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1. Introduction

Normal form theory has been used for several decades as one of the important tools in simplifying the study of nonlinear
differential systems. Its basic idea is to introduce a near-identity transformation into a given differential system to eliminate
as many of the nonlinear terms as possible, which are usually called non-resonant terms. The terms retained in the resulting
system are normal form terms, called resonant terms. Since normal forms keep the fundamental dynamical characteristics of
the original system in the vicinity of a singular point, it can be used to study the local bifurcations and stability/instability
properties of the original system. There are various of books which have extensive discussions on normal form theory, for
example, see [1-3]. More recent progress can be found in the article [4].

For higher-dimensional dynamical systems, normal form theory is usually applied together with center manifold theory,
see [5-9]. If the Jacobian matrix of a differential system evaluated at a singular point contains eigenvalues with zero real part
and non-zero real part, then center manifold theory should be considered in the study of the local dynamics of the system,
and the dimension of the center manifold is equal to the number of eigenvalues with zero real part. Center manifold theory
plays an important role in simplifying the analysis of local dynamical behavior of nonlinear differential systems near a sin-
gular point, because it allows us to determine the behavior by study the flow on a lower dimensional manifold.

Several computer algebra systems such as Maple, Mathematica, Macsyma, etc., have been widely used for the computa-
tion of normal forms. Even with the help of these computer algebra systems, it is still not easy to obtain higher-order normal
forms since considerably more computer memory and computational time are demanded as the order of normal forms
increases. Therefore, in the past two decades, various methods have been developed to compute normal forms for general
n-dimensional differential systems. However, many methods are not computationally efficient because lots of unnecessary
computations are involved, for example, see [6,10,11]. To be precise, in order to get an expression for the kth-order normal
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form computation, (k — 1)th-order normal forms, center manifolds and near-identity transformation are substituted into the
original system. Thus, besides the kth-order terms, the obtained expression also contains lower-order (< k) and higher-order
(> k) terms, which are not desirable for efficient computation. To overcome this problem, Yu [7,12] developed a recursive
formula for computing the coefficients of normal forms and center manifolds, which avoid those lower-order (< k) and
higher-order (> k) terms in the kth-order computation. However, these formulas are not given in explicit recursive
expressions and may be not so efficient in computation. For general planar systems, [13] obtained an explicit recursive
formula for computing Poincaré-Lyapunov constants (focus values), and the computation based on this formula is efficient.

In this paper, we consider general n-dimensional differential systems associated with semisimple cases, i.e., the Jacobian
matrix of the linearized system evaluated at a singular point can be transformed into a diagonal Jordan canonical form.
Around semisimple singularities, a rich variety of bifurcations, such as Hopf, double-zero, Hopf-zero, double-Hopf, etc.
may occur. A detailed study for some types of these bifurcations can be found in [ 14, chap. 7] by applying normal form theory
to simplifying the systems. Particularly, for some special bifurcations like Hopf-zero, double-Hopf without resonance, the
normal forms are symmetric with respect to rotation in the direction associated with the imaginary eigenvalues. In this case,
the normal forms can be decoupled, and the systems are further simplified. Many methods have been developed and used to
compute the normal forms of systems with semisimple singularities, not only for the particular cases like Hopf [9,12,13],
Hopf-zero [15] and double-Hopf [16,17], but also for general semisimple cases involving center manifold [6,7]. In order to
provide a good algorithm to compute the normal forms of general cases, in this paper we will develop a computationally
efficient method and a Maple program without restriction on the dimension of the center manifold. This paper is an exten-
sion of our recent work [9], which focuses on general differential systems associated with Hopf bifurcation.

In the next section, an explicit, computationally efficient, recursive formula is derived for computing the normal forms
and center manifolds of dynamical systems associated with semisimple singularities. The explicit formula is given in terms
of the system coefficients of the original differential system, which is easily used for developing a Maple program. In Section
3, several examples are presented to demonstrate the computational efficiency of the method and the Maple program.
Finally, conclusion is drawn in Section 4.

2. Main result

Consider a system of differential equations in the general form,

y=Ay+G(y), yeR' G(y):R'—R’ (1)
where the dot represents differentiation with respect to time, t, the matrix A is diagonalizable, G(0) = 0 and DyG(0) = 0. De-
note by 4;,i=1,...,n, the eigenvalues of A. Without loss of generality, it is assumed that there are only k eigenvalues
4, = 1,...,k, having zero real part, implying that system (1) has a k-dimensional center manifold.

Then, through a proper linear transformation, system (1) can be transformed into

X =Jx+f(x), (2)

where | is a diagonal matrix, and f(x) is expanded as
=) fn(x), where f(X) = > frnuX{"xJ2 .. X
m>=2 {m(n)}

and m(n) denotes a vector (my,m,,...,m,) of n nonnegative integers, which satisfies > ;' ;m; = m.
Suppose that the matrix J has the form J = diag(J,,J,), where

Jo = dlag()1 s ﬂz, ey ),k), .]r = diag(/lkH s ;Lk+2’ ey An)
Let x = (xg,xf)T, where X, = (X1,Xa, ... ,xk)T and X, = (X1, X2, - - - ,xn)T. Then, system (2) can be written as

xo :]oxo + fo(xmxr)»
Xr = J.Xr + £:(Xo, Xr).

3)

The center manifold of (3) may be defined as X, = H(X, ), which satisfies H(0) = 0, DH(0) = 0. Then, the differential equa-
tion describing the dynamics on the center manifold is given by

X :Joxo + fO(x07H(x0))~ (4)
Next, introduce a near-identity nonlinear transformation, given by
Xo —U+Q =u-+ Z qu(k u] . u;?k = (ll), (5)
m=2{m(k)}

into (4) to obtain the normal form,

U =J,u+Cu), whereC(u)=">)" Z Crgo U U2 . U (6)

m=2{m(k)
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Now the center manifold can be expressed in the new variable u, as follows:

X, =H(qu) = > > hpgui'uy? .. ug* = hu). (7)

m>2{m(k)}

Combining the above steps yields the following equations

Q(u) JQu)\ _ (Fo(u) Q(u) C(u)
i )2~ () = (e ) =2 Coy )20 = (%) ©
where F,(u) = f,(q(u), h(u)), F,(u) = f,(q(u), h(u)). Comparing the coefficients on both sides of (8), we obtain the recursive

formulas for the coefficients of the center manifold and the normal form as well as the associated nonlinear transformation.
For convenience, we first introduce some notations. Suppose the powers of q(u) and h(u) can be expressed, forj > 0, as

=) .
- Z Z T TICRRR TS

m=j{m(k)}

ZZh’ NTHE TR TS

m=2j{m(k)}

9

We have the following main result.

Theorem 1. For any fixed s(k),s > 2, let A= fo:1iisi. Then the recursive formulas for the coefficients of the nonlinear
transformation (5), the normal form (6) and the center manifold (7) of system (3), i.e., Qsy), €5y and hy, are given below.

(1) For qg and €, if A= 74 =0,j=1,... Kk then
Gspyj =0, Cstyj = sy — bsgo s
otherwise,
o5 = (Asoj — Dso ) /(A = %), Csryj = 0.
(2) For hy,, we have
hswyj-k = (s — bsw) /(A= 2), J=k+1,....n

where

3
.
Il
3

m m, m mp
Asik) = Z Z e 2 B @i 1 - G o a0 -+ Binton-te

k s—1
s k) —1(k) +ei (k
by = Z (si+1-1) (hs( el Ci(ki»
i=1 1=2 {I(k)} s(k)—I(k)-+e;(k)
s—1 4
%) = > o D10
I=j—11(k)<s(k)
. s—2 4
h]s(k) = M(I<) hs(’c) !

1=2j-21(k)<s(k)

Proof. For any given integer s > 2, suppose that we have obtained q,,,, hin) and cqq for m <'s. Now, we want to derive
the formulas for q,, hyy and cyy. We divide the proof in three steps, which can also be served as the guidelines for devel-
oping programs using a computer algebra system.

Step 1. First of all, we need to compute all the coefficients of terms with degree s for x/, = ¢/ (u),2 <j <s. Since

¢ (u) = q(u)¢~'(u), we have

Zqu s g Z Zq’ AT TLETHE

m=1{m(k)} m=j—1{m(k
SO S o)
m=j {m(k)}=j—1l(k)<m(k)

where I(k) < m(k) means I; < m; fori=1,... k. Then, we obtain
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S(k Z Z q] qs(k 2 <] <S.

I=j—11(k)<s(k)
Similarly, for x. = i/ (u), we have

s(k)*z Zhl hk 2<j<s.

1=2j-2I(k)<s(k)
Step 2. Denote
Fo(
( )) X;Za{m U U L - o((uf’). (10)
m m(k

. . T
In this step, we derive the formula for ay. Let qff = (q0 1, q2:- - Qkyy)’ and by, = (A, 1 b 5, iy )"+ For
2 < m < s, substituting q(u) and h(u) into f,,(x) yields

= XK X =Y o Hq Hh"‘k*‘ u)

{m(n)} {m(n)} i=1 i=1

oo n—k o0
:{;)fm H(ZZq u’;u’;...uff)H( Z > hpsudiug uﬁf)
m(n i=1

I=m;{l(k) 1=2my,{I(k)}

1 1
m m m my., my,. my Iyl [/ s
= > fuw (ZZ Z Z Do 2 2 D oo Gt a2 By U3 - U +o(ul )>
()

! m{l )i = Je=Mdker =2y Jn=2ma{iy (2 ()} {in(k)}

S
n Iy L I s
:ZZ Z Z Z Z fin ”>qh k)1 qu k>kh1k+1 (k)1 h} (nkty Uz -+ o((uf),
l=m {I(k) {m(m) Hjm) i ()2 (0} {a(

where >0 ji(k) = I(k).
Since f(X) = >_,,-,fm(X), we consequently obtain

s j=s
m m, mp
ChpIpIPIPBP DL B ELL AT AT At TR
m=2{m(n)}{j(n)}{j1 (k) } {j2 (k)} {in (k
where the vector j(n) satisfies that
=0 if m; =0,

ji o =my for1<i<gk } if
i # 0.
>2m; fork+1<i<n e
Step 3. Denote
u S
Du(%( ))C(u):ZZb GUTuy up +o(|uf). (11)
(ll) m=3{m(k)}

In this step, we derive the formula for by . Note that

DU(Q(U))C(u) z(Qu,w) -y mzz{mz} (gzig)urlu;z. My zzcmk A

i=1 “1 (u) i=1 m=2{m(k)

K 1
= Z Z i:mzz m1 +1- <qm lo-+ei(k) )Cl(kﬂu'lm Uglz S UlTk,

=3{m(k)} i=1 1=2 hm(")*’(")*‘?i(k)

where e;(k) is a unit vector with a 1 in the ith place. Therefore, comparing the above equation with (11) we have

k s-1
Qs ie)—i(ke) +e; (k
) %) BICEE B G LT

i=1 1=2 {I(k)} hS(k)f( +ei(k)

Finally, from the left-hand side of (8), we obtain

Mw

DUQ( )jou ]oQ ZﬂlulQu, ]oQ Z/“lmlqm k)ul . szoqm ul u2 "'ukmk

i=1 i=1 m=2{m(k)} m=2{m(k)

-y (Z’"m”‘ J")“m U U5 U+ o) (12)

m=2{m(k)}
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and similarly,

©

( ).]ou .Ir (lem In k ]r) m(k) ul u2 . 'u;?k +O(|uls)' (13)
m=2{m(k)}

Substituting (6) and (10)-(13) into (8) and comparing the coefficients of the same order results in the formulas in Theorem 1,

and we thus complete the proof. O

The source code of the Maple program developed using the formulas in Theorem 1 is given in Appendix for the conve-
nience of readers.

3. Application

In this section, we present several examples to demonstrate the applicability and the computational efficiency of the Ma-
ple program (see the source code in Appendix) developed in this paper. We show three examples associated with Hopf,
Hopf-zero and double Hopf singularities, and compute their normal forms and center manifolds, as well as the corresponding
nonlinear transformations. We have tested a number of systems for comparing the algorithm developed in this paper with
that given in [6]. It is shown that for most cases the method developed in this paper is better than that given in [6]. Only in
some special cases, the situation is reversed. The program given in [6] can only deal with the cases where the dimension of
the center manifold is less than seven. All the Maple programs are executed on a desktop machine with CPU 3.4 GHZ and 32G
RAM memory to generate the normal forms as needed.

Example 1. We consider a 5-dimensional system:
X1 =Xy + X3 — X1X3 + X2,
Xy = —X1 + X3+ X1Xa + X3,
5(3 = —X3 +X%, (]4)
X4 = —X4 + X5 +X% + X4Xs,
Xs = —Xq — X5 + X5 — 2xX3.
The Jacobian matrix of this system evaluated at the origin has eigenvalues +i,—1 and —1 % i. So the origin is a Hopf sin-

gularity and system (14) has a 2-dimensional center manifold. The normal form given in polar coordinates up to 5th order is
given as follows:

3, 25633 ., 163441769

40" ~702000 2663424000 (15)
o7, 6692923 . 47098141289

12" *14688000' ~ 299635200000

The lengthy expressions for the center manifold and nonlinear transformation are omitted here for brevity.

T.‘:

Remark 1. The coefficients of the terms r* and >, etc., in the first equation of (15) are called the first, second, etc., focus val-
ues. In general, the normal form of system (3), given in polar coordinates, is in the form of

F=r(vo+wvir?P+unrt+ . prk4..), 16)
0=T1+to+tr2+6r%+- - trk ...

where v, is called the kth-order focus value, which is a function of the system parameters of (3). Small limit cycles bifurcat-
ing from the origin and their stability can be determined from the first equation of (16). The second equation of (16) can be
used to determine the frequency of the bifurcating periodic motion (limit cycle).

Example 2. The second example is a 6-dimensional differential system, described by
X1 = —X] + 2X1X2 + 3X1X4 — X1X5 — X5 + XoXa,
Xy = X3 — X3 + 2X1X3 + 8X1X4 + X3Xs,
X3 = —Xp — X3 + 3X1Xs — X3Xa — 6X5 — XaXs + 2X2,
Xg = —Xq — X3 4+ 2X1X + 3X1Xq — X1X5 — X3,
Xs = —Xs5 + Xg — 7X% + 2X1X3 + 3X1Xs — X3X4 — XaXs,
Xe = —X5 — Xg + X1Xq — 5X5 + X3X5 — 4X5 + X2.
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This system has a singular point at the origin, with its Jacobian matrix evaluated at the origin having three eigenvalues, 0 and
+i, with zero real part, and three eigenvalues, —1 and —1 + i, with negative real part, implying that system (17) contains a 3-
dimensional center manifold associated with a Hopf-zero singularity at the origin. Executing our Maple program gives the
normal form (in cylindrical coordinates) up to 5th order,

29 , 9 5 171, 1371 5 19331 . 263299 ., 576761 ,
=107 " "20" " 25 Y " 2007 80 Y 2250 Y7 " 1224000"
b 14y 61y2 B @rz L4501, 1357 , 4579 , 123833, , 102206489,
240" T 200 800 160 2250 58752000

Example 3. The last example is a 7-dimensional differential system,

X1 =X + X — X3Xs + X3X7,

)'(2 = —X1 — 2)(1)(%7

X3 = V2Xg + X2x3 — 4X2,

—V2x3, (18)

X5 = —X5 + (X1 —X5)27

X = —Xg + X7 + (X1 — }(4)27

X7 = —Xg — X7 + (X2 — X6)’,
whose Jacobian matrix evaluated at the origin has eigenvalues +i, +v/2i, —1 and —1 + i, and four of them have zero real part.
So the center manifold of system (7) is four dimensional. System (18) was studied by [6] and the normal form in polar
coordinates up to 5th order was also given. We executed the Maple programs developed in this paper as well as that given
in [6] on the desktop machine. We have found that the Maple program given in [6] failed when it was executing to find the
9th-order normal form, since the Maple was unable to allocate enough memory to complete the computation. While the pro-

gram developed in this paper only took 122 s and 13938 MB memory to finish the 9th-order normal form computation. The
normal form up to 7th order given in polar coordinates is listed below.

428923841 ., 433291 ., 612973 ,,

1= 33+1575 9r32 r— rr2 — rré 4

178" 71360"1 201" T 3847168000 ' 832320 "2 8921600 2

1, 5543 3 ., 1, 888039 . 1744833, 1448249 ,
b =145 ~27760" ~80"1"2 ~ 16" ~9617920" * 5178880" "> ~ 33676800" 2 T332
b lan 1 23+10213 oy 3857 27 s

227 16""2 732816012 " 24608012 T 25612
125

_ - 4

b, = V2 32‘@1 89216 V21"

4. Conclusion

In this paper, we have derived an explicit, recursive formula for computing the normal forms, center manifolds and non-
linear transformations for general n-dimensional systems, associated with semisimple singularities. A Maple program is also
developed on the basis of the formula, which is very convenient for practical applicants who may not be familiar with normal
form theory. It only needs a user to prepare an input file and the Maple program will be “automatically” executed to generate
the desired result. Three examples are presented to show the applicability of the new method and new program, and in par-
ticular, one of the examples demonstrates the advantage of the new method over the existing methods and programs.
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Appendix A

In this appendix, for the convenience of readers, we list the symbolic Maple program developed in this paper using the
recursive formulas in Theorem 1, which can be used for computing the normal forms of general n-dimensional systems asso-
ciated with semisimple cases. The input here takes the third example in the section of application.
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with (LinearAlgebra):

M1 = O: # No. of zero eigenvalues

M2 = 2 # No. of pairs of purely imaginary eigenvalues
M3 = 1: # No. of non-zero real eigenvalues

M4 = 1: # No. of pairs of complex conjugate eigenvalues
N = 3: # Highest order in the system

Ord = b:

Mc = M1 + 2xM2:

M = Mc + M3 + 2«M4:

L = M1+ M2 + M3 + M4:

f[1] =x[2] +x[1]"3 —x[1]"2%x[5] +x[1]"2%x[7]:

f[2] = -—x[1] —2%x[1]%x[3]"2:

f[3] :=sqrt (2)*x[4] +x[1]"2%x[3] — 4xx[5]"3:

f[4] = —sqrt (2)xx[3]:

f[5] = —x[5]+ (x[1] —x[5])"2:

f[6] :=—x[6]+x[7]+ (x[1]—x[4])"2:

f[7] =-—-x[6]—-x[7]+ (x[2] —x[6])"2:

L3seq :=proc ()

global 112,53,p:
if112 =0 then
S3[p+1l] :=83[p+1]+1: 112 :=83[p]—1:
S3[p] :=0: p:=max (O,sign (—112) )xp+1:
else S3[1] :=S53[1]+1: 112 :=112-1: fi:
end:
L3product := proc (sl,sr,q2r,q21)
local 13rmx,qpmx,qpr,qpi,ctpo,112,112r,p,pr,ctl,ctr,ctp,13,13r,shb,
sp,53,33r,i,temp:
13rmx := binomial (sr+Mc—2,Mc—2): ctpo :=1:
gpmx := binomial (sl+sr+Mc—1,Mc—1):
gpr := Array (l..gqpmx): gqpi := Array (l..qpmx):
83 := [seq (0,i=1..Mc—-1)]:
p:=1:ctl:=1:112:=s1l:
for 13 to binomial (sl+Mc—2,Mc—2) do
S3r := [seq (0,i=1..Mc—1)]:
pr:=1:ctr:=1:112r := sr: ctp := ctpo:
for 13r to 13rmx do
for i fromctp to ctp+112+112r do
sb:=max (0,i—ctp—112): sp :=min (112r,i—ctp):
qpr[i] :=qgpr[i]+add (gql2r[ctr+jl*qlr[ctl+i—ctp—j]
—ql2i[j+ctr]*qli[ctl+i—ctp—J],j=sb..sp):
qpi[i] :=qpi[i]+add (gql2r[ctr+jl*qli[ctl+i—ctp—j]
+gqRi[j+ctrlxqlr{ctl+i—ctp—j]l,j=sb..sp):
od:
ctp:=1i:ctr:=ctr+112r+1:
if112r =0 then
ctp := ctp—binomial (S3r[pr]+1,2)—S3r[pr]xll2:
temp :(=112+83[1]:
for i from2 to pr do
ctp :=ctp+binomial (temp+i,i+1)
—binomial (temp+S3r[pr]l+i—1,i+1):
temp := temp+S3[i]:
od:
ctp := ctp+binomial (temp+S3r[prl+i—1,i):
S3r[pr+1] ;= S83r[pr+1]+1: 112r := S3r[pr]—1:
S3r[pr] :=0: pr:=max (O,sign (—112r) )*pr+1:
else S3r[1l] :=S3r[1]+1: 112r :=112r—1: fi:
od:
ctl:=ctl+112+1:
if 112 =0 then
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ctpo := ctpo+binomial (sr+p+1l,p+1):
S3[p+1] :=83[p+1]+1: 112 :=83[p]—1:
S3[p] :=0: p:=max (O,sign (—112))x*p+1:
else ctpo:=ctpo+112+sr+1: S3[1] :=83[1]+1: 112 :=112-1: fi:
od:
return [gqpr,api]:
end:

for i toMldox[i] :=vVv[i]: od:
Ji=Ml+1l: k:=TL+1:
for i fromM1+1 to M1+M2 do
x[§] = (v[i]+v[k])/2:
x[j+1] ;= Ix(v[i]—-Vv[k])/2:
fli] = simplify (£f[j]—Ixf[j+1]):
ji=Jj+2: k= k+1:

od:

for i from M1+M2+1 to L—M4 do
x[j] =v[i]:
fl[i] == simplify (f[J]):
ji=J+1:

od:

for i from L—M4+1 to L do
x[§] = (v[i]+v[k])/2:
x[j+1] == Ix(v[i]—Vv[k])/2:
fli] :=simplify (f[j]—-I*«f[j+1]):
Jj=J+2: k:=k+1:
od:
for j to L do
£[j] = simplify (£[j]):
IEf[j] :==diff (£f[j1,v[J1):
for k toMdo IEf[j] := subs (v[k]=0,IEf[j]): od:
REf[j] := subs (I=0,IEf[J]):
IEf[j] := subs (I=1,IEf[j]—REf[j]):
od:
Qd := [seq (1,j=1..M1+M2),seq (2,j=1..M3+M4),seq (1,j=1..M2),seq (2,j=1..M4)]:
Qc := [seq (Jj,j=1..M1),seq (L+j,j=1..M2),seq (M1+M2+j,j=1..M3),
seq (M—M4+j,j=1..M4),seq (M1+j,j=1..M2),seq (L—M4+j,j=1..M4)]:
Qb := [seq (Jj,j=1..M1),seq (seq (M1+ixM2+j,i=0..1),j=1..M2)]:
SizeIndex := Array (1..2«N): Mr. := [seq (1,i=1..L)]:
vecf := Vector ([seq (f[Jj],j=1..L)]1):
form from2 to N do
M1 := [m+1l,—-1,seq (O0,i=1..M—2)]: 1 :=1:
while M1[M] <> m do
M1[i+1]:=21 +M1[i+1]:M1I[1] :=M1[i]—1:
ifi<>1thenM1[i] :=0: fi:
ifM1[1] =0 theni:=i+l:elsei:=1: fi:
Mlc :=M1l: ji := O:
for 1l to 2 do
coef[l] :=vecf: cterm:=1:
for k toMdo
coef[1l] :=coeff (coef[1l],v[k],Mlc[k]):
cterm:= cterms«v[k] " Mlc[k]:
od:
if coef[1l] =0 then coef[1l] := Vector (L): fi:
vecf :=vecf-ctermxcoef[1l]:
if Norm (coef[1],2) <> O then
Jji:= Jji+1:
if ji =1 then

(continued on next page)
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Mlc := [seq (Mlc[Qc[k]],k=1..M)]:
mlmx := max (Mlc—M1):
ifmlmx =0 then 1 :=1+1: fi:
fi:
else 1:=1+1: fi:
od:
if ji >0 then
Mr. := [seq (max (Mr[n],M1[n]),n=1..L)]:
qdg :=m+add (M1l[n],n=M1+M2+1..L)+add (Ml[n],n=L+M2+1..M):
jr:=0: jc:=0:
for k fromi to Mdo
if M1[k] <> O then
ifk <M1+l or (k <L-M4 and k >M1+M2) then
jr:=jr+l: j:=—jr:
else jc:= jc+1l: j:= jc: fi:
Kvt[j] :=M1[k]: Ivt[j] :=k: Qvt[j] :=Qd[k]«M1l[k]:
fi:
od:
kV := [seq (Kvt[j],j=1..jc),seq (Kvt[—J],j=1..jr)]:
Iv:=[seq (Ivt[j],j=1..jc),seq (Ivt[—]J],j=1..Jr)]:
Qv := [seq (Qvt[J],j=1..Jc),seq (Qvt[—=Jj1,j=1..Jr)]:
SizelIndex[qdg] := Sizelndex[qdg]+1:
N :=max (N,qdg): sqdg := SizeIndex[qdg]:
Index[qdg,sqdg] := [kV,Iv,Qv,jc,jr,ji]:

fi:
for 1 to jido
eql :==[]:

for k to L do

if coef[1][k] <> 0O then eql := [op (eql),k]: fi:
od:
coefi:= [seq (coef[1l][eql[k]],k=1..nops (eql))]:
coefr := subs (I=0,coefi):
coefi :=subs (I=1,coefi-coefr):

sqdgn := (—1)"(1-1)#*sqdg:
Coef[qdg,sqdgn] := [eql,coefr,coefi]:
od:

od:

od:

for j toMdo
Ih[j,1,1] :=Array (1..Mc): Rh[j,1,1] := Array (1..Mc):
od:
for j to M1l do Rh[j,1,1][J] := 1: od:
for j to M2 do
Rh[M1+j,1,1][M1+2%xj—1] :=1:
Rh[L+j,1,1][M1+2%j] := 1:
od:
for s from2 to Ord do
print (‘order=¢,s):
smx := binomial (s+Mc—1,Mc—1):
Ku:= [seq (min (Mr[j],s),j=1..L)]:
for j to L do
for k from2 to Ku[j] do
Rh[j,k,s] := Array (l..smx): Ih[j,k,s] := Array (l..smx):
od:
od:
for sl to s—1do
112 :=sl: sr := s—sl: 13rmx := binomial (sr+Mc—2,Mc—2):
53 := [seq (0,i=1..Mc—1)]:p:=1:ctl:=1:ctpo:=1:
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for 13 to binomial (sl+Mc—2,Mc—2) do
for j toL do
Lslr[j] := [seq (Rh[J,1,s1][1i],i=ctl..ct1+112)]:
Lsli[j] := [seq (Ih[Jj,1l,s1][1i],i=ctl..ct1l+112)]:
od:
S3r := [seq (0,i=1..Mc—1)]:
pr:=1:ctr:=1:112r := sr: ctp := ctpo:
for 13r to 13rmx do
for 1 to L do
for k tomin (Ku[l]-1,sr) do
Lsrr := [seq (Rh[1l,k,sr][i],i=ctr..ctr+112r)]:
Lsri := [seq (Ih[1l,k,sr][i],i=ctr..ctr+112r)]:
for i fromctp to ctp+112+112r do
sb :=max (0,i—ctp—112): sp:=min (112r,i—ctp):
Rh[1l,k+1,s][1i] :=Rh[1l,k+1,s][1]
+add (Lsrr[j+1]xLslr[1l][i—ctp+1—]]
—Lsri[j+1]*Lsli[1l][i—ctp+1—]], j=sb..sp):
Ih[1l,k+1,s][1i] :=Ih[1l,k+1,s][1]
+add (Lsri[j+1]*Lslr[1l][i—ctp+1—]]
+Lesrr[j+1]xLsli[1l][i—ctp+1l—j], j=sb..sp):
od:
od:
od:
ctp:=1i:ctr:=ctr+112r+1:
if 112r =0 then
ctp := ctp-binomial (S3r[pr]+1,2)—S3r[pr]*xll2:
temp ;= 112+83[1]:
for i from2 to pr do
ctp :=ctp+binomial (temp+i,1+1)
—binomial (temp+S3r[pr]+i—1,1+1):
temp := temp+S3[i]:
od:
ctp := ctp+binomial (temp+S3r[prl+i—1,i):
S3r[pr+l1] :=83r[pr+1]+1: 112r := S3r[pr]—1:
S3r[pr] :=0: pr:=max (O,sign (—112r) )*pr+1:
else S3r[1l] :=S83r[1]+1: 1128r :=112r—1: fi:
od:
ctpo := ctpo+binomial (sr+l1l2+p+max (O,sign (—112)),sr+112):
ctl:=ctl+112+1: L3seq ():
od:
od:

Tt := Array ([seq (J,j=1..smx)]):
Lm := M1:
for L5t from 2«M2—2 by —2 to O do
S5 := [seq (0,j=1..Lb5t+1)]:
ct:=1:114:=s:p:=1:
for 15 to binomial (s+L5t,L5t) do
for 1m2 from O to iquo (114—-1,2) do
ct :=ct+binomial (114+Lm,Im)—binomial (114—1m2—1+Lm,Im):
dml := binomial (114+Lm,Lm+1):
for Iml from114—1m2—1 by —1 to O do
1mmx := binomial (1ml+Im—1,Im—1):
dmem := dml—binomial (1ml+1m2+Lm,Lm+1):
for j fromct to ct+1lmmx—1 do
temp :=Tt[j]: Tt[j] := Tt[ j+dmem]:
Tt[j+dmem] := temp:
od: ct := ct+1mmx:

(continued on next page)
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od: 114 :=114-1:
od:
ct:=ct+binomial (114+Lm+1,Lm+1):
114 :=114+1m2—1:
if 114 =0 then
15 :=15+p: ct :=ct+p: SH[p+1] :=SH[p+1]+1: 114 :=S5[p]:
S5[p] :=0: p:=max (O,sign (1-114)%xp)+1:
else SB[1] :=S856[1]+1: fi:
od: Im := ILm+2:
od:
for j from1l to M2 do
for k from2 to Ku[M1+j] do
Rh[L+j,k,s] := Array ([seq (Rh[M1+j,k,s][Tt[i]],i=1..smx)]):
Ih[L+j,k,s] := Array ([seq (—Ih[M1l+j,k,s][Tt[1i]],i=1..smx)]):
od:
od:
for j from 1l to M4 do
for k from2 to Ku[L-M4+j] do
Rh[M—-M4+j,k,s] := Array ([seq (Rh[L—-M4+j,k,s][Tt[i]],i=1..smx)]):
Ih[M—M4+j,k,s] := Array ([seq (—Ih[L—-M4+j,k,s][Tt[i]],i=1..smx)]):
od:
od:
T[s] := copy (Tt):
if s =Ord then L := M1+M2: fi:
for j toLdoRht[j] :=Array (l..smx): ITht[j] := Array (1l..smx): od:
form from2 tomin (s,N) do
sm = s—m:
formi to SizeIndex[m] do
kV := Index[m,mi][1]: Iv:= Index[m,mi][2]: Qv := Index[m,mi][3]:
jc = Index[m,mi][4]: jr:= Index[m,mi][5]: ji:= Index[m,mi][6]:
slg:= jc+jr: 13mx := binomial (sm+slg—1,slg—1):
112 :=sm: p:=1: 83 := [seq (0,i=1..s1g+1)]:
for 13 to 13mx do
Sv:= [112+Qv[1l],seq (S3[j]+Qv[j+1],j=1..s1lg—1)]:
qlr := copy (Rh[Iv[1l],kV[1],Sv[1]]):
qli :=copy (Ih[Iv[1],kV[1],Sv[1]]):
sl:=8v[1l]:
for j from 2 to jc do
gp := L3product (sl,5v[j],
Rh[Iv[J1,kV[31,8v[311,Th[Iv[I1,kV[31,8v[j]]):
gqlr := copy (ap[l]): qli :=copy (qp[2]): sl :=s1l+Sv[j]:
od:
slmx := binomial (s1l+Mc—1,Mc—1):
if ji =2 then
if jec >1 then
q3r := Array ([seq (qlr[T[s1l][1i]],i=1..sImx)]):
q31i := Array ([seq (—qli[T[s1l][i]],i=1..s1mx)]):
else ive :=Qc[Iv[1l]]:
q3r := copy (Rh[ivec,kV[1],Sv[1]]):
q31 := copy (Ih[ivec,kV[1],Sv[1]]):

fi:

fi:

for i to ji do
slc (= sl:

for j frommax (jc,1)+1 to slg do
qp := L3product (slc,Sv[]j],
Rh[Iv[j1,kV[J],Sv[j1],Ih[Iv[j],kV[j],58v[j]]):
gqlr :=copy (gp[l]): qli:=copy (ap[R]):
slc:=slc+Sv[]]:
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od:
1fa := Coef[m, (fl)A(ifl)*mi]:
for 1 to nops (1fa[l]) do
jl:=1fa[1l,1]:
if j1 >L then break: fi:
Rht[jl] := Array ([seq (Rht[jl][jl+1fa[2,1]*qlr[]]
—1fa[3,1]*%qli[j],j=1..smx)]):
Iht[jl] := Array ([seq (Iht[jl][j]+1fa[2,1]xqli[]]
+1fa[3,1]*qlr[j],j=1..smx)]):
od:
if ji =2 then qlr := copy (q3r): qli := copy (q3i): fi:
od: L3seq ():
od:
od:
od:
for sl from2 to s—1 do
112 :=sl: sr := s—sl: 13rmx := binomial (sr+Mc—2,Mc—2):
83 := [seq (0,i=1..Mc—1)]: ctpo:=1:p:=1:ctl:=1:
for 13 to binomial (sl+Mc—2,Mc—2) do
for j to Mc do
Lslr[j] := [seq (Ren[j,s1][1i],i=ctl..ctl+112)]:
Lsli[j] := [seq (Imn[j,s1][i],i=ctl..ct1l+112)]:
od:
S3r := [seq (0,i=1..Mc—1)]:
112r := sr: ctp :=ctpo: pr:=1: ctr :=1:
for 13r to 13rmx do
for j to L do
for wri to Mc do
jw:=Qb[wri]:
Lsrr := [seq (dRh[j,sr+1l,wri][i],i=ctr..ctr+112r)]:
Lsri := [seq (dIh[j,sr+1l,wri][i],i=ctr..ctr+112r)]:
for j1l to 112+112r+1 do
sb:=max (1,j1-112): sp:=min (112r+1,j1):
Lsrt[wri][jl] :=add (Lsrr[il*Lslr[jw][jl+1—1]
—Lsri[i]*Lsli[jw][jl+1—1i],i=sb..sp):
Lsit[{wri][jl] :=add (Lsrr[i]*Lsli[jw][jl+1—1]
+Lsri[i]*Lslr[jw][jl+1—1i],i=sb..sp):
od:
od:
for i fromctp to ctp+112+112r do
Rht[j][i] :=Rht[j][i]—add (Lsrt[wri][i—ctp+1l],wri=1..Mc):
Iht[j][i] :==Iht[j][i]—add (Lsit[wri][i—ctp+1],wri=1..Mc):
od:
od:
ctp:=1i:ctr:=ctr+112r+1:
if 112r =0 then
ctp := ctp—binomial (S3r[pr]+1,2)—S3r[pr]*xll2:
temp ;= 112+83[1]:
for i from2 to pr do
ctp:=ctp+binomial (temp+i,1+1)
—binomial (temp+S3r[pr]+i—1,1+1):
temp := temp+S3[1i]:
od:
ctp:=ctp+binomial (temp+S3r[pr]+i—1,i):
S3r[pr+l1] :=83r[pr+1]+1: 112r := S3r[pr]—1:
S3r[pr] := 0: pr:=max (O,sign (—112r) )*pr+1:
else S3r[1] :=83r[1]+1: 112r := 112r—1: fi:
od:
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ctpo := ctpo+binomial (sr+ll2+p+max (O,sign (—112)),sr+112):
ctl:=ctl+112+1: L3seq ():
od:
od:

lic:=Array (1l..smx):
83 := [seq (0,i=1..Mc)]: p:=1:112:=s:
for 15 to smx do
S5 := [112,0p (S83)]:
lic[15] :=add (IEf[i]*(SH[R%i—M1—-1]—-S5[2%i—M1]),i=M1+1..M1+M2):
L3seq ():
od:
for j to M1+MR2 do
Ren[j,s] (= Array (1l..smx): Imn[j,s] := Array (1l..smx):
Rh[j,1,s] := Array (1l..smx): Ih[],1l,s] := Array (l..smx):
Iy := —I1IEf[j]:
for 15 to smx do
I1:=TIy+lic[15]:
if I1 <> 0 then
Rh[j,1,s][15] := factor (Iht[j][15]/I1):
Ih(j,1,s][15] := —factor (Rht[j][15]/I1):
else Ren[j,s][15] := factor (Rht[j][15]):
Imn[j,s][15] := factor (Iht[j][15]): fi:
od:
od:
if s <Ord then
for j from M1+M2+1 to L do
Rh[j,1,s] ;= Array (l..smx): ITh[j,1l,s] := Array (1l..smx):
Ry := —REf[j]: Iy :== —IEf[j]:
for 15 to smx do
I1:=TIy+1lic[15]: temp := Ry*Ry+I1xI1:
Rh[j,1,s][15] := factor ((Rht[j][15]*Ry+Iht[j][15]*%I1)/temp):
Ih[j,1,s][15] := factor ((Iht[j][15]*xRy—Rht[j][15]*I1)/temp):
od:
od:
for j fromM1+1 to M1+M2 do
Ren[M2+j,s] := Array ([seq (Ren[Jj,s][Tt[i]],i=1..smx)]):
Imn[M2+j,s] := Array ([seq (—Imn[Jj,s][Tt[i]],i=1..smx)]):
Rh[L-M1+j,1,s] := Array ([seq (Rh[j,1,s][Tt[1i]],i=1..smx)]):
Ih[{L-M1+j,1,s] := Array ([seq (—Ih[j,1,s][Tt[1]],i=1..smx)]):
od:
for j from L—M4+1 to L do
Rh[M2+M4+j,1,s] := Array ([seq (Rh[j,1,s][Tt[1]],i=1..smx)]):
Ih[M2+M4+j,1,s] := Array ([seq (—=Ih[j,1,s][Tt[i]],i=1..smx)]):
od:
gdemx := binomial (s+Mc—2,Mc—1):
for wri to Mc do
for j toL do
dRh[ j,s,wri] := Array (l..qdemx):
dIh[j,s,wri] := Array (l..qdemx):
od:
temp := Mc—wri:
Sil := [seq (O0,j=1..temp+2)]:
lsimx := binomial (s+temp,temp);
11i :=s: kst :=1: oml := 0: po := 1:
for 1si from1l to 1simx do
ifwri >1 then
oml := oml+binomial (1lli+wri—2,wri—2):
for 1i from1l to 111 do
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limx := binomial (1lli—li+wri—2,wri—=2):
for j fromkst to kst+1limx—1 do
for j1 to L do
dRh[jl,s,wri][Jj] := 1i%Rh[jl,1,s][j+oml]:
dIh[jl,s,wri][Jj] := 1i*Ih[jl,1,s][j+oml]:

od:
od: kst := kst+1limx:
od:
else

for j1 to L do
dRh[jl,s,wri][kst] :=11ixRh[jl,1,s][kst+oml]:
dIh[jl,s,wri][kst] :=11i%Ih[jl,1,s][kst+oml]:
od: kst := kst+1:
fi:
if11i =1 then
oml := oml+po: Sil[po+1] :=Sil[po+1]+1:11i:=Sil[po]:
Sil[po] :=0:1lsi:=1si+po: po:=max (0,sign (1—11i)xpo)+1:
else Sil1[1] :=O81i1[1]+1:11i :=11i—-1: fi:
od:
od:
fi:

od:

ZC := [seq (0,j=1..M1)]:

RC := [seq (0,j=1..M2)]:

IC := [seq (IEf[M1+j],j=1..M2)]:
for s from2 to Ord do

112 :=s: p:=1: 13mx := binomial (s+Mc—1,Mc—1):
83 := [seq (0,i=1..Mc)]:
for 13 to 13mx do
S1:= [112,0p (S3)]: term:= 1:
for j from1l to M1 do term := term*y[j]ASI[j]: od:
thetan := O:
for j fromM1+1 to M1+M2 do
term:= term«r[j—ML]"(S1[2%j—M1—1]+S1[2%j—M1]):
thetan := thetan+theta[ j—M1]*(S1[2%j—M1—-1]1—-S1[2%j—M1]):
od:
for j from1l to M1 do
ZC[jl :=2ZC[j]+termx(factor (Ren[Jj,s][13])*cos (thetan)
—factor (Imn[j,s][13])*sin (thetan)):
od:
for j from1l to M2 do
RC[j] :=RC[j]l+termx(factor (Ren[j+M1l,s][13])*cos (thetan—theta[j])
—factor (Imn[j+M1,s][13])*sin (thetan—thetal[j])):

IC[j] :==IC[jl+term/r[j]l*(factor (Ren[j+M1l,s][13])*sin (thetan—thetal[j])

+factor (Imn[j+M1l,s][13])*cos (thetan—theta[j])):
od:
L3seq ():
od:
od:

for i from1l to M1 do

ZC[i] := combine (ZC[i],trig): print (“‘y",1i,ZC[1i]):

od:
for i from1l to M2 do

RC[1i] := combine (RC[i],trig): print (“‘r",i,RC[1]):
IC[i] := combine (IC[i],trig): print (¢ ‘theta",i,IC[1i]):

od:
save M1,M2,ZC,RC,IC, output:
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