70368744177664

]
×
[
− 32492637936074023

72057594037927936
,−129970551744296065

288230376151711744

]
.

x† is the unique simple zero of α̃3(x, z(x)) by verifying that d
dx

α̃3(x, z(x)) has no zeros on 
[ 99571576491449

140737488355328 , 49785788245729
70368744177664 ]. Therefore, x† is the unique critical point of α3(x, z(x)), and 

thus the monotonicity of α3(x, z(x)) in (0, x†) 
⋃

(x†, 1) can be easily determined by comparing 
the values of α3(x, z(x)) at x = 0, x† and 1 as − 3

5 , −3.4312932408 · · · and − 5
2 , respectively. 

Alternatively, using

lim
x→0+ α̃3(x, z(x)) = 0−, and lim

x→0+
d

dx
(̃α3(x, z(x))) = −147

25
< 0,
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we know that α3(x, z(x)) is monotonically deceasing in (0, x†) and monotonically increasing in 
(x†, 1)

It can be further shown that the resultant between ∂Si(x,z)
∂x

(i = 1, 2) and v(x, z) with respect 
to z has no roots over the interval[ 99571576491449

140737488355328
,

49785788245729

70368744177664

]
by Sturm’s Theorem. Hence, Si(x, z) (i = 1, 2) reaches its maximal and minimal values on the 
boundaries of D†. A direct computation yields

min
D†

S1(x, z) = −21275 · · ·15705

13764 . . .10976
≈ −0.154565249238,

max
D†

S1(x, z) = −20094 . . .34375

13000 . . .54592
≈ −0.154565249236,

min
D†

S2(x, z) = 26631 . . .09375

59119 . . .40896
≈ 0.045045770906,

max
D†

S2(x, z) = 14098 . . .51625

31297 . . .78144
≈ 0.045045770908.

Then, we obtain

α
†
3 = α3(x

†, z(x†)) ∈
[min

D†
S1(x, z)

min
D†

S2(x, z)
,

max
D†

S1(x, z)

max
D†

S2(x, z)

]

=
[
− 44214 · · ·40352

12885 · · ·98125
,−55559 · · ·02475

16191 · · ·11584

]
︸ ︷︷ ︸

1/1010

≈ [−3.4312932408,−3.4312932406]. �
Note in the above proof we have used symbolic computation which gives the exact expres-

sions using rational numbers, demonstrating the accuracy of our analysis. It is also noted that 
the critical point (x†, α3(x

†, z(x†))) divides the curve {(x, α3(x, z(x)))|0 < x < 1} into two 
simple segments (curves). Each point on the two segments corresponds to a simple root of 
W3(x, z(x), α3(x, z(x))), while x† is a root of multiplicity 2. The following lemma follows from 
Lemma 14.

Lemma 15. For x ∈ (0, 1), when α3 is located in the intervals [α†
3, − 5

2 ), [− 5
2 , − 3

5 ) and 

(−∞, α†
3) 
⋃[− 3

5 , +∞), W [l0, l1, L34] has 2, 1 and 0 roots with multiplicities counted, respec-
tively.

Combining Lemmas 13 and 15 and applying Lemma 7, we have the following result.

Proposition 16. A(h) has at most 4, 3 and 2 zeros in (0, 1
24 ) when α3 belongs to the intervals 

[α†
, − 5 ), [− 5 , − 3 ), and (−∞, α†

) 
⋃[− 3 , +∞), respectively.
3 2 2 5 3 5
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Similarly, we have

Proposition 17. A(h) has at most 4, 3 and 2 zeros in (0, 1
24 ) when α1 is located in the intervals 

(2, α‡
1], (0, 2], and (−∞, 0] ⋃(α

‡
1, +∞), respectively.

Proposition 18. A(h) has at most 4, 3 and 2 zeros in (0, 1
24 ) when α0 belongs to the intervals 

[α∗
0 , − 1

2 ), [− 1
2 , 0), and (−∞, α∗

0) 
⋃[0, +∞), respectively.

Define

D =
{
(α0, α1, α3)|α0 ∈

[
α∗

0 ,−1

2

)
, α1 ∈

(
2, α

‡
1

]
, α3 ∈

[
α

†
3,−5

2

)}
.

Then, Propositions 16, 17 and 18 imply that

Proposition 19. A(h) may have 4 zeros only if (α0, α1, α3) ∈ D.

Finally, we prove that A(h) cannot have 4 zeros when (α0, α1, α3) ∈ D. First, we have

Lemma 20. For h ∈ (0, 1
24 ), the following holds:

(1) the generating element I0(h) is positive;
(2) the ratio I1(h)

I0(h)
is increasing from 0 to 1

10 ;

(3) the ratio I3(h)
I0(h)

is increasing from 0 to 1
28 ; and

(4) the ratio I4(h)
I0(h)

is increasing from 0 to 31
1120 .

Proof. By Green formula, I0(h) = ¸
�h

ydx =˜
O dxdy, where O represents the region bounded 

by �h (a periodic annulus), and therefore, I0(h) > 0. The non-vanishing property of W [l0], 
W [l0, l1], W [l0, l3] and W [l0, l4] proved in Lemma 13 implies that I1(h)

I0(h)
, I3(h)

I0(h)
and I4(h)

I0(h)
are 

monotonic in (0, 1
24 ). By the expansion of A(h) near h = 0 (see the formulas given in [36]), we 

have

lim
h→0

I1(h)

I0(h)
= lim

h→0

I3(h)

I0(h)
= lim

h→0

I4(h)

I0(h)
= 0.

Taking the limit as h → 1
24 yields

lim
h→ 1

24

I1(h)

I0(h)
= lim

h→ 1
24

¸
�h

xydx¸
�h

ydx
=
¸
� 1

24

xydx

¸
� 1

24

ydx
= 1

10
,

lim
h→ 1

24

I3(h)

I0(h)
= lim

h→ 1
24

¸
�h

x3ydx¸
�h

ydx
=
¸
� 1

24

x3ydx

¸
� 1

24

ydx
= 1

28
,
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and

lim
h→ 1

24

I4(h)

I0(h)
= lim

h→ 1
24

¸
�h

x4ydx¸
�h

ydx
=
¸
� 1

24

x4ydx

¸
� 1

24

ydx
= 31

1120
. �

Proposition 21. A(h) < 0 for (α0, α1, α3) ∈ D.

Proof. When (α0, α1, α3) ∈ D, by the results obtained in Lemma 20, it is easy to show that for 
h ∈ (0, 1

24 ),

A(h) =
(
α0 + α1

I1(h)

I0(h)
+ α3

I3(h)

I0(h)
+ I4(h)

I0(h)

)
I0(h)

<
(
α0 + α1

I1(h)

I0(h)
+ I4(h)

I0(h)

)
I0(h)

<
(

− 1

2
+ α

‡
1 × 1

10
+ 31

1120

)
I0(h)

< 0.

So A(h) has no zeros for (α0, α1, α3) ∈ D. �
Proof of Theorem 2. Combining Propositions 12, 19 and 21 proves Theorem 2. �
4. Proof of Theorem 3

Taking the transformation, ỹ = y − ´ x

0 f2(s)ds, x̃ = x, reduces system (5) to the following 
form, after dropping the tilde,

ẋ = y − F(x, δ), y = x(x − 1)3
(
x + 1

2

)
, (19)

where

F(x, δ) = −
xˆ

0

f2(s)ds = −
n∑

i=0

αi

i + 1
xi+1 :=

N∑
i=1

γix
i

with N = n + 1, γi = − 1
i
αi−1 for 1 ≤ i ≤ N , and δ = (γ1, · · · , γN) ∈ RN .

In order to prove our main result on the Hopf cyclicity, we first introduce some known results.

Lemma 22 ([39]). The following equalities hold for any constant ν ∈R,

(i)

π̂

sink(θ + ν) sin(iθ) = 0, if i > k;

−π
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(ii) π̂

−π

sink(θ + ν) cos(iθ) = 0, if i > k;

(iii) π̂

−π

sink(θ + ν) sin(kθ) = π

2k−1 cos
(
kν − k − 1

2
π
)
, if k ∈ N+;

(iv) π̂

−π

cosk(θ + ν) sin(kθ) = π

2k−1 sin
(
kν − k − 1

2
π
)
, if k ∈ N+.

As discussed above, there exists an analytic involution z(x) for the potential of the undamped 
system (5), defined on the periodic annulus by v(x, z) = 2 x2 + 2 xz+ 2 z2 − 3 x − 3 z = 0. Next, 
we introduce

x = �(θ) = 1

2
+

√
3

2
sin(θ) + 1

2
cos(θ), (20)

then

z = �(−θ) = 1

2
−

√
3

2
sin(θ) + 1

2
cos(θ). (21)

Let Jk = �k(−θ) −�k(θ), and Kk = �k(−θ) +�k(θ) for k ∈ N+. Then, we have the following 
lemma, which establishes a key success step in deriving the Hopf cyclicity.

Lemma 23. For any k ∈N+, we have

Jk(θ) =
k∑

i=1

cki sin(iθ), Kk(θ) =
k∑

i=1

c̃ki cos(iθ), (22)

where cki = 0 for i satisfying i mod 3 = 0, ckk = − 1
2k−2 cos

(
kπ
6 − k−1

2 π
)
, c̃kk = 1

2k−2 sin
(

kπ
6 −

k−1
2 π

)
.

Proof. It is obvious that �(θ) can be expressed as a linear combination of sin(iθ) and cos(iθ), 
i = 1, 2, · · · , k. Then, we have the formula (22) because Jk(θ) is an odd function and K(θ) an 
even one. By (20), we have

x = �(θ) = 1

2
+ sin(θ + π

6
).

By theory of Fourier series, we have
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ckk = 1

π

π̂

−π

�k(−θ) sin(kθ)dθ − 1

π

π̂

−π

�k(θ) sin(kθ)dθ

= 1

π

π̂

−π

�k(−θ) sin(−kθ)d(−θ) − 1

π

π̂

−π

�k(θ) sin(kθ)dθ

= − 2

π

π̂

−π

�k(θ) sin(kθ)dθ

= − 2

π

π̂

−π

( k∑
s=0

Cs
k

1

2k−s
sins(θ + π

6
)
)

sin(kθ)dθ.

Applying Lemma (22), we obtain

ckk = − 2

π

π̂

−π

sink(θ + π

6
) sin(kθ)dθ = − 1

2k−2 cos
(kπ

6
− k − 1

2
π
)
.

Similarly, we have

c̃kk = 1

π

π̂

−π

�k(−θ) cos(kθ)dθ + 1

π

π̂

−π

�k(θ) cos(kθ)dθ

= − 1

π

π̂

−π

�k(−θ) cos(−kθ)d(−θ) + 1

π

π̂

−π

�k(θ) cos(kθ)dθ

= 2

π

π̂

−π

�k(θ) cos(kθ)dθ

= 2

π

π̂

−π

( k∑
s=0

Cs
k

1

2k−s
sins(θ + π

6
)
)

cos(kθ)dθ.

It follows from Lemma (22) that

c̃kk = 2

π

π̂

−π

sink(θ + π

6
) cos(kθ)dθ = 1

2k−2 sin
(kπ

6
− k − 1

2
π
)
.

A direct computation shows that

�
(
u + 2π

3

)= �(−u).
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Then,

�k
(
u + 2π

3

)
= �k(−u) for k ∈ N+.

Further, for i = 3j < k, j = 1, 2, · · · , 
[

k
3

]
, we can show that

π̂

−π

�k(θ) sin(3jθ)dθ =
π
3ˆ

− 5π
3

�k
(
u + 2π

3

)
sin
(

3j (u + 2π

3
)
)
du

=
π
3ˆ

− 5π
3

�k
(
u + 2π

3

)
sin
(
3ju
)
du

=
π
3ˆ

− 5π
3

�k(−u) sin
(
3ju
)
du

=
π̂

−π

�k(−u) sin
(
3ju
)
du.

Therefore,

ck,3j = 1

π

π̂

−π

(
�k(−u) − �k(θ)

)
sin
(
3ju
)
du = 0.

The proof is complete. �
Proof of Theorem 3. It only needs to prove that the cyclicity of system (19) at the origin is [

2N−1
3

]
.

By Lemma 8, we construct the following power series

F(z(x)) − F(x) =
N∑

k=1

γk(z
k − xk) =

∑
i≥1

Bix
i, (23)

for |x| � 1, where z(x) is the involution defined by v(x, z) = 0. We have two goals aiming at 
proving our result on the Hopf cyclicity. One goal is to prove the following relationship between 
the coefficients in F(z(x)) − F(x),

B2j+1 = O(|B1,B3, · · · ,B2N∗+1|), j ≥ N∗ + 1, (24)
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where

N∗ = N −
[N

3

]
− 1 =

[2N − 1

3

]
.

Another one is to show that

rank
∂(B1,B3, · · · ,B2N∗+1)

∂(γ1, γ2, · · · , γN)
= N∗ + 1. (25)

First, substituting the trigonometric transformations (20) and (21) into F(z(x)) − F(x), we 
have

F(z(x)) − F(x) =
N∑

k=1

γk(�
k(−θ) − �k(θ)) =

N∑
k=1

γkJk(θ) := F̃ (θ). (26)

By Lemma 23,

F̃ (θ) =
N∑

k=1

γkJk(θ) =
N∑

k=1

γk

k∑
i=1

cki sin(iθ) =
N∑

i=1

b̃i sin(iθ), (27)

where

b̃i =
N∑

k=1

γkcki, (28)

and

b̃i = 0 for i satisfying i mod 3 = 0. (29)

We have the following expansion of F̃ (θ) for θ near π ,

F̃ (θ) =
N∑

i=1

b̃i sin(iθ) =
N∑

i=1

b̃i

∑
j≥0

cos(iπ)
(−1)j

(2j + 1)! i
2j+1(θ − π)2j+1

=
N∑

i=1

b̃i (−1)i
∑
j≥0

(−1)j

(2j + 1)! i
2j+1(θ − π)2j+1 (30)

=
∑
j≥0

(−1)j

(2j + 1)! B̃2j+1(θ − π)2j+1,

where

B̃2j+1 =
N∑

i=1

(−1)i i2j+1b̃i . (31)
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By (20), θ − π = x + O(x2) for |x| � 1. The equalities (23) and (30) show that

B2j+1 = (−1)j

(2j + 1)! B̃2j+1 + O(|B̃1, B̃3, · · · , B̃2j−1|), j ≥ 0, (32)

which implies that

B̃2j+1 = (−1)j

(2j + 1)!B2j+1 + O(|B1,B3, · · · ,B2j−1|), j ≥ 0. (33)

Therefore, it only needs to prove the following result in order to reach our first goal.

B̃2j+1 = O(|B̃1, B̃3, · · · , B̃2N∗+1|), for j ≥ N∗ + 1. (34)

Note from (27) and (29) that F̃ (θ) should be a linear collection of N − [N3 ] functions sin(iθ), 
where i ∈ S, which is the ordered sequence,

S = {1,2, · · · ,N}/{i mod 3 = 0} = {m1,m2, · · · ,mN∗+1}.

Note N − [N3 ]= N∗ + 1, and so the equality (31) guarantees the matrix equation

(B̃1, B̃3, · · · , B̃2N∗+1) = ((−1)m1 b̃m1, (−1)m2 b̃m2, · · · , (−1)mN∗+1 b̃mN∗+1)M0, (35)

where M0 is an (N∗ +1) × (N∗ +1) matrix with M0[i, j ] = m
2j−1
i . A direct computation shows 

that

detM0 =
N∗+1∏
i=1

mi

∏
1≤i<j≤N∗+1

(m2
j − m2

i ) �= 0.

Then, we have that

B̃2j+1 = 0, for 0 ≤ j ≤ N∗

if and only if b̃i = 0 for i = m1, m2, · · · , mN∗+1, which implies that F̃ (θ) = 0 if and only if 
B̃2j+1 = 0 for all 0 ≤ j ≤ N∗. Thus, (34) holds.

Finally, we need to prove that

rank
∂(B1,B3, · · · ,B2N∗+1)

∂(γ1, γ2, · · · , γN)
= N∗ + 1. (36)

The equation (32) gives the following matrix equation,

(B1,B3, · · · ,B2N∗+1) = (B̃1, B̃3, · · · , B̃2N∗+1)M1, (37)

where
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M1 =

⎛⎜⎜⎜⎜⎜⎝
(−1)0

1! ∗ · · · ∗
(−1)1

3! · · · ∗
. . .

...0 (−1)N
∗

(2N∗+1)!

⎞⎟⎟⎟⎟⎟⎠
and

detM1 =
N∗∏
j=0

(−1)j

(2j + 1)! �= 0.

It follows from (28) and Lemma 23 that

(b̃1, b̃2,0, b̃3, b̃4,0, · · · , b̃N ) = (γ1, γ2, γ3, γ4, · · · , γN)M2,

where

M2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

c11 0 0 0 · · · 0
c21 c22 0 0 · · · 0
c31 c32 0 0 · · · 0
c41 c42 0 c44 · · · 0
...

...
...

...
. . . 0

cN1 cN2 0 cN4 · · · cNN

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

which is an N × N triangular matrix with the 3j th column being zero for j = 1, 2, · · · , 
[

N
3

]
. 

Then, we can delete all 3j th columns and rows in M2 and assume α3j = 0 for j = 1, 2, · · · , 
[

N
3

]
. 

Therefore, we have the following result, by similarly using the ordered sequence S,

(b̃m1, b̃m2, · · · , b̃mN∗+1) = (γm1, γm2, · · · , γmN∗+1)M3, (38)

where

M3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

c11 0 0 0 · · · 0
c21 c22 0 0 · · · 0
c41 c42 c44 0 · · · 0
c51 c52 c54 c55 · · · 0
...

...
...

...
. . . 0

cmN∗+1,1 cmN∗+1,2 cmN∗+1,4 cmN∗+1,5 · · · cmN∗+1,mN∗+1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

with

detM3 =
∏

k=m1,m2,··· ,mN∗+1

ckk =
∏

k=m1,m2,··· ,mN∗+1

− 1

2k−2 cos
(kπ

6
− k − 1

2
π
)

= 3
N∗
2 2−N∗ ∏

k=m1,m2,··· ,mN∗+1

− 1

2k−2 �= 0,

by Lemma 23.
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Combining (35), (37) and (38) completes the proof for (36). With the reached two goals, we 
have proved our result on the Hopf cyclicity by Lemma 8. Therefore, system (19) has the Hopf 
cyclicity 

[ 2N−1
3

]
, so it is 

[ 2n+1
3

]
for system (5) with f (x) = f2(x). This completes the proof of 

Theorem 3. �
5. Proof of Theorem 4

We only prove Theorem 4 for the case l ≥ n, and the other case l ≤ n can be similarly proved. 
Like (19), we can rewrite system (5) as

ẋ = y − F±(x, δ), y = x(x − 1)3
(
x + 1

2

)
, (39)

where

F−(x, δ) = −
xˆ

0

l∑
i=0

α−
i sids = −

l∑
i=0

1

i + 1
α−

i xi+1 :=
L∑

i=1

γ −
i xi ,

and

F+(x, δ) = −
xˆ

0

n∑
i=0

α+
i sids = −

n∑
i=0

1

i + 1
α+

i xi+1 :=
N∑

i=1

γ +
i xi

with L = l + 1, N = n + 1, γ ±
i = − 1

i
α±

i−1 for i ≥ 1, and

δ = (γ −
1 , · · · , γ −

L ,γ +
1 , · · · , γ +

N ) ∈RN+L.

Proving Theorem 4 is equivalent to showing that the Hopf cyclicity of system (39) is [ 3L+2N−1
3

]
.

We have the bifurcation function of system (39) for 0 < x � 1, given by

F(z(x)) − F(x) = F−(z(x)) − F+(x) =
L∑

k=1

γ −
k zk(x) −

N∑
k=1

γ +
k xk

=
L∑

k=1

[
bk(z

k(x) − xk) + ek(z
k(x) + xk)

]
,

(40)

where

bk =
⎧⎨⎩

γ −
k +γ +

k

2 , 1 ≤ k ≤ N,

γ −
k

2 , N < k ≤ L,

ek =
⎧⎨⎩

γ −
k −γ +

k

2 , 1 ≤ k ≤ N,

γ −
k

2 , N < k ≤ L.

We again use the transformations (20) and (21) to obtain with Lemma 23,
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F(z(x)) − F(x) =
L∑

k=1

bkJk(θ) + ekKk(θ)

=
L∑

k=1

(
bk

k∑
i=1

cki sin(iθ) + ek

k∑
i=0

c̃ki cos(iθ)
)
, (41)

=
N∑

i=1

b̃i sin(iθ) +
N∑

i=0

ẽi cos(iθ) +
L∑

i=N+1

γ −
i Ri(θ) := F̃ (θ),

where

b̃i =
L∑

k=i

bkcki, ẽ0 =
L∑

k=1

ekc̃k0, ẽi =
L∑

k=i

ekc̃ki ,

for 1 ≤ i ≤ N and

Ri(θ) = 1

2

i∑
j=N+1

(
cij sin(jθ) + c̃ij cos(jθ)

)
,

for N + 1 ≤ i ≤ L, with b̃i = 0 if i mod 3 = 0 for 1 ≤ i ≤ N . We have

ẽ0 = −
N∑

i=1

ẽi −
L∑

i=N+1

γ −
i

2

i∑
j=N+1

c̃ij

by F̃ (π) = 0. Then,

F̃ (θ) =
1≤i≤N∑

i mod 3�=0

b̃i sin(iθ) +
N∑

i=1

ẽi (cos(iθ) − 1) +
L∑

i=N+1

γ −
i R̃i(θ), (42)

with

R̃i(θ) = 1

2

i∑
j=N+1

(
cij sin(jθ) + c̃ij (cos(jθ) − 1)

)
, N + 1 ≤ i ≤ L.

We define the parameter vector

v = (b̃1, b̃2, b̃4, b̃5, b̃7, · · · , ẽ1, · · · , ẽN , γ −
N+1, γ

−
N+2, · · · , γ −

L ),

which has the dimension L + N −
[

N
3

]
. Thus, we can show that

rank
∂v

∂(b1, b2, · · · , bN , e1, e2, · · · , eN , γ −
N+1, · · · , γ −

L )
= L + N −

[N
3

]
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by a similar proof for (38). Then,

rank
∂v

∂(γ +
1 , · · · , γ +

N ,γ −
1 , · · · , · · · , γ −

L )
= L + N −

[N
3

]
. (43)

F̃ (θ) can be expanded near θ = π as below,

F̃ (θ) = B̃1(θ − π) + B̃2(θ − π)2 + B̃3(θ − π)3 + · · · , (44)

where each coefficient B̃i is a linear collection of the entries of v. Let s be the maximal number of 
linear independent coefficients in (44), S = {r1, r2, · · · , rs} with ri < ri+1 and these coefficients 
be denoted by

B̃r1, B̃r2 , · · · , B̃rs .

Obviously, these independent coefficients can be determined one by one by taking B̃r1 to be the 
first nonzero coefficient in (44) and B̃rj the first one that independent of B̃r1, · · · , ̃Brj−1 , up to 

the sth one. Then, s ≤ L + N −
[

N
3

]
and

B̃j = LCj(B̃r1 , B̃r2, · · · , B̃r∗
j
), (45)

where j /∈ S and j < rs with r∗
j = max{ri ∈ S|ri < j}, LCj denotes a linear combination, and 

B̃j = O(B̃r1 , · · · , ̃Brs ) for j > rs . There exists an s ×
(
L + N −

[
N
3

])
matrix M1 such that,

(
B̃r1 , B̃r2, · · · , B̃rs

)T = M1vT . (46)

In the following, we prove the claim,

rankM1 = L + N −
[N

3

]
,

which only need prove all B̃rj = 0, j = 1, 2, · · · , s, if and only if v = 0. By definition of B̃rj , 
j = 1, 2, · · · , s, it only need to prove F̃ (θ) ≡ 0 if and only if v = 0.

The elements in (42), {sin iθ, cos sθ − (−1)s, R̃u(θ)} with 1 ≤ i ≤ N , i mod 3 �= 0, 1 ≤ j ≤ N

and N + 1 ≤ u ≤ L is a Chebyshev system of dimension L + N −
[

N
3

]
. Then, F̃ (θ) ≡ 0 if and 

only if v = 0.
Suppose

F−(z(x)) − F+(x) = B1x + B2x
2 + · · · + Bjx

j + · · · , 0 < x � 1. (47)

By (20), θ − π = x + O(x2) for |x| � 1. We substitute it into (47) and compare the coefficients 
to get

Bj = B̃j + Ẽi(B̃1, B̃2, · · · , B̃j−1), j = 1,2, · · · , (48)
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where Ẽi is a linear function. Then, by (45) and (48), we have

Bj = O(B̃r1 , B̃r2, · · · , B̃r∗
j
), for j /∈ S (49)

and

Brj = B̃rj + Ẽ∗
rj

(B̃1, B̃2, · · · , B̃rj−1), for rj ∈ S, (50)

which further implies

B̃rj = Brj + Erj (Br1 ,Br2, · · · ,Brj−1), for rj ∈ S, (51)

where Ẽ∗
rj

and Erj are linear functions. Then, combining (49) and (51) yields

Bj = O(Br1 ,Br2, · · · ,Br∗
j
)

for j /∈ S. The reminder of the proof is to show

rank
∂(Br1 ,Br2, · · · ,Brs )

∂(γ +
1 , · · · , γ +

N ,γ −
1 · · · , γ −

L )
= L + N −

[N
3

]
. (52)

By (50), we have

rank
∂(Br1 ,Br2 , · · · ,Brs )

∂(B̃r1 , B̃r2 , · · · , B̃rs )
= L + N −

[N
3

]
, (53)

and so

rank
∂(B̃r1 , B̃r2 , · · · , B̃rs )

∂v
= rankM1 = L + N −

[N
3

]
(54)

by (46). Combining (43), (53) and (54), we have shown that (52) holds. Therefore, the Hopf 

cyclicity of system (39) is L + N −
[

N
3

]
− 1 = [ 3L+2N−1

3

]
. This completes the proof of Theo-

rem 4.

6. Conclusion

In this work, we conduct a further study on a Liénard system and give a rigorous proof to 
the open question remained in [5,36]. We prove that the cyclicity of the periodic annulus of the 
Hamiltonian is 3 by showing the sharp bound to be 3 on the maximal number of zeros of the asso-
ciated Abelian integral. The annulus cyclicity can be extended to the elementary center because 
the displacement map is analytic for h = 0. The non-symmetry and degeneracy of the system 
causes much difficulty in the computation and analysis for the Poincaré bifurcation, as well as in 
the study of Hopf bifurcation. We have obtained the Hopf cyclicity as 

[2n+1
3

]
when the damping 

term is a smooth polynomial with an arbitrary degree n. The involution determined by the an-
nulus is well utilized, based on which a transformation composed of trigonometric functions is 
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introduced, which provides a tool to overcome the difficulty in analysis and computation. How-
ever, it is not easy to find such kind of a transformation for the involution in a general undamped 
Liénard system. It is even unknown if there exists such a transformation for the involution of a 
Hamiltonian. In this paper, we find such a transform for our system that belongs to hyper-elliptic 
Hamiltonian. We have also studied the Hopf cyclicity of the origin when the damping term is a 
non-smooth polynomial with the switching manifold at the y-axis, having respectively degrees l
and n, and proved that the Hopf cyclicity is 

[3l+2n+4
3

]
(
[ 3n+2l+4

3

]
) when l ≥ n (n ≥ l).
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