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a b s t r a c t 
In this paper, we consider a general realistic nonlinear elastic rod model which is embed- 
ded in an external medium with weak disturbance. We apply the geometric singular per- 
turbation theory to prove the existence of a unique periodic traveling wave in this model. 
With a dynamical system approach, it is shown that the periodic wave appears near a 
stationary state and then amplifies and degenerates into a solitary wave. Simulations are 
presented to demonstrate an excellent agreement with the theoretical predictions. 

© 2021 Elsevier B.V. All rights reserved. 

1. Introduction 
In material science, it is very important to assess the durability of materials and structures. One efficient way to assess 

the durability of elastic materials is to study the long quasi-stationary and localized strain waves that propagate over long 
distance along elastic waveguides, because the waves transfer energy during their propagation. The strain waves may be 
deformed, amplified or broken due to the inhomogeneity in the waveguide or due to the influence of externally dissipative 
medium on the waveguide lateral surface. Dissipative effects may arise from the internal features of the elastic material. 
Since in reality dissipation always exists, which may be caused by internal features of the elastic material, an irreversible 
part should be included into the stress tensor in addition to the reversible one depending only upon the density of the 
Helmholtz energy [1] . Consequently, the governing equations should contain viscoelastic terms in the strains. Another type 
of dissipation may also occur on the lateral surface of an elastic waveguide, for example, Kerr [2] proposed a viscoelastic 
model describing an elastic body which involves external snow (or permafrost) medium. 

In this paper, our study is focused on a particular physical problem, formulated by Porubov and Velarde [3] , to investi- 
gate the propagation of a longitudinal strain wave in an isotropic cylindrical elastic rod, which is embedded in an external 
medium. For the convenience of readers, we take the modeling formulas from [3] to outline the description of the problem 
as follows. In [3] , the cylindrical coordinates (x, r, φ) and the displacement vector V = (u, w, 0) are used to derive the equa- 
tion, for which the torsion is neglected, where x ∈ (−∞ , + ∞ ) is along the axis of the rod, r is the radial coordinate, and 
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φ ∈ [0 , 2 π ] is a polar angle. Then the Green-Lagrange strain tensor is defined by 

C = [ ∇ V + (∇ V ) T + ∇ V (∇ V ) T ] 
2 , (1) 

where T denotes transpose. The externally dissipative medium yields a normal stress P ∗rr on the lateral surface of the rod at 
r = R , 

P ∗rr = −k 
r w − ηw t + χ r 2 w xxt , (2) 

where t , k , η and χ represent time, the stiffness measure or the compressibility coefficient, the visco-compressibility coef- 
ficient and the viscosity coefficient of the external medium, respectively. 

Suppose the deformation is adiabatic, then the Lagrangian density L is measured by the difference between the bulk 
density of the internal energy % and the kinetic energy density K, described by 

L = K − % = ρ0 
2 

[ (
∂w 
∂t 

)2 
+ ( ∂u 

∂t 
)2 ] 

− %(I k ) , (3) 
where ρ0 denotes the material density of the rod at t 0 , I k ( k = 1 , 2 , 3 ) is the invariant of the tensor C, given by 

I 1 (C) = Tr C, I 2 (C) = ( Tr C ) 2 − Tr C 2 
2 , I 3 (C) = det (C) . 

The strain-induced thermodynamic changes are neglected because of weak strains. Then, % is evaluated by the following 
potential strain energy density according to Murnaghan’s approximation, which has accurate applicability to a wide class of 
nonlinear elastic materials [4,5] , 

% = λ + 2 µ
2 I 2 1 − 2 µI 2 + l + 2 m 

3 I 3 1 − 2 mI 1 I 2 + nI 3 , (4) 
where λ and µ are Lamé coefficients, characterizing the linear elastic properties of the isotropic material, while l, m and n 
represent the Murnaghan moduli which account for nonlinear elastic properties of the isotropic material. Note that λ and 
µ only take positive values. Then, by imposing the boundary conditions to the action functional, we have 

δS = δ ∫ t 1 
t 0 d t [2 π ∫ + ∞ 

−∞ d x ∫ R 
0 rLd r + 2 π ∫ + ∞ 

−∞ P ∗rr wd x ]. (5) 
Porubov and Velarde [3] applied Hamilton’s principle and variational analysis to derive the following equation via a series 
of substitutions (see [3] for more details): 

v tt − α1 v xx − α2 v xxt − α3 (v 2 )
xx − α4 v xxxx + α5 v xxtt − α6 (v 2 )

xxt − α7 v xxxxt + α8 v xxttt = 0 , (6) 
where the coefficients αi , i = 1 , 2 , · · · , 8 , are given in Appendix B of [3] . An exact analytic solitary wave solution was 
obtained in (6) under the following constraint [3] : 

α6 (α4 α6 − α3 α7 ) = (α1 α6 − α2 α3 )(α5 α6 − α3 α8 ) . 
Now we consider possible wave solutions in the general system (6) . Without any additional assumptions, finding traveling 
wave solutions in system (6) becomes extremely difficult. However, if the external dissipative medium is assumed to be 
weak, which is often observed in reality [3] , then all the coefficients of the dissipative terms in (6) are small relative to 
the other ones and can be expressed in the form of α2 = ϵβ2 , α6 = ϵβ6 , α7 = ϵβ7 , α8 = ϵβ8 , ( 0 < ϵ ≪ 1 ) under which 
(6) becomes 

v tt − α1 v xx − α3 (v 2 )
xx − α4 v xxxx + α5 v xxtt = ϵ (

β2 v xxt + β6 (v 2 )
xxt + β7 v xxxxt − β8 v xxttt ). (7) 

Even under the above assumption, it is still very difficult to find a wave solution or even just prove the existence of a wave 
solution in system (7) . With a numerical verification, Porubov and Velarde [3] have demonstrated that equation (7) possesses 
a solitary which tends to the solitary of system (7) as ϵ → 0 . Nevertheless, the following questions are still open: 
1. Can the equation (7) have periodic wave solutions? 
2. If equation (7) has periodic wave solutions, then what kind of balance exists between the externally dissipative medium 

and the nonlinearity, which controls the periodic and solitary waves. 
In this paper, we will apply the Geometric Singular Perturbation Theory (GSPT) [6] to provide a rigorous proof for the 

existence of a unique periodic wave in equation (7) . We will also show that as the parameters are varied in a range of the 
ratio of two elliptic integrals, the periodic wave appears near a constant stationary state and then amplifies and degenerates 
into a solitary wave. Our these results answer the above two open questions. The novelty of our method is that the method 
is not only applicable for proving the existence of a unique wave solution, but can also be easily generalized to deal with 
the case with multiple wave solutions. 

Periodic travelling wave is related to a spatio-temporal oscillation phenomenon in many real word problems described by 
partial differential equations (PDE), which is a particular type of non-uniform distribution, in which the related quantity or 

2 



X. Sun, Y. Zeng and P. Yu Commun Nonlinear Sci Numer Simulat 102 (2021) 105921 
density varies periodically in one spatial direction, as well as in time, exhibiting a wave in a combined spatial and temporal 
oscillation. When a PDE model is transformed to an ordinary differential equation (ODE) model, a periodic orbit in the 
ODE model corresponds to a wave solution in the PDE model. In particular, a periodic travelling wave in one dimensional 
PDE corresponds to a limit cycle in its associated ODE system. However, the Lypunov stability of the limit cycle does not 
necessarily imply the stability of the corresponding periodic travelling wave. In fact, it has been shown that [7,8] the stability 
of periodic travelling wave depends partially on its amplitude, i.e., a periodic travelling wave with sufficiently low amplitude 
is unstable even if the travelling wave equation has supercritical Hopf bifurcation. 

The GPST is widely applied to study differential dynamical systems involving multiple time scales, which exhibit slow- 
fast motions, and such a system is usually called singular perturbation system [6] . For an illustration, consider the following 
2-dimensional dynamical system: 

dx 1 
dt = f (x 1 , x 2 , ε) , dx 2 

dt = ε g(x 1 , x 2 , ε) , (8) 
where (x 1 , x 2 ) ∈ R 2 , 0 < ε ≪1 , and f, g∈ C k , k ≥3 , x 1 and x 2 are called fast and slow variables. Introducing τ = εt into (8) yields 

ε dx 1 
dτ

= f (x 1 , x 2 , ε) , dx 2 
dτ

= g(x 1 , x 2 , ε) . (9) 
Here, the systems (8) and (9) are called fast and slow systems, respectively with the fast time t and the slow time τ . To 
study slow-fast motions in systems (8) and (9) , the basic idea is to first consider their limiting systems as ε → 0 , yielding 
the fast subsystem, 

dx 1 
dt = f (x 1 , x 2 , 0) , dx 2 

dt = 0 , (10) 
and the slow subsystem, 

0 = f (x 1 , x 1 , 0) , dx 2 
dτ

= g(x 1 , x 2 , 0) , (11) 
respectively. Note that the singular points of the fast subsystem (10) , determined by the equation f (x 1 , x 2 , 0) = 0 , defines a 
critical manifold, also called slow manifold. It is easy to see that the fast subsystem defines a fast manifold in the horizontal 
direction. Therefore, if the fast and slow manifolds can form a closed loop, then the system (8) may exhibit slow-fast periodic 
motions (e.g., canard cycle) under a small perturbation. 

The Bogdanov-Takens (B-T) bifurcation is associated with a double-zero eigenvalue in dynamical systems (for example 
see [9–11] ). Besides the popular Hopf bifurcation, the B-T bifurcation also plays an very important role in the study of 
dynamical behaviours of nonlinear systems. It is well known that even for codimension-two B-T bifurcation, saddle-node 
bifurcation, Hopf bifurcation and Homoclinic loop bifurcation can occur near a critical point. In particular, the Homoclinic 
loop bifurcation is analyzed by using the Melnikov function method with proper scaling. This establishes the relation be- 
tween the B-T bifurcation and the general bifurcation in near-Hamiltonian systems. Certainly, using B-T bifurcation to study 
a near-Hamiltonian system is only applicable if there exists a B-T equation which matches the near-Hamiltonian system. 

In a recently published article [12] , the GSPT has been applied to study the coexistence of solitary and periodic waves 
in convecting shallow water fluid. But it should be noted that the two Alebian integrals considered in [12] have monotone 
property which makes the proof easy, while that in this paper do not have this property. Moreover, in this paper when 
proving the existence of a unique zero of the ratio of two Albelian integrals, we first apply the classical codimension-two 
B-T bifurcation theory [13] and then use the geometric approach with the Chebyshev criterion [14] , giving a comparison to 
show that the geometric method is better and simpler than the method based on the classical B-T bifurcation theory. Our 
this contribution proves a better method for studying traveling wave solutions in PDEs and promotes further development 
in this research area. 

In the next section, we perform a reduction analysis which transforms system (7) to a singularly perturbed ODE system, 
yielding two perturbed Hamiltonian systems. In Section 3, we prove the existence of a unique limit cycle in the reduced 
ODE system, which corresponds to a unique wave solution of system (7) . Two proofs are provided: One is based on the 
classical B-T bifurcation theory with the equation given in [13] , and the other is based on a dynamical system approach 
with the Chebyshev criterion. Their comparison shows the advantage of the latter, which is better and simpler than the 
former. Then, in Section 4, the theoretical results are applied to numerical examples of system (7) with the real data taken 
from [3] . In fact, it was assumed in [3] that an analytic wave solution exists and then the authors applied expansion to find 
approximate solutions. Numerical simulations were also given in [3] to illustrate the analytic predictions. We will use the 
theoretical results to prove the existence of a unique wave solution and present simulation to verify the prediction. Finally, 
conclusion is drawn in Section 5. 
2. Reduction of equation (7) 

In this section, the traveling wave problem for the isotropic cylindrical elastic rod embedded in an externally dissipa- 
tive medium is reduced into a singular perturbation problem. We first show that the related critical manifold is normally 
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hyperbolic, and then restrict the analysis on the hyperbolic critical manifold to form a regular perturbation problem. For 
the regularly perturbed model, we construct the Melnikov function on the whole Hamiltonian-periodic structure, and con- 
sider its zeros globally. The existence and uniqueness of the zero implies that a unique periodic wave can emerge from the 
original integrable structure. 

First, introducing the wave profile z = x − ct into equation (7) and integrating it twice we obtain a 3rd-order ODE: 
(c 2 − α1 ) v − α3 v 2 + (c 2 α5 − α4 ) v zz = −cϵβ2 v z − 2 cϵβ6 vv z + ϵ(c 3 β8 − cβ7 ) v zzz . (12) 

We assume that c > 0 , and that the boundary conditions satisfy 
lim 
z→∞ dv 

dz = lim 
z→∞ d 2 v dz 2 = lim 

z→∞ d 3 v dz 3 = 0 . 
Equation (12) can be rewritten as an equivalent dynamical system, 

dv 
dz = y, 
dy 
dz = w, 
ϵ(c 3 β8 − cβ7 ) dw 

dz = (c 2 − α1 ) v − α3 v 2 + (c 2 α5 − α4 ) w + ϵcβ2 y + 2 ϵcβ6 v y, 
(13) 

which is singular at ϵ = 0 , since the solution does not converge uniformly as ϵ → 0 to a singular solution for ϵ = 0 . Further, 
introducing a relatively fast time scale ζ = z/ϵ into the above system, we have 

dv 
dζ

= ϵy, 
dy 
dζ

= ϵw, 
(c 3 β8 − cβ7 ) dw 

dζ
= (c 2 − α1 ) v − α3 v 2 + (c 2 α5 − α4 ) w + ϵcβ2 y + 2 ϵcβ6 v y, 

(14) 

which is equivalent to systems (13) for ϵ > 0 , and both systems (13) and (14) are singular perturbation systems. System 
(13) is usually called slow-subsystem since the scaled time z is slow, and system (14) is referred as fast-subsystem because 
time ζ is fast. Equations (13) and (14) have the following limiting forms as ϵ → 0 : 

dv 
dz = y, 
dy 
dz = w, 
0= (c 2 − α1 ) v − α3 v 2 + (c 2 α5 − α4 ) w, 

(15) 
and 

dv 
dζ

= 0 , 
dy 
dζ

= 0 , 
(c 3 β8 − cβ7 ) dw 

dζ
= (c 2 − α1 ) v − α3 v 2 + (c 2 α5 − α4 ) w, 

(16) 

respectively. The slow system (15) is a differential-algebraic system and its flow can be confined to the set, 
M 0 = { (v , y, w ) ∈ R 3 | (c 2 − α1 ) v − α3 v 2 + (c 2 α5 − α4 ) w = 0 } , (17) 

which is the equilibrium set of system (16) . M 0 is a two-dimensional critical (slow) manifold. 
In classical GSPT [6] , the connected components of the critical manifold M 0 are said normally hyperbolic if each equilib- 

rium point in the component of system (16) is hyperbolic. When the critical manifold is normally hyperbolic, there exists 
a normally hyperbolic, slow manifold M ϵ , which approaches M 0 in Hausdorff distance as ϵ → 0 . The flow of (13) can be 
projected onto the slow manifold M ϵ , and then the singular perturbation model is usually reduced to a regular perturbation 
problem, see more details in [6] . 

The linearized matrix of the fast system (14) restricted to M 0 is given by 
[

0 0 0 
0 0 0$ c 2 − α1 ) − 2 α3 v 0 c 2 α5 − α4 

]

which has no purely imaginary eigenvalues. Therefore, M 0 is normally hyperbolic by Fenichel’s criterion (pages 74-75 in 
[6] ). Hence, the critical manifold M 0 persists as a two-dimensional slow manifold M ϵ for sufficiently small ϵ. 
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Suppose w , restricted to M ϵ , can be expressed as 

w = − (c 2 − α1 ) v − α3 v 2 
(c 2 α5 − α4 ) + ϵ 00 (v , y ) + ϵ ∞ ∑ 

i =1 0i (v , y ) ϵ i . (18) 
Then we have 

M ϵ = { 
(v , y, w ) ∈ R 3 ∣∣∣w = − (c 2 −α1 ) v − α3 v 2 

(c 2 α5 − α4 ) + ϵ 00 (v , y ) + ϵ ∞ ∑ 
i =1 0i (v , y ) ϵ i } 

. (19) 
Substituting (18) into the slow system (13) yields 

ϵ(c 3 β8 − cβ7 ) (α1 − c 2 + 2 α3 v ) y 
(c 2 α5 − α4 ) + O (ϵ2 ) 

= (c 2 − α1 ) v − α3 v 2 + ϵcβ2 y + 2 ϵcβ6 v y 
+ (c 2 α5 −α4 ) [ − (c 2 −α1 ) v−α3 v 2 

(c 2 α5 − α4 ) + ϵ 00 (v , y ) + ϵ ∞ ∑ 
i =1 0i (v , y ) ϵ i ] +O (ϵ2 ) . 

(20) 

Comparing the coefficient of ϵ on both sides of (20) , we obtain 
00 (u, v ) = (l 0 + l 1 v ) y, (21) 

where 
l 0 = (c 3 β8 − cβ7 )(α1 − c 2 ) − cβ2 (c 2 α5 − α4 ) 

(c 2 α5 − α4 ) 2 , 
l 1 = 2(c 3 β8 − cβ7 ) α3 − 2 cβ6 (c 2 α5 − α4 ) 

(c 2 α5 − α4 ) 2 . (22) 
Then, system (13) projected on M ϵ has the form, 

dv 
dz = y, 
dy 
dz = (α1 − c 2 ) v + α3 v 2 

(c 2 α5 − α4 ) + ϵ (l 0 + l 1 v ) y + O (ϵ2 ) . (23) 
When α1 −c 2 

c 2 α5 −α4 < 0 , introducing the transformations: v = s ̃  v , y = a 1 ̃  y , z = b 1 ξ and ˜ ϵ = b 1 ϵ, where 
s = −α1 − c 2 

α3 , b 1 = ( c 2 − α1 
c 2 α5 − α4 

)− 1 
2 
, a 1 = s 

b 1 , (24) 
into (23) we obtain the following dimensionless system (in which the tilde notation has been dropped for simplicity), 

dv 
dξ = y, 

dy 
dξ = −v ( 1 − v ) + ϵ( γ0 + γ1 v ) y, (25) 

where 
γ0 = l 0 , γ1 = s l 1 (26) 

in which l 0 and l 1 are given in (22) . System (25) ϵ=0 is a Hamiltonian system with the Hamiltonian, 
H(v , y ) = y 2 

2 + v 2 
2 − v 3 

3 . 
When α1 −c 2 

c 2 α5 −α4 > 0 , we introduce v = s ̃  v , y = a 2 ̃  y , z = b 2 ξ and ̃  ϵ = b 2 ϵ with 
s = −α1 − c 2 

α3 , b 2 = ( α1 − c 2 
c 2 α5 − α4 

)− 1 
2 
, a 2 = s 

b 2 , 
into (23) to obtain the dimensionless system (with tilde dropped), 

dv 
dξ = y, 

dy 
dξ = v ( 1 − v ) + ϵ( γ0 + γ1 v ) y, (27) 

where γ0 and γ1 are given in (26) . System (27) ϵ=0 is also a Hamiltonian system with the Hamiltonian 
H ∗(v , y ) = y 2 

2 − v 2 
2 + v 3 

3 . 
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Fig. 1. (a) phase portrait of systems (25) | ϵ=0 ; and (b) phase portrait of systems (27) | ϵ=0 , where the homoclinic loops (in blue color) correspond to two 
types of solitary waves of the model (7) ϵ=0 . 

Systems (25) and (27) are near-Hamiltonian systems, and the two homoclinic loops associated with the systems (25) ϵ=0 
and (27) ϵ=0 are defined by H(v , y ) = 1 

6 and H ∗(v , y ) = 0 , respectively, as shown in Figure 1 . The two homoclinic loops 
correspond to the solitary waves of the original model (7) ϵ=0 (without dissipative medium). 

It should be noted that the two near-Hamiltonian systems (25) and (27) are equivalent under the following transforma- 
tion (from system (27) to (25) ): 

v → 1 − v , y → y, ξ → −ξ , −(γ0 + γ1 ) → γ0 , γ1 → γ1 . (28) 
Thus, we will only prove the existence of periodic waves associated with system (25) , and all the simulations are presented 
for this system. 

For system (25) ϵ=0 , there is a family of periodic orbits 3h defined by { (v , y ) | H(v , y ) = h, h ∈ (0 , 1 6 ) } . Let (v , y ) = (ρ(h ) , 0) 
denote the intersection point of the periodic orbit 3h with the positive v -axis, T be the period of the periodic orbit 3h . 
Further, suppose that 3h,ϵ is an orbit of (25) starting from (ρ(h ) , 0) at time ξ = 0 , and first intersecting the positive v -axis 
at (π (h, ϵ) , 0) at time ξ = ξ (ϵ) . Then, the difference between the two intersection points can be expressed as 

∫ 
3h,ϵ

dH = H(π (h, ϵ) , 0) − H(ρ(h ) , 0) = ∫ 
3h,ϵ

v (1 − v ) dv + ydy 
= ∫ ξ (ϵ) 

0 {
v (1 − v ) y + y [− v (1 − v ) + ϵ(γ0 + γ1 v ) y ]}dξ

= ϵ∫ ξ (ϵ) 
0 (γ0 + γ1 v ) y 2 dξ ! ϵ F(h, ϵ) . 

By theorem of continuousness function, we have 
lim 
ϵ→ 0 3h,ϵ = 3h , lim 

ϵ→ 0 π (h, ϵ) = ρ(h ) , lim 
ϵ→ 0 ξ (ϵ) = T , 

and thus, 
F(h, ϵ) = ∫ T 

0 (γ0 + γ1 v ) y 2 dξ + O (ϵ) = ∮ 
3h (γ0 + γ1 v ) ydv + O (ϵ) . (29) 

Define 
M (h, γ0 , γ1 ) = ∮ 

3h (γ0 + γ1 v ) ydv , (30) 
which is called (the first-order) Melnikov function constructed on the whole periodic structure of system (25) ϵ=0 . 

Similarly, we can construct a Melnikov function for system (27) on the periodic annulus { 3∗
h } = { (v , y ) | H ∗(v , y ) = h, h ∈ 

(− 1 
6 , 0) } , given by 

M ∗(h, γ0 , γ1 ) = ∮ 
3∗

h (γ0 + γ1 v ) ydv . (31) 
In the next section, we will establish the existence of a unique zero of the Melnikov functions M (h, γ0 , γ1 ) in h ∈ (0 , 1 6 ) . 

3. Existence of periodic waves in model (7) 
In this section, we show that the Melnikov function M (h, γ0 , γ1 ) has a unique zero in h ∈ (0 , 1 6 ) . M (h, γ0 , γ1 ) can be 

rewritten as 
M (h, γ0 , γ1 ) = γ0 m 0 (h ) (1 + γ1 

γ0 m 1 (h ) 
m 0 (h ) 

)
, (32) 
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where 

m 0 (h ) = ∮ 
3h ydv , m 1 (h ) = ∮ 

3h v ydv , 
Note that 

m 0 (h ) = ∮ 
3h ydv = ∫ ∫ 

4
dv dy > 0 , 

by Green formula, where 4 is the region bounded by 3h . Therefore, m 1 (h ) 
m 0 (h ) is well defined in (0 , 1 6 ) . 

First, we use the classical B-T bifurcation theory to prove that M (h, γ0 , γ1 ) has a unique zero in h ∈ (0 , 1 6 ) , which needs 
a system having a double-zero eigenvalue at an equilibrium point to match our system (25) under an appropriate scaling. 
This system happens to exist in [13] and the results given in that article can be directly applied to prove that the Melnikov 
function for our system (25) has a unique zero, that is, there exists a unique limit cycle between the center (0,0) and the 
homoclinic loop passing through the saddle point (1,0). Then, we briefly describe a dynamical system approach based on 
the Chebyshev criterion [14] , since this approach can be easily generalized to consider other more complex PDEs, while the 
traditional B-T bifurcation theory may not be applicable. The main idea of analyzing homoclinic cycles in B-T bifurcation is 
to take proper scaling and transform the system to a perturbed Hamiltonian system, and then apply the Abelian integral 
to prove the existence of the unique zero of the Melnikov function, which is certainly the same as the dynamical approach 
to directly analyze the Melnikov function for system (25) . It should be pointed out that the B-T bifurcation theory is only 
applicable for the case in proving a unique zero of Melnikov function, it fails for the case when the Melnikov function has 
multiple zeros. 

We take equation (1.1) from [13] and ignore the higher-order terms to obtain the following system, 
dX 
dt = Y, 
dY 
dt = µ X + ν Y + M X 2 + 3 X Y, (33) 

where M ̸ = 0 , 3 ̸ = 0 , and µ and ν are parameters. When µ= ν = 0 , the linearized system of (33) has a doulbe-zero eigenvalue 
at the origin. It is noted that the origin (X, Y ) = (0 , 0) will not remain a singular point under general perturbation, and it 
does not hold symmetry. System (33) has a transcritical bifurcation, while the generic unfolding µ + νX , instead of µX + νY , 
yields a saddle-node bifurcation. 

It is easy to show that system (33) has two equilibrium solutions E 0 = (0 , 0) and E 1 = (−µ, 0) . Using a linear analysis we 
know that there exists a transcritical bifurcation at ν=0 between E 0 and E 1 . Hopf bifurcation occurs either from E 0 for µ< 0 
and from E 1 for µ> 0 . To prove the existence of limit cycles around E 0 , we take ϵ= √ −µ, µ< 0 , | µ| ≪1 . Further, introducing 
the following scales: 

X = ϵ2 v , Y = ϵ3 y, ν = ϵ2 γ0 , ξ = ϵ t, (34) 
into system (33) we obtain 

dv 
dξ

= y, 
dy 
dξ

= −v (1 − Mv ) + ϵ(γ0 + 3 v ) y. (35) 
Now letting M =1 and 3=γ1 in system (35) leads to our system (25) . The main task of the paper [13] is to prove that 
the Melnikov function M given in (25) has a unique zero by showing that the ratio function m 1 (h ) 

m 0 (h ) is monotonic. In [13] the 
authors applied the averaging theory and the elliptic integrals of the first and second kind to prove the monotonicity. Hence, 
we can directly apply the conclusion obtained in [13] and conclude that m 1 (h ) 

m 0 (h ) is monotonic. 
In the following, we briefly present the dynamical system approach based on the Chebyshev criterion [14] to prove that 

m 1 (h ) 
m 0 (h ) is monotonic for h ∈ (0 , 1 6 ) . To achieve this, let 

U(v ) = H(v , y ) − y 2 
2 = v 2 

2 − v 3 
3 , 

L i (v , Z) = v i 
U ′ (v ) − Z i 

U ′ (Z) , for i = 0 , 1 , (36) 
where Z is defined by q (v , Z) = 0 , where 

q (v , Z) = 2 v 2 + 2 v Z + 2 Z 2 − 3 v − 3 Z, (37) 
satisfying 

U(v ) − U(Z) = − v − Z 
6 q (v , Z) . (38) 
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Fig. 2. Simulation of the ratios of elliptic integrals: (a) m 1 (h ) 
m 0 (h ) for system (25) monotonically increasing in (0 , 1 / 6) ; and (b) m ∗1 (h ) 

m ∗0 (h ) for system (27) monotoni- 
cally decreasing in (−1 / 6 , 0) . 
Hence, we obtain 

L ′ i (v , Z) ≡ dL i (v , Z) 
dv = ∂L i (v , Z) 

∂v − ∂L i (v , Z) 
∂Z × ∂ v q (v , Z) 

∂ Z q (v , Z) , i = 0 , 1 . (39) 
Then, a direct computation shows that both L 0 (v , Z) and the determinant, ∣∣∣∣

L 0 (v , Z) L 1 (v , Z) 
L ′ 0 (v , Z) L ′ 1 (v , Z) 

∣∣∣∣, 
do not vanish on { (v , Z) | − 1 

2 < v < 0 , 0 < Z < 1 } . Therefore, m 1 (h ) 
m 0 (h ) is monotonic for h ∈ (0 , 1 6 ) by the Chebyshev criterion [14] . 

Comparing the proof using the classical B-T bifurcation theory in [13] and that using the dynamical system approach 
shows that the dynamical system approach is simpler. Moreover, the dynamical system approach can be easily generalized 
to deal with the case of multiple zeros (multiple limit cycles) in Melnikov functions [12,16] . 

Moreover, it can be shown that 
lim 
h → 1 6 m 1 (h ) 

m 0 (h ) = ∮ 30 v ydv 
∮ 
30 ydv = 1 

7 . (40) 
Further, by the method and the Maple program in [17] we obtain the asymptotic expansion of M (h, γ0 , γ1 ) as follows, 

M (h, γ0 , γ1 ) = 2 πγ0 h + O (h 2 ) , for 0 < h ≪ 1 , 
which yields 

lim 
h → 0 m 1 (h ) 

m 0 (h ) = 0 . (41) 
Hence, m 1 (h ) 

m 0 (h ) increases from (h, m 1 (h ) 
m 0 (h ) ) = (0 , 0) to ( 1 6 , 1 7 ) monotonically, see Figure 2 (a). Therefore, M (h, γ0 , γ1 ) vanishes 

at any h = h ∗ ∈ (0 , 1 6 ) if γ1 
γ0 is chosen as γ1 

γ0 = − m 0 (h ∗) 
m 1 (h ∗) ∈ (−∞ , −7) . This implies that as the ratio γ1 

γ0 is varied in the interval 
(−∞ , −7) , a zero of M (h, γ0 , γ1 ) emerges near h = 0 and grows in (0,1). 

A similar proof can be given for system (27) , and the simulation for m ∗1 (h ) 
m ∗

0 (h ) = ∮ 
3∗

h v ydv 
∮ 
3∗

h ydv is shown in Figure 2 (b). 
Summarizing the above results we have the following theorem. 

Theorem 1. For the reduced ODE system (25) , when α1 −c 2 
c 2 α5 −α4 <0 , a unique limit cycle exists as the ratio γ1 

γ0 is varied in (−∞ , −7) . 
This unique limit cycle corresponds to a unique periodic wave in the original dispersive-dissipative solid model (7) with external 
weak dissipation effect, which bifurcates from a stationary state, amplifies and degenerates into a solitary wave. 

Further, Hopf bifurcation theory can be applied to easily find the stability of limit cycles bifurcating from the origin of 
system (35) , (v , y ) = (0 , 0) (i.e., the E 0 of system (33) ). Using the method of normal forms (e.g., see [10,15] ), we obtain the 
normal form up to 3rd-order terms for the Hopf bifurcation of system (35) with M = 1 and 3 = γ1 , given by 

dr 
dξ

= 1 
2 ϵ r (γ0 + 1 

4 γ1 r 2 ), 
dθ
dξ

= 1 − 1 
24 (10 + ϵ2 γ 2 

1 ) r 2 , (42) 
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where r and θ represent the amplitude and phase of motion, respectively. Therefore, the Hopf bifurcation occurs at the 
critical point γ0 =0 , and is supercritical (or subcritical) if γ1 <0 (respectively γ1 >0 ), implying that the bifurcating limit 
cycle is stable (respectively unstable). The transversal condition for the Hopf bifurcation is satisfied, given by 

H trans = 1 
2 ϵ > 0 . 

Moreover, the amplitude and frequency of the limit cycles near the original can be estimated as 
r = 2 √ 

−γ0 
γ1 , ω = 1 + 1 

6 
(

10 γ0 
γ1 + 4 γ0 ϵ2 ) ≈ 1 + 5 γ0 

3 γ1 , (43) 
implying that the limit cycle is stable for γ1 < 0 , which bifurcates from the origin when γ0 crosses zero from negative to 
positive. 

Similarly, we can obtain the normal form of Hopf bifurcation up to 3rd-order terms for system (27) near the singular 
point (1,0) as follows: 

dr 
dξ

= 1 
2 ϵ r (γ0 + γ1 + 1 

4 γ1 r 2 ), 
dθ
dξ

= 1 − 1 
24 (10 + ϵ2 γ 2 

1 ) r 2 . (44) 
Remark 2. The unique limit cycle emerges from a Hopf bifurcation when γ0 is near zero (i.e., when γ1 

γ0 → −∞ ), and from 
a Poincaré bifurcation when | γ0 | is not small. When choosing the critical value γ1 

γ0 = − m 0 (1 / 6) 
m 1 (1 / 6) = −7 , the Melnikov integral 

along the homoclinic loop vanishes, implying the existence of a solitary wave 30 ,ϵ , a very little deformation from 30 . A 
homoclinic loop bifurcation occurs when γ1 

γ0 crosses the critical value −7 . 
It is easy to see from the normal form (42) corresponding to system (25) with α1 −c 2 

c 2 α5 −α4 <0 and the normal form (44) cor- 
responding to system (27) with α1 −c 2 

c 2 α5 −α4 >0 that system (25) can always have Hopf bifurcation since γ0 γ1 < 0 , while system 
(27) cannot have Hopf bifurcation because 

(γ0 + γ1 ) γ1 = γ 2 
0 (1 + γ1 

γ0 
)
γ1 
γ0 > 0 for − 7 

6 < γ1 
γ0 < −1 . 

Moreover, the Hopf bifurcation for system (25) is supercritical (subcritical) if γ1 < 0 ( γ1 > 0 ). Since it has been proved that 
the unique limit cycle exists for the whole interval of the ratio γ1 

γ0 , the conclusion is true in general. Also the stability of the 
bifurcating limit cycle keeps same for the whole interval. Therefore, we have the following result. 
Theorem 3. When α1 −c 2 

c 2 α5 −α4 < 0 , there exists a unique limit cycle in system (25) as γ1 
γ0 is varied in (−∞ , −7) , and the limit cycle 

is stable (unstable) if γ1 < 0 (γ1 > 0) . When α1 −c 2 
c 2 α5 −α4 > 0 , there is no limit cycle bifurcation in system (27) . 

4. Simulations 
In this section, we apply the theoretical results obtained in the previous sections to the PDE system (7) and the corre- 

sponding reduced ODE system (25) to study the wave propagations in the model. The data chosen for simulation are taken 
from [3] , given by 

α1 = α3 = α5 = α7 = α8 = β2 = β7 = β8 = 1 , α4 = β6 = 2 , ϵ = 0 . 1 . (45) 
We first show that these parameter values yield α1 −c 2 

c 2 α5 −α4 > 0 for feasible values of c, and thus no limit cycle bifurcation 
occurs. Then, we change α4 = 2 to α4 = 1 to obtain α1 −c 2 

c 2 α5 −α4 < 0 with γ1 < 0 , yielding stable limit cycles. 
Note that in system (7) the coefficients α1 , β2 , α4 , α5 , β6 β7 and β8 are positive, while α3 and α7 can take positive 

or negative values. First, consider α4 = 2 . We use the above parameter values and the formulas in (22), (24) and (26) to 
obtain 

α − c 2 
c 2 α5 − α4 = 1 − c 2 

c 2 − 2 and γ1 
γ0 = 2(c 2 − 1)(c 2 − 3) 

c 4 − c 2 − 1 . 
Further, it can be shown that 

−∞ < γ1 
γ0 < −7 /⇒ 1 + √ 

5 
2 < c 2 < 5 + √ 

29 
6 /⇒ 1 − c 2 

c 2 − 2 > 0 
which indicates that this case does not belong to system (25) and so by Theorem 3 , no limit cycle bifurcation can occur. 
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Fig. 3. A simulated periodic orbit of system (25) corresponding to a stationary periodic wave of the model (7) at c=1 / 6 : (a) the Melnikov function M (h (v )) 
has a zero at v = v ∗ ≈0 . 2516 , as shown in the zoomed figure; (b) a periodic orbit for v = 0 . 2350 ; (c) a wave starting from v = 2 / 3 converges to the periodic 
wave; and (d) a wave starting from v = 1 / 5 converges to the periodic wave. Note that the convergence shown in (c) and (d) is very slow. 

Next, consider α4 = 1 . Similarly, using the parameter values and formulas, we obtain 
α1 − c 2 

c 2 α5 − α4 = −1 < 0 , and γ1 
γ0 = 2(c 2 − 1) 

c 2 , (46) 
implying that this case belongs to system (25) and thus by Theorem 1 , a unique limit cycle exists. Using the inequality 
−∞ < γ1 

γ0 < −7 reveals that 
0 < c < √ 

2 
3 , 

which implies that a unique periodic orbit exists for choosing a value of c from the interval (0 , √ 
2 

3 ) . The simulations take 
ϵ = 0 . 1 and the results for c=1 / 6 and c=1 / 3 are shown in Figures 3 and 4 , respectively, verifying our analytical predictions, 
though the convergence is slow. 

To compare the simulations with the analytical predictions, we first consider the numerical results shown in Figure 
3 with c=1 / 6 . We use the formulas given in (22), (24) and (26) to obtain γ0 =1 / 210 and γ1 =−1 / 3 , and thus the Hopf 
bifurcation is supercritical and the bifurcating limit cycle is stable. Moreover, we can use the normal form (42) to estimate 
the amplitude, r H , and the frequency, ω H , of the oscillation as 

r H = 2 √ 
70 ≈ 0 . 2390 , ω H = 1 − 5 

3 ×70 = 41 
42 ≈ 0 . 9762 . 

For the oscillation shown in Figure 3 (b) obtained using (25) with the initial condition v = 0 . 2350 , we have the numerical 
approximation of the amplitude and frequency, given by 

v N ≈ 1 
2 [0 . 2536 − (−0 . 2161) ] = 0 . 2349 , ω N = 2 π

T ≈ 2 π
997 . 47 −991 . 07 ≈ 0 . 9817 , 

which shows a very good agreement with the analytical predictions. Note that v N is close to the critical value v ∗ ≈0 . 2516 . 
For the periodic solution shown in Figures 3 (c) and 3 (d), obtained using (25) with the initial conditions v = 2 / 3 and v = 1 / 5 , 
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Fig. 4. A simulated periodic orbit of system (25) corresponding to a stationary periodic wave of the model (7) at c = 1 / 3 : (a) the Melnikov function 
M (h (v )) having a zero at v = v ∗ ≈ 0 . 5779 ; (b) a periodic orbit for v = 0 . 49 ; (c) a wave starting from v = 100 / 111 converges to the periodic wave; and (d) 
a wave starting from v = 1 / 4 converges to the periodic wave. 
we use the numerical results to obtain (taking the average of that given in Figures 3 (c) and 3 (d)) 

v N ≈ 1 
4 {[0 . 2568 − (−0 . 2184) ] + [0 . 2568 − (−0 . 2184) ]} = 0 . 2376 , 

ω N ≈ 1 
2 
[ 

2 π
19996 . 69 − 19990 . 27 + 2 π

19999 . 31 − 19992 . 87 
] 

= 0 . 9772 , 
which shows an excellent agreement between these results and the analytical prediction, as well as the simulation given in 
Figure 3 (b). 

Similarly, for the results given in Figure 4 with c=1 / 3 , we obtain γ0 =1 / 24 and γ1 =−2 / 3 , which again indicates that the 
Hopf bifurcation is supercritical and the bifurcating limit cycle is stable. Further, we use the normal form (43) to obtain 

r H = 2 √ 
16 ≈ 0 . 5 , ω H = 1 − 5 

3 × 16 = 43 
48 ≈ 0 . 8958 , 

and that for the oscillation shown in Figure 4 (b): 
v N ≈ 1 

2 (0 . 5779 − (−0 . 4023)) = 0 . 4901 , ω N = 2 π
T ≈ 2 π

992 . 31 −985 . 21 ≈ 0 . 8850 , 
which again shows an excellent agreement between the predication and simulation. For the periodic solution shown in 
Figures 4 (c) and 4 (d) (again taking the average of that given in these two Figures) we have 

v N ≈ 1 
4 {[0 . 5747 − (−0 . 4010) ] + [0 . 5747 − (−0 . 4010) ]} = 0 . 4879 , 

ω N ≈ 1 
2 
[ 

2 π
5985 . 98 − 5978 . 82 + 2 π

5999 . 25 − 5992 . 15 
] 

= 0 . 8812 , 
which also shows a very good agreement between these results and the analytical prediction, as well as the simulation 
given in Figure 4 (b). 
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The applicability of Hopf bifurcation theory to the results shown in Figures 3 and 4 is easy to be seen from the values 

of γ0 , which is 1 / 210 for c = 1 / 6 (see Figure 3 ) and 1 / 24 for c = 1 / 3 (see Figure 4 ), both of them indicates that 0 < γ0 ≪
1 , agreeing with the conclusion that a Hopf bifurcation occurs when γ0 crosses zero from negative to positive, and it is 
supercritical for γ1 < 0 . The stability of bifurcating limit cycles can also be determined from the Melnikov functions shown 
in Figures 3 (a) and 4 (a). For Figure 3 (a similar argument for Figure 4 ), the periodic orbit occurs at v = 0 . 2350 < v ∗ = 0 . 2516 , 
implying that v is decreasing to pass through the point v = v ∗ for which the Melnikov function is decreasing and so the 
stability of bifurcating limit cycle is stable (see, for example, Chapter 6 in [15] ). It should be noted that the stability analysis 
based on the Melnikov function is not only applicable for Hopf bifurcation (near the center), but also applicable for Poincaré
bifurcation (far away from the center), for which Hopf bifurcation theory is not applicable. 
5. Conclusion 

In this work, a dispersive-dissipative solid model with weakly external dissipation, described by the PDE (7) which does 
not have analytic solutions, has been analyzed in detail with particular attention on wave solutions. With the GSPT, the 
model is first reduced to two singularly perturbed ODE systems (25) and (27) , and then a detailed analysis is given to show 
that only system (25) can have limit cycles. Periodic and solitary waves are studied with restriction to a normally hyper- 
bolic manifold. The existence of a unique limit cycle is proved, based on the Alebian integral, first by using the classical B-T 
bifurcation theory and then by applying a dynamical system approach combined with the Chebyshev criterion. A compari- 
son between these two methods shows that the dynamical system approach is simpler than the traditional B-T bifurcation 
method, and moreover it can be generalized to deal with Melnikov functions with multiple zeros, i.e., detecting multiple 
wave solutions. This contribution may promote development of more efficient methodology for studying wave solutions in 
PDEs. 

The theoretical results obtained in this paper are applied to illustrate the application of solving real engineering prob- 
lems. We consider the model (7) with weak external medium, which was studied in [3] by assuming the existence of a 
traveling solution. We have presented couple of examples to show that the Melnikov function has a unique zero, yielding a 
unique traveling wave, verified by simulation. We have found that the traveling solutions are quite sensitive to the param- 
eter values. For example, taking α4 = 2 , as used in [3] , does not yield wave solutions, while choosing α4 = 1 leads to stable 
oscillations. 

The dynamical system approach combined with the GSPT and Chebchev criterion has been successfully applied to study 
Melnikov functions which have multiple zeros [16] . Future work is needed to develop a systematic procedure for this ap- 
proach in order to facilitate the application of this method. Another future work is to investigate the stability of traveling 
waves, since the stability of limit cycles determined from the reduced ODE system does not necessarily imply the stability 
of traveling waves of the original PDE model, which may partially depend on the wave’s amplitude [8,18] . 
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