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In this paper, we show that a simple three-dimensional quadratic vector field can have at least
seven small-amplitude limit cycles, bifurcating from a Hopf critical point. This result is surpris-
ingly higher than the Bautin’s result for quadratic planar vector fields which can only have three
small-amplitude limit cycles bifurcating from an elementary focus or an elementary center. The
methods used in this paper include computing focus values, and solving multivariate polynomial
systems using modular regular chains. In order to obtain higher-order focus values for nonplanar
dynamical systems, computationally efficient approaches combined with center manifold com-
putation must be adopted. A recently developed explicit, recursive formula and Maple program
for computing the normal form and center manifold of general n-dimensional systems is applied
to compute the focus values of the three-dimensional vector field.
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manifold; normal form; focus value; Maple.

1. Introduction

Limit cycle theory has been playing a very impor-
tant role in the study of dynamical behavior of
nonlinear systems, emerging from many physical
and engineering models, and recently even from
financial systems and social systems. In mathemat-
ics, for a two-dimensional phase space, a limit cycle
is a closed trajectory in the phase space having
the property that at least one other trajectory
spirals into it either as time approaches infinity
or as time approaches negative infinity. Higher-
dimensional vector fields often exhibit limit cycles
which may coexist with more complex dynamical
behaviors such as chaos.

The study of limit cycles was initiated by
Poincaré [1881-1886]. He built a new branch
of mathematics, called “qualitative theory of

fAuthor for correspondence

differential equations”, and introduced the concept
of limit cycles. Later, in the past more than 100
years, the development of limit cycle theory was
perhaps motivated by the well-known Hilbert’s 16th
problem. The second part of this problem is to
find the upper bound, called Hilbert number H(n),
on the number of limit cycles that planar polyno-
mial systems of degree n can have. In early 1990s,
Tlyashenko and Yakoveko [1991], and Ecalle [1992]
proved that H(n) is finite for given planar polyno-
mial vector fields. For general quadratic polynomial
systems, the best result is 4 with (3, 1) distribution,
obtained more than 30 years ago [Shi, 1980; Chen &
Wang, 1979]. Recently, this result was also obtained
for near-integrable quadratic systems [Yu & Han,
2012], whether H(2) = 4 is still open. In other
words, the finiteness problem remains unsolved even
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for quadratic polynomial systems. For cubic poly-
nomial systems, many results have been obtained
on the low bound of the Hilbert number. So far, the
best result for cubic systems is H(3) > 13 [Li & Liu,
2010; Li et al., 2009]. Note that the 13 limit cycles
are distributed around several singular points. This
number is believed to be below the maximal number
which can be obtained for generic cubic systems.

Suppose we consider Hilbert’s 16th problem
with limit cycles bifurcating from isolated fixed
points, then the question becomes how to study
degenerate Hopf bifurcations, giving rise to weak
(fine) focus points. This local problem has been
completely solved only for generic quadratic
systems [Bautin, 1952], which can have three limit
cycles in the vicinity of such a singular point. For
cubic systems, James and Lloyd [1991] obtained a
formal construction, via symbolic computation, of a
special cubic system with eight limit cycles. In 2009,
Yu and Corless [2009] showed the existence of nine
limit cycles with the help of a numerical method for
another special cubic system. Recently, this special
system was reconsidered using purely symbolic com-
putation with the modular regular chains method to
confirm the existence of nine limit cycles, and find
all the possible real solutions [Chen et al., 2013].

Due to the importance of limit cycle theory
and frequent appearance in higher-order dynami-
cal systems, we wish to study the bifurcation of
limit cycles in higher-order vector fields. In this
paper, particular attention will be focused on three-
dimensional systems with a Hopf singular point. We
would like to investigate the maximal number of
limit cycles which may exist in the vicinity of a
singular point of three-dimensional systems. This
is certainly a very challenging problem. There are
very few results in the literature. Over the last
20 years, a three-dimensional competitive Lotka—
Volterra model has been studied extensively. The
model is described by a three-dimensional differen-
tial system:

3
b= bi—  aga; |, i=1,23 (1)
j=1

where the dot indicates differentiation with respect
to time ¢, x; represents the population of 7th species,
and the coefficients take positive real values, b; > 0,
a;; > 0,14, 75 = 1,2,3. This is a special case of
general three-dimensional quadratic systems. In the

past two decades, several researchers have paid
attention to system (1) and particularly studied
bifurcation of limit cycles (e.g. see [Hofbauer & So,
1994; Lu & Luo, 2002; Gyllenberg et al., 2006; Gyl-
lenberg & Yan, 2009]). So far, the best result is
four limit cycles, obtained by Gyllenberg and Yan
[2009], using appropriate parameter values. These
four limit cycles include three small-amplitude limit
cycles, proved by using focus value computation,
and one large limit cycle, shown by constructing a
heteroclinic cycle. Recently, Tian and Yu revisited
this problem [Tian & Yu, 2013] and showed that
this system might have maximal eight limit cycles,
but it is very difficult to prove this result by using
existing methodologies.

In this paper, we turn to consider a general
three-dimensional quadratic system, given by

jjl = axy + T2 + f1<x17x27x3)7
[1‘:2 - _$1+Ct$2+f2($1,$2,x3); (2)
i3 = —0r3 + f3(w1, 2, 73),

where o and § > 0 are real parameters, and f;’s are
quadratic homogeneous polynomials. This system
has a Hopf singularity at the origin when o = 0.
For general quadratic polynomials f; and 3 # 1,
the highest order of the focus value obtained from
a desktop machine with CPU 3.4 GHZ and 32G
RAM memory is four [Tian & Yu, 2013]. Moreover,
even just solving these four polynomial equations
is not an easy job. Therefore, we make a number
of simplifications in (2) so that we can manage
to obtain higher-order focus values, at least up to
seventh order, and then try to apply the modular
regular chains [Chen et al., 2013] to obtain seven
limit cycles in the vicinity of the origin. Compared
to the Bautin’s result for quadratic planar vector
fields which can only have three small-amplitude
limit cycles bifurcating from an elementary focus
or an elementary center, this result is quite surpris-
ing. The description of the simple three-dimensional
quadratic vector field and proof of the existence of
seven limit cycles around the origin will be given in
the next section.

2. Main Result

We start from the general three-dimensional
quadratic systems (2). Without loss of generality,
the system can be written in the following form,
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with its linear part in Jordan canonical form,

. 2
1 = axy + 22+ anwy + (2b11 + a2)z120
2 2
+ a20x5 + az3x3 + a13x123 + 2323,
. 2
&g = —x1 + axo + bzt + (2a11 + bi2)z122
— b1ya5 + bgas + b b
1175 + 03373 + 0130123 + 0237273,
. 2 2
T3 = —Bx3 + c1177] + C1271T2 + 2275
2
+ 3373 + C13T1T3 + C23T2T3,

where «, 8 > 0 and a;j, b;;, c;j are parameters, and
the formula in Bautin’s equation [Bautin, 1952] has
been used in the first two equations of (3), which
can be achieved by a proper rotation around the
rg-axis. It is easy to see that the origin is an equilib-
rium point for any value of parameters, and a Hopf
bifurcation occurs from the origin when « crosses
the critical value a = a. = 0.

Thus, we can use the formulas and Maple pro-
gram developed in [Tian & Yu, 2013] to compute
the normal form, which can then be used to deter-
mine small-amplitude limit cycles bifurcating from
the origin. It is obvious that the zero-order focus
value vy = «, and at the critical point: « = a, = 0,
vg = 0. Then under the condition o = a. = 0, the
Maple program is executed on the desktop machine
to obtain the focus values vy, vs,.... It should be
noted that for the general system (2), the compu-
tation of the higher-order normal form is very time
consuming and memory demanding. Moreover, even
if we can obtain higher-order normal forms by using
the Maple program, it is almost impossible to find
the solutions of the multivariate polynomial system
of focus values. Thus, in order to simplify the com-
putation, we make some simplifications. First, we
suppose b1 # 0 and c13 # 0. Then, we can use
parameter scaling and state variable scaling in (2)
so that b;; = ¢19 = 1. In order to make the com-
putation of focus values manageable, we further set
a13 = a3 = a3z = b1z = bag = b1g = c11 = c2 =
co3 = 0 and § = 1, resulting in the following simple
three-dimensional quadratic system,

. 2 2
1 = x9 + annx] + (2 + a12)r122 + A2275,

iy = 249 2 4 byga? 4
To = —x1 + 2] + 20117102 — T35 + 03373, (4)

T3 = —x3+ x1209 + 03333% + ci13x123.

This is perhaps the simplest three-dimensional
quadratic system since it has only one coupling
coefficient b3z between the first two equations and
the third equation. When b33 = 0, the first two
equations are decoupled from the third equation,
and the problem becomes finding the limit cycles of
the planar system, described by the first two equa-
tions of (4), and it is easy to show that this planar
system has three small limit cycles around the ori-
gin, as expected. In fact, when b33 = 0, we can use
the Maple program to find the first focus value v,
given by v; = *éalz(au + CL22). Letting a1 = 0
yields v1 = 0 and then executing the Maple pro-
gram produces vy = —11—2a11(a11 + ag)(a11 + Haga).
Further, letting a;; = —b5age results in vo = 0 and
finally executing the Maple program yields

v3 = 25a35(1 — 3a3,),

140
va = —=ap(1 = 3a3,)(7 — 38az),

Vg =,

and all the wv;’s contain the factor a3,(1 —
3a3,), clearly indicating that at most three small-
amplitude limit cycles can be obtained around the
origin when bz3 = 0.

Now, suppose bsg # 0. We have the following
main result.

Theorem 1. Suppose the parameters, a1, a2, G292,
bss, c33 and 13, in system (8) are arbitrary nonzero
constants. Then system (3) can have at least seven
small-amplitude limit cycles around the origin.

In order to prove Theorem 1, we need the
following lemma [Yu & Han, 2005].

Lemma 1. Suppose the focus values obtained from
a general dynamical system are functions of k inde-
pendent system parameters pi,pa,...,pr. Further,
assume that at a critical point, p. defined by

(P1,02s -+ s D) = (P1cy P2cs - - - s D), the focus values
satisfy
U_j(p(:):(), j:0717"'7k_17 Uk<p6>7é07
and
0 e Uk
det | 2os v1s -+ vk—1) 20
p1,p2,--- 1K) 1p,
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Then, proper perturbations can be made to the vy = va(a11, a1z, a2, b3z, €13, ¢33),
parameters pi,ps,...,Pr around the critical point
pe to generate k small-amplitude limit cycles in the

vicinity of the Hopf critical point (the origin). v = vr(ary, arz, ags, bss, c13, Cs3),

Proof. By using the Maple program [Tian & Yu, (5)
2013], we can obtain the first seven focus values in 54 via them we can estimate the number of small-
terms of the system coefficients: amplitude limit cycles around the origin, which are

embedded in the center manifold (which is also

v = vi(ai1, a1z, as, bss, c13, ¢33), ) )
( ) obtained from the Maple program), described by

1 1 1
xr3 = 5(33% + x129 — 33%) — g(2a11 —C13 + 1)58:{' — 5(3a11 + 2a19 — c13 + 2)56%332

+ 5(46111 — a2 — 2a — c13 — x5 — g(azz + 2)zy — H c13 — 5033 + 2a11¢13 — 13 | 17

5 2¢13 — 5 ¢33 + 3ai1¢13 + 2a12¢13 — i3 | T1x2
1 1

5 (013 + 5033~ daiici13 + a12¢13 + 2a2c13 + 0%3) rizs

(-2 2 3 g+ (6)
— ——=C — 4C — C13Q T1T —C337 s
5 533 13 = C13022 | T1T5 + SHC33T

It is obvious to see from (6) that the center mani- |
fold near the origin is approximated by a hyperbolic ~ from the six polynomial equations vy = vo = -+ =

parabolid, as shown in Fig. 1. vg = 0. Alternatively, we may solve these six poly-
To obtain the maximal number of small- nomial equations one by one, with one parameter
amplitude limit cycles bifurcating from the origin,  at each time. We start from the first focus value vy,

we solve the parameters a1, a2, a2, b33, c13, €33 which is the same as that for the case b33 = 0, i.e.

1
v = *gau(an + ag).
Letting

agy = —aiy (7)

yields v;1 = 0, and then executing the Maple pro-
gram we have

1
=—b 1 10).
Y2 = 7550 33(a12 + 3c13 + 18aq; + 10)
Setting
a9 = —(3013 + 18aq11 + 10) (8)
results in v9 = 0 and then executing the Maple pro-
gram gives
= ————b33[—187b 695 2070

U3 = 575000 33 33 + (695¢13 + ail

—790)cs3 + (9229002, + 74582a11 + 15384)cy3

+ (3342a1; — 45)c3; — 666¢3,5 + 22817243,
Fig. 1. The second-order approximation of the center man-

ifold described by (6). +220428a7, + 57028a1; + 2020].
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Thus, we may solve for b33 from the equation vs = 0 to obtain

1
= 157 (695¢15 + 2070011 — 790)es3 + (9229007, + 74582a11 + 15384)cr

+ (3342a1; — 45)c3; — 666¢3, + 22817243, + 22042847, + 57028a1; + 2020). (9)

b33

Now, under the conditions given in (7)—(9), we have v; = vy = v3 = 0, and further execute the Maple
program to obtain

_ Foly B FoFy
Y47 1483804608000° T 16015652769093120000
FyFs FyFy
Vg = v =
6 16134271099762131283963000000° 158315921739305937010807603200000000
where
Fy = 5(414a1;, + 139¢13 — 158)c3 + (15384 + 74582a1; + 9229002, )e13
+3(1114a11 — 15)ciy — 666¢3; + 4(505 + 14257a1; + 55107a?, + 57043a3)
and

F1 = 4(4078333¢13 + 14139153a,; — 2787647)c3, + 2[2(373041446a3, + 500749565a11 + 111353261)c13
— (98445579a1; + 52751465)c?5 — 16677015¢5, + 4(856767634a3, + 96718632302,
+181154724a;; — 11713817)]es3 + 29601792¢35 + 9(86303536a1; + 25802705)c]5
+ 6(882002754a; + 437785405a11 + 14608506)c3; + 4(5370668262a%, + 4204559671a;

+ 34389389a1; — 252727446)c25 4 8(13079993487a ], + 2472847702243, + 15158560637a2,
+3657980072a1; + 287618390)c13 + 16(16499286495a3, + 37837627784a]; + 29685004857a3,
+ 978466210702, 4 1218699212a1; + 2203887),

and Fy and Fj3 are given in Appendix A, while the |
lengthy expression of Fj is not listed here. Now in ~ values aiic, €13c, €33, and further
order to obtain limit cycles bifurcating from the

origin (the Hopf critical point) as many as possi- det[
ble, we need to find critical parameter values of

a11,c13 and c33 such that vy = vs = vg = 0, but
vy # 0 (ie. Fy = F» = F3 = 0, but Fy # 0).
In this case, we can conclude that there exist at
most seven small-amplitude limit cycles bifurcating
from the origin. Then, proper perturbations may
be applied to the seven parameters, «, a1, a2, a2,
b33, c13 and c33, to generate seven small-amplitude
limit cycles, or we can apply Lemma 1 to prove
the existence of seven limit cycles. Since we set

M}
8(&11 , C13, 033) (a110,013678330)

£0.

To find the critical values ai1c, c13¢, €33 such that
Fy = F» = F3 = 0, we apply the Regular Chain
method [Chen et al., 2013]. We use (7)-(9) to sim-
plify vy to vg to obtain polynomial equations F} =
F, = F5 = 0. Then execute the Maple program (see
[Chen et al., 2013]) on the same desktop machine
to obtain the following results by using the modular
regular chains method: the formulas of ¢i3 and ¢33
expressed in terms of aqq,

a =0 to get Vg = 0, agzy = —ayy to get v1 = 0,

alp = *(18&11 +3613+023+10) to obtain v9 = 0, and 013N(a11) 033N(a11)

by = 1k (2070 + 695e15 —~Fezs — T0)ess -] 9= g ) P Negplar) (0
[given in (9)] to obtain vz = 0, perturbations on

b33, @12, a22 and « can be made one by one. Thus,  where N is an integer, and cisny(a11), cisp(aii),
we only need to consider vy = v5 = vg = 0, i.e.  c33n(an1) and c33p(ai;) are 156th-degree polyno-

Fy, = F, = F3 = 0, but v7 # 0, at some critical = mials of a11; and a resultant equation, given by a
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157th-degree polynomial g(a;;) = 0, which in turn gives a total of 19 real solutions. We solve a1; from
this polynomial equation up to 1000 digit points, with the results listed below (only showing the first
50 digits).

al; = —4.11276888495705654624708808345078873211396249503460 . . . ,
—1.82010942866258004577090611868371605998764973794356 . . . ,

s
=N
—_

I

a3, = —0.76440311387403968219929953842967589771581114232615 . . . ,

at; = —0.75410520646463776589886974547597729068673851680993 . . . ,
a3; = —0.46061934131364857055550286413352190906564989377128 . . . ,
a$, = —0.44754772090870942476035011043695763950789559075632 . . . ,

6&1 = —0.38187937918219584496343813228246930627419322177798 . . .,

a$; = —0.31428920280160160469525336903289260600817103833470 . . . ,
al; = —0.28314729830779529882213773988148784486261517488513 . . . ,

all = —0.13330838515576413592119147947119785761283975388044 . . . ,
ai} = —0.02861803346154083192185648912224434468926816974799 . . . ,
ai? = —0.01129618883353299940696424356394530075959246381228 . . . ,
at? = 0.00003261862103285667320075873891685629773802493465 . . . ,
all = 0.01557965760324882734099653888501403592680477722409 . . .,
a1} = 0.02629936725348609926921580980768242470782868685459 . . . ,
a1 = 0.04674224356461493450786328894470060987403146438352 . . . ,
ail = 0.56032275926806357270588556057116717906044592783859 . . . ,
al$ = 5.38438918903427504185594454194797573037902064705802 . . .,
a1} = 26.01492173704774508843595793963653547777807547320274 . . . .

We take aj; = a];, which yields

c13 = —0.41261102816606685288914232443213702004650348278544 . . .,
c33 = —0.33160576682318949987643286719692488957369961896560 . . . ,

and use Eqgs. (7)-(9) to obtain azs = —a; and
a2 = —1.88833809022227423199068664561914142692501155964000. . . ,
bss = —0.14679339349579488722266912282493720766001218127019.. . . .

For these critical parameter values, the focus values become
v =0.0, vy =—0.1x107100 " ys = —0.6847 x 1071090,
= —0.13219256310383786756022068742997222535380219931004 . . . x 10~942,
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vs = —0.31762418358601926533300695679923261099352343009257 . . . x 107742,
v = —0.46950935768785676094927172098325782856331763210221 ... x 107942,

vy = —0.83776339081446765262795751469808290872469085804425 . . .

The errors on vo—vg are due to numerical compu-
tation in the final step of solving the 157th-degree
polynomial of a11. In fact, we can perform the inter-
val computation in Maple to identify the interval
for each of the parameters up to any accuracy,
which proves that there exist solutions such that
vy = vy = --- =g = 0, but v7 # 0. Therefore, we
can conclude that there exist at most seven small-
amplitude limit cycles around the origin. Moreover,
a direct calculation shows that

O(v4, vs,v6) ]
a(au, C13, 033) (a11c,C13¢5C33¢)

~ —0.00000000333723796304 # 0,

det [

implying that there exist seven small-amplitude
limit cycles around the origin. W

3. Conclusion

In this paper, we have shown that a simple three-
dimensional quadratic vector field can exhibit seven
small-amplitude limit cycles in the vicinity of a
Hopf critical point. The method of normal forms is
applied to compute the focus values associated with
Hopf bifurcation, while the modular regular chains
method is used to solve higher-degree multivariate
polynomial equations. This result may be further
improved in future by developing more powerful
computational tools.
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Appendix A

The functions F» and Fj3 are listed in this Appendix.

Fy =

—350064(144902698¢13 + 366576733a1; — 142697703)c3, + 4[132287548607492¢3,

+ (1587431095048589a1; + 371135538912053)¢75 + 2(1985595066771294a3, + 332568076619189a1;
— 167986412567563)c13 + 4(832557288593889a°, + 343973807357514a2, — 129381390471427ay,
— 22505970396248)]c3; — 4[213711424998672¢7, + 9(311807824390159a11 + 148318218680889) ¢’
— (1180924979804906a2, + 5452054185589939a1; + 352322443563555)c%,

— 4(4278847793536442543, + 67363587215176597a3, + 24044781463740170a1;
+2314226039107142) 2, — 4(27591776267013391ay; + 173646715268323199a,
+321001980070626737a3, + 162732256648660003a2, + 879991334108382)c13

— 8(116707360013076057a3, + 257051474918548297a%, + 171010776019582988a3,

+ 42694054908035380a2, + 2402049457670883a1; — 250745335036453)]c33
+630912865266000c75 + 9(2964712669290231a1; + 782392810580879)cS,

+ 6(7354159696272905643, + 38427258756511039a11 + 3606485585632344) 5,
+12(322411353706968259a%, + 280026912237356567a2, + 58525009028373887a1;

+ 366306838658389) ¢’y + 8(2731040674800736927a’, + 381028989622808549847,
+1688659169110635940a2, + 239657009603682009a1; — 731762510421390)c3,

+ 16(5442580446106842105a%, + 11332299759177700061al, + 8435369673472740199a3,

+ 276838334783239934243, + 372489286490816132a1; + 11783278257257817)c2,
+32(6397426172395771554a8, + 17484633288012047816a?, + 17729148621051130479a’,

+ 8645141995434202821a3, + 2101633085727469205a2, + 225196488860266879a1;

+ 6078244989652798 )15 + 64(3335635549859104292a], + 11004977896310477071a$,

+ 13758987325223239501a], + 8649165820899777993a7, + 2937263004217804984a3,

+ 518248503098891291a%, + 38482349044241143a1; + 320434896140845),

= 15197445120(1295313405565¢13 + 4841990370990a;; — 974241807866)c§3

—1664[2475256651 10477726430“;’3 + 2(81606533150962260337a11 + 206630065005504758855)0%3
+ 4(23784869920766047140a3, + 456247687686341245921a1; — 32067190881129442123)c;3
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— 4(71801519911054095117943, + 164083276954411890501a3, + 497187713917569014161a;,
+ 116882338879114660895)] 3, + 4[135516201497462967471977¢5,

+ (3652599114285837536632677a1; + 1372118809839451388158717) ¢y

+ 8(4521694474249202984154340a3, + 3422357624141089273121095a1;
+551772823682912535119127) ¢35 + 8(23001454127003267087701629a3,

+ 22632657768411737154856217a%, + 4175449582577115578189071a1,

— 144592603169129179152061) ¢35 + 16(25197277762204780005004103a 7,

+ 23591855696103476578045814a3, — 1339991489632296089393848a2,

— 3368285960479851576060286a;, — 423709293782930794542471)c15
+16(23833261557825482972806401a5, + 23605088260502022606031673a %,

— 192925835988881326697735843, — 3852803639369438088651366a3,

— 273354786339018249164467a1; + 72135305352486339433005)]¢3,

— [708959378346946555769814¢]5 + 6(1664554809177510639166637a1;

+ 1468549573192142753107527) S, — 4(10142472888611771695397006a3,

— 8093351702071968321732515a1; — 8797678108504067116393611) 5,

— 8(270318138190309436211164404a3, + 37486691473068725003069443342,
+ 94857726635504393832071718a1; + 1611714501224953912649461)c1

— 32(727020887416660748411417149a, + 1495840229622491117284675129a3,
+ 842849659975318266816558199a3, + 175620020144274765161496311a,;

+ 11157942239036269527525724) 3, — 32(381503507650024551365690452947,
+9507605546464302764041140761a}, + 7368167729908292445287343410a3,
+ 2417690260166455114448121506a3, + 327924924088386289070880621a1;

+ 12481403710220223481605845) 25 — 64(46233659648813868282065419344,
+ 12873274210089905549397428201a5, + 11847721961389382224450162225a],
+ 4848749975836708041755541250a3, + 879679758844271910169231560a7,
+47359781290947171771497733a1; — 1993655132477530259763543)c13

— 128(2182688317704910216101782722a], + 6650367630130223948338676851aS,
+ 7055523579922110839931549040a3, + 3531962564650152984423497445a1,
+ 876158343574723264099830730a3, + 91867822030408479430764349a3,
+93074881175678687047012a;; — 404530676030894666989045)] ¢33

+ 523779830429499928376064¢]5 + 9(4711878525758830961908464a1;
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%f999345350877766901978141)0%34—6(225876452729015835356342234@%1
%—110846523885056357949977533&11%f10253305691653840091798898%ﬁ3
4—12(1833345264819475165936627778@?14—1565971064556600537110067163a%1
%—366397091618786153387840171a114—16051590214691783803149352ﬁf3

+ 8(26086580583552734554940584951a7; + 33532903248572391712065771052a73,
+ 14238018150683934981297945709a%, + 2074540224393451069061108526a11
%—27861686142403760251746546)6?;%—16(78548659777326308787336671659@?1
%—141138363502453983994692297539a%14—92813909971704479331226525567a?1
+ 26717320570403893049039935251a7, + 2890106674925225565999192218a1,
%f14630542556546467684436742)ci;%—32(158056462633238785803151049168@?1
+ 379261013704349272339224196655a5, + 351155334849581032033712611590a7,
+ 159226588640254021019516857610a3; + 36006057259210021488914610840a,
%f3443427334420574893921441871@11%—53348711666072696845705930ﬁ§3

+ 64(213934489231668821736726105776a ], + 653860206996441311651858729543a5,
+ 7879309127669413351808801970694a53, + 489789605387889313586662661710a7,
4 168372810485883167250927940970a3, + 31052460989227661080767094867a7,
%—2595121581266887210220232361&11%f47677864066744036593911688ﬁﬁ3
+128(175795180541454878327994323627@?1+646069392177506577189809704414@{1
+ 943974632974823926628515523427a%, + 730811516906412079242497471216a3,
+ 328721576130872118296329634775a7; + 86861820610588450810846403654a5,
+ 12669250522915877666530948173a7, + 828317972353063952969598924 a1,

+ 8430485593584154810200302)c13 + 256(65489078114939885475729056623a];
+ 276207783896081023026631595440a5, + 467148550007619228316050778351a,
+ 427474964552370509561272719651a%; + 235261518648158313822481113745a3,
%f80473535394907792966346350991a%14—16803980816127953612017002885@?1
+1967923782290897527897320937a7, + 100256044517078058643496652a1 1

+ 235738171481448869001845).
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