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1. Introduction

The second part of Hilbert’s 16th problem is to
decide an upper bound for the number of limit
cycles in a planar polynomial vector filed of degree
n; it is very complicated. The particular version of
this problem is to estimate the number M(n) of
small limit cycles bifurcating from a singular point;
it is still very difficult. Only for the quadratic case,
Bautin [1952] proved M(2) = 3. For n > 2 this
problem is still open. More recent new progress can
be found in [Li, 2003].

For general n-dimensional systems, two of the
useful tools in the study of stability and bifurcations
near singular points are center manifold theory and
normal form theory. The center manifold theory can
be applied to reduce the dimension of the state

spaces which need to be considered when some
eigenvalues of the linearization have zero real part.
The basic idea of normal form theory is to trans-
form the original system to a simpler one which
keeps the topological structure of the original sys-
tem around the singular point. Most developments
in this direction for the past three decades can be
found in [Guckenheimer & Holmes, 1993; Nayfeh,
1993; Chow et al., 1994].

Since computation of normal forms is very
involved and time consuming, in particular, for
higher-order normal forms, computer algebra sys-
tems such as Maple, Mathematica, must be used.
Several efficient methodologies for computing nor-
mal forms have been developed in the past decade
(e.g. see [Yu, 1998, 2003; Giné & Santallusia, 2001]).
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Recently, researchers have also paid attention to
computation of the simplest normal forms (e.g. see
[Algaba et al., 1998; Yu, 1999; Yu & Yuan, 2003;
Yu & Leung, 2003a; Gazor & Yu, 2012]).

The method of multiple time scales combined
with a perturbation technique can be applied to
obtain unique normal forms of differential equations
for a number of different singularities such as Hopf
[Yu, 1998], Hopf-zero [Yu & Leung, 2003b], dou-
ble Hopf [Yu, 2001, 2002], etc. This method does
not need to solve differential equations, nor involve
integration, but only need algebraic calculations,
which greatly facilitates implementation using com-
puter algebra systems such as Maple. For Hopf
bifurcation, this method only requires solving two-
dimensional matrix systems for any higher-order
normal forms of general n-dimensional systems.

The method of Poincaré-Lyapunov constants
can be used to study bifurcations of small limit
cycles. Lloyd and Pearson [1990] used computer
algebra system Reduce to compute Poincaré—
Lyapunov constants by solving linear equations.
Giné and Santallusia [2001] obtained a recursive
formula for the Poincaré-Lyapunov constants of
Hopf bifurcation for general two-dimensional sys-
tems, which can be computed recursively in terms of
the coefficients of the original system (for its appli-
cations, e.g. see [Giné & Santallusia, 2004; Giné &
Mallol, 2009]).

Yu [2003] computed the center manifold of dif-
ferential equations with a proper nonlinear trans-
formation which is incorporated with normal form
computation to develop a unified procedure for
computing normal forms of general n-dimensional
systems. The formulas developed in [Yu, 1998, 2003]
are in recursive format, but not explicit, which may
involve some repetitive computations, and so may
demand more memory in a computer to obtain
higher-order normal forms or focus values. Since
practical problems often have Hopf bifurcation in
high-dimensional systems, and thus the recursive
formula in [Giné & Santallusia, 2001], which only
computes focus values, cannot be directly applied
to such systems. Moreover, for Hopf bifurcation, one
may also need to determine the frequency of motion,
implying that normal form, rather than just focus
values, need to be computed.

In this paper, based on the result of [Yu, 2003],
we will develop an efficient method to compute
the normal form for Hopf bifurcation in general n-
dimensional dynamical systems. We shall present

explicit recursive formulas for simultaneously com-
puting the center manifold and normal form of a
given general system, which is available for the first
time in the literature.

2. Main Result

Consider a system of differential equations of the
form,

y=Ay +G(y), yeR", G(y):R"— R",

(1)
where G(0) = 0, DyG(0) = 0, and it is assumed,
without loss of generality, that the matrix A
has eigenvalues 7, —i,A1,. .., Ak, s Aky+1, Xk-lJrl’ e
Ny thos Moy koo Here Ap,..., A\, are nonzero real
numbers, and Mg, +1,. .., Ak, +k, are complex num-

bers with nonzero real part, and 2 + k1 + 2ko = n.
Then, there exists a linear transformation,

y =Tx,
such that (1) can be transformed into
x = Jx + f(x), (2)

with zo9 = Z1, where

J = diag(i, *’L', )\1, ceey >\k1+k2a
X]€1+17 cee 7Xk1+k)2>7
f(x) = Y fu(x)
m>2
S S analaf g
m>2 m

~ A . .
and M = myms - - - My, denoting a choice of values
of mi,ma,...,m, which satisfies 2;21 m; = m
with mj > 0.

Let x = (21,71,x1)T and J = diag(i, —i, J,.).
Then, Eq. (2) can be written as

551 = iCEl + fl(xla'flaXT)a
T = —’Li'l + fl(xlafl7x7“)7 (3)
).(7» = J’r’XT + fr(xlyflax’l”)'

Note that the second equation of (3) is a complex
conjugate of the first equation.

1350104-2



Int. J. Bifurcation Chaos 2013.23. Downloaded from www.worldscientific.com
by THE UNIV OF WESTERN ONTARIO on 07/25/13. For persona use only.

The center manifold of (3) may be defined in
the form of

Xp = H<x1; z'1>

= Z H,, (z1,71)

m>2

with

m
m(T1,71) Zh E j, (4)
7=0

which satisfies
H,, (21, %1)%1 + Hz, (21,71)T
= JTH('Ila'fl) + fr(ﬂfl,fl,H(J?l,.fl)).

Then, the differential equations describing the
dynamics on the center manifold are given by

Ty = i1 + fi1(21, 71, H(z1, 71)), 5
5
Ty = —i%1 + f1(21,Z1, H(21,71)).
Next, introduce the transformation, given by

r1 =u+ Q(u,u)

=u+ Z Qm(u,a)

m>2
= q(u, 1)
with @, (u, 1) =

the normal form,

E;n:o Q;nujl_bm_j, into (5) to obtain

4 =1u+ C(u,u) where

u) = Z amu™ g™, (6)

m>1
= H(q(u,u), g(u,u)) and

fl(Q(u’a)aQ(uva)vh(ua ’L_L))a
F.(u, @) = £:(q(u, 0), g(u, 0), h(u, 0)).

Then we have the following equations

Let h(u,u)
F1 (u, ’L_L) =

mi,s1 m2782 m3,837 M4,54 7
a—ZEZZEkw R S

m=2 m §

s—1 m s+k—m

Ezplicit Recursive Formula for Computing Normal Forms

(Qu(u,ﬂ) Qz(u, ﬂ)) < u ) B (zQ(u, ﬂ))
h,(u,7) hg(u,7)/ \ —it Jrh(u, @)

Solving (7) order by order, we obtain the center
manifold and the normal form as well as the asso-
ciated nonlinear transformation.

Suppose for k£ > 0,

=3 >

m=k 7=0

I T

m=2k j=0
We have the following result.

Theorem 1. For the differential system (8), the
recursive formulas for the coefficients of the cen-
ter manifold (4) and the normal form (6) are given
as follows: for s >2,0<j <s,

(1) if s is even, then

(2 — 5 — )q; = a} — C3,

i(2j — s)hi — J.hj = b? — C] ;
(2) if s is odd, then
(2]7871)(])_@ Clja
as—1 = a% — C% 1
T2 2 2
i(2j — s)hi — Jyhj = bl — C]
where flm’ (h;?ls, h;ngs, . ,h;nns o)1 and a3 =
( ]7 j’ bST>
Mn—1,Sn—17 Mn,Sn
In—1,n—3 Jn,m—2

min(l1,5)

Y Y

hm k,l m k,s—l1
k 4y Dsji—ti—j>

m=2k=0 l1=k ji=max(0,l1+7j—s)
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min([#32],5,s—5)
1= Z ((G—m)am + (s —j— )am)qj’ 3”’",
m=1
min([£52],5,s—5) i
Cri= (( = m)am + (s — j —m)am)h30",
m=1

m,s m—1,1 s—1|
4 = Z Z Ty - m 22,

I=m—1 ji=max(0,l4+j—s)

min(l,5)

Sy Y R e

l=m~—1 j1=max(0,l+j—s)

Proof. For any given integer s > 2, suppose that we

have obtained ¢} and h? for n <s, 0 < j < n and H(z1,71) = h(u,2)

am, m < [£52]. Now, we Want to derive the formulas . m

for qj and hs for 0 < j < s and a[s - We divide . Zflmukﬂm k + of[u, al*)
= 4 ;

the proof in three steps, which can also be served
as the guidelines for developing programs using a

computer algebra system. In this step, we derive the formula for hj,0 < k < s.

First of all, we need to compute ¥ = ¢*(u,q),
Step 1. Denote where 2 < k < s. Since ¢"(u, 7) = q(u, 0)¢"*(u, 0),
we have
S m
q" (u, ) = > qruIum ™ + o |u, ) Z qu M 4 o |u, 1)
m=1 j=0 m=k—1 j=0
s m m—1 min(l,5)
_ k— ll m—I1 ] m— ]
= > X 4 e o).
m=k j=0I1=k—1 ji=max(0,l+j—m)
Then, for 2 < k <s,0<j <s, we obtain
min(l,j)
— k—1,1 l
Z > 4T
I=k—1 ji=max(0,l4+7—s)
For 2 <m <s,
m(x1,71) th T
k=0
m
= _h'¢"(w, w)g" " (u, 1)
k=0
m S
l — kil l
=2 0 (2> g E T o(ual) | | >0 Y gy el +offu, al)
k= =k j=0 l=m—k =0
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s | l+k—-m min(l1,5)
k=0 j=0 lLi=k ji=max(0,l1+j—

min(l1,5)
I=m j=0 k=0 l1=k j1=max(0,l1+j—I)

where q(;,o =1 and qg’l = 0if [ > 1. In particular,

Hs(xlyfl)
=0
Since h(u,u) = H(x1,71) =

s—1 s+k—m

Zm22 H,,(z1,71) and Hy,(q(u, @),

Ezplicit Recursive Formula for Computing Normal Forms

k,ly —m—Fk,l—11
q]l D ji—11—j
0)

wdut— 3+0(|u al®)

l
o m ki =m—k,l—Il1 ] —l—j
SYYYS S m s wE o),

S
= > hw ™ + o(|u, 1)

=]

(u, w)) =

O(|u, u|™), we obtain

min(l1,5)

AN >

m k1 m k,s—l1
hk q]l s+j1—li—j"

m=2k=0 L=k ji=max(0,l1+j—s)

Step 2. Denote F(u,u)

= (Fl(u7 ﬂ)ﬂFl(uv 'E),FZ(U,'E))T7

=" T+ of|u, ). 9)

m=2 j=0

In this step, we derive the formula for a
Let h*(u, )

if m > 1. Using the same method for computing qf’

aj, 0<j<s.

mln

S >

= 0ok oo WY T 4 o(|u, @)%, k > 0, where )™ =
® 5 >2k, 0<j<s, we have

I 0,0 r 0m
b7, h)" =1 and h)™ =0

v k—1,0{ s—1
h.71 h.7 —Jji-

[=2k—2 j;=max(0,j+I1—s)

Let b/ = (A" BT, ..

E amxml m2 .. x
= E amq

rm,l \T
'7h‘;'r,Ln72)

= Zam Z qul’ wal=l 4 o(|u, ul*)

lmle

s l
| D0 YA ER 4 o(fu,al)

[=2m3 j=0

"2 (u, w)hy" (u, @) - - b

. For 2 < m < s, substituting ¢(u, @) and h(u,a) into £, (x) yields

2(“7 ﬁ)

> qu% @' + o(ju, 1)

lm2]0

s l
ST ST a I + o u, @)

=2my, j=0
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l I lo

=) an YYY Y Y Y XYY

I=m j=011=m1 la=m2 l2=2m3 Iln=2my, 71=0 j2=0 j3=0

In i—l—7j _
§ :qml’lquQ’Zths’lshm4’l4-- Jn—biln—1 pmnln 52l I+ o(|u, ul®)

J3,1 "%j4,2 jn—1,m—3 '“jn,n—2
Jn=0
mi,l1 —ma,l2 7 m3,l37 ma,la Mp—1,ln—1 mn,ln _j —l—j
_Zzzzzamq 95, hysl h342 "hyn 1,n— Bh "ou? ! + offu, ul*).
l=mj=0 m |

Since F(u,u) = f(x) = 3_, 59 fm(x), for 0 < j < s, we consequently obtain
ks Z 2.2 Z A, R R L R,

where 0 < ji < s, for any 1 < k < n, and the index § satisfies that

=0 if my, =0,
s =>my fork=1,2
>2my for 3<k<n

} if my, # 0.

Step 3. Denote

CTda™ 7 + o(|u, ul®
Q) Q) (Cwnny | ooy (%)
) N m : (10)

S

d > Crmwdam T+ ofju, al)

m=4 j=1

In this step, we derive the formulas for Ci] and Cﬁ], 0<j<s.
Note that

Qu(u, W) C(u, 1) + Qz(u, u)C(u,u)

s m [554]
>° gt am I +ofju,al ) ™7™ + o((u, )

m=2 j=0 m=1

[.sl

(m — g’ @™+ o(fu, ") Z @™ + o(|u, al)

+
M

m=2 j=0 m=
s 1 min([(52]50—) s 1 min((5F2]50-5)

_ ol = M) 4 30 (L = m — )}l
=4 j=2 m=1 =4 j= m=1
+ o(|u, ul?)
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For the first term in the last expression above, if j =1, then m =1 and 7 — m

Qu(u,0)C(u, ) + Qz(u,@)C(u, 0)

Il
,MN

Therefore, for s > 4, 0 <

((.7 - m)a’m +

Ezplicit Recursive Formula for Computing Normal Forms

= 0. So, we obtain

(= = m)am)g; '™ + of|u, ).

45 -m

j < s, comparing the above equation with (10) we have

min([sgg}vjvs_j)
ij = (G —m)am + (s —Jj — )am)Qj 12nm
m=1
Similarly,
min([%]vjtsfj) B
Cii= > ((G-mam+(s—j—man)hi 2"
m=1
Finally, from the left-hand side of (7), we obtain
iuhy (v - @) —iuhg(u, @) — J-h(u, )

ZUZZ]hmuj tam= szuzz

m=2 j=0

f]hmuymj 1

m=2 j=0

= > > (2§ —m)h} — L)l a™ I + ofju, 1)), (11)

and similarly,

uQy(u - u) — iuQy(u, u) —iQ(u, )
S i) - m - g
m=2 j=0
+o(|u, al*). (12)

Substituting (6), (9)—(1
proof of Theorem 1. H

2) into (7) completes the

The Maple program developed using the above
formulas is given in Appendix for the convenience
of readers.

3. Application

In this section, we present two examples to demon-
strate the computational efficiency of the method
developed in the previous section. We apply the
obtained formulas to compute the normal forms

for these two examples, and compare the computa-
tional efficiency with existing programs. The Maple
program developed in this paper (see the source
code in Appendix) and the Maple program given
in [Yu, 1998] are executed on a desktop machine
with CPU 3.4 GHZ and 32G RAM memory for a
comparison. We have tested a number of systems
and found that in general (in particular, more terms
involved in the system) the method and program
developed in this paper are better than the pertur-
bation method as well as the program developed in
[Yu, 1998]. Only in some special cases the situation
is reversed.

In the following, for the first example, we show
how to use the normal form to determine the maxi-
mum number of small amplitude limit cycles bifur-
cating from a focus point, as well as the maximum
number of critical periods of periodic solutions in
the neighborhood of the critical point. For the
second example, we focus on the comparison of
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computational efficiency with existing programs,
and show that the recursive formulas and Maple
program obtained in this paper are superior to other
methods.

3.1. A five-dimensional dynamical
system

The first example is a general five-dimensional
dynamical system involving a number of constant
parameters, given by

&1 = apr1 + T2 + a1 + agr?xy,
To = —T1 + agTa + agiﬂg

+ as2% + aswqzs,

. (13)
T3 = —x3 + agr122,
iy = —x4 + x5 + 723,
:i'5 = —X4 — X5 -+ agx%,
1
V1 = §a17
- L_,06(a7 + 3as)
Vg = 32a1a2 100a4a6 ar as ),
U8 = 556304000 |
1
2176000

where the a;, « = 0,1,2,...,8 are real numbers.
The system has an equilibrium at the origin, and
its linear part is in the Jordan canonical form, with
eigenvalues, ag + 4, —1 and —1 =+ 4, indicating that
the origin undergoes a Hopf bifurcation at the crit-
ical point ag = 0. For system (13), we compute the
normal form up to 17th order, given in polar coor-
dinates as follows:

i =r(vo+vir? + - +ogrt®) + o,

. (14)
O=1+tg+tr2+ - +tgri® ...,

where r and 6 represent the amplitude and phase
of motion, respectively; vy is usually called the kth
order focus value. The coefficients vy and ty are
obtained from the linear analysis. For system (13),
vo = ap and ty = 0. The first equation of (14) can
be used to determine the bifurcation of limit cycles
near the origin and their stability, while the second
equation of (14) can be used to determine the fre-
quency of the limit cycles. The coefficients obtained
from the output of the computer program are

35912502 + 5442125a3 — 16a4a6(35509a7 + 74168ag)]

as[2a5(10075a2 + 11603a3ag — 5643a2a3 — 4423azaj + 8300a3)

— azag(7413a% + 2664azag + 1891a3)]

1

+——u5 [2210@§@6 — aza4(105928a7 + 22921ag)],

14144000

1474726741229822691517588834545902683

agagai%aga?ag + -

Y8 T J446754340426377862456770560000000000000
L3
1= 8a2’
11, 5 , 1
by— g2 Ot 2 1
2= “5n501 ~ 952 ~ Tep™as(a7 +as),
t3 == aj [2845375&1 as — 16a4a6(16738a7 + 101&8)]

45260800

1 3
+ ————a,[7839975a% — 16a4a6(11566a7 — 7399as)] — 2a?

45260800

1280 376
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1
10880000

Ezplicit Recursive Formula for Computing Normal Forms

as[40a;(4800a2 + 1708a3ag — 5713a%a2 + 1907ara3 — 820a3)

— azag(121649a? + 9416a7as — 77889a3)],

112390166138349550268314971775544497279

tg =

agagai%a%a?ag + -

where the lengthy expressions for vy, t4, etc. are
omitted here for brevity.

To determine the maximum number of small
amplitude limit cycles bifurcating from the origin,
one may solve the polynomial equations v; = vy =

- = 0 for the parameters a;. Suppose one can
obtain vg = a9 = 0,v1(a;)) = ve(a;)) = -+ =
vg—1(a;) = 0, but vg(a;) # 0, then one can con-
clude that at most k limit cycles may bifurcate from
the origin. Moreover, by properly perturbing the
parameters a;, one can obtain k small amplitude
limit cycles in the vicinity of the origin.

Now, suppose under certain conditions the ori-
gin of system (13), restricted to the center manifold,
becomes a center, we can then study the critical
periods of the periodical solutions around the ori-
gin. The procedure is similar to that of finding the
maximum number of limit cycles, as described as
follows. Let

h=r?>>0 and
(16)
p(h) = t1h +toh? + -+t hF + ..
Then, the second equation of (14) can be written
as df = (1 + p(h))dt. Let the period of motion be
T'(h). Then, integrating this equation on both sides

from 0 to 27 yields 2w = (1 + p(h))T'(h), which inI

© 640332625021398412193774960640000000000000

(15)

13

a) = —————————
2441880a2a6a7

Further solving vy = 0 for as results in

[5508a3a2 + asa?(117009azas — 689750a5a2)],

turn results in

T(h)

B 27
 1+p(h)

(and so 1+ p(h) =~ 1). (17)

forO<hk1

Now, the local critical periods are determined by

T'(h) = (_1-23;;1()};)2 = 0. Thus, for 0 < h < 1 (mean-

ing that we consider small limit cycles), the local
critical periods are determined by

p(h) =t1 +2t0h+ -+ ktpghF 4o =0, (18)

Then, similar to the above discussion in determining
the maximum number of limit cycles, we can find
the sufficient conditions for the polynomial p/(h) to
have maximal number of zeros. If | = t9 = --- =
ty—1 = 0, but t; # 0, then equation p/(h) = 0 can
have at most k — 1 real roots. Hence, t1,to,...,tr_1
can be perturbed to have k — 1 real roots, and thus
system (13) can have k — 1 critical periods.

Next, we use (15) to determine the maximum
number of small amplitude limit cycle bifurcations
from the origin of system (13). To find the criti-
cal parameter values, letting a; = 0 yields v; = 0.
Then, setting ag = —%cw, we have v9 = 0. With
these parameter values, solving vs = 0 for a4 yields

(agagar # 0).

1/3

231361[9aza6(612azae + 13001asa2)(5508a3as + aza2(117009aza — 1379500a5a2))

ag = + 4757550625000 303]

167580[299559536604a2a2 — asa?(206823894568700as5 a2 + 4779756148743a3a6))

and then vs and vg are simplified to

481[5508a3a% — a5a2(689750a5a% — 117009aza)]

Vs =

©299559536604a2a2 — as5a2(206823894568700a5 a? + 4779756148743az ag)

x {13117140119171757150379152a 3a¢ — a5a2[3964521095122924744342256808a3a;
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— a5a2(50237329268678519391542393913a2ag + 10a5a2(287295418808429080540146201219a3 ag

+ 509170724293870725274253763100a5 a2))] },

6015386[5508a3a2 — a5a2(689750a5a% — 117009azag))?

Vg =

a 343[299559536604a3a2 — asa2(206823894568700a5 a2 + 4779756148743a3a)]

X {4369100288210241965165567410201975915584agag

+ a5a$ [48714467325624956765186957094776399777904agag

— a5a2(3845973325800546252799748753542377356118852a 5a g

+ a502[103213562801159168000556264482023982522738583a3 0

+ 4a5a$(1970250745184090404872572 10142206321678001863a§a§

— 25&5&%(16558651465224677787932424690182456471021097@3 ae

+196414263618794085309604077817625129955519500a5 a2))])] }.

It can be shown that besides the common factor in
vs and vg, the only possible parameter values for
vs = vg = 0 are asa; = aszag = 0, which are obvi-
ously not allowed. This suggests that there exist
parameter values such that v; = 0,7 = 0,1,...,5,
but vg # 0. Therefore, for system (13), we can at
most have six small amplitude limit cycles bifurcat-
ing from the origin. To find the parameter values
such that vs = 0, we may set a5 = ag = a7y =1 and
then solve an equation from vs = 0 for ag, yielding
four real solutions. Choosing one of them, we have
the following set of critical values:

as = ag = a7 = 1,

ag = ay =0,
4

ag = _§7

az = —1.8401519905 . . .,

as = —0.1765825495 . . .,

a4 = 26.7243747795 . . .,

under which v; = 0, ¢ = 0, 1,...,5, vg =
0.0573817846.... Then making proper perturba-
tions in backward order, on ag for vs, on as for vy,
on ay for vz, on ag for vy, and then on a; for vy, and
finally on ag for vy such that

<K 1 <12 —13 <Ky KL —v5 K vg,

leading to six small limit cycles.
Next, we consider critical periods of periodic
solutions near the origin. To do this, we first need

to find the conditions under which the origin is a
center, restricted to the center manifold. There are
a number of such conditions. Here, we consider one
satisfying

a] = a5 = ag = O, (19)
under which
t—§a t——ia2 t—14£a3
178" 27 756" BT g1927
_ATS05 _ 438825 .
17T 79621447 T 20971522

Therefore, under the condition (19), system (13)
does not have critical periods near the origin; it
is either monotonically increasing for as > 0 or
decreasing for as < 0. When as = 0, the origin
is a isochronous center.

3.2. A three-dimensional
competitive Lotka—Volterra
system

In this section, we consider a three-dimensional
competitive Lotka—Volterra system, described by
the following differential equations:

3
jﬁi =X; | Ti — Zaijajj s 1= 1, 2, 3, (20)
7j=1

where x; represents the population of ith species,
and the coefficients take positive real values, r; > 0,
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aj; > 0, 4,7 = 1,2,3. Over the last twenty years,
a number of articles concerning the bifurcation of
limit cycles for system (20) have been published
(e.g. see [Hofbauer & So, 1994; Lu & Luo, 2002;
Gyllenberg et al., 2006; Gyllenberg & Yan, 2009]).
Particularly, for system (20) four limit cycles were
found by Gyllenberg and Yan [2009], using appro-
priate parameter values. These four limit cycles
include three small amplitude limit cycles, proved
by using focus value computation, and one large
limit cycle, shown by constructing a heteroclinic
cycle. In this section, we consider the Hopf bifur-
cation emerging from an interior singular point and
use the normal form (or focus values) to study the
maximum number of limit cycles bifurcating from
this point.

It is noted that system (20) has a total of 12
parameters. Since we are interested in the limit
cycles bifurcating from an interior equilibrium solu-
tion of system (20), we, without loss of generality,
may assume that £ = (1,1,1) is the equilibrium
solution, which yields r; = Z;’:l ai; and reduce the
number of parameters to nine. Taking the transla—l

Ezplicit Recursive Formula for Computing Normal Forms

tion x; — x; + 1 such that the equilibrium solution
is moved to the origin, we have

3
T; = —(1 + $Z> Zaijxj . (21)
j=1

The Jacobian of system (21) at = = 0 is the matrix
A = (—ajj;), which has the characteristic polynomial
P(A) = X3 —TX\2 + M\ — D, where

T = —(a11 + age + ass),

M = aj1a22 — ajza21 + a11633 — a13a3; (22)

+ ageass — agzasz,
D = det(A).

When TM = D and M > 0, there exist a pair of
purely imaginary eigenvalues +iv/M and a negative
eigenvalue T', and Hopf bifurcation occurs.

A parameter, say a3y, is needed to satisfy
TM = D. Moreover, one may apply a time scaling
to set M = 1, using a parameter, say ass. Finally,
we may use a parameterization so that asz = 1.
Solving equations TM = D and M = 1 yields

2 2
11022023 + a71023 — A11G13022021 — G11021G13 — 311023021012
2
+ a13a51a12 — A13G22021 + A21G13 + (22023 + Q23 + 42302112

aszy = D) 2 ’
53012 — G73021 — 013022023 + 423011013
2 2 2
—a13 — a11G13 — 412023 + 11022012023 — 421075023 — G13059 — (13011059
u — 13021012 + (22012023 + 11012023 + 422021412013
32 =

2 2
53012 — G73021 — Q13022023 + 023011013
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Thus, only six parameters a;j, ¢ = 1,2, j = 1,2,3 are left for determining the focus values. In general, we
might be able to find the parameter values satisfying v = vo = -+ = vg = 0, but v7 # 0, and thus seven
small limit cycles may be found in the vicinity of the equilibrium solution. If, in addition, there exists a
large limit cycle near the heteroclinic loop, then the maximum number of limit cycles becomes eight.

To apply the Maple program, we first need to put the linear part of system (20) in Jordan canonical
form. To achieve this, introducing the linear variable transformation z — Tx, where

a13a22 — 12023 a3 az(ain + 1) + ajza93

T = ags(az + 1) + ajzas

(@11 + 1)(az2 + 1) — ajpan

a11a23 — @13021 a23
ajpaz — ayjaz +1  —(ai + az)
into system (21) yields the following system:

=20+ q(z), Z2=—x1+q(r), @3=Trs+ q3(x), (23)

where T'= —(a11 + age + 1) and ¢;(x), i = 1,2,3 are quadratic homogenenous polynomials, given in the
form as
i = bi2ooxt — binooa3 + bioo2a3 + bit10T122 + broa123 + bio11Taws, i =1,2,3,
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where the coefficients b;;1;’s are lengthy expressions
in terms of the original six coefficients a;;, i = 1,2;
j = 1,2,3. We have executed the Maple program
developed in this paper and that given in [Yu, 1998|
on the desktop machine to obtain the following
results. For the Maple program given in [Yu, 1998],
it took 251 min CPU time and 12.35 GB Ram mem-
ory to get the focus values up to third order; while
for the program developed in this paper, it only
took 31 min CPU time and 3.86 GB Ram memory
to get the focus values up to fourth order. This
clearly shows that the recursive formulas derived
and Maple program developed in this paper are
more computationally efficient for higher-order nor-
mal forms than that given in [Yu, 1998], though
the program in [Yu, 1998 was proved computation-
ally efficient, in particular, for lower-order normal
forms. In order to get higher-order focus values of
system (23), we need a more powerful machine with
higher memory.

The first focus value obtained from the com-
puter output is

1

T8t 1)

{2[(b2011 — b1101)T

—2(b1o11 + b2101)]b3200 — [(b1011 + b2101)T
+2(b2011 — b1101)]b3110 }-

The focus values starting from the second one have
very long expressions. The number of terms in each
of the focus values are given below:

Focus Value Number of Terms

U1 8

V9 1036
U3 24088
V4 261401

It can be seen that the number of terms increase
very rapidly as the order of the focus values
increase. Moreover, when the original parameters
a;; are substituted into these expressions, they even
have more terms. Thus, finding possible values of
the six parameters a;; > 0,¢=1,2; j = 1,2,3 such
that v; =0, 7 =1,2,...,6, but v7 # 0, is very diffi-
cult and challenging. It not only needs power com-
puter systems (high speed with large memory), but
also needs efficient polynomial solvers implemented
with a computer algebra system such as Maple.

4. Conclusion

In this paper, we have derived explicit recursive
formulas for computing normal forms and center
manifold of general n-dimensional dynamical sys-
tems associated with Hopf bifurcation. Maple pro-
gram has also been developed, which is convenient
in application. Two examples are presented to show
that the method and program developed in this
paper are computationally efficient.
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This symbolic Maple program is developed on the basis of the formulas in Theorem 1, which can be used
to find the normal forms of Hopf bifurcations of general n-dimensional systems. Here, the input is for the

second example in the section of application.

# No. of nonzero real eigenvalues
# No. of complex conjugate eigenvalues
# the highest degree of the vector field

with(LinearAlgebra):

M1 :=1:

M2 := 0:

N = 2:

Ord := 13:

M =2 + M1 + M2x%2:

L =1 + M1 + M2:

f[1]:= x[2]+b1200*x[1] "2-b1200*x [2] "2+b1002*x [3] "2

+b1110*x [1]*x[2]+b1101*x[1]*x[3]+b1011*x [2] *x [3] :

£[2] :==x[1]+b2200*x [1] "2-b2200*x [2] "2+b2002*x [3] "2
+b2110*x [1]*x[2]+b2101*x [1]*x [3]+b2011*x [2] *x[3] :
f [3] :=—alphax*x [3]+b3200*x [1] "2-b3200*x [2] "2+b3002*x [3] "2
+b3110*x [1]*x[2]+b3101*x[1]*x[3]+b3011*x [2] *x [3] :
x[1]:= v[1]+v[L+1]:
x[2] := Ix(v[1]-v[L+1]):

£[1]:= simplify(£[1]-I*£f[2])/2:
IEf[1]:= diff(£[1]1,v[1]):

j = 3:

for n from 2 to M1+1 do
x[j] := v[nl:
fln] := simplify(£[jl):
IEf[n] := diff(f[n],v[n]):
j = j+l:

od:

k := L+2:

for n from M1+2 to L do
x[j1 := vInl+v([k]:
x[j+1]:= I*x(v[nl-v[k]):
fln] := simplify(£[jl-I*xf[j+1])/2:
IEf [n]:= diff(f[n],v[n]):
j o= jt+2:
k = k+1:

od:

for j to L do
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for k from 1 to M do
IEf[j] := subs(v[k]=0,IEf[j]l):

od:
REf [j] := subs(I=0,IEf([j]):
IEf[j] := (IE£[j]-REf[§]1)/I:

od:

SizeIndex := Array(1..L,2..N):
Mr := seq(l,i=1..M):

for m from 2 to N do

i = 1:

Mv = [seq(0,j=1..M1]:
temp := 1:

Mv[1]:= m+1:

Mv[2]:= -1:

while 1 < M do
Mv[i+1] := 1+Mv[i+1]:
Mv[1] := Mv[i]-1:
if i<>1 then Mv[i]:=0: fi:
if Mv[i+1]=1 then temp:=temp+1l: fi:
if Mv[1]=0 then temp:=temp-1: i := i+1:
else i:=1: fi:
Mcv := [[seq(0,j=1..temp+2)], [seq(0,j=1..temp+2)]]:
Mcv([1,1] := temp:
Mcv([2,1] m+add (Mv [n] ,n=2..L)+add(Mv [n] ,n=L+2..M):
j o= 2:
for k from i to M do
if Mv[k]<>0 then
Mcv[1,j] := k:
Mcv([2,j] := Mv[k]:
j 1= j+l:
fi:

od:
for j from 1 to L do
coef := f[j]:
for k to M do
if Mv[k]=0 then
coef := subs(v[k]=0,coef):
else
coef :
fi:
od:
if coef<>0 then
SizeIndex[j,m] := SizeIndex[j,m]+1:
Mcv[1,-1] := subs(I=0,coef):
Mcv[2,-1] := subs(I=1,coef-Mcv[1,-1]):
Index[j,m,SizeIndex[j,m]] := Mcv:
Mr:=seq(max (Mr[n] ,Mv[n]),n=1..M):
fi:

subs (v[k]=0,diff (coef, ‘$‘(v[k],Mv[k])))/factorial (Mv([k]):

od:
od:
od:
Mr := [max(Mr[1],Mr[1+L]),seq(Mr[n],n=2..M1+1),seq(max(Mr [n] ,Mr [n+M2+1]) ,n=M1+2..L)]:

Rh[1,1,1,1] := 1:
Ih([1,1,1,1] := O:
Rh[1,1,1,0] := O:
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Ih[1,1,1,0] := O:
si = 1/2:
for s from 2 to Ord do
print(‘order =‘,s):
si := si+1/2:
Ms := min(Mr[1],s):
for k from 2 to Ms do
for i from 0 to s do
Ih[1,k,s,i] := O:
Rh[1,k,s,i] := 0:
for m from k-1 to s-1 do
for 1 from max(0,i+m-s) to min(m,i) do
Rh[1,k,s,i] := Rh[1,k,s,i] + Rh[1,k-1,m,1]*Rh[1,1,s-m,i-1]
Ih[1,k-1,m,1]1*Ih[1,1,s-m,i-1]:
Ih[1,k,s,i] + Ih[1,k-1,m,1]*Rh[1,1,s-m,i-1]
Rh([1,k-1,m,1]*Ih([1,1,s-m,i-1]:

Ih([1,k,s,i]

+

od:
od:
od:
od:
for j from 2 to L do
Ms := min(Mr[j],si):
for k from 2 to Ms do
for i from 0 to s do
Ih[j,k,s,1i] 0:
Rh(j,k,s,i] 0:
for m from 2*k-2 to s-2 do
for 1 from max(0,i+m-s) to min(m,i) do
Rh([j,k,s,i] := Rh[j,k,s,i] + Rh[j,k-1,m,11*Rh[j,1,s-m,i-1]
Ih[j,k-1,m,11*Ih[j,1,s-m,i-1]:
Ih([j,k-1,m,1]*Rh[j,1,s-m,i-1]
Rh[j,k-1,m,11*Ih[j,1,s-m,i-1]:

Inlj,k,s,il := Ih[j,k,s,i]

+ +

od:
od:
od:
od:
od:
for j from 1 to L do
for k from O to si do
if s=0rd then k:=iquo(s+1,2): fi:
if k<si then nk:=2: else nk := 1: fi:
temp := min(s-k, k, si-1):

sk := k:

for t from 1 to nk do
Ra[t] := 0:
Ia[t] := 0:

for m from 1 to temp do

Ra[t] := Ral[t] - (s-2x*m)+*Ren[m]*Rh[j,1,s-2*m,sk-m]
+ (2%sk-s)*Imn[m]*Ih[j,1,s-2%m,sk-m]:
Ta[t] := Tal[t] - (2*sk-s)*Imn[m]*Rh[j,1,s-2%m,sk-m]
- (s-2*m)*Ren[m]*Ih([j,1,s-2%m,sk-m]:
od:
sk := s-sk:

od:
for m from 2 to min(s,N) do
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Size := SizelIndex[j,m]:
for i from 1 to Size do
Mv := Index[j,m,i]:
Nonzero := Mv[1,1]:
Sleft := s-Mv[2,1]:
if Sleft>=0 then
NIs:= binomial (Sleft+Nonzero-1,Sleft):
S := Vector(Nonzero):
for 1 to NIs do
if 1=1 then
S[1]:= Sleft:
p = 1:
else
S[p+1]:= S[p+1]+1:
S[1] Slpl-1:
if p <> 1 then
S[p] := 0O:
fi:
if S[1]1=0 then
p := ptil:
else
p = 1:
fi:
fi:
for r from 1 to Nonzero do
if Mv[1,r+1]=1 or Mv[1,r+1]=L+1 then
Svlr] := S[r]+Mv[2,r+1]:
else
Svlr] := S[r]l+2*Mv[2,r+1]:
fi:
od:
Svir]:= k:
Ks = k+1:

q := Nonzero:
Kv[q]:= -1:

while g <= Nonzero do
Kv[ql:= Kv[qgl+1:

Ks := Ks-1:
temp := Ks:
aq =1

while temp >= Sv[qq] do
Kv[qql := Sv[qql:
temp := temp-Sv[qql:
qq = qq+l:
od:
Kv[qql := temp:
for n from qq+l1 to g-1 do
Kv[n] := 0:
od:
for t from 1 to nk do
Rei := Mv[1,-1]:
Imi := Mv[2,-1]:
for n from 2 to Nonzero+l do
teR := Rei:
if Mv[1,n]<L+1 then
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Rei := teR*Rh[Mv[1,n],Mv[2,n],Sv[n-1],Kv[n-1]]
-Imi*Ih[Mv[1,n],Mv[2,n],Sv[n-1],Kv[n-1]]:

Imi := teR*Ih[Mv[1,n],Mv[2,n],Sv[n-1],Kv[n-1]1]
+Imi*Rh[Mv[1,n],Mv[2,n],Sv[n-1],Kv[n-11]:

Kv[n-1] := Sv[n-1]-Kv[n-1]:

else
Kv[n-1] := Sv[n-1]-Kv[n-1]:
if Mv[1,n]=L+1 then

T :=1:
else
T := Mv[1,n]-M2-1:

fi:

Rei := teR*Rh[T,Mv[2,n],Sv[n-1],Kv[n-1]]
+Imi*Ih[T,Mv[2,n],Sv[n-1],Kv[n-1]1]:

Imi:= Imi*Rh[T,Mv[2,n],Sv[n-1],Kv[n-1]]
-teR*Ih([T,Mv[2,n],Sv[n-1],Kv[n-1]]:

fi:
od:
Ra[t] := Ra[t]+Rei:
Ialt] := Ia[t]+Imi:
od:
if t=2 then

for n from 1 to Nonzero do
Kv[n] := Sv[n]-Kv[n]:
od:
fi:
if Nonzero=1 or k = 0 then
break:
fi:
if gqgq>1 then
q ‘= 9qq9q:
Ks:= Ks-temp:
else
if Kv[1]=0 then
Ks:= Kv[q]:
q := q+l:
else
Ks:
q :
fi:
while Sv[ql=Kv[ql do
Ks:= Ks+Kv[q]:
q := qt+l:

Kv[1]:
2:

od:
fi:
od:
od:

fi:
od:
for t from 1 to nk do

Ra[t] factor(Ralt]):

Ialt] factor(Ialt]):

od:
od:
for t from 1 to nk do
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if j=1 then

if k=(s+1)/2 then
Ren[k-1] := Ra[t]:
Imn[k-1] := Ia[t]:
Rh[1,1,s,k] := 0:
Ih[1,1,s,k] := O:

else
Rh[1,1,s,k]
Ih([1,1,s,k]

Ta[t]/(2%k-s-1):
-Ra[t]/(2xk-s-1):

fi:
else
temp := 2*k-s-IEf[j]:
Rh[j,1,s,k] (-REf [j1*Ral[t]+temp*Ialt])/(REf [j1*REf [j]l+temp*temp) :
Ih(j,1,s,k] (-REf [j1*Ialt]-temp*Ral[t])/(REf [j]*REf [j]+temp*temp) :

od:
od:
if s=0rd then
break:
fi:
od:
od:
save Ren, Imn, ‘output‘:
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