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Abstract

This paper is concerned with chaos induced by regular snap-back repellers. One new criterion of chaos induced by strictly
coupled-expanding maps in compact sets of metric spaces is established. By employing this criterion, the nondegenerateness
assumption in the Marotto theorem established in 1978 is weakened. In addition, it is proved that a regular snap-back repeller and
a regular homoclinic orbit to a regular expanding fixed point in finite-dimensional spaces imply chaos in the sense of Li–Yorke. An
illustrative example is provided with computer simulations.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

During the late 1970s and the decade of the 1980s, chaos of one-dimensional maps has been extensively studied,
and many elegant results have been obtained (cf. [1,3,8,10,15,20] and the references cited therein). In 1992, Block
and Coppel introduced the concept of turbulence for continuous interval maps [3]; that is, a continuous interval map
f : I → I is said to be turbulent if there exist compact subintervals J and K with at most one common point such that

f (J ) ⊃ J ∪ K, f (K) ⊃ J ∪ K.

Further, it is said to be strictly turbulent if J and K can be chosen disjoint. It has been proved that a turbulent interval
map has a positive topological entropy and is chaotic in the sense of both Li–Yorke and Devaney (see Definitions 2.2
and 2.3).

Although higher-dimensional chaos problems are difficult to study, some important progresses have been made. In
1978, Marotto [16] introduced the concept of snap-back repeller for continuously differentiable d-dimensional maps
and established a criterion of chaos: snap-back repellers imply chaos in the sense of Li–Yorke (see [17] and [22] for
correction of a certain error found in [16]). This criterion plays an important role in the study of chaos for higher-
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but finite-dimensional noninvertible maps (cf. [9,19] and some references cited in [17]). Recently, it was employed to
study the occurrence of chaos in partial differential equations, neural networks, and financial markets [4–6,13].

Now, we briefly recall some recent results on the chaos theory for maps in metric spaces. In 2001, Kennedy and
Yorke [14] proved that a continuous map in a compact invariant set of a metric space is topologically semiconju-
gate to a one-sided symbolic dynamical system under the horseshoe hypotheses. Recently, we captured the essential
meanings of the concept of turbulence for interval maps and extended it to maps in metric spaces [26], where the
maps were still called turbulent. Since the term turbulence is well established in fluid mechanics, we changed the
term “turbulent map” to “coupled-expanding map” in the conference paper [24] (see Definition 2.1 in Section 2).
The new name is more intuitive in reflecting the conditions that the map satisfies. In 2004, Yang and Tang extended
the one-dimensional turbulence result [3, Chapter II, Proposition 15] to maps in metric spaces and showed that if a
continuous map is strictly coupled-expanding in mutually disjoint compact sets of a metric space, then the map in a
compact invariant set is semiconjugate to a one-sided symbolic dynamical system [31, Theorem 1] (the term “strictly
coupled-expanding” is used here for briefness). Hence, the map has a positive topological entropy and is chaotic in the
sense of Li–Yorke by [2, Corollary 2.4] in [14] and [31], respectively. However, a higher-dimensional map, which is
strictly coupled-expanding in compact sets, is not necessarily chaotic in the sense of Devaney (see Example 2.1). We
proved that under an expanding condition in distance, a strictly coupled-expanding continuous map in disjoint com-
pact sets of a metric space is topologically conjugate to a one-sided symbolic dynamical system and consequently, is
chaotic in the sense of both Devaney and Li–Yorke [21, Theorem 3.2]. In addition, several criteria of chaos induced
by coupled-expanding maps in bounded and closed sets (may be noncompact) of complete metric spaces were estab-
lished [21,26]. We further developed the snap-back repeller theory by the coupled-expansion theory. We extended the
concept of snap-back repeller for continuously differentiable finite-dimensional maps by Marotto to maps in general
metric spaces, and divided it into two classifications: regular and singular, nondegenerate and degenerate [21] (see
Definition 2.5 in Section 2). In the Marotto paper [16], a snap-back repeller is regular and nondegenerate. We proved
that a nondegenerate and regular snap-back repeller or a nondegenerate and regular homoclinic orbit to an expanding
fixed point can generate a strict coupled-expansion and so generate chaos in the sense of both Devaney and Li–Yorke
(cf. [21,26] for maps in complete metric spaces and [22] for Banach spaces). Consequently, the snap-back repeller in
the Marotto theorem [16] implies chaos in the sense of Devaney as well as Li–Yorke. This is analogous to the Smale–
Birkhoff homoclinic theorem, which claims, in brief, that a transversal homoclinic orbit can generate a horseshoe and
so generate chaos for diffeomorphisms. These criteria of chaos induced by coupled-expanding maps and snap-back
repellers were applied to study chaotification (or anti-control) problems for maps in higher-dimensional and general
Banach spaces [23,25,29]. We refer to [27] for a survey of chaos criteria induced by snap-back repellers and their
applications to anti-control of chaos.

It is noted that snap-back repellers are always required to be nondegenerate and regular in the literature [4–6,9,13,
16,17,19,21,22,25,29]. We study regular snap-back repellers, which may be degenerate, in the present paper. To do so,
we will first establish a generalized inverse function theorem and a criterion of chaos induced by coupled-expanding
maps in compact sets of metric spaces.

The rest of the paper is organized as follows. In Section 2, some basic concepts and lemmas are introduced.
A generalized inverse function theorem is established, which is very useful in studying degenerate snap-back repellers.
In Section 3, a criterion of chaos induced by strictly coupled-expanding maps in compact sets is established, in which
the maps are proved to be chaotic in the sense of both Li–Yorke and Wiggins. By applying these results, the other two
criteria of chaos characterized by regular snap-back repellers in finite-dimensional spaces are obtained in Section 4.
These snap-back repellers may be degenerate. The assumptions in the Marotto theorem [16] are weakened. In order
to illustrate that the assumptions given in the present paper are weaker than those in the relative existing results, an
example is provided in Section 5 with computer simulations.

Remark 1.1. The criteria of chaos induced by regular snap-back repellers will be applied to study chaos in partial
difference equations in our another paper [28].

2. Preliminaries

In this section, some basic concepts and lemmas are introduced. This section is divided into two subsections.
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2.1. Some basic concepts

Three definitions of chaos in the sense of Li–Yorke, Devaney, and Wiggins are given in this subsection. For conve-
nience, the concepts of coupled-expanding map, expanding fixed point, snap-back repeller, and homoclinic orbit are
introduced.

Definition 2.1. Let (X,d) be a metric space and f :D ⊂ X → X a map. If there exist m (� 2) subsets Vi, 1 � i � m,

of D with Vi ∩ Vj = ∂DVi ∩ ∂DVj for each pair of (i, j), 1 � i �= j � m, such that

f (Vi) ⊃
m⋃

j=1

Vj , 1 � i � m, (2.1)

where ∂DVi is the relative boundary of Vi with respect to D, then f is said to be coupled-expanding in Vi , 1 � i � m.
Further, the map f is said to be strictly coupled-expanding in Vi , 1 � i � m, if d(Vi,Vj ) > 0 for all 1 � i �= j � m.

Remark 2.1. In the case of X = R, when f maps an interval I into itself, and V1 and V2 are closed and bounded
subintervals of I , the definitions of coupled-expansion and strict coupled-expansion are the same as that of turbulence
and strict turbulence for interval maps by Block and Coppel [3] (see the first part in Section 1). It is noted that in
Definition 2.1, the sets Vi , 1 � i � m, may not be connected and compact, and the number m of the sets Vi may be
larger than 2. These differences make the definition more convenient and more universal. The coupled-expansion for
a transitive matrix will be studied in our forthcoming paper.

Remark 2.2. The concept of coupled-expanding map has some similar idea to Markov partitions for a diffeomorphism
(cf. [11,20] and some references cited therein).

Definition 2.2. Let (X,d) be a metric space and f :X → X a map. Then, S ⊂ X is called a scrambled set of f if, for
any two distinct points x, y ∈ S,

lim inf
n→∞ d

(
f n(x), f n(y)

) = 0; lim sup
n→∞

d
(
f n(x), f n(y)

)
> 0.

The map f is said to be chaotic in the sense of Li–Yorke if it has an uncountable scrambled set S.

Definition 2.3. (See [8].) Let X be a metric space. A map f :V ⊂ X → V is said to be chaotic on V in the sense of
Devaney if

(i) the set of the periodic points of f in V is dense in V ;
(ii) f is topologically transitive in V ;

(iii) f has sensitive dependence on initial conditions in V .

It is noted that condition (iii) is redundant in the above definition if f is continuous in V by the result of [1].

Definition 2.4. Let X be a metric space. A map f : V ⊂ X → V is said to be chaotic on V in the sense of Wiggins if
f satisfies conditions (ii) and (iii) in Definition 2.3.

Remark 2.3. Definition 2.4 is the same as [20, p. 86, Definition]. Wiggins gave this definition in the special case that
X = Rn and V is a compact set of Rn [30, Definition 4.11.2]. Since this definition was first introduced by Wiggins,
we use here the term “chaos in the sense of Wiggins.”

Obviously, chaos in the sense of Devaney is stronger than that in the sense of Wiggins. But the converse is not
true in general (see a counterexample in [18]). Under some conditions, chaos in the sense of Devaney and Wiggins is
stronger than that in the sense of Li–Yorke by [12, Theorem 4.1]. However, chaos in the sense of Li–Yorke does not
necessarily imply chaos in the sense of Devaney in general, shown by the following example, which also shows that
a strict coupled-expansion in disjoint compact sets of metric space does not necessarily imply chaos in the sense of
Devaney.
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Example 2.1. Consider the following three-dimensional map:

F := f × g : [0, 1] × S1 → R3,

where f : [0, 1] → R with f (x) = 5x(1 − x) and g :S1 → S1 with g(eiθ ) = ei(θ+θ0), where θ0/π is irrational. It is
evident that F is continuous in D := [0, 1] × S1. Let

V1 = [0, x1] × S1, V2 = [x2, 1] × S1

with x1 = (5 − √
5 )/10 and x2 = (5 + √

5 )/10. Then V1 and V2 are disjoint compact subsets of D and

F(V1) = F(V2) = D ⊃ V1 ∪ V2.

So, F is strictly coupled-expanding in Vi , i = 1,2, and consequently, it has a positive topological entropy and chaotic
in the sense of Li–Yorke. However, F has no periodic points in D since g is an irrational rotation. Hence, F is not
chaotic in the sense of Devaney on any invariant subset of D.

In the following, by Br(x) and B̄r (x) denote the open and closed balls of radius r centered at x ∈ X, respectively.

Definition 2.5. (See [21, Definitions 2.1–2.4].) Let (X,d) be a metric space and f :X → X a map.

(i) A point z ∈ X is called an expanding fixed point (or a repeller) of f in B̄r0(z) for some constant r0 > 0, if
f (z) = z and

d
(
f (x), f (y)

)
� λd(x, y), ∀x, y ∈ B̄r0(z)

for some constant λ > 1. Furthermore, z is called a regular expanding fixed point of f in B̄r0(z) if z is an interior
point of f (Br0(z)).

(ii) Assume that z is an expanding fixed point of f in B̄r0(z) for some r0 > 0. Then z is said to be a snap-back
repeller of f if there exists a point x0 ∈ Br0(z) with x0 �= z and f m(x0) = z for some positive integer m � 2.
Furthermore, z is said to be a nondegenerate snap-back repeller of f if there exist positive constants μ and δ0
such that Bδ0(x0) ⊂ Br0(z) and

d
(
f m(x), f m(y)

)
� μd(x, y), ∀x, y ∈ B̄δ0(x0);

z is called a regular snap-back repeller of f if f (Br0(z)) is open and there exists a positive constant δ∗
0 such that

Bδ∗
0
(x0) ⊂ Br0(z) and z is an interior point of f m(Bδ(x0)) for any positive constant δ � δ∗

0 .
(iii) Assume that z ∈ X is a regular expanding fixed point of f . Let U be the maximal open neighborhood of z in the

sense that for any x ∈ U with x �= z, there exists k � 1 with f k(x) /∈ U , f −n(x) is uniquely defined in U for all
n � 1, and f −n(x) → z as n → ∞. U is called the local unstable set of F at z and is denoted by Wu

loc(z).
(iv) Assume that z ∈ X is a regular expanding fixed point of f . A point x ∈ X is called homoclinic to z if x ∈

Wu
loc(z), x �= z, and there exists an integer n � 1 such that f n(x) = z. A homoclinic orbit to z, consisting of a

homoclinic point x with f n(x) = z, its backward orbit {f −j (x)}∞j=1, and its finite forward orbit {f j (x)}n−1
j=1, is

called nondegenerate if for each point x0 on the homoclinic orbit there exist positive constants r1 and μ1 such
that

d
(
f (x), f (y)

)
� μ1 d(x, y), ∀x, y ∈ B̄r1(x0).

A homoclinic orbit is called regular if for each point x0 on the orbit, there exists a positive constant r2 such that
for any positive constant r � r2, f (x0) is an interior point of f (Br(x0)).

2.2. Several lemmas

In this subsection, several lemmas are given. Especially, a generalized inverse function theorem in finite-
dimensional spaces is established.

Lemma 2.1. Let (X,d) be a metric space, and let {An}∞n=1 be a sequence of compact sets of X and satisfy the

nestedness condition A1 ⊃ A2 ⊃ A3 ⊃ · · · ⊃ An ⊃ · · · . Then
⋂∞

n=1 An contains a single point if and only if d(An) → 0
as n → ∞, where d(An) is the diameter of An.
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Proof. The sufficiency is well known and the proof of the necessity is elementary. So the details are omitted. �
Since the one-sided symbolic dynamical system (Σ+

N ,σ ) is used in this paper, we first briefly recall its properties
for convenience. Let S := {1,2, . . . ,N} and

Σ+
N := {

α = (a0, a1, a2, . . .): ai ∈ S, i � 0
}

with the distance

ρ(α,β) :=
∞∑
i=0

d1(ai, bi)

2i
, d1(ai, bi) =

{
0, if ai = bi,

1, if ai �= bi,

where α = (a0, a1, a2, . . .) and β = (b0, b1, b2, . . .). Then (Σ+
N ,ρ) is a complete metric space and a Cantor set. The

shift map σ :Σ+
N → Σ+

N defined by σ(a0, a1, a2 . . .) = (a1, a2, . . .) is continuous. The system governed by σ is called
the one-sided symbolic dynamical system on N symbols. It has plentiful dynamical behaviors (cf. e.g., [8,10,20]).
Especially, it is chaotic in the sense of both Devaney and Li–Yorke, and has a positive topological entropy.

Lemma 2.2. Let (X,d) be a metric space and f :D ⊂ X → X a map. Assume that a map f is coupled-expanding in
Vj , 1 � j � N(N � 2).

(i) If Vα is a singleton set for some α = (a0, a1, a2, . . .) ∈ Σ+
N , then Vσ(α) is also a singleton set, where Vα :=⋂∞

n=0 f −n(Van).

(ii) If f is injective in Vj , 1 � j � N , respectively, and Vσ(α) is a singleton set for some α ∈ Σ+
N , then Vα is also a

singleton set.

Proof. Since the proof is elementary, its details are omitted. �
Lemma 2.3. Let (X,d) be a metric space, f :D ⊂ X → X a map, and V a subset of D with V̄ ⊂ D.

(i) If the set of the periodic points of f in V is dense in V , then the set of the periodic points of f in V̄ is dense in V̄ .
(ii) If f is topologically transitive in V , so is f in V̄ .

(iii) If f has sensitive dependence on initial conditions in V , so does f in V̄ .

Proof. The proofs of results (i) and (ii) are trivial. So their details are omitted.
We only show result (iii). Suppose that f has sensitive dependence on initial conditions in V with a sensitivity

constant δ. Now, suppose that f does not have sensitive dependence on initial conditions in V̄ . Then, there exists a
relatively nonempty open set U with respect to V̄ such that

d
(
f n(x), f n(y)

)
< δ ∀x, y ∈ U and ∀n � 1. (2.2)

It is evident that U ∩V �= φ and consequently, U ∩V is a relatively nonempty open set with respect to V . So, by the as-
sumption, there exist x1, x2 ∈ U ∩V and a positive integer k such that d(f k(x1), f

k(x2)) � δ, which contradicts (2.2).
Hence, f has sensitive dependence on initial conditions in V̄ . The proof is complete. �
Lemma 2.4. Let (X,d) be a metric space, f :Y ⊂ X → X a map, and D a nonempty subset of Y . Assume that f j is
continuous in D with f j (D) ⊂ Y , 1 � j � n − 1, and f n(D) = D for some positive integer n. Then f (E) = E with
E = ⋃n−1

j=0 f j (D). Furthermore,

(i) if f n has sensitive dependence on initial conditions in D, so does f in E;
(ii) if f n is topologically transitive in D, so is f in E.

Proof. By the assumption that f n(D) = D, it can be easily verified that f (E) = E.
(1) Suppose that f n has sensitive dependence on initial conditions in D with a sensitivity constant δ. Let U be any

relatively nonempty open set with respect to E. There exists a j , 0 � j � n − 1, such that U ∩ f j (D) �= φ. So, D ∩
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f −j (U) is a relatively nonempty open set with respect to D by using the continuity of f and f (E) = E. Further, by
the assumption, there exist two points x, y ∈ D ∩ f −j (U) and a positive integer m such that d(f mn(x), f mn(y)) � δ,

which implies that d(f mn−j (f j (x)), f mn−j (f j (y))) � δ. It is clear that mn − j � 1 and f j (x), f j (y) ∈ U . Hence,
f also has sensitive dependence on initial conditions in E and δ is also a sensitivity constant of f in E.

(2) Suppose that f n is topologically transitive in D. Let U and V be any two relatively nonempty open sets with
respect to E. There exist i, j , 0 � i, j � n − 1, such that U ∩ f i(D) �= φ and V ∩ f j (D) �= φ. So, D ∩ f −i (U) and
D ∩ f −j (V ) are relatively nonempty open sets with respect to D by using the continuity of f and f (E) = E. Since
f n is topologically transitive in D, there exists a positive integer k such that

f kn
(
D ∩ f −i (U)

) ∩ (
D ∩ f −j (V )

) �= φ,

which implies that there exists a point x ∈ D ∩ f −i (U) such that f kn(x) ∈ D ∩ f −j (V ). This yields that f i(x) ∈ U

and f kn+j−i (f i(x)) = f kn+j (x) ∈ V . It is evident that kn+j −i � 1. Hence, f kn+j−i (U)∩V �= φ and consequently,
f is topologically transitive in E. The entire proof of the lemma is finished. �

Finally, we establish a generalized inverse function theorem in finite-dimensional spaces.
By the well-known inverse function theorem (cf. [7,20]), if a map f :E ⊂ Rd → Rd is continuously differentiable

with the Jacobian detDf (x0) �= 0, where E is an open set and contains x0, then there exist two open sets U ⊂ E and
V ⊂ Rd and a unique map g such that

(i) x0 ∈ U,f (x0) ∈ V , and Df (x) is invertible in U ;
(ii) f :U → V is bijective;

(iii) g :V → U is continuously differentiable and f (g(y)) = y for all y ∈ V .

This implies that g is the inverse of the map f and also continuously differentiable in some neighborhood of f (x0).
In this theorem, the condition detDf (x0) �= 0 is very important. We shall remark that the condition detDf m(x0) �= 0
is also important in the existing results that snap-back repellers imply chaos [16,17,22], where x0 and m are specified
in Definition 2.5. It guarantees that the snap-back repeller is regular and nondegenerate. It is very interesting how to
weaken this condition such that the inverse of the map f still exists. It is noted that if the inverse map exists and is
differentiable at f (x0), then detDf (x0) �= 0. So, if this condition does not hold and the inverse map exists, then the
inverse map may be continuous in some neighborhood of f (x0), but is not differentiable at f (x0).

Lemma 2.5 (A generalized inverse function theorem). Let E be an open set of Rd and a map f :E → Rd continuously
differentiable with x0 ∈ E and detDf (x0) = 0. If rankDf (x0) = d − 1 and detDf (x) �= 0 does not change the sign
in Br0(x0) \ {x0} for some constant r0 > 0, then there exist two open sets U ⊂ Br0(x0) and V ⊂ Rd and a unique map
g such that

(i) x0 ∈ U , f (x0) ∈ V , and detDf (x) �= 0 for all x ∈ U \ {x0};
(ii) f :U → V is bijective;

(iii) g :V → U is continuous and f (g(y)) = y for all y ∈ V . Furthermore, g is continuously differentiable in
V \ {f (x0)}.

Proof. Without loss of generality, suppose that detDx′f ′(x′, xd)|x=x0 �= 0, where f = (f ′, fd), x = (x′, xd), f ′ is a
(d − 1)-dimensional vector-valued function, and x′ ∈ Rd−1. By the inverse function theorem with parameters, there
exist open sets U1,V1 ⊂ Rd−1 and U2 ⊂ R with U1 × U2 ⊂ E, and a unique map g′ such that

(1) x′
0 ∈ U1, y′

0 ∈ V1, x0
d ∈ U2, and Dx′f ′(x′, xd) is invertible in U1 × U2;

(2) f ′(·, xd) :U1 → Rd−1 is injective for any xd ∈ U2;
(3) g′ :V1 × U2 → U1 is continuously differentiable and f ′(g′(y′, xd), xd) = y′ for all y′ ∈ V1 and for all xd ∈ U2;

where x0 = (x′
0, x

0
d), x′

0 ∈ Rd−1, y0 = f (x0), and y′
0 is similarly defined to x′

0. Further, from the equation in (3), we
get that for all y′ ∈ V1, xd ∈ U2,
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Dy′g′(y′, xd) = (
Dx′f ′(x′, xd)

)−1∣∣
x′=g′(y′, xd )

,

Dxd
g′(y′, xd) = −(

Dx′f ′(x′, xd)
)−1

Dxd
f ′(x′, xd)|x′=g′(y′, xd ). (2.3)

Now, we consider the following scalar map with the parameter y′ ∈ V1:

h(y′, ·) := fd

(
g′(y′, ·), ·) :U2 → R.

It is clear that h(y′
0, x

0
d) = y0

d , h(y′, xd) is continuously differentiable in V1 × U2, and

Dxd
h(y′, xd) = Dx′fd

(
g′(y′, xd), xd

)
Dxd

g′(y′, xd) + Dxd
fd

(
g′(y′, xd), xd

)
,

which, together with (2.3), implies that for any y′ ∈ V1 and for any xd ∈ U2,

Dxd
h(y′, xd) = γ (x′, xd), (2.4)

where x′ = g′(y′, xd) and

γ (x′, xd) = −Dx′fd(x′, xd)
(
Dx′f ′(x′, xd)

)−1
Dxd

f ′(x′, xd) + Dxd
fd(x′, xd).

On the other hand, we have

detDf (x) = det

(
Dx′f ′(x′, xd) Dxd

f ′(x′, xd)

Dx′fd(x′, xd) Dxd
fd(x′, xd)

)
= det

(
Dx′f ′(x′, xd)

)
γ (x′, xd). (2.5)

It follows from (1) that detDx′f ′(x′, xd) �= 0 for all (x′, xd) ∈ U1 ×U2. By the continuity of Dx′f ′(x′, xd) in U1 ×U2,
detDx′f ′(x′, xd) does not change the sign in U1 × U2. In addition, it follows from (2.4) and (2.5) that for all y′ ∈ V1
and xd ∈ U2,

Dxd
h(y′, xd) = (

detDx′f ′(x′, xd)
)−1

detDf (x′, xd), (2.6)

where x′ = g′(y′, xd). Since detDf (x) �= 0 does not change the sign in Br0(x0) \ {x0}, there exist open sets U ′
1 ⊂

U1 and U ′
2 ⊂ U2 with x′

0 ∈ U ′
1 and x0

d ∈ U ′
2 such that U ′

1 × U ′
2 ⊂ Br0(x0) and V ′

1 = f ′(U ′
1 × U ′

2) := {f ′(x′, xd):
x′ ∈ U ′

1, xd ∈ U ′
2} is an open subset of V1. It follows from (2.6) that Dxd

h(y′
0, x

0
d) = 0 and Dxd

h(y′, xd) �= 0 does not
change the sign in V ′

1 × U ′
2 \ {(y′

0, x
0
d)}. Consequently, h(y′, ·) is strictly monotonic in U ′

2 for any y′ ∈ V ′
1. Further, by

using the fact that h(y′, xd) is continuously differentiable in V ′
1 × U ′

2, there exist open sets U ′′
2 ⊂ U ′

2, V ′′
1 ⊂ V ′

1, and
V2 ⊂ R, and a unique map gd such that

(4) x0
d ∈ U ′′

2 , y′
0 ∈ V ′′

1 , y0
d ∈ V2, and Dxd

h(y′, xd) �= 0 does not change the sign in V ′′
1 × U ′′

2 \{(y′
0, x

0
d)};

(5) h(y′, ·) :U ′′
2 → R is injective for any y′ ∈ V ′′

1 ;
(6) gd :V ′′

1 × V2 → U ′′
2 is continuous and h(y′, gd(y′, yd)) = yd for all y′ ∈ V ′′

1 and for all yd ∈ V2. Furthermore, gd

is continuously differentiable in V ′′
1 × V2 \ {y0}.

Set g(y) := (g′(y′, gd(y)), gd(y)) and U ′′
1 := g′(V ′′

1 × U ′′
2 ). It follows from (1)–(6) that

(7) U ′′
1 is an open subset of U ′

1, x0 ∈ U ′′
1 × U ′′

2 , y0 ∈ V ′′
1 × V2, and detDxf (x) �= 0 does not change the sign in

U ′′
1 × U ′′

2 \ {x0};
(8) f :U ′′

1 × U ′′
2 → Rd is injective;

(9) g :V ′′
1 × V2 → U ′′

1 × U ′′
2 is continuous and f (g(y)) = y for all y ∈ V ′′

1 × V2. Furthermore, g is continuously
differentiable in V ′′

1 × V2 \ {y0}.

Therefore, g is the continuous inverse of f . By setting V = V ′′
1 × V2 and U = g(V ) ⊂ U ′′

1 × U ′′
2 , (i)–(iii) hold. This

completes the proof. �
3. Chaos induced by coupled-expanding maps in compact sets

In this section, we establish a criterion of chaos in the sense of both Li–Yorke and Wiggins, induced by strictly
coupled-expanding maps in compact sets of metric spaces.
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Lemma 3.1. Let (X,d) be a metric space and Vj , 1 � j � N (N � 2), disjoint compact sets of X. If a continuous
map f :

⋃N
j=1 Vj → X satisfies

(i) f is strictly coupled-expanding in Vj , 1 � j � N ;
(ii) there exists α = (a0, a1, a2, . . .) ∈ Σ+

N such that Vα is a singleton set, where

Vα :=
∞⋂

n=0

f −n(Van);

(iii) f is injective in Vj , 1 � j � N , respectively,

then

(1) f has a positive topological entropy and is chaotic in the sense of Li–Yorke;
(2) there exists a perfect and compact subset D, which contains a Cantor set, of

⋃N
j=1 Vj such that f (D) = D and

f is chaotic in the sense of Wiggins on D.

Proof. Result (1) can directly follow from [31, Theorem 1] and [2, Corollary 2.4]. So it only needs to show result (2).
We only present the proof of result (2) in the case N = 2 for briefness. The proof in the other case is similar. The
proof is divided into four parts.

Let

Ω := {
β ∈ Σ+

2 : Vβ is a singleton set
}
, V :=

⋃
β∈Ω

Vβ.

By assumption (ii), α ∈ Ω . So, Ω and V are both nonempty.
(1) The set Ω is perfect and contains infinitely many points. In fact, for any given β = (b0, b1, . . .) ∈ Ω and for any

ε > 0, there exists a positive integer n such that 2−n < ε. Set γ = (b0, b1, . . . , bn−1, cn, bn+1, bn+2, . . .) ∈ Σ+
2 , where

cn �= bn. Then ρ(γ,β) = 2−n < ε and σn+1(γ ) = σn+1(β). By repeatedly using Lemma 2.2, it can be concluded that
Vγ is also a singleton set and consequently, γ ∈ Ω . Hence, Ω is perfect and contains infinitely many points.

In addition, it can be easily verified that σ(Ω) = Ω again by using Lemma 2.2, and consequently, f (V ) = V.

(2) The map f :V → V is topologically conjugate to σ :Ω → Ω . Define a map h :V → Ω as follows. Note that
Vβ ∩ Vγ = φ for any β,γ ∈ Ω with β �= γ . So, for any x ∈ V there exists a unique point β ∈ Ω such that {x} = Vβ .
Set h(x) = β. Then h is well defined in V . Since f (x) ∈ Vσ(h(x)) for any x ∈ V , we get that h(f (x)) = σ(h(x)), i.e.,
h ◦ f = σ ◦ h.

The rest is to show that h is homeomorphic. Obviously, h is bijective in V . We now show that h is continuous
in V . To do so, for any given x ∈ V and for any {xn}∞n=1 ⊂ V with xn → x as n → ∞, let h(x) = β = (b0, b1, . . .) and

h(xn) = βn = (b
(n)
0 , b

(n)
1 , . . .), n � 1. Then β,βn ∈ Ω , {x} = Vβ , and {xn} = Vβn for each n � 1. For any ε > 0, there

exists a positive integer k such that 2−k < ε. By the continuity of f , we have that f j (xn) → f j (x) as n → ∞ for
each j � 0. Since f j (x) ∈ Vbj

and f j (xn) ∈ V
b
(n)
j

, n � 1, for each 0 � j � k, and d(V1,V2) > 0, it follows that there

exists a positive integer N1 such that b
(n)
j = bj , 0 � j � k, for all n � N1. Hence, ρ(βn,β) � 2−k < ε for all n � N1.

This yields that h is continuous in V . We turn to show that h−1 is continuous in Ω . Fix any β = (b0, b1, . . .) ∈ Ω and
any {βn}∞n=1 ⊂ Ω with βn = (b

(n)
0 , b

(n)
1 , . . .) → β as n → ∞. Set x = h−1(β) and xn = h−1(βn), n � 1. Since Vβ is a

singleton set, it follows from Lemma 2.1 that d(V n
β ) → 0 as n → ∞, where V n

β = ⋂n
j=1 f −j (Vbj

). So, for any ε > 0,
there exists a positive integer N2 such that

d
(
V n

β

)
< ε ∀n � N2. (3.1)

In addition, since βn → β as n → ∞, there exists a positive integer N3 � N2 such that ρ(βn,β) < 2−N2 for all
n � N3, which implies that for all n � N3,

bn = bj , 0 � j � N2. (3.2)
j
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By using the fact that {x} = ⋂∞
j=0 V

j
β and {xn} = ⋂∞

j=0 V
j
βn

, n � 1, and from (3.2), it follows that x, xn ∈ V
N2
β for

each n � N3. This, together with (3.1), implies that d(xn, x) � d(V
N2
β ) < ε ∀n � N3, which yields that xn → x as

n → ∞. Hence, h−1 is continuous in Ω . Therefore, h :V → Ω is homeomorphic and consequently, f :V → V and
σ :Ω → Ω is topologically conjugate.

(3) Based on the discussions in parts (1) and (2) and by using the fact that Σ+
2 is totally disconnected, V is perfect

and totally disconnected, and contains infinitely many points. We turn to show that f is chaotic on V in the sense of
Wiggins. To do so, this part is divided into two subparts.

(3a) The map f has sensitive dependence on initial conditions in V . For any given x ∈ V and for any relatively open
neighborhood U of x with respect to V , h(U) is a relative open neighborhood of β to Ω by using the homeomorphism
of h, where β = h(x) = (b0, b1, . . .). Then there exists a positive integer n such that B2−n(β) ∩ Ω ⊂ h(U). Set γ =
(b0, b1, . . . , bn, cn+1, bn+2, . . .) ∈ Σ+

2 with bn+1 �= cn+1. It is evident that ρ(γ,β) = 2−(n+1) < 2−n and σn+2(γ ) =
σn+2(β). Since β ∈ Ω, it follows from Lemma 2.2 that γ ∈ Ω . So, we get that γ ∈ B2−n(β)∩Ω. Denoting {y} = Vγ ,
one has that h(y) = γ and consequently, y ∈ U . Since f n+1(x) ∈ Vbn+1 and f n+1(y) ∈ Vcn+1 , we have

d
(
f n+1(x), f n+1(y)

)
� d(Vbn+1 ,Vcn+1) = d(V1,V2) > 0.

Hence, f has sensitive dependence on initial conditions in V .
(3b) The map f is topologically transitive in V . Suppose that U and W are any two relatively nonempty open

subsets with respect to V . Fix a point x ∈ U and a point y ∈ W , and denote h(x) = β = (b0, b1, . . .) and h(y) = γ =
(c0, c1, . . .). By the homeomorphism of h, h(U) and h(W) are relatively nonempty open subsets with respect to Ω . It
is evident that β ∈ h(U) and γ ∈ h(W). So, there exists a sufficiently large integer n such that B2−n(β) ∩ Ω ⊂ h(U).
Set β ′ = (b0, b1, . . . , bn+1, c0, c1, . . .). Then σn+2(β ′) = γ and consequently, β ′ ∈ Ω again by Lemma 2.2. It is
evident that ρ(β,β ′) � 2−(n+1). This implies that β ′ ∈ B2−n(β) ∩ Ω . Hence, z = h−1(β ′) ∈ U . In addition, we have
that h(f n+2(z)) = σn+2(h(z)) = σn+2(β ′) = γ = h(y). By the injectivity of h, we get that f n+2(z) = y, which yields
that y ∈ f n+2(U) ∩ W and consequently, f n+2(U) ∩ W �= φ. Therefore, f is topologically transitive in V .

Based on the discussions in (3a) and (3b), we have proved that f is chaotic on V in the sense of Wiggins.
(4) By the continuity of f , it follows that f (V̄ ) ⊂ V̄ . Now, consider the converse inclusion. For any given y ∈ V̄ ,

there exists a sequence {yn}∞n=1 ⊂ V such that yn → y as n → ∞. Since f (V ) = V , there exists xn ∈ V such that
f (xn) = yn for each n � 1. From the compactness of V1 and V2, it follows that there exists a convergent subsequence
{xnk

} of {xn}. Suppose that xnk
→ x as nk → ∞. It is clear that x ∈ V̄ . So, by the continuity of f , we have that

ynk
= f (xnk

) → f (x) as nk → ∞. This yields that y = f (x) ∈ f (V̄ ) and consequently, V̄ ⊂ f (V̄ ). It then follows
that f (V̄ ) = V̄ . In addition, since V is perfect and contains infinitely many points, and V1 and V2 are compact, it can
be easily concluded that V̄ is perfect and compact, and contains a Cantor set. Based on the discussion in part (3), f is
chaotic on V in the sense of Wiggins. So, it follows from (ii) and (iii) in Lemma 2.3 that f is chaotic on V̄ in the
sense of Wiggins.

By setting D = V̄ , result (2) has been proved. The entire proof of this theorem is complete. �
Remark 3.1. From the proof of Lemma 3.1, V is totally disconnected. But the set D = V̄ in result (2) in Lemma 3.1
may have a nonsingleton connected component. So, D contains a Cantor set, but may not be a Cantor set.

The following result is a direct consequence of Lemma 3.1.

Theorem 3.1. Let (X,d) be a metric space and Vj , 1 � j � N (N � 2), disjoint compact sets of X. If a continuous
map f :

⋃N
j=1 Vj → X satisfies

(i) f is strictly coupled-expanding in Vj , 1 � j � N ;
(ii) there exist a j0, 1 � j0 � N , and a constant λ > 1 such that

d
(
f (x), f (y)

)
� λd(x, y) ∀x, y ∈ Vj0,

and f is injective in Vj , 1 � j �= j0 � N , respectively,

then all the results in Lemma 3.1 hold.
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4. Chaos induced by regular snap-back repellers

If a map f in Rd is continuously differentiable in some neighborhood of xj = f j (x0) (0 � j � m − 1), where x0
and m are specified in Definition 2.5, then the snap-back repeller is regular and nondegenerate if and only if Df (xj )

is invertible for 0 � j � m − 1. In this section, this condition is weakened.

Theorem 4.1. Let a map f : Rd → Rd have a snap-back repeller z in some norm ‖ · ‖ with f m(x0) = z for some
x0 ∈ Br0(z), x0 �= z, and some positive integer m � 2, where r0 is specified in Definition 2.5. Assume that f is
continuous in B̄r0(z) and in B̄δj

(xj ), respectively, for some positive constants δj with xj = f j (x0), 1 � j � m − 1. If
there exists a positive constant δ0 < ‖x0 − z‖ such that B̄δ0(x0) ⊂ B̄r0(z), f j (B̄δ0(x0)) ⊂ B̄δj

(xj ) for 1 � j � m − 1,
and z is an interior point of f m(Bδ0(x0)), then f has a positive topological entropy and is chaotic in the sense of
Li–Yorke.

Proof. We shall show that there exist a positive integer n � m and two disjoint compact sets V1 and V2 such that f n

is continuous in V1 ∪ V2 and strictly coupled-expanding in V1 and V2.
By Definition 2.5 and by the assumptions, there exists a constant λ > 1 such that f satisfies∥∥f (x) − f (y)

∥∥ � λ‖x − y‖ ∀x, y ∈ B̄r0(z). (4.1)

From (4.1), Lemma 2.2 in [21], and the continuity of f in B̄r0(z), it follows that, for any positive constant r � r0,
f (B̄r (z)) is closed, f (Br(z)) is open, and

f
(
B̄r (z)

) ⊃ B̄r (z), f
(
Br(z)

) ⊃ Br(z). (4.2)

This implies that z is a regular expanding fixed point of f and ∂f (Br(z)) = f (∂Br(z)). Again from (4.1), for any
positive constant r � r0 and for any x ∈ ∂Br(z), we get that ‖f (x) − z‖ � λ‖x − z‖ = λr , which implies that

f
(
B̄r (z)

) ⊃ B̄λr (z). (4.3)

Since z is an interior point of f m(B̄δ0(x0)) with x0 and δ0 specified in the assumptions in the theorem, there exists a
positive constant r1 < r0 such that

B̄r1(z) ⊂ f m
(
B̄δ0(x0)

)
. (4.4)

By noting λ > 1, there exists a positive integer k such that λk−1r1 < r0 and λkr1 � r0. So, it follows from (4.3) and
(4.4) that

f m+k
(
B̄δ0(x0)

) ⊃ B̄r0(z) ⊃ B̄λk−1r1
(z). (4.5)

Set

D1 = f −1(B̄r0(z)
) ∩ B̄r0(z), Di = f −1(Di−1) ∩ Di−1, i � 2.

Then D1 contains z and is a closed subset of B̄r0(z), and Di contains z and is a closed subset of Di−1 for each i � 2.
Further, it follows from (4.2) that f (D1) = B̄r0(z). It is easy to verify that f (Di−1) ⊃ Di−1 and f (Di) = Di−1 for
i � 2 by induction. For any x ∈ Di , f j (x) ∈ B̄r0(z) for 0 � j � i. Consequently, using (4.1), we have

‖x − z‖ � λ−i
∥∥f i(x) − z

∥∥ � λ−i r0, ∀x ∈ Di,

which implies that Di ⊂ B̄λ−i r0
(z) for i � 1. By referring to λ > 1 and δ0 < ‖x0 − z‖, there exists a positive integer

n � m + k such that

Dn ∩ B̄δ0(x0) = φ. (4.6)

Hence, V1 := Dn contains z and is a closed subset of B̄r0(z), f n(V1) = B̄r0(z), and f n is continuous in V1. Next, set

E1 = B̄δ0(x0) ∩ f −m
(
B̄r1(z)

)
, Ei = Ei−1 ∩ f −(m+i−1)

(
B̄λi−1r1

(z)
)
, 2 � i � k,

Ej = Ej−1 ∩ f −(m+j−1)
(
B̄r (z)

)
, k + 1 � j � n + 1 − m.
0
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By the continuity of f and from (4.3)–(4.5), it can be concluded that f m(E1) = B̄r1(z), f m+i−1(Ei) = B̄λi−1r1
(z)

(2 � i � k), f m+j−1(Ej ) = B̄r0(z) (k + 1 � j � n + 1 − m); E1 contains x0 and is a closed subset of B̄δ0(x0) and Ei

contains x0 and is a closed subset of Ei−1 for 2 � i � n+1−m; and f m+j is continuous in Ej for 1 � j � n+1−m.
Hence, V2 := En+1−m contains x0 and is a closed subset of B̄δ0(x0), f n is continuous in V2, and f n(V2) = B̄r0(z). In
addition, it follows from (4.6) that V1 ∩ V2 = φ.

In summary, V1 and V2 are disjoint compact sets, f n is continuous in V1 ∪ V2, and f n(Vj ) = B̄r0(z) ⊃
V1 ∪ V2, j = 1,2. By [31, Theorem 1] and its proof, there exists a compact subset Λ ⊂ V1 ∪ V2 with f n(Λ) = Λ

such that f n :Λ → Λ is topologically semi-conjugate σ :Σ+
2 → Σ+

2 . Since σ has a positive entropy, f n has a posi-
tive topological entropy, and consequently, f n is chaotic in the sense of Li–Yorke by [2, Corollary 2.4]. This yields
that f has a positive topological entropy by Theorem 1.2 in [20, Chapter IX], and is chaotic in the sense of Li–Yorke.
The proof is complete. �

The following two results are direct consequences of Theorem 4.1.

Corollary 4.1. Assume that a map f : Rd → Rd has a regular snap-back repeller z with x0, r0, and m specified in
Definition 2.5. If f is continuous in B̄r0(z) and in some neighborhood of f j (x0) for 1 � j � m − 1, then f has a
positive topological entropy and is chaotic in the sense of Li–Yorke.

Corollary 4.2. Assume that a map f : Rd → Rd has a regular homoclinic orbit Γ to a regular expanding fixed point z.
If f is continuous in some neighborhood of each point on Γ and in some neighborhood of z, then f has a positive
topological entropy and is chaotic in the sense of Li–Yorke.

Remark 4.1. From the proof of Theorem 4.1, it follows that if f has a regular snap-back repeller or a regular ho-
moclinic orbit to a regular expanding fixed point, and is continuous in the interested domains, then f n is strictly
coupled-expanding in certain two disjoint compact sets for some integer n � 2.

Remark 4.2. Theorem 4.1 only requires the following two assumptions:

(1) The first assumption: z is an expanding fixed point of f in B̄r0(z) in some norm ‖ · ‖ in Rd and f is continuous in
B̄r0(z). Its sufficient condition is that f is continuously differentiable in a neighborhood of z and all eigenvalues
of Df (z) are larger than 1 in norm by Theorem 4.3 in [22].

(2) The second assumption: there exists x0 ∈ Br0(z), x0 �= z, such that f m(x0) = z for some positive integer
m � 2, and there exist positive constants δj (0 � j � m − 1) with δ0 < ‖x0 − z‖ such that B̄δ0(x0) ⊂ B̄r0(z),

f j (B̄δ0(x0)) ⊂ B̄δj
(xj ), f is continuous in B̄δj

(xj ), and z is an interior point of f m(B̄δ0(x0)), where xj = f j (x0),
1 � j � m−1. Obviously, if xj+1 is an interior point of f (B̄δj

(xj )) for each j , 0 � j � m−2, and z is an interior
point of f (B̄δm−1(xm−1)), then z is an interior point of f m(B̄δ0(x0)). Therefore, if f is continuously differentiable
in some neighborhood of xj and detDf (xj ) �= 0, 0 � j � m − 1, then the second assumption is satisfied by the
classical inverse function theorem. In this special case, z is a nondegenerate and regular snap-back repeller and
we have obtained a better result than Theorem 4.1; that is, f is chaotic in the sense of both Devaney and Li–Yorke
(see [22, Theorem 4.4] and [25, Theorem 2.1]).

It is noted that the assumption, z is an interior point of f m(B̄δ0(x0)), is difficult to verify for higher-dimensional
maps in the case that detDf (xj ) = 0 or f is not differentiable in any neighborhood of xj for some j , 1 � j � m − 1.
We give some verifiable conditions about it in the following theorem.

Theorem 4.2. Let a map f : Rd → Rd have a fixed point z. Assume that

(i) f is continuously differentiable in some neighborhood of z and all eigenvalues of Df (z) are larger than 1 in
norm, which implies that there exist a positive constant r0 and a norm ‖ · ‖ in Rd such that z is an expanding fixed
point of f in B̄r (z) in the norm ‖ · ‖, and f is continuously differentiable in B̄r (z);
0 0
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Fig. 1. 2D computer simulation result shows chaos in the (x, y) space in the rectangular box [−8,8] × [−8,8].

(ii) there exists x0 ∈ Br0(z), x0 �= z, such that f m(x0) = z for some positive integer m � 2. Furthermore, f is con-
tinuously differentiable in B̄δj

(xj ) and satisfies that detDf (x) �= 0 does not change sign in B̄δj
(xj ) \ {xj }, and

rankDf (xj ) � d − 1 for 1 � j � m − 1, where xj = f j (x0) and δj is some positive constant.

Then

(1) f has a positive topological entropy and is chaotic in the sense of Li–Yorke;
(2) there exists a compact and perfect set E containing a Cantor set such that f (E) = E and f is chaotic in the

sense of Wiggins on E.

Proof. We will apply Theorem 3.1 with N = 2 to prove this theorem. For each j, 1 � j � m − 1, by assumption (ii),
and by Lemma 2.5 in the case of rankDf (xj ) = d − 1 and by the classical inverse function theorem in the case
of rankDf (xj ) = d , there exists a positive constant δ0

j � δj such that f : B̄δ0
j
(xj ) → f (B̄δ0

j
(xj )) is homeomorphic.

By assumption (i), z is an expanding fixed point of f in B̄r0(z) and f is continuous in B̄r0(z). It can be easily
verified that f : B̄r0(z) → f (B̄r0(z)) is homeomorphic by using the compactness of B̄r0(z), and the continuity and the
expansion of f in B̄r0(z). Since f is continuous in B̄δj

(xj ) for 0 � j � m − 1, there exists a positive constant δ0 such
that B̄δ0(x0) ⊂ B̄r0(z), z /∈ B̄δ0(x0), and f j (B̄δ0(x0)) ⊂ B̄δ0

j
(xj ), 1 � j � m − 1. So, f m : B̄δ0(x0) → f m(B̄δ0(x0)) is

homeomorphic.
Constructing the sets V1 and V2 and choosing an integer n similarly to those in the proof of Theorem 4.1, where

z, x0, r0, δ0, and m satisfy all the conditions in the above paragraph, one can conclude that V1 is a closed subset of
B̄r (z); V2 is a closed subset of B̄δ (x0); V1 ∩ V2 = φ; f n(V1) = f n(V2) = B̄r (z) ⊃ V1 ∪ V2; f n is continuous in V1;
0 0 0
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Fig. 2. Zoom area of the rectangular box [−4,4] × [−4,4] in Fig. 1.

f n :V2 → f n(V2) is homeomorphic; and f j is continuous in V1 and V2 for each j , 1 � j � n − 1. Furthermore, for
any x, y ∈ V1, f i(x), f i(y) ∈ B̄r0(z), 0 � i � n, and consequently, it follows that∥∥f n(x) − f n(y)

∥∥ � λn‖x − y‖.
Hence, f n satisfies all the assumptions in Theorem 3.1 for V1 and V2 with j0 = 1. By Theorem 3.1, f n has a positive
topological entropy and is chaotic in the sense of Li–Yorke, and there exists a perfect and compact subset D, which
contains a Cantor set, of V1 ∪ V2 such that f n(D) = D and f n is chaotic in the sense of Wiggins on D. With a
similar argument to the last paragraph in the proof of Theorem 4.1, one can conclude that f has a positive topological
entropy and is chaotic in the sense of Li–Yorke. Let E = ⋃n−1

j=0 f j (D). It can be easily verified that E is also perfect
and compact, contains a Cantor set, and satisfies f (E) = E. Hence, f is chaotic in the sense of Wiggins on E by
Lemma 2.4. The proof is complete. �
Remark 4.3. From the proof of Theorem 4.2, z is a regular snap-back repeller under the assumptions in Theorem 4.2.
Clearly, assumption (ii) in Theorem 4.2 is much easier to verify than the second assumption in Theorem 4.1 (see
Remark 4.2). So it is more convenient in applications.

Remark 4.4. By Theorem 4.2, there exists a compact and perfect set E containing a Cantor set such that f (E) = E

and f is chaotic in the sense of Wiggins on E. Obviously, it is useful to know where the set E lies in its application.
From the constructions of V1 and V2 in the proof of Theorem 4.2, we can figure out that

E ⊂ B̄r0(z) ∪ B̄δ0
1
(x1) ∪ · · · ∪ B̄δ0

m−1
(xm−1),

where z, r0,m,x1, . . . , xm−1 are specified in assumptions (i) and (ii) in Theorem 4.2; and δ0
j , 1 � j � m − 1, satisfy

that f : B̄δ0
j
(xj ) → f (B̄δ0

j
(xj )) is homeomorphic.
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Fig. 3. Zoom area of the rectangular box [−1,1] × [−1,1] in Fig. 2.

5. An example

In this section, we discuss an example of two-dimensional map, which shows that the assumptions in Theorem 4.2
are indeed weaker than those in the relative existing results.

Example 5.1. Consider the following two-dimensional map:

f (x, y) =

⎧⎪⎨
⎪⎩

4(x, y), if (x, y) ∈ B̄ 3
2
(0),

arbitrary, if (x, y) ∈ B2(0) \ B̄ 3
2
(0),

(sin((x − 3)3 + x(y − 3)2), sin(y − 3)), if (x, y) /∈ B2(0),

where B̄ 3
2
(0) is a closed ball of radius 3

2 , centered at the origin (0,0), and B2(0) is an open ball of radius 2, centered

at (0,0), with the classical Euclidean norm ‖ · ‖ in R2. It is clear that (0,0) is a fixed point of f and f is continuously
differentiable in the open ball B 3

2
(0), satisfying Df (0,0) = 4 I2 and

∥∥f (x1, y1) − f (x2, y2)
∥∥ = 4

∥∥(x1, y1) − (x2, y2)
∥∥, ∀(x1, y1), (x2, y2) ∈ B̄ 3

2
(0).

This implies that (0,0) is a regular expanding fixed point of f in B̄ 3
2
(0). Setting x0 = y0 = 3

4 , we see that (x0, y0) ∈
B 3

2
(0), f (x0, y0) = (3,3), and f (3,3) = (0,0). So (0,0) is a snap-back repeller of f with m = 2. In addition, f is

continuously differentiable in B1((3,3)) with Jacobian matrix

Df (x, y) =
(

(3(x − 3)2 + (y − 3)2)g(x, y) 2x(y − 3)g(x, y)

0 cos(y − 3)

)
,

which yields that

detDf (x, y) = (
3(x − 3)2 + (y − 3)2)g(x, y) cos(y − 3), (x, y) ∈ B1

(
(3,3)

)
,
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where g(x, y) = cos((x − 3)3 + x(y − 3)2). Clearly, rankDf (3,3) = 1, and detDf (x, y) > 0 for all (x, y) ∈
B̄ π

10
((3,3)) \ {(3,3)}. Hence, all the assumptions in Theorem 4.2 are satisfied. Therefore, f is chaotic in the sense of

both Li–Yorke and Wiggins by Theorem 4.2.
Since detDf (3,3) = 0, the origin is a degenerate snap-back repeller. So the relative existing results in [16,17,22]

are not applicable to this map.
In order to help better visualize the theoretical results, three computer simulations are done. For it, take f (x, y) =

4(x, y) for (x, y) ∈ B2(0) \ B̄1(0). In this case, f (R2) = B8(0). The simulation results for this 2D map in the (x, y)

space are shown in the rectangular boxes [−8,8]× [−8,8], [−4,4]× [−4,4], and [−1,1]× [−1,1], respectively, see
Figs. 1–3. They clearly show that the dynamical behaviors of the map are complicated.
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