Seven Limit Cycles Around a Focus Point in a Simple Three-Dimensional Quadratic Vector Field

Yun Tian* and Pei Yu ${ }^{\dagger}$
Department of Applied Mathematics, Western University, London, Ontario N6A 5B7, Canada
*ytian56@uwo.ca
${ }^{\dagger}$ pyu@uwo.ca

Received December 16, 2013

Abstract

In this paper, we show that a simple three-dimensional quadratic vector field can have at least seven small-amplitude limit cycles, bifurcating from a Hopf critical point. This result is surprisingly higher than the Bautin's result for quadratic planar vector fields which can only have three small-amplitude limit cycles bifurcating from an elementary focus or an elementary center. The methods used in this paper include computing focus values, and solving multivariate polynomial systems using modular regular chains. In order to obtain higher-order focus values for nonplanar dynamical systems, computationally efficient approaches combined with center manifold computation must be adopted. A recently developed explicit, recursive formula and Maple program for computing the normal form and center manifold of general n-dimensional systems is applied to compute the focus values of the three-dimensional vector field.

Keywords: Three-dimensional quadratic vector field; limit cycle; Hopf bifurcation; center manifold; normal form; focus value; Maple.

1. Introduction

Limit cycle theory has been playing a very important role in the study of dynamical behavior of nonlinear systems, emerging from many physical and engineering models, and recently even from financial systems and social systems. In mathematics, for a two-dimensional phase space, a limit cycle is a closed trajectory in the phase space having the property that at least one other trajectory spirals into it either as time approaches infinity or as time approaches negative infinity. Higherdimensional vector fields often exhibit limit cycles which may coexist with more complex dynamical behaviors such as chaos.

The study of limit cycles was initiated by Poincaré [1881-1886]. He built a new branch of mathematics, called "qualitative theory of
differential equations", and introduced the concept of limit cycles. Later, in the past more than 100 years, the development of limit cycle theory was perhaps motivated by the well-known Hilbert's 16th problem. The second part of this problem is to find the upper bound, called Hilbert number $H(n)$, on the number of limit cycles that planar polynomial systems of degree n can have. In early 1990s, Ilyashenko and Yakoveko [1991], and Écalle [1992] proved that $H(n)$ is finite for given planar polynomial vector fields. For general quadratic polynomial systems, the best result is 4 with $(3,1)$ distribution, obtained more than 30 years ago [Shi, 1980; Chen \& Wang, 1979]. Recently, this result was also obtained for near-integrable quadratic systems [Yu \& Han, 2012], whether $H(2)=4$ is still open. In other words, the finiteness problem remains unsolved even

[^0]for quadratic polynomial systems. For cubic polynomial systems, many results have been obtained on the low bound of the Hilbert number. So far, the best result for cubic systems is $H(3) \geq 13$ [Li \& Liu, 2010; Li et al., 2009]. Note that the 13 limit cycles are distributed around several singular points. This number is believed to be below the maximal number which can be obtained for generic cubic systems.

Suppose we consider Hilbert's 16th problem with limit cycles bifurcating from isolated fixed points, then the question becomes how to study degenerate Hopf bifurcations, giving rise to weak (fine) focus points. This local problem has been completely solved only for generic quadratic systems [Bautin, 1952], which can have three limit cycles in the vicinity of such a singular point. For cubic systems, James and Lloyd [1991] obtained a formal construction, via symbolic computation, of a special cubic system with eight limit cycles. In 2009, Yu and Corless [2009] showed the existence of nine limit cycles with the help of a numerical method for another special cubic system. Recently, this special system was reconsidered using purely symbolic computation with the modular regular chains method to confirm the existence of nine limit cycles, and find all the possible real solutions [Chen et al., 2013].

Due to the importance of limit cycle theory and frequent appearance in higher-order dynamical systems, we wish to study the bifurcation of limit cycles in higher-order vector fields. In this paper, particular attention will be focused on threedimensional systems with a Hopf singular point. We would like to investigate the maximal number of limit cycles which may exist in the vicinity of a singular point of three-dimensional systems. This is certainly a very challenging problem. There are very few results in the literature. Over the last 20 years, a three-dimensional competitive LotkaVolterra model has been studied extensively. The model is described by a three-dimensional differential system:

$$
\begin{equation*}
\dot{x}_{i}=x_{i}\left(b_{i}-\sum_{j=1}^{3} a_{i j} x_{j}\right), \quad i=1,2,3, \tag{1}
\end{equation*}
$$

where the dot indicates differentiation with respect to time t, x_{i} represents the population of i th species, and the coefficients take positive real values, $b_{i}>0$, $a_{i j}>0, i, j=1,2,3$. This is a special case of general three-dimensional quadratic systems. In the
past two decades, several researchers have paid attention to system (1) and particularly studied bifurcation of limit cycles (e.g. see [Hofbauer \& So, 1994; Lu \& Luo, 2002; Gyllenberg et al., 2006; Gyllenberg \& Yan, 2009]). So far, the best result is four limit cycles, obtained by Gyllenberg and Yan [2009], using appropriate parameter values. These four limit cycles include three small-amplitude limit cycles, proved by using focus value computation, and one large limit cycle, shown by constructing a heteroclinic cycle. Recently, Tian and Yu revisited this problem [Tian \& Yu, 2013] and showed that this system might have maximal eight limit cycles, but it is very difficult to prove this result by using existing methodologies.

In this paper, we turn to consider a general three-dimensional quadratic system, given by

$$
\begin{align*}
& \dot{x}_{1}=\alpha x_{1}+x_{2}+f_{1}\left(x_{1}, x_{2}, x_{3}\right), \\
& \dot{x}_{2}=-x_{1}+\alpha x_{2}+f_{2}\left(x_{1}, x_{2}, x_{3}\right), \tag{2}\\
& \dot{x}_{3}=-\beta x_{3}+f_{3}\left(x_{1}, x_{2}, x_{3}\right),
\end{align*}
$$

where α and $\beta>0$ are real parameters, and f_{i} 's are quadratic homogeneous polynomials. This system has a Hopf singularity at the origin when $\alpha=0$. For general quadratic polynomials f_{i} and $\beta \neq 1$, the highest order of the focus value obtained from a desktop machine with CPU 3.4 GHZ and 32 G RAM memory is four [Tian \& Yu, 2013]. Moreover, even just solving these four polynomial equations is not an easy job. Therefore, we make a number of simplifications in (2) so that we can manage to obtain higher-order focus values, at least up to seventh order, and then try to apply the modular regular chains [Chen et al., 2013] to obtain seven limit cycles in the vicinity of the origin. Compared to the Bautin's result for quadratic planar vector fields which can only have three small-amplitude limit cycles bifurcating from an elementary focus or an elementary center, this result is quite surprising. The description of the simple three-dimensional quadratic vector field and proof of the existence of seven limit cycles around the origin will be given in the next section.

2. Main Result

We start from the general three-dimensional quadratic systems (2). Without loss of generality, the system can be written in the following form,
with its linear part in Jordan canonical form,

$$
\begin{align*}
\dot{x}_{1}= & \alpha x_{1}+x_{2}+a_{11} x_{1}^{2}+\left(2 b_{11}+a_{12}\right) x_{1} x_{2} \\
& +a_{22} x_{2}^{2}+a_{33} x_{3}^{2}+a_{13} x_{1} x_{3}+a_{23} x_{2} x_{3}, \\
\dot{x}_{2}= & -x_{1}+\alpha x_{2}+b_{11} x_{1}^{2}+\left(2 a_{11}+b_{12}\right) x_{1} x_{2} \\
& -b_{11} x_{2}^{2}+b_{33} x_{3}^{2}+b_{13} x_{1} x_{3}+b_{23} x_{2} x_{3}, \tag{3}\\
\dot{x}_{3}= & -\beta x_{3}+c_{11} x_{1}^{2}+c_{12} x_{1} x_{2}+c_{22} x_{2}^{2} \\
& +c_{33} x_{3}^{2}+c_{13} x_{1} x_{3}+c_{23} x_{2} x_{3},
\end{align*}
$$

where $\alpha, \beta>0$ and $a_{i j}, b_{i j}, c_{i j}$ are parameters, and the formula in Bautin's equation [Bautin, 1952] has been used in the first two equations of (3), which can be achieved by a proper rotation around the x_{3}-axis. It is easy to see that the origin is an equilibrium point for any value of parameters, and a Hopf bifurcation occurs from the origin when α crosses the critical value $\alpha=\alpha_{c}=0$.

Thus, we can use the formulas and Maple program developed in [Tian \& Yu, 2013] to compute the normal form, which can then be used to determine small-amplitude limit cycles bifurcating from the origin. It is obvious that the zero-order focus value $v_{0}=\alpha$, and at the critical point: $\alpha=\alpha_{c}=0$, $v_{0}=0$. Then under the condition $\alpha=\alpha_{c}=0$, the Maple program is executed on the desktop machine to obtain the focus values v_{1}, v_{2}, \ldots. It should be noted that for the general system (2), the computation of the higher-order normal form is very time consuming and memory demanding. Moreover, even if we can obtain higher-order normal forms by using the Maple program, it is almost impossible to find the solutions of the multivariate polynomial system of focus values. Thus, in order to simplify the computation, we make some simplifications. First, we suppose $b_{11} \neq 0$ and $c_{12} \neq 0$. Then, we can use parameter scaling and state variable scaling in (2) so that $b_{11}=c_{12}=1$. In order to make the computation of focus values manageable, we further set $a_{13}=a_{23}=a_{33}=b_{13}=b_{23}=b_{12}=c_{11}=c_{22}=$ $c_{23}=0$ and $\beta=1$, resulting in the following simple three-dimensional quadratic system,

$$
\begin{aligned}
& \dot{x}_{1}=x_{2}+a_{11} x_{1}^{2}+\left(2+a_{12}\right) x_{1} x_{2}+a_{22} x_{2}^{2} \\
& \dot{x}_{2}=-x_{1}+x_{1}^{2}+2 a_{11} x_{1} x_{2}-x_{2}^{2}+b_{33} x_{3}^{2}, \\
& \dot{x}_{3}=-x_{3}+x_{1} x_{2}+c_{33} x_{3}^{2}+c_{13} x_{1} x_{3} .
\end{aligned}
$$

This is perhaps the simplest three-dimensional quadratic system since it has only one coupling coefficient b_{33} between the first two equations and the third equation. When $b_{33}=0$, the first two equations are decoupled from the third equation, and the problem becomes finding the limit cycles of the planar system, described by the first two equations of (4), and it is easy to show that this planar system has three small limit cycles around the origin, as expected. In fact, when $b_{33}=0$, we can use the Maple program to find the first focus value v_{1}, given by $v_{1}=-\frac{1}{8} a_{12}\left(a_{11}+a_{22}\right)$. Letting $a_{12}=0$ yields $v_{1}=0$ and then executing the Maple program produces $v_{2}=-\frac{1}{12} a_{11}\left(a_{11}+a_{22}\right)\left(a_{11}+5 a_{22}\right)$. Further, letting $a_{11}=-5 a_{22}$ results in $v_{2}=0$ and finally executing the Maple program yields

$$
\begin{aligned}
& v_{3}=25 a_{22}^{3}\left(1-3 a_{22}^{2}\right), \\
& v_{4}=\frac{140}{9} a_{22}^{3}\left(1-3 a_{22}^{2}\right)\left(7-38 a_{22}^{2}\right), \\
& v_{5}=\cdots,
\end{aligned}
$$

and all the v_{i} 's contain the factor $a_{22}^{3}(1-$ $3 a_{22}^{2}$), clearly indicating that at most three smallamplitude limit cycles can be obtained around the origin when $b_{33}=0$.

Now, suppose $b_{33} \neq 0$. We have the following main result.

Theorem 1. Suppose the parameters, a_{11}, a_{12}, a_{22}, b_{33}, c_{33} and c_{13}, in system (3) are arbitrary nonzero constants. Then system (3) can have at least seven small-amplitude limit cycles around the origin.

In order to prove Theorem 1, we need the following lemma [Yu \& Han, 2005].

Lemma 1. Suppose the focus values obtained from a general dynamical system are functions of k independent system parameters $p_{1}, p_{2}, \ldots, p_{k}$. Further, assume that at a critical point, p_{c} defined by $\left(p_{1}, p_{2}, \ldots, p_{k}\right)=\left(p_{1 c}, p_{2 c}, \ldots, p_{k c}\right)$, the focus values satisfy

$$
v_{j}\left(p_{c}\right)=0, \quad j=0,1, \ldots, k-1, \quad v_{k}\left(p_{c}\right) \neq 0
$$

and

$$
\operatorname{det}\left[\frac{\partial\left(v_{0}, v_{1}, \ldots, v_{k-1}\right)}{\partial\left(p_{1}, p_{2}, \ldots, p_{k}\right)}\right]_{p_{c}} \neq 0
$$

Then, proper perturbations can be made to the parameters $p_{1}, p_{2}, \ldots, p_{k}$ around the critical point p_{c} to generate k small-amplitude limit cycles in the vicinity of the Hopf critical point (the origin).

$$
\begin{align*}
v_{2} & =v_{2}\left(a_{11}, a_{12}, a_{22}, b_{33}, c_{13}, c_{33}\right), \\
& \vdots \\
v_{7} & =v_{7}\left(a_{11}, a_{12}, a_{22}, b_{33}, c_{13}, c_{33}\right), \tag{5}
\end{align*}
$$

and via them we can estimate the number of smallamplitude limit cycles around the origin, which are embedded in the center manifold (which is also obtained from the Maple program), described by

$$
\begin{align*}
x_{3}= & \frac{1}{5}\left(x_{1}^{2}+x_{1} x_{2}-x_{2}^{2}\right)-\frac{1}{5}\left(2 a_{11}-c_{13}+1\right) x_{1}^{3}-\frac{1}{5}\left(3 a_{11}+2 a_{12}-c_{13}+2\right) x_{1}^{2} x_{2} \\
& +\frac{1}{5}\left(4 a_{11}-a_{12}-2 a_{22}-c_{13}-1\right) x_{1} x_{2}^{2}-\frac{1}{5}\left(a_{22}+2\right) x_{2}^{3}-\frac{1}{5}\left(c_{13}-\frac{1}{5} c_{33}+2 a_{11} c_{13}-c_{13}^{2}\right) x_{1}^{4} \\
& -\frac{1}{5}\left(2 c_{13}-\frac{2}{5} c_{33}+3 a_{11} c_{13}+2 a_{12} c_{13}-c_{13}^{2}\right) x_{1}^{3} x_{2} \\
& -\frac{1}{5}\left(c_{13}+\frac{1}{5} c_{33}-4 a_{11} c_{13}+a_{12} c_{13}+2 a_{22} c_{13}+c_{13}^{2}\right) x_{1}^{2} x_{2}^{2} \\
& +\frac{1}{5}\left(-\frac{2}{5} c_{33}-2 c_{13}-c_{13} a_{22}\right) x_{1} x_{2}^{3}+\frac{1}{25} c_{33} x_{2}^{4}+\cdots . \tag{6}
\end{align*}
$$

It is obvious to see from (6) that the center manifold near the origin is approximated by a hyperbolic parabolid, as shown in Fig. 1.

To obtain the maximal number of smallamplitude limit cycles bifurcating from the origin, we solve the parameters $a_{11}, a_{12}, a_{22}, b_{33}, c_{13}, c_{33}$

Fig. 1. The second-order approximation of the center manifold described by (6).
from the six polynomial equations $v_{1}=v_{2}=\cdots=$ $v_{6}=0$. Alternatively, we may solve these six polynomial equations one by one, with one parameter at each time. We start from the first focus value v_{1}, which is the same as that for the case $b_{33}=0$, i.e.

$$
v_{1}=-\frac{1}{8} a_{12}\left(a_{11}+a_{22}\right) .
$$

Letting

$$
\begin{equation*}
a_{22}=-a_{11} \tag{7}
\end{equation*}
$$

yields $v_{1}=0$, and then executing the Maple program we have

$$
v_{2}=\frac{1}{1200} b_{33}\left(a_{12}+3 c_{13}+18 a_{11}+10\right) .
$$

Setting

$$
\begin{equation*}
a_{12}=-\left(3 c_{13}+18 a_{11}+10\right) \tag{8}
\end{equation*}
$$

results in $v_{2}=0$ and then executing the Maple program gives

$$
\begin{aligned}
v_{3}= & \frac{1}{272000} b_{33}\left[-187 b_{33}+\left(695 c_{13}+2070 a_{11}\right.\right. \\
& -790) c_{33}+\left(92290 a_{11}^{2}+74582 a_{11}+15384\right) c_{13} \\
& +\left(3342 a_{11}-45\right) c_{13}^{2}-666 c_{13}^{3}+228172 a_{11}^{3} \\
& \left.+220428 a_{11}^{2}+57028 a_{11}+2020\right] .
\end{aligned}
$$

Thus, we may solve for b_{33} from the equation $v_{3}=0$ to obtain

$$
\begin{align*}
b_{33}= & \frac{1}{187}\left[\left(695 c_{13}+2070 a_{11}-790\right) c_{33}+\left(92290 a_{11}^{2}+74582 a_{11}+15384\right) c_{13}\right. \\
& \left.+\left(3342 a_{11}-45\right) c_{13}^{2}-666 c_{13}^{3}+228172 a_{11}^{3}+220428 a_{11}^{2}+57028 a_{11}+2020\right] . \tag{9}
\end{align*}
$$

Now, under the conditions given in (7)-(9), we have $v_{1}=v_{2}=v_{3}=0$, and further execute the Maple program to obtain

$$
\begin{aligned}
v_{4}=\frac{F_{0} F_{1}}{1483804608000}, & v_{5}=\frac{F_{0} F_{2}}{16015652769093120000}, \\
v_{6}=\frac{F_{0} F_{3}}{16134271099762131283968000000}, & v_{7}=\frac{F_{0} F_{4}}{158315921739305937010807603200000000},
\end{aligned}
$$

where

$$
\begin{aligned}
F_{0}= & 5\left(414 a_{11}+139 c_{13}-158\right) c_{33}+\left(15384+74582 a_{11}+92290 a_{11}^{2}\right) c_{13} \\
& +3\left(1114 a_{11}-15\right) c_{13}^{2}-666 c_{13}^{3}+4\left(505+14257 a_{11}+55107 a_{11}^{2}+57043 a_{11}^{3}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
F_{1}= & 4\left(4078333 c_{13}+14139153 a_{11}-2787647\right) c_{33}^{2}+2\left[2\left(373041446 a_{11}^{2}+500749565 a_{11}+111353261\right) c_{13}\right. \\
& -\left(98445579 a_{11}+52751465\right) c_{13}^{2}-16677015 c_{13}^{3}+4\left(856767634 a_{11}^{3}+967186323 a_{11}^{2}\right. \\
& \left.\left.+181154724 a_{11}-11713817\right)\right] c_{33}+29601792 c_{13}^{5}+9\left(86303536 a_{11}+25802705\right) c_{13}^{4} \\
& +6\left(882002754 a_{11}^{2}+437785405 a_{11}+14608506\right) c_{13}^{3}+4\left(5370668262 a_{11}^{3}+4204559671 a_{11}^{2}\right. \\
& \left.+34389389 a_{11}-252727446\right) c_{13}^{2}+8\left(13079993487 a_{11}^{4}+24728477022 a_{11}^{3}+15158560637 a_{11}^{2}\right. \\
& \left.+3657980072 a_{11}+287618390\right) c_{13}+16\left(16499286495 a_{11}^{5}+37837627784 a_{11}^{4}+29685004857 a_{11}^{3}\right. \\
& \left.+9784662107 a_{11}^{2}+1218699212 a_{11}+2203887\right),
\end{aligned}
$$

and F_{2} and F_{3} are given in Appendix A , while the lengthy expression of F_{4} is not listed here. Now in order to obtain limit cycles bifurcating from the origin (the Hopf critical point) as many as possible, we need to find critical parameter values of a_{11}, c_{13} and c_{33} such that $v_{4}=v_{5}=v_{6}=0$, but $v_{7} \neq 0$ (i.e. $F_{1}=F_{2}=F_{3}=0$, but $F_{4} \neq 0$). In this case, we can conclude that there exist at most seven small-amplitude limit cycles bifurcating from the origin. Then, proper perturbations may be applied to the seven parameters, $\alpha, a_{11}, a_{12}, a_{22}$, b_{33}, c_{13} and c_{33}, to generate seven small-amplitude limit cycles, or we can apply Lemma 1 to prove the existence of seven limit cycles. Since we set $\alpha=0$ to get $v_{0}=0, a_{22}=-a_{11}$ to get $v_{1}=0$, $a_{12}=-\left(18 a_{11}+3 c_{13}+c_{23}+10\right)$ to obtain $v_{2}=0$, and $b_{33}=\frac{1}{187}\left[\left(2070 a_{11}+695 c_{13}-95 c_{23}-790\right) c_{33}+\cdots\right]$ [given in (9)] to obtain $v_{3}=0$, perturbations on b_{33}, a_{12}, a_{22} and α can be made one by one. Thus, we only need to consider $v_{4}=v_{5}=v_{6}=0$, i.e. $F_{1}=F_{2}=F_{3}=0$, but $v_{7} \neq 0$, at some critical
values $a_{11 c}, c_{13 c}, c_{33 c}$, and further

$$
\operatorname{det}\left[\frac{\partial\left(v_{4}, v_{5}, v_{6}\right)}{\partial\left(a_{11}, c_{13}, c_{33}\right)}\right]_{\left(a_{11 c}, c_{13 c}, c_{33 c}\right)} \neq 0 .
$$

To find the critical values $a_{11 c}, c_{13 c}, c_{33 c}$ such that $F_{1}=F_{2}=F_{3}=0$, we apply the Regular Chain method [Chen et al., 2013]. We use (7)-(9) to simplify v_{4} to v_{6} to obtain polynomial equations $F_{1}=$ $F_{2}=F_{3}=0$. Then execute the Maple program (see [Chen et al., 2013]) on the same desktop machine to obtain the following results by using the modular regular chains method: the formulas of c_{13} and c_{33} expressed in terms of a_{11},

$$
\begin{equation*}
c_{13}=-\frac{c_{13 N}\left(a_{11}\right)}{12 c_{13 D}\left(a_{11}\right)}, \quad c_{33}=-\frac{c_{33 N}\left(a_{11}\right)}{N c_{33 D}\left(a_{11}\right)}, \tag{10}
\end{equation*}
$$

where N is an integer, and $c_{13 N}\left(a_{11}\right), c_{13 D}\left(a_{11}\right)$, $c_{33 N}\left(a_{11}\right)$ and $c_{33 D}\left(a_{11}\right)$ are 156th-degree polynomials of a_{11}; and a resultant equation, given by a

157th-degree polynomial $g\left(a_{11}\right)=0$, which in turn gives a total of 19 real solutions. We solve a_{11} from this polynomial equation up to 1000 digit points, with the results listed below (only showing the first 50 digits).

```
\(a_{11}^{1}=-4.11276888495705654624708808345078873211396249503460 \ldots\),
\(a_{11}^{2}=-1.82010942866258004577090611868371605998764973794356 \ldots\),
\(a_{11}^{3}=-0.76440311387403968219929953842967589771581114232615 \ldots\),
\(a_{11}^{4}=-0.75410520646463776589886974547597729068673851680993 \ldots\),
\(a_{11}^{5}=-0.46061934131364857055550286413352190906564989377128 \ldots\),
\(a_{11}^{6}=-0.44754772090870942476035011043695763950789559075632 \ldots\),
\(a_{11}^{7}=-0.38187937918219584496343813228246930627419322177798 \ldots\),
\(a_{11}^{8}=-0.31428920280160160469525336903289260600817103833470 \ldots\),
\(a_{11}^{9}=-0.28314729830779529882213773988148784486261517488513 \ldots\),
\(a_{11}^{10}=-0.13330838515576413592119147947119785761283975388044 \ldots\),
\(a_{11}^{11}=-0.02861803346154083192185648912224434468926816974799 \ldots\),
\(a_{11}^{12}=-0.01129618883353299940696424356394530075959246381228 \ldots\),
\(a_{11}^{13}=0.00003261862103285667320075873891685629773802493465 \ldots\),
\(a_{11}^{14}=0.01557965760324882734099653888501403592680477722409 \ldots\),
\(a_{11}^{15}=0.02629936725348609926921580980768242470782868685459 \ldots\),
\(a_{11}^{16}=0.04674224356461493450786328894470060987403146438352 \ldots\),
\(a_{11}^{17}=0.56032275926806357270588556057116717906044592783859 \ldots\),
\(a_{11}^{18}=5.38438918903427504185594454194797573037902064705802 \ldots\),
\(a_{11}^{19}=26.01492173704774508843595793963653547777807547320274 \ldots\).
```

We take $a_{11}=a_{11}^{7}$, which yields

$$
\begin{aligned}
& c_{13}=-0.41261102816606685288914232443213702004650348278544 \ldots, \\
& c_{33}=-0.33160576682318949987643286719692488957369961896560 \ldots,
\end{aligned}
$$

and use Eqs. (7)-(9) to obtain $a_{22}=-a_{11}^{7}$ and

$$
\begin{aligned}
& a_{12}=-1.88833809022227423199068664561914142692501155964000 \ldots, \\
& b_{33}=-0.14679339349579488722266912282493720766001218127019 \ldots .
\end{aligned}
$$

For these critical parameter values, the focus values become

$$
\begin{aligned}
& v_{1}=0.0, \quad v_{2}=-0.1 \times 10^{-1000}, \quad v_{3}=-0.6847 \times 10^{-1000} \\
& v_{4}=-0.13219256310383786756022068742997222535380219931004 \ldots \times 10^{-942},
\end{aligned}
$$

$$
\begin{aligned}
& v_{5}=-0.31762418358601926533300695679923261099352343009257 \ldots \times 10^{-942} \\
& v_{6}=-0.46950935768785676094927172098325782856331763210221 \ldots \times 10^{-942} \\
& v_{7}=-0.83776339081446765262795751469808290872469085804425 \ldots \times 10^{-5}
\end{aligned}
$$

The errors on $v_{2}-v_{6}$ are due to numerical computation in the final step of solving the 157th-degree polynomial of a_{11}. In fact, we can perform the interval computation in Maple to identify the interval for each of the parameters up to any accuracy, which proves that there exist solutions such that $v_{1}=v_{2}=\cdots=v_{6}=0$, but $v_{7} \neq 0$. Therefore, we can conclude that there exist at most seven smallamplitude limit cycles around the origin. Moreover, a direct calculation shows that

$$
\begin{aligned}
& \operatorname{det}\left[\frac{\partial\left(v_{4}, v_{5}, v_{6}\right)}{\partial\left(a_{11}, c_{13}, c_{33}\right)}\right]_{\left(a_{11 c}, c_{13 c}, c_{33 c}\right)} \\
& \quad \approx-0.00000000333723796304 \neq 0,
\end{aligned}
$$

implying that there exist seven small-amplitude limit cycles around the origin.

3. Conclusion

In this paper, we have shown that a simple threedimensional quadratic vector field can exhibit seven small-amplitude limit cycles in the vicinity of a Hopf critical point. The method of normal forms is applied to compute the focus values associated with Hopf bifurcation, while the modular regular chains method is used to solve higher-degree multivariate polynomial equations. This result may be further improved in future by developing more powerful computational tools.

Acknowledgment

This work was supported by the Natural Science and Engineering Research Council of Canada (NSERC).

References

Bautin, N. N. [1952] "On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type," Mat. Sbornik (NS) 30, 181-196.
Chen, L. S. \& Wang, M. S. [1979] "The relative position, and the number, of limit cycles of a quadratic differential system," Acta. Math. Sin. 22, 751-758.

Chen, C., Corless, R., Maza, M., Yu, P. \& Zhang, Y. [2013] "A modular regular chains method and its application to dynamical systems," Int. J. Bifurcation and Chaos 23, 1350154.
Écalle, J. [1992] Introduction aux Fonctions Analysables et Preuve Constructive de la Conjecture de Dulac (Hermann, Paris) (in French).
Gyllenberg, M., Yan, P. \& Wang, Y. [2006] "A 3-D competitive Lotka-Volterra system with three limit cycles: A classification of a conjecture by Hofbauer and So," Appl. Math. Lett. 19, 1-7.
Gyllenberg, M. \& Yan, P. [2009] "Four limit cycles for a three-dimensional competitive Lotka-Volterra system with a heteroclinic cycle," Comput. Math. Appl. 58, 649-669.
Hofbauer, J. \& So, J. W.-H. [1994] "Multiple limit cycles for three-dimensional Lotka-Volterra equations," Appl. Math. Lett. 7, 65-70.
Ilyashenko, Yu. S. \& Yakovenko, S. [1991] "Finitely smooth normal forms of local families of diffeomorphismes and vector fields," Russ. Math. Surv. 46, 3-19.
James, E. \& Lloyd, N. [1991] "A cubic system with eight small-amplitude limit cycles," IMA J. Appl. Math. 47, 163-171.
Li, C., Liu, C. \& Yang, J. [2009] "A cubic system with thirteen limit cycles," J. Diff. Eqs. 246, 36093619.

Li, J. \& Liu, Y. [2010] "New results on the study of $Z_{q^{-}}$ equivariant planar polynomial vector fields," Qualit. Th. Dyn. Syst. 9, 167-219.
Lu, Z. \& Luo, Y. [2002] "Two limit cycles in threedimensional Lotka-Volterra systems," Comput. Math. Appl. 44, 51-66.
Poincaré, H. [1881-1886] "Mémoire sur les courbes définies par une équation différentielle. I, II," J. Math. Pures Appl. [1881] 7, 375-422; [1882] 8, 251296. [1885] Sur les courbes définies par les équations différentielles. III, IV, ibid. 1, 167-224; [1886] 2, 155217.

Shi, S. [1980] "A concrete example of the existence of four limit cycles for plane quadratic systems," Sci. Sin. 23, 153-158.
Tian, Y. \& Yu, P. [2013] "An explicit recursive formula for computing the normal form and center manifold of n-dimensional differential systems associated with Hopf bifurcation," Int. J. Bifurcation and Chaos 23, 1350104.

Yu, P. \& Han, M. [2005] "Small limit cycles bifurcating from fine focus points in cubic order Z_{2} equivariant vector fields," Chaos Solit. Fract. 24, 329-348.
Yu, P. \& Corless, R. [2009] "Symbolic computation of limit cycles associated with Hilbert's 16th problem,"

Commun. Nonlin. Sci. Numer. Simul. 14, 40414056.

Yu, P. \& Han, M. [2012] "Four limit cycles from perturbing quadratic integrable systems by quadratic polynomials," Int. J. Bifurcation and Chaos 22, 1250254.

Appendix A

The functions F_{2} and F_{3} are listed in this Appendix.

$$
\begin{aligned}
F_{2}= & -350064\left(144902698 c_{13}+366576733 a_{11}-142697703\right) c_{33}^{3}+4\left[132287548607492 c_{13}^{3}\right. \\
& +\left(1587431095048589 a_{11}+371135538912053\right) c_{13}^{2}+2\left(1985595066771294 a_{11}^{2}+332568076619189 a_{11}\right. \\
& -167986412567563) c_{13}+4\left(832557288593889 a_{11}^{3}+343973807357514 a_{11}^{2}-129381390471427 a_{11}\right. \\
& -22505970396248)] c_{33}^{2}-4\left[213711424998672 c_{13}^{5}+9\left(311807824390159 a_{11}+148318218680889\right) c_{13}^{4}\right. \\
& -\left(1180924979804906 a_{11}^{2}+5452054185589939 a_{11}+352322443563555\right) c_{13}^{3} \\
& -4\left(42788477935364425 a_{11}^{3}+67363587215176597 a_{11}^{2}+24044781463740170 a_{11}\right. \\
& +2314226039107142) c_{13}^{2}-4\left(27591776267013391 a_{11}+173646715268323199 a_{11}^{4}\right. \\
& \left.+321001980070626737 a_{11}^{3}+162732256648660003 a_{11}^{2}+879991334108382\right) c_{13} \\
& -8\left(116707360013076057 a_{11}^{5}+257051474918548297 a_{11}^{4}+171010776019582988 a_{11}^{3}\right. \\
& \left.\left.+42694054908035380 a_{11}^{2}+2402049457670883 a_{11}-250745335036453\right)\right] c_{33} \\
& +630912865266000 c_{13}^{7}+9\left(2964712669290231 a_{11}+782392810580879\right) c_{13}^{6} \\
& +6\left(73541596962729056 a_{11}^{2}+38427258756511039 a_{11}+3606485585632344\right) c_{13}^{5} \\
& +12\left(322411353706968259 a_{11}^{3}+280026912237356567 a_{11}^{2}+58525009028373887 a_{11}\right. \\
& +366306838658389) c_{13}^{4}+8\left(2731040674800736927 a_{11}^{4}+3810289896228085498 a_{11}^{3}\right. \\
& \left.+1688659169110635940 a_{11}^{2}+239657009603682009 a_{11}-731762510421390\right) c_{13}^{3} \\
& +16\left(5442580446106842105 a_{11}^{5}+11332299759177700061 a_{11}^{4}+8435369673472740199 a_{11}^{3}\right. \\
& \left.+2768383347832399342 a_{11}^{2}+372489286490816132 a_{11}+11783278257257817\right) c_{13}^{2} \\
& +32\left(6397426172395771554 a_{11}^{6}+17484633288012047816 a_{11}^{5}+17729148621051130479 a_{11}^{4}\right. \\
& +8645141995434202821 a_{11}^{3}+2101633085727469205 a_{11}^{2}+225196488860266879 a_{11} \\
& +6078244989652798) c_{13}+64\left(3335635549859104292 a_{11}^{7}+11004977896310477071 a_{11}^{6}\right. \\
& +13758987325223239501 a_{11}^{5}+8649165820899777993 a_{11}^{4}+2937263004217804984 a_{11}^{3} \\
& \left.+518248503098891291 a_{11}^{2}+38482349044241143 a_{11}+320434896140845\right), \\
F_{3}= & 15197445120\left(1295313405565 c_{13}+4841990370990 a_{11}-974241807866\right) c_{33}^{4} \\
& -1664\left[24752566511047772643 c_{13}^{3}+2\left(81606533150962260337 a_{11}+206630065005504758855\right) c_{13}^{2}\right. \\
& +4\left(23784869920766047140 a_{11}^{2}+456247687686341245921 a_{11}-32067190881129442123\right) c_{13}
\end{aligned}
$$

$$
\begin{aligned}
& -4\left(718015199110540951179 a_{11}^{3}+164083276954411890501 a_{11}^{2}+497187713917569014161 a_{11}\right. \\
& +116882338879114660895)] c_{33}^{3}+4\left[135516201497462967471977 c_{13}^{5}\right. \\
& +\left(3652599114285837536632677 a_{11}+1372118809839451388158717\right) c_{13}^{4} \\
& +8\left(4521694474249202984154340 a_{11}^{2}+3422357624141089273121095 a_{11}\right. \\
& +551772823682912535119127) c_{13}^{3}+8\left(23001454127003267087701629 a_{11}^{3}\right. \\
& +22632657768411737154856217 a_{11}^{2}+4175449582577115578189071 a_{11} \\
& -144592603169129179152061) c_{13}^{2}+16\left(25197277762204780005004103 a_{11}^{4}\right. \\
& +23591855696103476578045814 a_{11}^{3}-1339991489632296089393848 a_{11}^{2} \\
& \left.-3368285960479851576060286 a_{11}-423709293782930794542471\right) c_{13} \\
& +16\left(23833261557825482972806401 a_{11}^{5}+23605088260502022606031673 a_{11}^{4}\right. \\
& -1929258359888813266977358 a_{11}^{3}-3852803639369438088651366 a_{11}^{2} \\
& \left.\left.-273354786339018249164467 a_{11}+72135305352486339433005\right)\right] c_{33}^{2} \\
& -\left[708959378346946555769814 c_{13}^{7}+6\left(1664554809177510639166637 a_{11}\right.\right. \\
& +1468549573192142753107527) c_{13}^{6}-4\left(10142472888611771695397006 a_{11}^{2}\right. \\
& \left.-8093351702071968321732515 a_{11}-8797678108504067116393611\right) c_{13}^{5} \\
& -8\left(270318138190309436211164404 a_{11}^{3}+374866914730687250030694433 a_{11}^{2}\right. \\
& \left.+94857726635504393832071718 a_{11}+1611714501224953912649461\right) c_{13}^{4} \\
& -32\left(727020887416660748411417149 a_{11}^{4}+1495840229622491117284675129 a_{11}^{3}\right. \\
& +842849659975318266816558199 a_{11}^{2}+175620020144274765161496311 a_{11} \\
& +11157942239036269527525724) c_{13}^{3}-32\left(3815035076500245513656904529 a_{11}^{5}\right. \\
& +9507605546464302764041140761 a_{11}^{4}+7368167729908292445287343410 a_{11}^{3} \\
& +2417690260166455114448121506 a_{11}^{2}+327924924088386289070880621 a_{11} \\
& +12481403710220223481605845) c_{13}^{2}-64\left(4623365964881386828206541934 a_{11}^{6}\right. \\
& +12873274210089905549397428201 a_{11}^{5}+11847721961389382224450162225 a_{11}^{4} \\
& +4848749975836708041755541250 a_{11}^{3}+879679758844271910169231560 a_{11}^{2} \\
& \left.+47359781290947171771497733 a_{11}-1993655132477530259763543\right) c_{13} \\
& -128\left(2182688317704910216101782722 a_{11}^{7}+6650367630130223948338676851 a_{11}^{6}\right. \\
& +7055523579922110839931549040 a_{11}^{5}+3531962564650152984423497445 a_{11}^{4} \\
& +876158343574723264099830730 a_{11}^{3}+91867822030408479430764349 a_{11}^{2} \\
& \left.\left.+930748877578687047012 a_{11}-404530676080894666989045\right)\right] c_{33} \\
& +599928376064 c_{13}^{9}+9\left(4711878525758830961908464 a_{11}\right.
\end{aligned}
$$

$$
\begin{aligned}
& +999345350877766901978141) c_{13}^{8}+6\left(225876452729015835356342234 a_{11}^{2}\right. \\
& \left.+110846523885056357949977533 a_{11}+10253305691653840091798898\right) c_{13}^{7} \\
& +12\left(1833345264819475165936627778 a_{11}^{3}+1565971064556600537110067163 a_{11}^{2}\right. \\
& \left.+366397091618786153387840171 a_{11}+16051590214691783803149352\right) c_{13}^{6} \\
& +8\left(26086580583552734554940584951 a_{11}^{4}+33532903248572391712065771052 a_{11}^{3}\right. \\
& +14238018150683934981297945709 a_{11}^{2}+2074540224393451069061108526 a_{11} \\
& +27861686142403760251746546) c_{13}^{5}+16\left(78548659777326308787336671659 a_{11}^{5}\right. \\
& +141138363502453983994692297539 a_{11}^{4}+92813909971704479331226525567 a_{11}^{3} \\
& +26717320570403893049039935251 a_{11}^{2}+2890106674925225565999192218 a_{11} \\
& +14630542556546467684436742) c_{13}^{4}+32\left(158056462633238785803151049168 a_{11}^{6}\right. \\
& +379261013704349272339224196655 a_{11}^{5}+351155334849581032033712611590 a_{11}^{4} \\
& +159226588640254021019516857610 a_{11}^{3}+36006057259210021488914610840 a_{11}^{2} \\
& \left.+3443427334420574893921441871 a_{11}+53348711666072696845705930\right) c_{13}^{3} \\
& +64\left(213934489231668821736726105776 a_{11}^{7}+653860206996441311651858729543 a_{11}^{6}\right. \\
& +787930912766941335180880197069 a_{11}^{5}+489789605387889313586662661710 a_{11}^{4} \\
& +168372810485883167250927940970 a_{11}^{3}+31052460989227661080767094867 a_{11}^{2} \\
& \left.+2595121581266887210220232361 a_{11}+47677864066744036593911688\right) c_{13}^{2} \\
& +128\left(175795180541454878327994323627 a_{11}^{8}+646069392177506577189809704414 a_{11}^{7}\right. \\
& +943974632974823926628515523427 a_{11}^{6}+730811516906412079242497471216 a_{11}^{5} \\
& +328721576130872118296329634775 a_{11}^{4}+86861820610588450810846403654 a_{11}^{3} \\
& +12669250522915877666530948173 a_{11}^{2}+828317972353063952969598924 a_{11} \\
& +8430485593584154810200302) c_{13}+256\left(65489078114939885475729056623 a_{11}^{9}\right. \\
& +276207783896081023026631595440 a_{11}^{8}+467148550007619228316050778351 a_{11}^{7} \\
& +427474964552370509561272719651 a_{11}^{6}+235261518648158313822481113745 a_{11}^{5} \\
& +80473535394907792966346350991 a_{11}^{4}+16803980816127953612017002885 a_{11}^{3} \\
& +1967923782290897527897320937 a_{11}^{2}+100256044517078058643496652 a_{11} \\
& +235738171481448869001845) .
\end{aligned}
$$

[^0]: ${ }^{\dagger}$ Author for correspondence

