Center conditions in a switching Bautin system

Yun Tian, Pei Yu*
Department of Applied Mathematics, Western University, London, Ontario, N6A 5B7, Canada
Received 27 November 2014; revised 24 February 2015
Available online 12 March 2015

Abstract

A new method with an efficient algorithm is developed for computing the Lyapunov constants of planar switching systems, and then applied to study bifurcation of limit cycles in a switching Bautin system. A complete classification on the conditions of a singular point being a center in this Bautin system is obtained. Further, an example of switching systems is constructed to show the existence of 10 small-amplitude limit cycles bifurcating from a center. This is a new lower bound of the maximal number of small-amplitude limit cycles obtained in quadratic switching systems near a singular point.

© 2015 Elsevier Inc. All rights reserved.

MSC: 34C07; 34C23
Keywords: Switching system; Bautin switching system; Lyapunov constant; Center; Bifurcation; Limit cycle

1. Introduction

Many problems arising in science and engineering are modeled by dynamical systems whose vector fields (i.e., the right-hand sides of the equations) are not continuous or not differentiable. These systems are indistinctly called discontinuous or non-smooth systems. A full discussion on this subject can be found in the classical books [1,2].

During the past few decades, increasing interest has been attracted to the qualitative analysis of non-smooth systems, because non-smooth systems describe some real problems more accurately and display rich complex dynamical phenomena, which must not be disregarded in applications,

[^0]for instance the squealing noise in car brakes [3,4], or the absence of a thermal equilibrium in gases modeled by scattering billiards [5,6]. Because of various forms of non-smoothness, nonsmooth systems can exhibit not only the classical bifurcations, like Hopf bifurcation, homoclinic bifurcation, but also more complicated bifurcations that only non-smooth systems can have, such as border-collision bifurcation [7-9], grazing bifurcation [10,11] and so on. A great deal of work has been done to generalize the classical bifurcation methods for smooth systems to non-smooth ones, see for instance [12-17].

One class of planar non-smooth dynamical systems is the so-called switching system, which has different definitions of the continuous vector fields in two different regions divided by a line (or a curve). Our attention in this paper is focused on the switching systems, given in the form of

$$
(\dot{x}, \dot{y})= \begin{cases}\left(\delta x-y+f^{+}(x, y, \boldsymbol{\mu}), x+\delta y+g^{+}(x, y, \boldsymbol{\mu})\right), & \text { if } y>0 \tag{1}\\ \left(\delta x-y+f^{-}(x, y, \boldsymbol{\mu}), x+\delta y+g^{-}(x, y, \boldsymbol{\mu})\right), & \text { if } y<0\end{cases}
$$

where $\boldsymbol{\mu} \in \mathbf{R}^{m}$ is a parameter vector and $\delta=\mu_{1}, f^{ \pm}(x, y, \boldsymbol{\mu})$ and $g^{ \pm}(x, y, \boldsymbol{\mu})$ are analytic functions in x and y starting at least from second-order terms. Obviously, the origin is an equilibrium of system (1). There are two systems in (1): the system defined in the upper half-plane for $y>0$, called the upper system, and the system defined in the lower half-plane for $y<0$, called the lower system.

Many contributions have been made to the study of Hopf bifurcation in switching systems, see for example [12,13,16,18-20]. As in the study of smooth dynamical systems, the center problem, determining the center conditions of a singular point being a center, and the cyclicity problem, finding the maximal number of small-amplitude limit cycles around a singular point, are fundamental in the analysis of Hopf bifurcation in switching systems. These two problems in switching systems can be investigated by computing the Lyapunov constants [12,15,16]. Gasull and Torregrosa [12] applied a suitable decomposition of certain one-forms and developed a new method for computing the Lyapunov constants of switching systems.

For the center problem, it is well-known that a singular point is a center in planar smooth systems if and only if there exists a local first integral around the singular point. However, the situation is quite complicated in switching systems. The origin of system (1) can be a center even if it is not a center of either the upper system or the lower system. On the other hand, if the origin is a center for both the upper system and the lower system of (1), one can not ensure that system (1) has a center at the origin. It also requires that their first integrals of the upper and lower systems coincide on the line $y=0$. So far, some center conditions have been obtained for some switching Kukles systems [12], switching Liénard systems [13,18] and switching Bautin systems [16].

It is well known that planar linear systems can not produce limit cycles. For general planar quadratic systems with a focus or center, Bautin [21] obtained the following form:

$$
\begin{align*}
& \dot{x}=\delta x-y-a_{3} x^{2}+\left(a_{5}+2 a_{2}\right) x y+a_{6} y^{2}, \\
& \dot{y}=x+\delta y+a_{2} x^{2}+\left(a_{4}+2 a_{3}\right) x y-a_{2} y^{2}, \tag{2}
\end{align*}
$$

with a focus or center at the origin, which is now called Bautin system, and proved that system (2) can have 3 small-amplitude limit cycles around the origin. Note that Bautin system has one less parameter. For cubic systems, it is only proved that 12 small-amplitude limit cycles can appear
around a center [22]. With the same degrees, switching polynomial systems can exhibit more limit cycles. For example, Han and Zhang [20] proved that 2 limit cycles can appear near a focus in linear switching systems. Without loss of generality, quadratic switching systems can be written as

$$
\binom{\dot{x}}{\dot{y}}= \begin{cases}\binom{\delta x-y-a_{3} x^{2}+\left(a_{5}+a_{2}\right) x y+\left(a_{6}+a_{3}\right) y^{2}}{x+\delta y+a_{2} x^{2}+\left(a_{4}-a_{3}\right) x y+\left(a_{1}-a_{2}\right) y^{2}}, & \text { if } y>0 \tag{3}\\ \binom{\delta x-y-b_{3} x^{2}+\left(b_{5}+b_{2}\right) x y+\left(b_{6}+b_{3}\right) y^{2}}{x+\delta y+b_{2} x^{2}+\left(b_{4}-b_{3}\right) x y+\left(b_{1}-b_{2}\right) y^{2}}, & \text { if } y<0\end{cases}
$$

The number of small-amplitude limit cycles bifurcating from a focus in system (3) was investigated in [12,15-17]. Among them, it was shown in [12] that system (3) can have at most 5 small-amplitude limit cycles when its lower system is linear. Recently, 9 small-amplitude limit cycles were obtained in [15] from a concrete example of switching Bautin systems through perturbations, in which the upper and lower systems are both Bautin systems.

In this paper, we develop a recursive procedure to compute the Lyapunov constants of the general system (1), which only involves algebraic computations, and then apply this method to study bifurcation of limit cycles in the following switching Bautin system, obtained by setting $a_{1}=b_{1}=0$ in (3),

$$
\binom{\dot{x}}{\dot{y}}=\left\{\begin{array}{cc}
\binom{\delta x-y-a_{3} x^{2}+\left(a_{5}+a_{2}\right) x y+\left(a_{6}+a_{3}\right) y^{2}}{x+\delta y+a_{2} x^{2}+\left(a_{4}-a_{3}\right) x y-a_{2} y^{2}}, & \text { if } y>0 \tag{4}\\
\binom{\delta x-y-b_{3} x^{2}+\left(b_{5}+b_{2}\right) x y+\left(b_{6}+b_{3}\right) y^{2}}{x+\delta y+b_{2} x^{2}+\left(b_{4}-b_{3}\right) x y-b_{2} y^{2}}, & \text { if } y<0
\end{array}\right.
$$

Note that the upper and lower systems in (4) are not exactly in the form of Bautin's system (2), but a simple transformation on the parameters can make them equivalent. For system (4) we obtain a complete center classification under the condition $a_{6} b_{6}=0$. Moreover, we introduce perturbations into system (4) with a center, and obtain 10 small-amplitude limit cycles.

Denote by \mathcal{E} the interchange of parameters $\left(a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right) \leftrightarrow\left(b_{2},-b_{3},-b_{4}, b_{4}, b_{5},-b_{6}\right)$. Note that by the change of variables $(x, y, t) \rightarrow(x,-y,-t)$, the upper system and the lower system in (4) exchange their equations, which can be derived equivalently by the interchange \mathcal{E} in (4).

Theorem 1. Assume $a_{6} b_{6}=0$. Then, system (4) has a center at the origin if and only if $\delta=b_{6}=0, b_{5}=a_{5}$, and one of the following conditions or the corresponding one under the interchange of parameters \mathcal{E} holds:

$$
\begin{aligned}
\mathrm{I}: & a_{2}=a_{5}=b_{2} b_{3}=0 \\
\mathrm{II}: & a_{2}-a_{5}=\left(b_{2}-a_{2}\right)\left(b_{2}+2 a_{2}\right)=b_{3}=a_{4}-3 a_{3}=0, \\
\mathrm{III}: & a_{2}-a_{5}=b_{2}=a_{4}-3 a_{3}=b_{4} b_{3}-2 a_{5}^{2}=0, \\
\mathrm{IV}: & a_{2}-a_{5}=a_{2}-b_{2}=a_{4}-3 a_{3}=b_{4}-3 b_{3}=0 \\
\mathrm{~V}: & a_{6}=b_{3}=a_{3} a_{4}-b_{2}\left(a_{5}+b_{2}\right)=a_{2}=0, \\
\mathrm{VI}: & a_{6}=b_{3}=a_{3}+a_{4}=3 a_{2}+a_{5}=0,\left(a_{2}-b_{2}\right)\left(2 a_{2}-b_{2}\right)=0,
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{VII}: & a_{6}=a_{3}=a_{5}=b_{3}=0, \\
\mathrm{VIII}: & a_{6}=b_{3}=a_{3}=\left(b_{2}-a_{2}\right)\left(a_{2}+b_{2}+a_{5}\right)=0, \\
\mathrm{IX}: & a_{6}=b_{3} b_{4}-a_{3} a_{4}=b_{2}=a_{2}=0, \\
\mathrm{X}: & a_{6}=b_{4}-a_{4}=b_{2}-a_{2}=b_{3}-a_{3}=0, \\
\mathrm{XI}: & a_{6}=b_{4}+a_{4}=b_{2}-a_{2}=b_{3}+a_{3}=0, \\
\mathrm{XII}: & a_{6}=9 b_{3} b_{4}+2 a_{5}^{2}=a_{4}+a_{3}=3 a_{2}+b_{5}=b_{2}=0, \\
\mathrm{XIII}: & a_{6}=b_{4}+b_{3}=a_{4}+a_{3}=3 a_{2}+a_{5}=a_{2}-b_{2}=0, \\
\mathrm{XIV}: & a_{6}=a_{2}+b_{2}-a_{5}=0,\left(2 b_{2}-a_{2}\right) a_{3}^{2}=\left(b_{2}-a_{2}\right)^{2} a_{5}=\left(2 a_{2}-b_{2}\right) b_{3}^{2}, \\
& \left(2 b_{2}-a_{2}\right) a_{4}^{2}=\left(3 a_{2}-4 b_{2}\right)^{2} a_{5},\left(2 a_{2}-b_{2}\right) b_{4}^{2}=\left(3 b_{2}-4 a_{2}\right)^{2} a_{5} .
\end{aligned}
$$

It is important to determine the maximal number of small-amplitude limit cycles bifurcating from the origin of system (4). One approach to get these small-amplitude limit cycles is via perturbations on the parameters with one of the conditions I-XIV, and thus limit cycles bifurcate from a center. In fact, we have obtained the following new result, which is the best so far for quadratic switching systems.

Theorem 2. For system (3) with the conditions $a_{1}=b_{1}=0, \delta=b_{6}=0, b_{5}=a_{5}$, and that given in the item X of Theorem 1, 10 limit cycles can appear near the origin under small perturbations.

Remark 3. Note that in Theorem 2 when $a_{1}=b_{1}=0$, the general quadratic switching system (3) becomes the switching Bautin system (4). Further, when other conditions are satisfied, the origin of the switching Bautin system becomes a center. Then, perturbing the special system (3) with a center at the origin yields 10 small-amplitude limit cycles.

The proofs for the above two theorems will be given later in Section 4.

2. Preliminary

Using $x=r \cos (\theta)$ and $y=r \sin (\theta)$, and treating time t as a parameter, we obtain the equations describing the orbits of system (1) on the phase plane,

$$
\frac{d r}{d \theta}= \begin{cases}\frac{\delta r+R^{+}(r, \theta)}{1+\Theta^{+}(r, \theta)}, & \text { if } \theta \in(0, \pi) \tag{5}\\ \frac{\delta r+R^{-}(r, \theta)}{1+\Theta^{-}(r, \theta)}, & \text { if } \theta \in(\pi, 2 \pi)\end{cases}
$$

where

$$
\begin{aligned}
& R^{ \pm}(r, \theta)=\cos (\theta) f^{ \pm}(r \cos (\theta), r \sin (\theta), \boldsymbol{\mu})+\sin (\theta) g^{ \pm}(r \cos (\theta), r \sin (\theta), \boldsymbol{\mu}) \\
& \Theta^{ \pm}(r, \theta)=\frac{1}{r}\left(\cos (\theta) g^{ \pm}(r \cos (\theta), r \sin (\theta), \boldsymbol{\mu})-\sin (\theta) f^{ \pm}(r \cos (\theta), r \sin (\theta), \boldsymbol{\mu})\right)
\end{aligned}
$$

Fig. 1. (a) Poincaré map for system (1), and (b) Half-return maps \mathcal{P}^{+}and $\left(\mathcal{P}^{-}\right)^{-1}$.
Let $r^{+}(\theta, \rho)$ and $r^{-}(\theta, \rho)$ be the solutions of the upper and lower systems of (5), respectively, with $r^{+}(0, \rho)=r^{-}(\pi, \rho)=\rho$. Then, through the positive half-return map $\mathcal{P}^{+}(\rho)=r^{+}(\pi, \rho)$ and the negative half-return map $\mathcal{P}^{-}(\rho)=r^{-}(2 \pi, \rho)$, we can define the Poincaré map $\mathcal{P}(\rho)=$ $\mathcal{P}^{-}\left(\mathcal{P}^{+}(\rho)\right)$, as illustrated in Fig. 1(a).

Suppose the displacement function $d(\rho)=\mathcal{P}(\rho)-\rho$ can be expanded as

$$
\begin{equation*}
d(\rho)=V_{1} \rho+V_{2} \rho^{2}+V_{3} \rho^{3}+\cdots \tag{6}
\end{equation*}
$$

where V_{k} is called the k th-order Lyapunov constant of the switching system (1). It is easy to see that the origin is a center of system (1) if and only if $d(\rho) \equiv 0$ for $0<\rho \ll 1$, which means that all the Lyapunov constants in (6) vanish. The isolated zeros of $d(\rho)=0$ near $\rho=0$ correspond to the limit cycles around the origin. It is not difficult to get $V_{1}=e^{2 \delta \pi}-1$ since $\mathcal{P}^{ \pm}(\rho)=$ $e^{\delta \pi} \rho+O\left(\rho^{2}\right)$. Thus, $V_{1}=0$ if and only if $\delta=0$. It is well known that for the first nonzero Lyapunov constant V_{k} in a smooth system, k must be an odd number [23, Lemma 2.1.1]. While if V_{k} is the first nonzero term in (6), k could be any positive integer. Because of this small difference, the theorem used to determine the number of limit cycles by Lyapunov constants should take some corresponding changes. We have the following lemma.

Lemma 4. Assume that there exists a sequence of Lyapunov constants of system (1), $V_{i_{0}}, V_{i_{1}}$, $\ldots, V_{i_{k}}$, with $1=i_{0}<i_{1}<\cdots<i_{k}$, such that $V_{j}=O\left(\left|V_{i_{0}}, \ldots, V_{i_{l}}\right|\right)$ for any $i_{l}<j<i_{l+1}$. If for system (1) at the critical point $\mu=\mu_{0}, V_{i_{0}}=V_{i_{1}}=\cdots=V_{i_{k}-1}=0, V_{i_{k}} \neq 0$, and

$$
\operatorname{rank}\left[\frac{\partial\left(V_{i_{0}}, V_{i_{1}}, \ldots, V_{i_{k-1}}\right)}{\partial\left(\mu_{1}, \mu_{2}, \ldots, \mu_{m}\right)}\left(\mu_{0}\right)\right]=k
$$

then k limit cycles can appear near the origin of system (1) for some $\boldsymbol{\mu}$ near μ_{0}.
Lemma 4 is based on Theorem 2.3.2 in [23]. So we give a brief proof here. By the assumption of Lemma 4, the displacement function $d(\rho)$ in (6) can be rewritten in the form

$$
d(\rho)=V_{i_{0}} \rho^{i_{0}}\left(1+P_{0}(\rho)\right)+\cdots+V_{i_{k-1}} \rho^{i_{k-1}}\left(1+P_{k-1}(\rho)\right)+V_{i_{k}} \rho^{i_{k}}+O\left(\rho^{i_{k}+1}\right)
$$

where $P_{l}(\rho)=O\left(\rho^{j_{l}}\right), l=0, \ldots, k-1, j_{l}$ is the smallest positive integer satisfying $i_{l}+j_{l}<$ $i_{l+j_{l}}$, otherwise $P_{l}(\rho)=0$. Since $V_{i_{0}}, V_{i_{1}}, \ldots, V_{i_{k-1}}$ are independent with respect to μ, we can vary $\boldsymbol{\mu}$ around μ_{0} such that

$$
0<\left|V_{i_{0}}\right| \ll\left|V_{i_{1}}\right| \ll \cdots \ll\left|V_{i_{k-1}}\right| \ll 1, \quad V_{i_{j}} V_{i_{j+1}}<0, \quad j=0, \ldots, k-1,
$$

which ensures the existence of k positive zeros of $d(\rho)$ in ρ around $\rho=0$.
Based on Lemma 4, we remark that the expressions in this paper for $V_{k}, k=2,3, \ldots$, are obtained by setting $V_{1}=V_{2}=\cdots=V_{k-1}=0$. Then, for any $i_{l}<j<i_{l+1}, V_{j}=O\left(\left|V_{i_{0}}, \ldots, V_{i_{l}}\right|\right)$ in Lemma 4 becomes $V_{j} \equiv 0$.

From now on, we assume that $\delta=0$ in system (1) and so $V_{1}=0$. It is very difficult to compute the remaining Lyapunov constants by using (6), since it involves the composition of two maps $\mathcal{P}^{+}(\rho)$ and $\mathcal{P}^{-}(\rho)$. To simplify the computation of Lyapunov constants, the authors of [12] introduced a new function,

$$
\begin{equation*}
\mathcal{P}^{+}(\rho)-\left(\mathcal{P}^{-}\right)^{-1}(\rho)=W_{1} \rho+W_{2} \rho^{2}+W_{3} \rho^{3}+\cdots, \tag{7}
\end{equation*}
$$

where $\left(\mathcal{P}^{-}\right)^{-1}(\rho)$ is the inverse map of $\mathcal{P}^{-}(\rho)$. For $\left(\mathcal{P}^{-}\right)^{-1}(\rho)$, we have $\left(\mathcal{P}^{-}\right)^{-1}(\rho)=\mathcal{P}_{-}^{+}(\rho)$, where $\mathcal{P}_{-}^{+}(\rho)$ is the positive half-return map of the system obtained from the lower system with the change of variables $(x, y, t) \rightarrow(x,-y,-t)$ (see Fig. 1(b)). Thus, to get (7) we only need to compute the two positive half-return maps $\mathcal{P}^{+}(\rho)$ and $\mathcal{P}_{-}^{+}(\rho)$. It is proved [12] that for (6) and (7), the conditions $V_{k} \neq 0, V_{j}=0,1 \leq j \leq k-1$, are equivalent to $W_{k} \neq 0, W_{j}=0,1 \leq$ $j \leq k-1$. In Section 3, we shall present a new method to compute W_{k} 's in (7). Because of the equivalence of V_{k} and W_{k}, we still use V_{k} instead of W_{k} in the rest of the paper for simplicity.

Note that any Lyapunov constant V_{k} is a polynomial in terms of the coefficients of system (1). Thus, having obtained the Lyapunov constants, we need to solve a system of multivariate polynomial equations, and to find the center conditions. We shall use the Maple built-in command "resultant" to solve these polynomial equations and find their common zeros.

Denote by $\mathbf{R}\left[x_{1}, x_{2}, \ldots, x_{r}\right]$ the polynomial ring of multivariate polynomials in $x_{1}, x_{2}, \ldots, x_{r}$ with coefficients in \mathbf{R}. Let

$$
\begin{align*}
p\left(x_{1}, x_{2}, \ldots, x_{r}\right) & =\sum_{i=0}^{m} p_{i}\left(x_{1}, \ldots, x_{r-1}\right) x_{r}^{i} \\
q\left(x_{1}, x_{2}, \ldots, x_{r}\right) & =\sum_{i=0}^{n} q_{i}\left(x_{1}, \ldots, x_{r-1}\right) x_{r}^{i} \tag{8}
\end{align*}
$$

be two polynomials in $\mathbf{R}\left[x_{1}, x_{2}, \ldots, x_{r}\right]$ of respective positive degrees m and n in x_{r}. The following matrix is called the Sylvester matrix of p and q with respect to x_{r},

$$
\left.\operatorname{Syl}\left(p, q, x_{r}\right)=\left(\begin{array}{ccccccc}
p_{m} & p_{m-1} & \cdots & p_{0} & & & \\
& p_{m} & p_{m-1} & \cdots & p_{0} & & \\
& & \ddots & \ddots & & \ddots & \\
& & & p_{m} & p_{m-1} & \cdots & p_{0} \\
q_{n} & q_{n-1} & \cdots & q_{0} & & & \\
& q_{n} & q_{n-1} & \cdots & q_{0} & & \\
& & \ddots & \ddots & & \ddots & \\
& & & q_{n} & q_{n-1} & \cdots & q_{0}
\end{array}\right)\right\} n
$$

whose determinant is called the resultant of p and q with respect to x_{r}, denoted by $\operatorname{Res}\left(p, q, x_{r}\right)$. We have the following lemma.

Lemma 5. (See [24, Chapter 7].) Consider two multivariate polynomials $p\left(x_{1}, x_{2}, \ldots, x_{r}\right)$ and $q\left(x_{1}, x_{2}, \ldots, x_{r}\right)$ in $\mathbf{R}\left[x_{1}, x_{2}, \ldots, x_{r}\right]$ given by (8). Let $\operatorname{Res}\left(p, q, x_{r}\right)=h\left(x_{1}, \ldots, x_{r-1}\right)$. Then:

1. If the real vector $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right\rangle \in \mathbf{R}^{r}$ is a common zero of the two equations $p\left(x_{1}, x_{2}\right.$, $\left.\ldots, x_{r}\right)=q\left(x_{1}, x_{2}, \ldots, x_{r}\right)=0$, then $h\left(\alpha_{1}, \ldots, \alpha_{r-1}\right)=0$.
2. Conversely, if $h\left(\alpha_{1}, \ldots, \alpha_{r-1}\right)=0$, then at least one of the following four conditions holds:
(a) $p_{m}\left(\alpha_{1}, \ldots, \alpha_{r-1}\right)=\cdots=p_{0}\left(\alpha_{1}, \ldots, \alpha_{r-1}\right)=0$, or
(b) $q_{n}\left(\alpha_{1}, \ldots, \alpha_{r-1}\right)=\cdots=q_{0}\left(\alpha_{1}, \ldots, \alpha_{r-1}\right)=0$, or
(c) $p_{m}\left(\alpha_{1}, \ldots, \alpha_{r-1}\right)=q_{n}\left(\alpha_{1}, \ldots, \alpha_{r-1}\right)=0$, or
(d) for some $\alpha_{r} \in \mathbf{R},\left\langle\alpha_{1}, \ldots, \alpha_{r}\right\rangle$ is a common zero of both $p\left(x_{1}, \ldots, x_{r}\right)$ and $q\left(x_{1}, \ldots, x_{r}\right)$.

From the first statement of Lemma 5, we know that if the resultant h does not have zeros on the region $D \subset \mathbf{R}^{r-1}$, then polynomials p and q do not have common zeros in $D \times \mathbf{R}$. According to the second statement, in order to solve $p=q=0$, we first find the zeros of $h=0$, and then substitute them back into p and q to solve for x_{r}. In this way, no zeros should be missed. For m multivariate polynomials with m variables, we can apply the command "resultant" repeatedly. For instance, take $m=3$. To solve $F_{j}\left(x_{1}, x_{2}, x_{3}\right)=0, j=1,2,3$, suppose we compute $\operatorname{Res}\left(F_{1}, F_{j}, x_{1}\right)$ to obtain $\operatorname{Res}\left(F_{1}, F_{j}, x_{1}\right)=F_{a}\left(x_{2}, x_{3}\right) E_{j}\left(x_{2}, x_{3}\right), j=2,3$. Then, we need to find the solutions for $F_{a}\left(x_{2}, x_{3}\right)=0$ and $E_{2}\left(x_{2}, x_{3}\right)=E_{3}\left(x_{2}, x_{3}\right)=0$. For $E_{2}=E_{3}=0$, we can apply the command "resultant" again, like solving $\operatorname{Res}\left(E_{2}, E_{3}, x_{2}\right)=0$.

3. Computation of Lyapunov constants

Since $W_{1}=0$ (or $V_{1}=0$) yields $\delta=0$, to compute higher-order W_{k} 's for the upper and lower systems in (1), we only need to consider a differential system of the form,

$$
\begin{equation*}
\dot{x}=-y+\sum_{i=2}^{+\infty} P_{i}(x, y), \quad \dot{y}=x+\sum_{i=2}^{+\infty} Q_{i}(x, y) \tag{9}
\end{equation*}
$$

where $P_{i}(x, y)$ and $Q_{i}(x, y)$ are homogeneous polynomials in x and y of degree i. Obviously, system (9) has a Hopf singular point at the origin. Introducing the transformation $x=r \cos (\theta)$ and $y=r \sin (\theta)$ into (9) yields

$$
\begin{align*}
& \dot{r}=\sum_{i=2}^{+\infty}\left(\cos (\theta) P_{i}+\sin (\theta) Q_{i}\right)=\sum_{i=2}^{+\infty} A_{i}(\theta) r^{i} \\
& \dot{\theta}=1+\sum_{i=2}^{+\infty}\left(\cos (\theta) Q_{i}-\sin (\theta) P_{i}\right) / r=1+\sum_{i=2}^{+\infty} B_{i}(\theta) r^{i-1} \tag{10}
\end{align*}
$$

where

$$
\begin{align*}
A_{i}(\theta) & =\cos (\theta) P_{i}(\cos (\theta), \sin (\theta))+\sin (\theta) Q_{i}(\cos (\theta), \sin (\theta)), \\
B_{i}(\theta) & =\cos (\theta) Q_{i}(\cos (\theta), \sin (\theta))-\sin (\theta) P_{i}(\cos (\theta), \sin (\theta)) \tag{11}
\end{align*}
$$

Let $r(\theta, \rho)$ be the solution of system (10) with $r(0, \rho)=\rho$. Suppose that $r(\theta, \rho)$ can be expressed as the power series of ρ in the form of

$$
\begin{equation*}
r(\theta, \rho)=r_{1}(\theta) \rho+r_{2}(\theta) \rho^{2}+r_{3}(\theta) \rho^{3}+\cdots, \quad|\rho| \ll 1, \tag{12}
\end{equation*}
$$

where $r_{1}(0)=1, r_{i}(0)=0, i \geq 2$. Then, we have the positive half-return map of system (9), given by

$$
\mathcal{P}^{+}(\rho)=r(\pi, \rho)=r_{1}(\pi) \rho+r_{2}(\pi) \rho^{2}+r_{3}(\pi) \rho^{3}+\cdots, \quad \text { for }|\rho| \ll 1
$$

Hence, we need to compute $r_{j}(\theta)$ in order to obtain the Lyapunov constants. To achieve this, eliminating the time t from (10) we have

$$
\begin{equation*}
\frac{d r}{d \theta}=\frac{\sum_{i=2}^{+\infty} A_{i}(\theta) r^{i}}{1+\sum_{i=2}^{+\infty} B_{i}(\theta) r^{i-1}}, \tag{13}
\end{equation*}
$$

which can be rewritten in the power series of r as

$$
\begin{equation*}
\frac{d r}{d \theta}=R_{2}(\theta) r^{2}+R_{3}(\theta) r^{3}+R_{4}(\theta) r^{4}+\cdots \tag{14}
\end{equation*}
$$

where $R_{i}(\theta)$ is a polynomial in $\sin (\theta)$ and $\cos (\theta)$.
Lemma 6. For system (13), let (11) and (14) hold. Then $\operatorname{deg}\left(R_{i}(\theta),\{\sin (\theta), \cos (\theta)\}\right)=3(i-1)$ and $R_{i}(\theta)$ is odd (even) in $\sin (\theta)$ and $\cos (\theta)$ if i is even (odd).

Proof. It follows from (11) that $A_{i}(\theta)$ and $B_{i}(\theta)$ are homogeneous polynomials of $\sin (\theta)$ and $\cos (\theta)$ of degree $i+1$. Also note that

$$
\frac{1}{1+\sum_{i=2}^{+\infty} B_{i}(\theta) r^{i-1}}=1+\sum_{j=1}^{+\infty}\left(-\sum_{i=2}^{+\infty} B_{i}(\theta) r^{i-1}\right)^{j}=1+\sum_{i=1}^{+\infty} \widetilde{B}_{i}(\theta) r^{i}, \quad|r| \ll 1
$$

Thus, $\widetilde{B}_{i}(\theta) r^{i}$ is a linear combination of the products of $B_{2} r, B_{3} r^{2}, \ldots, B_{i+1} r^{i}$. Suppose that $\widetilde{B}_{i}(\theta)=\sum B_{i_{1}} B_{i_{2}} \cdots B_{i_{m}}$. Then $\sum_{j=1}^{m}\left(i_{j}-1\right)=i$. Since $i_{j} \geq 2$, the largest value for m should be i. Further, we have

$$
\begin{equation*}
\operatorname{deg}\left(B_{i_{1}} B_{i_{2}} \cdots B_{i_{m}},\{\sin (\theta), \cos (\theta)\}\right)=\sum_{j=1}^{m}\left(i_{j}+1\right)=i+2 m \leq 3 i . \tag{15}
\end{equation*}
$$

Therefore, $\operatorname{deg}\left(\widetilde{B}_{i},\{\sin (\theta), \cos (\theta)\}\right)=3 i$, and further it follows from (15) that $\widetilde{R}_{i}(\theta)$ is odd (even) in $\sin (\theta)$ and $\cos (\theta)$ if i is odd (even).

Clearly, we have

$$
\frac{\sum_{i=2}^{+\infty} A_{i}(\theta) r^{i}}{1+\sum_{i=2}^{+\infty} B_{i}(\theta) r^{i-1}}=\left(\sum_{i=2}^{+\infty} A_{i}(\theta) r^{i}\right)\left(1+\sum_{i=1}^{+\infty} \widetilde{B}_{i}(\theta) r^{i}\right)
$$

Combining the above equation with (13) and (14) yields

$$
R_{i}(\theta)=\sum_{j=2}^{i-1} A_{j}(\theta) \widetilde{B}_{i-j}(\theta)+A_{i}(\theta) .
$$

Finally, taking into account that $A_{j}(\theta)$ is a homogeneous polynomial in $\sin (\theta)$ and $\cos (\theta)$ of degree $j+1$ for any $j \geq 2$, the proof is complete.

Further, assume that $r^{j}(\theta, \rho)=\sum_{i=j}^{+\infty} r_{j, i}(\theta) \rho^{i}$ for any $j \geq 2$. Substituting Eq. (12) into system (14) and comparing the coefficients yields $r_{1}^{\prime}(\theta)=0$ and

$$
\begin{equation*}
r_{i}^{\prime}(\theta)=R_{i}(\theta)+R_{i-1}(\theta) r_{i-1, i}(\theta)+\cdots+R_{2}(\theta) r_{2, i}(\theta), \quad i \geq 2 \tag{16}
\end{equation*}
$$

It is easy to get $r_{1}(\theta)=1, r_{2}(\theta)=\int_{0}^{\theta} R_{2}(\theta) d \theta$ and

$$
r_{3}(\theta)=\int_{0}^{\theta}\left(R_{3}(\theta)+2 R_{2}(\theta) r_{2}(\theta)\right) d \theta=\int_{0}^{\theta} R_{3}(\theta) d \theta+r_{2}^{2}(\theta) .
$$

But computation of $r_{i}(\theta)$ becomes more and more involved by direct integration, as i grows. To overcome this difficulty, we present a new method to compute $r_{i}(\theta)$, which is closely related to the proof of the following theorem.

Theorem 7. Suppose $r(\theta, \rho)$ is the solution of system (9) with $r(0, \rho)=\rho$, and let (12) hold. Then, for any $i \geq 1$, we have

$$
\begin{equation*}
r_{i}(\theta)=\sum_{j=1}^{3 i-3}\left(S_{i, j}(\theta) \sin ^{j}(\theta)+C_{i, j}(\theta) \sin ^{j-1}(\theta) \cos (\theta)\right)+C_{i, 0}(\theta) \tag{17}
\end{equation*}
$$

where $S_{i, j}(\theta)$ and $C_{i, j}(\theta)$ are polynomials in θ.
Proof. We apply the method of mathematics induction to prove this lemma. It is easy to see that the conclusion is true for $i=1$, since $r_{1}(\theta)=1$. Then, suppose (17) holds for $i-1$ and we will show that (17) is also true for i.

Firstly, we need to prove $\operatorname{deg}\left(r_{j, i}(\theta),\{\sin (\theta), \cos (\theta)\}\right)=3(i-j)$ for any $2 \leq j \leq i-1$. Note that

$$
r^{j}(\theta, \rho)=\rho^{j}\left(1+r_{2}(\theta) \rho+r_{3}(\theta) \rho^{2}+\cdots\right)^{j}=\rho^{j}\left(1+r_{j, j+1}(\theta) \rho+r_{j, j+2}(\theta) \rho^{2}+\cdots\right) .
$$

Thus, $r_{j, i}(\theta) \rho^{i-j}$ should be a linear combination of the products of $r_{k}(\theta) \rho^{k-1}, 2 \leq k \leq i-1$. Suppose that $r_{j, i}(\theta)=\sum r_{i_{1}} r_{i_{2}} \cdots r_{i_{n}}$, where $i_{k} \leq i-1, k=1, \ldots, n$. Then $\sum_{k=1}^{n}\left(i_{k}-1\right)=i-j$. Since $\operatorname{deg}\left(r_{i_{k}}(\theta),\{\sin (\theta), \cos (\theta)\}\right)=3\left(i_{k}-1\right)$, we have

$$
\operatorname{deg}\left(r_{j, i}(\theta),\{\sin (\theta), \cos (\theta)\}\right)=\max \left(\sum_{k=1}^{n} 3\left(i_{k}-1\right)\right)=3(i-j)
$$

From Lemma 6, we know $\operatorname{deg}\left(R_{j}(\theta),\{\sin (\theta), \cos (\theta)\}\right)=3(j-1)$. Then, the right hand-side of Eq. (16) has degree $3(i-1)$ in $\sin (\theta)$ and $\cos (\theta)$. Applying $\sin ^{2}(\theta)+\cos ^{2}(\theta)=1$ to Eq. (16) and decreasing the degree in $\cos (\theta)$ gives

$$
\begin{equation*}
r_{i}^{\prime}(\theta)=\sum_{j=1}^{3 i-3}\left(T_{i, j}(\theta) \sin ^{j}(\theta)+D_{i, j}(\theta) \sin ^{j-1}(\theta) \cos (\theta)\right)+D_{i, 0}(\theta), \tag{18}
\end{equation*}
$$

where $T_{i, j}(\theta)$ and $D_{i, j}(\theta)$ are polynomials in θ. Then,

$$
r_{i}(\theta)=\sum_{j=1}^{3 i-3}\left(\int_{0}^{\theta} T_{i, j}(\theta) \sin ^{j}(\theta) d \theta+\int_{0}^{\theta} D_{i, j}(\theta) \sin ^{j-1}(\theta) \cos (\theta) d \theta\right)+\int_{0}^{\theta} D_{i, 0}(\theta) d \theta
$$

On the other hand, for any polynomial $f(\theta)$ and number j we have

$$
\begin{equation*}
\int f(\theta) \sin ^{j}(\theta) \cos (\theta) d \theta=\frac{1}{j+1} f(\theta) \sin ^{j+1}(\theta)-\frac{1}{j+1} \int f^{\prime}(\theta) \sin ^{j+1}(\theta) d \theta \tag{19}
\end{equation*}
$$

and

$$
\begin{aligned}
& \int f(\theta) \sin ^{j+1}(\theta) d \theta \\
& =\int f(\theta) \sin ^{j}(\theta) d(-\cos (\theta)) \\
& =-f(\theta) \sin ^{j}(\theta) \cos (\theta)+\int f^{\prime}(\theta) \sin ^{j}(\theta) \cos (\theta) d \theta+j \int f(\theta) \sin ^{j-1}(\theta) \cos ^{2}(\theta) d \theta \\
& =-f(\theta) \sin ^{j}(\theta) \cos (\theta)+\frac{1}{j+1} f^{\prime}(\theta) \sin ^{j+1}(\theta)-\frac{1}{j+1} \int f^{\prime \prime}(\theta) \sin ^{j+1}(\theta) d \theta \\
& \quad+j \int f(\theta) \sin ^{j-1}(\theta) d \theta-j \int f(\theta) \sin ^{j+1}(\theta) d \theta
\end{aligned}
$$

Hence,

$$
\begin{align*}
\int f(\theta) \sin ^{j+1}(\theta) d \theta= & -\frac{1}{j+1} f(\theta) \sin ^{j}(\theta) \cos (\theta)+\frac{1}{(j+1)^{2}} f^{\prime}(\theta) \sin ^{j+1}(\theta) \\
& -\frac{1}{(j+1)^{2}} \int f^{\prime \prime}(\theta) \sin ^{j+1}(\theta) d \theta+\frac{j}{j+1} \int f(\theta) \sin ^{j-1}(\theta) d \theta \tag{20}
\end{align*}
$$

It follows from Eqs. (19) and (20) that the conclusion is true for i, and thus the proof is complete.

From the above proof, we have seen that the procedure of computing $r_{i}(\theta)$ contains the following four steps:
(1) computing $r_{j, i}(\theta), 2 \leq j \leq i-1$;
(2) substituting $r_{j, i}(\theta)$ into (16), and applying $\cos ^{2}(\theta)=1-\sin ^{2}(\theta)$ to get (18);
(3) for any j in descending order, using (19) and (20) repeatedly to compute $\int_{0}^{\theta} T_{i, j}(\theta) \sin ^{j}(\theta) d \theta$ and $\int_{0}^{\theta} D_{i, j}(\theta) \sin ^{j-1}(\theta) \cos (\theta) d \theta$ by decreasing the degrees of polynomials $T_{i, j}(\theta)$ and $D_{i, j}(\theta)$; and finally,
(4) computing $\int_{0}^{\theta} D_{i, 0}(\theta) d \theta$.

4. Proofs of Theorems 1 and 2

Now, we are ready to prove Theorems 1 and 2.
Proof of Theorem 1. If $a_{6} b_{6} \neq 0$, solving the multivariate polynomial equations based on the Lyapunov constants becomes extremely difficult, even if we could compute the Lyapunov constants up to an order we wish. If we assume $a_{6} b_{6}=0$, then the third-order Lyapunov constant can be factorized and thus the computation is simplified. Now under the condition $a_{6} b_{6}=0$, without loss of generality, we may let $b_{6}=0$. Denote by $C(\mathcal{E})$ the condition which is obtained from the condition C with the interchange of variables \mathcal{E}.

For system (4), as discussed in the previous section, we have $\delta=0$ due to $V_{1}=0$. From the second Lyapunov constant $V_{2}=\frac{2}{3}\left(a_{5}-b_{5}\right)$, we solve $V_{2}=0$ to get $b_{5}=a_{5}$. Then, we obtain $V_{3}=-\frac{\pi}{8}\left(a_{2}-a_{5}\right) a_{6}$.

First, we assume $a_{6} \neq 0$. Then, $V_{3}=0$ yields $a_{2}=a_{5}$. Further, by linearly solving $V_{4}=0$ for b_{4}, we have

$$
\begin{equation*}
b_{4}=\frac{1}{a_{5} b_{3}}\left[2 a_{5}^{3}-b_{2} a_{5}^{2}-\left(3 a_{3}^{2}-a_{3} a_{4}+6 a_{3} a_{6}-2 a_{4} a_{6}+b_{2}^{2}\right) a_{5}+3 b_{2} b_{3}^{2}\right], \quad a_{5} b_{3} \neq 0 \tag{21}
\end{equation*}
$$

In the case $a_{5}=0$, we have $V_{4}=\frac{2}{5} b_{2} b_{3}^{2}$, which yields the center condition I by solving $V_{4}=0$. If $a_{5} \neq 0$ and $b_{3}=0$, we obtain

$$
\begin{equation*}
a_{4}=\frac{1}{a_{3}+2 a_{6}}\left(3 a_{3}^{2}+6 a_{3} a_{6}-2 a_{5}^{2}+a_{5} b_{2}+b_{2}^{2}\right) \tag{22}
\end{equation*}
$$

by solving $V_{4}=0$ when $a_{3}+2 a_{6} \neq 0$. Under the condition (22), V_{5} is given by

$$
V_{5}=\frac{\pi a_{5} a_{6}}{48\left(a_{3}+2 a_{6}\right)^{2}}\left(b_{2}+2 a_{5}\right)\left(b_{2}-a_{5}\right)\left(5 a_{3} a_{6}+2 a_{5}^{2}-a_{5} b_{2}+10 a_{6}^{2}-b_{2}^{2}\right) .
$$

From $V_{5}=0$, we have condition II if $\left(b_{2}+2 a_{5}\right)\left(b_{2}-a_{5}\right)=0$, or get another equation,

$$
a_{3}=-\frac{1}{5 a_{6}}\left(2 a_{5}^{2}-a_{5} b_{2}+10 a_{6}^{2}-b_{2}^{2}\right) .
$$

When the above equation holds, V_{6} and V_{7} are given by $V_{6}=\frac{2 a_{5}}{875 a_{6}^{2}} F_{11}$ and $V_{7}=\frac{\pi a_{5} a_{6}}{64} F_{12}$, where

$$
\begin{aligned}
F_{11}= & -3 b_{2}^{6}-9 a_{5} b_{2}^{5}+\left(9 a_{5}^{2}+30 a_{6}^{2}\right) b_{2}^{4}+\left(33 a_{5}^{3}+60 a_{5} a_{6}^{2}\right) b_{2}^{3}-\left(18 a_{5}^{4}+90 a_{5}^{2} a_{6}^{2}\right. \\
& \left.-50 a_{6}^{4}\right) b_{2}^{2}-\left(36 a_{5}^{5}+120 a_{5}^{3} a_{6}^{2}-50 a_{5} a_{6}^{4}\right) b_{2}+24 a_{5}^{6}+120 a_{5}^{4} a_{6}^{2}-350 a_{5}^{2} a_{6}^{4}, \\
F_{12}= & b_{2}^{4}+2 a_{5} b_{2}^{3}-\left(3 a_{5}^{2}+5 a_{6}^{2}\right) b_{2}^{2}-\left(4 a_{5}^{3}+5 a_{5} a_{6}^{2}\right) b_{2}+4 a_{5}^{4}+35 a_{5}^{2} a_{6}^{2} .
\end{aligned}
$$

Then, $\operatorname{Res}\left(F_{11}, F_{12}, b_{2}\right)=244140625 a_{6}^{12} a_{5}^{8}\left(9 a_{5}^{2}+40 a_{6}^{2}\right)^{2} \neq 0$ since $a_{5} a_{6} \neq 0$, which means V_{6} and V_{7} do not have common solutions.

If $b_{3}=a_{3}+2 a_{6}=0$, we have

$$
\begin{aligned}
& V_{4}=-\frac{2 a_{5}}{15}\left(b_{2}+2 a_{5}\right)\left(b_{2}-a_{5}\right), \quad V_{5}=-\frac{\pi a_{5} a_{6}}{48}\left(a_{4}+6 a_{6}\right)\left(a_{4}+a_{6}\right), \\
& V_{6}=\frac{4 a_{5} a_{6}}{315}\left(a_{4}+6 a_{6}\right)\left[2\left(a_{4}+a_{6}\right)\left(a_{4}-4 a_{6}\right)+9 a_{5}^{2}\right] .
\end{aligned}
$$

Thus, $V_{4}=V_{5}=V_{6}=0$ yields $\left(b_{2}+2 a_{5}\right)\left(b_{2}-a_{5}\right)=a_{4}+6 a_{6}=0$, which are clearly included in the condition II.

When (21) holds, we obtain

$$
\begin{equation*}
V_{5}=-\frac{\pi a_{5} a_{6}}{48}\left(3 a_{3}-a_{4}\right)\left(3 a_{3}-a_{4}+5 a_{6}\right) . \tag{23}
\end{equation*}
$$

Taking $a_{4}=3 a_{3}$ yields $V_{5}=0$ and $V_{6}=-\frac{2 b_{3}^{2}}{21} b_{2}\left(a_{5}-b_{2}\right)\left(4 a_{5}+3 b_{2}\right)$. Setting $V_{6}=0$ yields $b_{2}\left(a_{5}-b_{2}\right)=0$, which gives the conditions III and IV, or $b_{2}=-\frac{4}{3} a_{5}$ which results in $V_{7} \equiv 0$ but $V_{8}=\frac{448}{2187} a_{5}^{5} b_{3}^{2} \neq 0$ since $a_{5} b_{3} \neq 0$.

For (23), if $a_{4}=3 a_{3}+5 a_{6}$, we have $V_{5}=0$, and then obtain

$$
\begin{equation*}
B_{3}=\frac{3 a_{5} a_{6}}{b_{2} D_{21}}\left(3 a_{3}^{3}+12 a_{3}^{2} a_{6}+10 a_{3} a_{6}^{2}+2 a_{5}^{2} a_{6}-4 a_{6}^{3}\right), \quad b_{2} D_{21} \neq 0, \tag{24}
\end{equation*}
$$

by linearly solving $V_{6}=0$, where $B_{3}=b_{3}^{2}$ and $D_{21}=9 a_{3} a_{6}+4 a_{5}^{2}-a_{5} b_{2}+18 a_{6}^{2}-3 b_{2}^{2}$. If $b_{2}=0$, we have $V_{6}=\frac{2 a_{5} a_{6}}{7} F_{21}$ and $V_{7}=\frac{25 \pi a_{5} a_{6}^{3}}{64} F_{22}$, where

$$
F_{21}=3 a_{3}^{3}+12 a_{3}^{2} a_{6}+10 a_{3} a_{6}^{2}+2 a_{5}^{2} a_{6}-4 a_{6}^{3}, \quad F_{22}=a_{3}^{2}+3 a_{3} a_{6}+a_{5}^{2}+2 a_{6}^{2} .
$$

Then, $\operatorname{Res}\left(F_{21}, F_{22}, b_{2}\right)=a_{5}^{4}\left(9 a_{5}^{2}+40 a_{6}^{2}\right) \neq 0$, which means that there do not exist center conditions for this case. If $D_{21}=0$, we have $a_{3}=-\frac{1}{9 a_{6}}\left(4 a_{5}^{2}-a_{5} b_{2}+18 a_{6}^{2}-3 b_{2}^{2}\right)$, and $V_{6}=-\frac{2 a_{5}}{1701 a_{6}^{2}} F_{23}, V_{7}=\frac{25 \pi a_{5} a_{6}}{5184} F_{24}$, where F_{23} and F_{24} are polynomials in a_{5}, a_{6} and b_{2}. Similarly, it can be easily shown that the two equations, $V_{6}=V_{7}=0$, do not have solutions by verifying $\operatorname{Res}\left(F_{23}, F_{24}, b_{2}\right) \neq 0$.

Now suppose (24) holds. Then, we have $V_{7}=\frac{25 \pi a_{5} a_{6}^{3}}{64} F_{31}, V_{8}=\frac{2 a_{5} a_{6}}{27 D_{21}}\left(F_{32} a_{3}+D_{31}\right), V_{9} \equiv 0$ and $V_{10}=\frac{2 a_{5} a_{6}}{18711 D_{21}^{2}} F_{33}$ with

$$
\begin{aligned}
F_{31}= & a_{3}^{2}+3 a_{3} a_{6}+a_{5}^{2}+2 a_{6}^{2} \\
F_{32}= & a_{6}\left[-a_{5}^{6}+b_{2} a_{5}^{5}-\left(17 a_{6}^{2}+18 b_{2}^{2}\right) a_{5}^{4}-\left(13 a_{6}^{2} b_{2}-9 b_{2}^{3}\right) a_{5}^{3}\right. \\
& \left.-\left(30 a_{6}^{4}+60 a_{6}^{2} b_{2}^{2}-9 b_{2}^{4}\right) a_{5}^{2}+\left(-30 a_{6}^{4} b_{2}+90 a_{6}^{2} b_{2}^{3}\right) a_{5}+90 a_{6}^{2} b_{2}^{4}\right],
\end{aligned}
$$

$$
\begin{aligned}
D_{31}= & 16 a_{5}^{6}+14 b_{2} a_{5}^{5}+\left(16 a_{6}^{2}+24 b_{2}^{2}\right) a_{5}^{4}+\left(14 a_{6}^{2} b_{2}-27 b_{2}^{3}\right) a_{5}^{3} \\
& +\left(15 a_{6}^{4}+30 a_{6}^{2} b_{2}^{2}-27 b_{2}^{4}\right) a_{5}^{2}+\left(15 a_{6}^{4} b_{2}-45 a_{6}^{2} b_{2}^{3}\right) a_{5}-45 a_{6}^{2} b_{2}^{4} .
\end{aligned}
$$

If $D_{31}=0$, it follows from $V_{8}=0$ that $F_{32}=0$. Note that D_{31} and F_{32} are homogeneous polynomials in a_{6}, a_{5} and b_{2}. Thus, by a variable scaling: $a_{5} \rightarrow a_{5} a_{6}$ and $b_{2} \rightarrow b_{2} a_{6}$, we can eliminate a_{6}. Without loss of generality, we take $a_{6}=1$, and then obtain $\operatorname{Res}\left(F_{32}, D_{31}, b_{2}\right)=$ $-21870 a_{5}^{24}\left(3862879 a_{5}^{6}+35074080 a_{5}^{4}+92750400 a_{5}^{2}+50112000\right) \neq 0$ for nonzero a_{5}. This indicates that there are no solutions for the equations: $D_{31}=F_{32}=0$. If $D_{31} \neq 0$, we have $a_{3}=-\frac{F_{32}}{D_{31}}$, and $F_{31}=\frac{a_{5}^{4}}{D_{31}^{2}} \widetilde{F}_{31}, F_{33}=\frac{a_{5}^{4} a_{6}}{D_{31}^{8}} \widetilde{F}_{33}$, where \widetilde{F}_{31} and \widetilde{F}_{33} are homogeneous polynomials in a_{6}, a_{5} and b_{2}. Similarly, by verifying $\operatorname{Res}\left(\widetilde{F}_{31}, \widetilde{F}_{33}, b_{2}\right) \neq 0$, we conclude that $V_{7}=V_{10}=0$ do not have common zeros when $a_{5} a_{6} \neq 0$.

Now we consider the case $a_{6}=0$, for which $V_{3}=0$, and get

$$
\begin{equation*}
b_{4}=\frac{1}{a_{5} b_{3}}\left[\left(a_{2}-b_{2}\right) a_{5}^{2}+\left(a_{2}^{2}+a_{3} a_{4}-b_{2}^{2}\right) a_{5}-3 a_{2} a_{3}^{2}+3 b_{2} b_{3}^{2}\right], \quad a_{5} b_{3} \neq 0 \tag{25}
\end{equation*}
$$

by solving $V_{4}=0$. If $b_{3}=0, V_{4}=0$ yields $a_{4}=-\frac{1}{a_{3} a_{5}}\left[a_{5} a_{2}^{2}-\left(3 a_{3}^{2}+a_{5}^{2}\right) a_{2}-b_{2} a_{5}^{2}-b_{2}^{2} a_{5}\right]$ provided $a_{3} a_{5} \neq 0$. Further, we have $V_{5} \equiv 0, V_{6}=-\frac{2 a_{3}^{2}}{105} a_{2} F_{41}, V_{7} \equiv 0$, and $V_{8}=-\frac{2 a_{3}^{2}}{2835 a_{5}} a_{2} F_{42}$, where

$$
\begin{aligned}
F_{41}= & 15 a_{2}^{2}+5 a_{2} a_{5}-2 a_{5}^{2}-9 a_{5} b_{2}-9 b_{2}^{2} \\
F_{42}= & 315 a_{5} a_{2}^{4}+\left(675 a_{3}^{2}+315 a_{5}^{2}\right) a_{2}^{3}+\left(225 a_{3}^{2} a_{5}+1890 a_{5}^{3}+225 a_{5}^{2} b_{2}\right. \\
& \left.+225 a_{5} b_{2}^{2}\right) a_{2}^{2}-\left(90 a_{3}^{2} a_{5}^{2}+405 a_{3}^{2} a_{5} b_{2}+405 a_{3}^{2} b_{2}^{2}-602 a_{5}^{4}-54 a_{5}^{3} b_{2}\right. \\
& \left.-54 a_{5}^{2} b_{2}^{2}\right) a_{2}-248 a_{5}^{5}-1176 a_{5}^{4} b_{2}-1446 a_{5}^{3} b_{2}^{2}-540 a_{5}^{2} b_{2}^{3}-270 a_{5} b_{2}^{4} .
\end{aligned}
$$

Obviously, $a_{2}=0$ is a solution of $V_{6}=V_{8}=0$, resulting in condition V. For $F_{41}=F_{42}=0$, we have

$$
\begin{aligned}
\operatorname{Res}\left(F_{41}, F_{42}, a_{2}\right)= & 2700 a_{5}^{2}\left(a_{5}+3 b_{2}\right)^{2}\left(2 a_{5}+3 b_{2}\right)^{2}\left(b_{2}-a_{5}\right)\left(b_{2}+2 a_{5}\right) \\
& \times\left(29 a_{5}^{2}+108 a_{5} b_{2}+108 b_{2}^{2}\right) .
\end{aligned}
$$

Solving $F_{41}=F_{42}=\operatorname{Res}\left(F_{41}, F_{42}, a_{2}\right)=0$, we obtain condition VI, derived from ($a_{5}+$ $\left.3 b_{2}\right)\left(2 a_{5}+3 b_{2}\right)=0$, and other center conditions derived from $\left(b_{2}-a_{5}\right)\left(b_{2}+2 a_{5}\right)=0$ are already included in condition II. If $b_{3}=a_{3}=0, V_{4}=\frac{2}{15} a_{5}\left(a_{2}-b_{2}\right)\left(a_{2}+a_{5}+b_{2}\right)$. Solving $V_{4}=0$ we have the conditions VII and VIII. If $b_{3}=a_{5}=0$, center conditions obtained from $V_{4}=0$ are included in the condition I or the condition VII, where $V_{4}=-\frac{2}{5} a_{2} a_{3}^{2}$. If $b_{3} \neq 0$ and $a_{5}=0$, we obtain $b_{2}=\frac{1}{b_{3}^{2}} a_{2} a_{3}^{2}$ from $V_{4}=0$. Then $V_{5} \equiv 0$ and $V_{6}=\frac{2}{35 b_{3}^{4}} a_{2} a_{3}^{2}\left(8 a_{2}^{2} a_{3}^{4}-8 a_{2}^{2} b_{3}^{4}-\right.$ $\left.3 a_{3} a_{4} b_{3}^{4}+3 b_{3}^{5} b_{4}\right)$. When $a_{2} a_{3}=0$, we get subcases of I and $\mathrm{I}(\mathcal{E})$. Otherwise, we linearly solve $V_{6}=0$ using b_{4}, for which $V_{7} \equiv 0$, and further obtain
$V_{8}=\frac{2 a_{2}^{3} a_{3}^{2}}{945 b_{3}^{8}}\left(b_{3}^{2}-a_{3}^{2}\right)\left[75 a_{3} b_{3}^{4}\left(a_{3}^{2}+b_{3}^{2}\right) a_{4}-105 a_{3}^{4}\left(a_{3}^{2}+b_{3}^{2}\right) a_{2}^{2}+95 b_{3}^{4}\left(a_{3}^{2}+b_{3}^{2}\right) a_{2}^{2}-21 a_{3}^{2} b_{3}^{6}\right]$.

When $b_{3}^{2}-a_{3}^{2}=0$, we obtain subcases of X and XI. Otherwise, we linearly solve $V_{8}=0$ using a_{4} to obtain

$$
\begin{align*}
V_{10} & =-\frac{4 a_{2}^{3} a_{3}^{2}\left(a_{3}^{2}-b_{3}^{2}\right)}{37125 b_{3}^{12}\left(a_{3}^{2}+b_{3}^{2}\right)} F_{43}, \quad V_{12}=-\frac{4 a_{2}^{3} a_{3}^{2}\left(a_{3}^{2}-b_{3}^{2}\right)}{4021875 b_{3}^{16}\left(a_{3}^{2}+b_{3}^{2}\right)^{2}} F_{44}, \\
V_{14} & =-\frac{4 a_{2}^{3} a_{3}^{2}\left(a_{3}^{2}-b_{3}^{2}\right)}{4524609375 b_{3}^{20}\left(a_{3}^{2}+b_{3}^{2}\right)^{3}} F_{45}, \quad V_{9}=V_{11}=V_{13} \equiv 0, \tag{26}
\end{align*}
$$

where F_{43}, F_{44} and F_{45} are homogeneous polynomials in a_{3}, a_{2} and b_{3}. Thus, without loss of generality, taking $b_{3}=1$ yields

$$
\begin{aligned}
F_{43}= & 150 a_{2}^{4} a_{3}^{12}+300 a_{2}^{4} a_{3}^{10}-\left(50 a_{2}^{4}-465 a_{2}^{2}\right) a_{3}^{8}-\left(400 a_{2}^{4}-1240 a_{2}^{2}\right) a_{3}^{6}-\left(50 a_{2}^{4}\right. \\
& \left.-1240 a_{2}^{2}+48\right) a_{3}^{4}+\left(300 a_{2}^{4}+465 a_{2}^{2}\right) a_{3}^{2}+150 a_{2}^{4}, \\
F_{44}= & 35250 a_{2}^{6} a_{3}^{18}+105750 a_{2}^{6} a_{3}^{16}+\left(90250 a_{2}^{6}+111675 a_{2}^{4}\right) a_{3}^{14}-\left(11250 a_{2}^{6}\right. \\
& \left.-403975 a_{2}^{4}\right) a_{3}^{12}-\left(62000 a_{2}^{6}-675150 a_{2}^{4}+4335 a_{2}^{2}\right) a_{3}^{10}-\left(62000 a_{2}^{6}\right. \\
& \left.-765700 a_{2}^{4}-4165 a_{2}^{2}\right) a_{3}^{8}-\left(11250 a_{2}^{6}-675150 a_{2}^{4}-4165 a_{2}^{2}+2352\right) a_{3}^{6} \\
& +\left(90250 a_{2}^{6}+403975 a_{2}^{4}-4335 a_{2}^{2}\right) a_{3}^{4}+\left(105750 a_{2}^{6}+111675 a_{2}^{4}\right) a_{3}^{2} \\
& +35250 a_{2}^{6}, \\
F_{45}= & 64267500 a_{2}^{8} a_{3}^{24}+257070000 a_{2}^{8} a_{3}^{22}+\left(374412500 a_{2}^{8}+209282250 a_{2}^{6}\right) a_{3}^{20} \\
& +\left(212300000 a_{2}^{8}+963353000 a_{2}^{6}\right) a_{3}^{18}-\left(5995000 a_{2}^{8}+2057488500 a_{2}^{6}\right. \\
& \left.+9179400 a_{2}^{4}\right) a_{3}^{16}-\left(57200000 a_{2}^{8}-2903448125 a_{2}^{6}-82855050 a_{2}^{4}\right) a_{3}^{14} \\
& -\left(41030000 a_{2}^{8}-3282832625 a_{2}^{6}-209672700 a_{2}^{4}+8036550 a_{2}^{2}\right) a_{3}^{12} \\
& -\left(57200000 a_{2}^{8}+3282832625 a_{2}^{6}+271994100 a_{2}^{4}-11441925 a_{2}^{2}\right) a_{3}^{10} \\
& -\left(5995000 a_{2}^{8}+2903448125 a_{2}^{6}+209672700 a_{2}^{4}-11441925 a_{2}^{2}\right. \\
& -889056) a_{3}^{8}+\left(212300000 a_{2}^{8}+2057488500 a_{2}^{6}+82855050 a_{2}^{4}\right. \\
& \left.-8036550 a_{2}^{2}\right) a_{3}^{6}+\left(374412500 a_{2}^{8}+963353000 a_{2}^{6}+9179400 a_{2}^{4}\right) a_{3}^{4} \\
& +\left(257070000 a_{2}^{8}+209282250 a_{2}^{6}\right) a_{3}^{2}+64267500 a_{2}^{8},
\end{aligned}
$$

from which we have

$$
\begin{aligned}
& \operatorname{Res}\left(F_{43}, F_{44}, a_{3}\right)=4.7937764808 \cdots \times 10^{56} a_{2}^{80} E_{c}^{2} E_{41}^{2}, \\
& \operatorname{Res}\left(F_{43}, F_{45}, a_{3}\right)=1.4812312887 \cdots \times 10^{77} a_{2}^{104} E_{c}^{2} E_{42}^{2},
\end{aligned}
$$

where $E_{c}=\left(5 a_{2}^{2}+1\right)^{2}+5 a_{2}^{2} \neq 0$, and E_{41} and E_{42} are polynomials in a_{2} of degrees 16 and 24, respectively, satisfying $\operatorname{Res}\left(E_{41}, E_{42}, a_{2}\right) \neq 0$. Therefore, there are no solutions to satisfy the equations: $V_{10}=V_{12}=V_{14}=0$, given in (26).

Next, with (25) holding, we get $V_{5} \equiv 0$ and further solve $V_{6}=0$ to obtain

$$
\begin{align*}
a_{4}= & \frac{1}{9 a_{5} a_{3} E_{0}}\left[\left(-2 a_{2} a_{3}^{2}+2 b_{2} b_{3}^{2}\right) a_{5}^{3}+\left(-4 a_{2}^{2} a_{3}^{2}+9 a_{2} b_{2} b_{3}^{2}-5 b_{2}^{2} b_{3}^{2}\right) a_{5}^{2}\right. \\
& \left.+\left(6 a_{2}^{3} a_{3}^{2}+9 a_{2}^{2} b_{2} b_{3}^{2}-15 b_{2}^{3} b_{3}^{2}\right) a_{5}+27 a_{2}^{2} a_{3}^{4}-27 a_{2} a_{3}^{2} b_{2} b_{3}^{2}\right] \tag{27}
\end{align*}
$$

provided $a_{5} a_{3} E_{0} \neq 0$, where $E_{0}=a_{2} a_{3}^{2}-b_{2} b_{3}^{2}$. The equation $a_{3} E_{0}=0$ yields the conditions $\operatorname{IX}-\mathrm{XI}, \mathrm{V}(\mathcal{E})$ and $\operatorname{VI}(\mathcal{E})$, as well as a subcase of $\operatorname{II}(\mathcal{E})$. Here, we omit the details of the discussion for the case $a_{5} a_{3} E_{0} \neq 0$, since it is similar to the case $a_{5} b_{3}=0$ for $V_{4}=0$.

When (25) and (27) hold, we have $a_{3} a_{5} b_{3} E_{0} \neq 0, V_{7}=V_{9}=V_{11}=V_{13}=V_{15} \equiv 0$ and

$$
\begin{aligned}
V_{8} & =\frac{2 F_{1}}{1701 a_{5} E_{0}}, \quad V_{10}=\frac{2 F_{2}}{56133 a_{5}^{2} E_{0}^{2}}, \quad V_{12}=\frac{2 F_{3}}{19702683 a_{5}^{3} E_{0}^{3}}, \\
V_{14} & =\frac{2 F_{4}}{6206345145 a_{5}^{4} E_{0}^{4}}, \quad V_{16}=\frac{2 F_{5}}{949570807185 a_{5}^{5} E_{0}^{5}},
\end{aligned}
$$

where $F_{j}, 1 \leq j \leq 5$, is a homogeneous polynomial in $a_{2}, a_{3}, a_{5}, b_{2}, b_{3}$, and also a polynomial in a_{3}^{2} and b_{3}^{2}. Taking $a_{5}=1$, and letting $A_{3}=a_{3}^{2}$ and $B_{3}=b_{3}^{2}$, we obtain

$$
\begin{aligned}
F_{1}= & a_{2}^{2}\left[135 b_{2}\left(3 a_{2}+3 b_{2}+1\right)\left(a_{2}-b_{2}\right) B_{3}+2 a_{2}\left(a_{2}-1\right)\left(3 a_{2}+1\right)\left(6 a_{2}+1\right)\right] A_{3}^{2} \\
& +a_{2} b_{2}\left[135 b_{2}\left(3 a_{2}+3 b_{2}+1\right)\left(a_{2}-b_{2}\right) B_{3}-189 a_{2}^{4}+450 a_{2}^{2} b_{2}^{2}-189 b_{2}^{4}-189 a_{2}^{3}\right. \\
& \left.\left.+171 a_{2}^{2} b_{2}+171 a_{2} b_{2}^{2}-189 b_{2}^{3}-48 a_{2}^{2}+64 a_{2} b_{2}-48 b_{2}^{2}-2 a_{2}-2 b_{2}\right)\right] B_{3} A_{3} \\
& +2 b_{2}^{3}\left(b_{2}-1\right)\left(3 b_{2}+1\right)\left(6 b_{2}+1\right) B_{3}^{2}, \\
F_{2}= & 63\left[135 b_{2}\left(3 a_{2}+3 b_{2}+1\right)\left(a_{2}-b_{2}\right) B_{3} i+2 a_{2}\left(a_{2}-1\right)\left(3 a_{2}+1\right)\left(6 a_{2}+1\right)\right] a_{2}^{4} A_{3}^{4} \\
& -a_{2}^{3}\left[8505 b_{2}^{2}\left(3 a_{2}+3 b_{2}+1\right)\left(a_{2}-b_{2}\right) B_{3}^{2}-18 b_{2}\left(2898 a_{2}^{4}-3150 a_{2}^{2} b_{2}^{2}+2421 a_{2}^{3}\right.\right. \\
& \left.-1050 a_{2}^{2} b_{2}-1245 a_{2} b_{2}^{2}+5387 a_{2}^{2}-415 a_{2} b_{2}-4860 b_{2}^{2}+1634 a_{2}-1620 b_{2}\right) B_{3} \\
& \left.-2 a_{2}\left(a_{2}-1\right)\left(3 a_{2}+1\right)\left(672 a_{2}^{3}+416 a_{2}^{2}+1349 a_{2}+216\right)\right] A_{3}^{3} \\
& -a_{2}^{2} b_{2} B_{3}\left[8505 b_{2}^{2}\left(3 a_{2}+3 b_{2}+1\right)\left(a_{2}-b_{2}\right) B_{3}^{2}+18 b_{2}\left(a_{2}-b_{2}\right)\left(3024 a_{2}^{3}+3024 a_{2}^{2} b_{2}\right.\right. \\
& +3024 a_{2} b_{2}^{2}+3024 b_{2}^{3}+2358 a_{2}^{2}+2553 a_{2} b_{2}+2358 b_{2}^{2}+10191 a_{2}+10191 b_{2} \\
& +3247) B_{3}-16821 a_{2}^{6}+40635 a_{2}^{4} b_{2}^{2}-6615 a_{2}^{2} b_{2}^{4}-5103 b_{2}^{6}-26397 a_{2}^{5} \\
& +15495 a_{2}^{4} b_{2}+28218 a_{2}^{3} b_{2}^{2}-7182 a_{2}^{2} b_{2}^{3}-2205 a_{2} b_{2}^{4}-8505 b_{2}^{5}-47076 a_{2}^{4} \\
& +10706 a_{2}^{3} b_{2}+99634 a_{2}^{2} b_{2}^{2}-2394 a_{2} b_{2}^{3}-45612 b_{2}^{4}-47564 a_{2}^{3}+38500 a_{2}^{2} b_{2} \\
& \left.+36100 a_{2} b_{2}^{2}-41832 b_{2}^{3}-13986 a_{2}^{2}+13724 a_{2} b_{2}-10424 b_{2}^{2}-864 a_{2}-432 b_{2}\right] A_{3}^{2} \\
& +a_{2} b_{2}^{2} B_{3}^{2}\left[8505 b_{2}^{2}\left(3 a_{2}+3 b_{2}+1\right)\left(a_{2}-b_{2}\right) B_{3}^{2}+18 b_{2}\left(3150 a_{2}^{2} b_{2}^{2}-2898 b_{2}^{4}\right.\right. \\
& +1245 a_{2}^{2} b_{2}+1050 a_{2} b_{2}^{2}-2421 b_{2}^{3}+4860 a_{2}^{2}+415 a_{2} b_{2}-5387 b_{2}^{2}+1620 a_{2} \\
& \left.-1634 b_{2}\right) B_{3}-5103 a_{2}^{6}-6615 a_{2}^{4} b_{2}^{2}+40635 a_{2}^{2} b_{2}^{4}-16821 b_{2}^{6}-8505 a_{2}^{5} \\
& -2205 a_{2}^{4} b_{2}-7182 a_{2}^{3} b_{2}^{2}+28218 a_{2}^{2} b_{2}^{3}+15495 a_{2} b_{2}^{4}-26397 b_{2}^{5}-45612 a_{2}^{4}
\end{aligned}
$$

$$
\begin{aligned}
& -2394 a_{2}^{3} b_{2}+99634 a_{2}^{2} b_{2}^{2}+10706 a_{2} b_{2}^{3}-47076 b_{2}^{4}-41832 a_{2}^{3}+36100 a_{2}^{2} b_{2} \\
& \left.+38500 a_{2} b_{2}^{2}-47564 b_{2}^{3}-10424 a_{2}^{2}+13724 a_{2} b_{2}-13986 b_{2}^{2}-432 a_{2}-864 b_{2}\right] A_{3} \\
& -2 b_{2}^{4}\left(3 b_{2}+1\right)\left(b_{2}-1\right)\left(378 B_{3} b_{2}^{2}+672 b_{2}^{3}+63 B_{3} b_{2}+416 b_{2}^{2}+1349 b_{2}+216\right) B_{3}^{3} .
\end{aligned}
$$

The other three lengthy polynomials F_{3}, F_{4} and F_{5} are omitted here for brevity. In order to solve $F_{1}=F_{2}=F_{3}=F_{4}=F_{5}=0$, we compute the following resultants:

$$
\begin{array}{ll}
\operatorname{Res}\left(F_{1}, F_{2}, A_{3}\right)=-5292 F_{a} E_{1}, & \operatorname{Res}\left(F_{1}, F_{3}, A_{3}\right)=-47628 F_{a} F_{b} E_{2}, \\
\operatorname{Res}\left(F_{1}, F_{4}, A_{3}\right)=-7001316 F_{a} F_{b}^{2} E_{3}, & \operatorname{Res}\left(F_{1}, F_{5}, A_{3}\right)=-7001316 F_{a} F_{b}^{3} E_{4}, \tag{28}
\end{array}
$$

where

$$
\begin{aligned}
F_{a}= & B_{3}^{6} a_{2}^{8} b_{2}^{7}\left(3 b_{2}+1\right)\left(b_{2}-1\right)\left(3 a_{2}+3 b_{2}+1\right)^{2}\left(a_{2}-b_{2}\right)^{6}\left(405 B_{3} a_{2}^{2} b_{2}-405 B_{3} b_{2}^{3}\right. \\
& \left.+36 a_{2}^{4}+135 B_{3} a_{2} b_{2}-135 B_{3} b_{2}^{2}-18 a_{2}^{3}-16 a_{2}^{2}-2 a_{2}\right), \\
F_{b}= & B_{3}^{2} a_{2}^{4} b_{2}^{2}\left(3 a_{2}+3 b_{2}+1\right)\left(a_{2}-b_{2}\right)^{2},
\end{aligned}
$$

and $E_{j}, 1 \leq j \leq 4$, is a polynomial in B_{3}, a_{2} and b_{2}. Note that all the resultants, $\operatorname{Res}\left(F_{1}, F_{j}, A_{3}\right)$, $j=2,3,4,5$, contain the common factor F_{a}. Thus, the conditions III($\left.\mathcal{E}\right), \operatorname{XII}, \operatorname{XIII}$ and $\operatorname{XIII}(\mathcal{E})$ can be easily obtained from the equation $a_{2} b_{2}\left(a_{2}-b_{2}\right)=0$. For example, taking $a_{2}=0$ we have $F_{1}=2 b_{2}^{3}\left(b_{2}-1\right)\left(3 b_{2}+1\right)\left(6 b_{2}+1\right) B_{3}^{2}$, and then $b_{2} \neq 0$ since $E_{0} \neq 0$. We can get the condition $\operatorname{III}(\mathcal{E})$ if $b_{2}=1$, and the condition XII if $b_{2}=-\frac{1}{3}$. If $b_{2}=-\frac{1}{6}$, then $F_{2}=-\frac{49}{139968} B_{3}^{3}<0$. Note that $E_{0} \neq 0, A_{3}>0$ and $B_{3}>0$ due to (25) and (27). The rest factors in F_{a} can not lead to new center conditions. Here, we only present the details for the case $b_{2}-1=0$ with $a_{2} b_{2}\left(a_{2}-b_{2}\right) \neq 0$. Similar procedures can be applied to discuss other cases.

Assume $a_{2} b_{2}\left(a_{2}-b_{2}\right) \neq 0$. When $b_{2}=1$, and so $a_{2} \neq 1$, we have

$$
\begin{array}{ll}
F_{1}=a_{2} A_{3}\left(a_{2}-1\right) G_{1}, & F_{2}=a_{2} A_{3}\left(a_{2}-1\right) G_{2}, \\
F_{3}=a_{2} A_{3}\left(a_{2}-1\right) G_{3}, & F_{4}=a_{2} A_{3}\left(a_{2}-1\right) G_{4}, \tag{29}
\end{array}
$$

where $G_{j}, 1 \leq j \leq 4$, is a polynomial in a_{2}, A_{3} and B_{3}. Then,

$$
\begin{aligned}
& \operatorname{Res}\left(G_{1}, G_{2}, B_{3}\right)=-714420 A_{3}^{2} a_{2}^{3}\left(1+3 a_{2}\right)\left(3 a_{2}+4\right)^{3}\left(a_{2}-1\right)^{2} G_{5} \\
& \operatorname{Res}\left(G_{1}, G_{3}, B_{3}\right)=173604060 A_{3}^{3} a_{2}^{4}\left(1+3 a_{2}\right)\left(3 a_{2}+4\right)^{4}\left(a_{2}-1\right)^{3} G_{6}, \\
& \operatorname{Res}\left(G_{1}, G_{4}, B_{3}\right)=-2067103542420 A_{3}^{4} a_{2}^{5}\left(1+3 a_{2}\right)\left(3 a_{2}+4\right)^{5}\left(a_{2}-1\right)^{4} G_{7},
\end{aligned}
$$

where $G_{j}, 5 \leq j \leq 7$, is a polynomial in a_{2} and A_{3}. We first consider the condition from the common factor, $\left(1+3 a_{2}\right)\left(3 a_{2}+4\right)=0$. If $a_{2}=-\frac{1}{3}$, then $G_{1}=-B_{3} I_{11}$ and $G_{2}=\frac{1}{9} B_{3} I_{12}$, where $I_{11}=135 A_{3}+405 B_{3}+328$ and

$$
\begin{aligned}
I_{12}= & 229635 B_{3}^{3}+\left(76545 A_{3}+1499310\right) B_{3}^{2}-\left(25515 A_{3}^{2}-758700 A_{3}\right. \\
& -1052136) B_{3}-8505 A_{3}^{3}+86310 A_{3}^{2}+256312 A_{3},
\end{aligned}
$$

satisfying $\operatorname{Res}\left(I_{11}, I_{12}, B_{3}\right)=14696640\left(1080 A_{3}+42107\right)>0$. Thus, there are no solutions satisfying the equations: $G_{1}=G_{2}=G_{3}=G_{4}=0$, if $a_{2}=-\frac{1}{3}$. If $a_{2}=-\frac{4}{3}$, then $G_{1}=\frac{56}{3}\left(4 A_{3}+\right.$ $\left.3 B_{3}\right)>0$. Next we consider the equations, $G_{5}=G_{6}=G_{7}=0$, and have

$$
\begin{aligned}
& \operatorname{Res}\left(G_{5}, G_{6}, A_{3}\right)=2789427520800 a_{2}^{8} G_{s} G_{a} G_{81} G_{82} \\
& \operatorname{Res}\left(G_{5}, G_{7}, A_{3}\right)=-376572715308000 a_{2}^{12}\left(3 a_{2}+4\right) G_{s} G_{a} G_{91} G_{92}
\end{aligned}
$$

where $G_{j 1}$ and $G_{j 2}, j=8,9$ are polynomials in a_{2} and

$$
\begin{aligned}
G_{s} & =\left(a_{2}-8\right)\left(3 a_{2}+5\right)\left(3 a_{2}-8\right)\left(3 a_{2}+4\right)^{2} \\
G_{a} & =486 a_{2}^{4}+945 a_{2}^{3}-1227 a_{2}^{2}-2779 a_{2}-428
\end{aligned}
$$

If $a_{2}=8$, we have $G_{5}=12544\left(9 A_{3}+196\right) I_{21}$ and $G_{6}=39337984\left(9 A_{3}+196\right) I_{22}$, where $I_{21}=244111680 A_{3}-240599605103$ and

$$
\begin{aligned}
I_{22}= & 672679027641600 A_{3}^{3}+95795633236828680 A_{3}^{2} \\
& -282894493179800916477 A_{3}-4376089823211446777789,
\end{aligned}
$$

satisfying $\operatorname{Res}\left(I_{21}, I_{22}, A_{3}\right) \neq 0$. Hence, there do not exist solutions to satisfy the equations: $G_{5}=G_{6}=G_{7}=0$, when $a_{2}=8$. In a similar way, it can be shown that no solutions exist for the equations: $G_{5}=G_{6}=G_{7}=0$, if $\left(3 a_{2}+5\right)\left(3 a_{2}-8\right)\left(3 a_{2}+4\right)=0$. If $G_{a}=0$, we compute $I_{31}=\operatorname{Res}\left(G_{a}, G_{5}, a_{2}\right)$ and $I_{32}=\operatorname{Res}\left(G_{a}, G_{6}, a_{2}\right)$, with $\operatorname{Res}\left(I_{31}, I_{32}, A_{3}\right) \neq 0$. Moreover, we get $\operatorname{Res}\left(G_{8 i}, G_{9 j}, a_{2}\right) \neq 0$ for $i, j=1,2$, and thus there are no solutions to satisfy the equations: $G_{8 i}=G_{9 j}=0$. Therefore, for $b_{2}=1$, no common zeros exist for the equations: $F_{1}=F_{2}=F_{3}=$ $F_{4}=0$.

For (28), we consider the equations: $E_{1}=E_{2}=E_{3}=E_{4}=0$, under the condition $a_{5} A_{3} E_{0} F_{a} \neq 0$, and get

$$
\begin{align*}
& \operatorname{Res}\left(E_{1}, E_{2}, B_{3}\right)=-3050238993994800 F_{c} E_{5} \\
& \operatorname{Res}\left(E_{1}, E_{3}, B_{3}\right)=-900567811781994726000 F_{c} F_{d} E_{6} \\
& \operatorname{Res}\left(E_{1}, E_{4}, B_{3}\right)=-387664913353600397935934460000 F_{c} F_{d}^{2} E_{7} \tag{30}
\end{align*}
$$

where

$$
\begin{aligned}
F_{c}= & a_{2}^{3} b_{2}^{19}\left(3 a_{2}+3 b_{2}+1\right)^{2}\left(3 a_{2}+1\right)^{2}\left(a_{2}-1\right)^{2}\left(3 b_{2}+2+3 a_{2}\right) \\
& \times\left(a_{2}+b_{2}-1\right) E_{a} E_{b} E_{c} E_{d} \\
F_{d}= & a_{2} b_{2}^{9}\left(3 a_{2}+3 b_{2}+1\right)\left(3 a_{2}+1\right)\left(a_{2}-1\right) \\
E_{a}= & a_{2}^{2}-\left(7 b_{2}+1\right) a_{2}+b_{2}^{2}-b_{2} \\
E_{b}= & 3 a_{2}^{2}-\left(6 b_{2}+2\right) a_{2}+3 b_{2}^{2}-2 b_{2}-1, \\
E_{c}= & 486 a_{2}^{4}+\left(486 b_{2}+459\right) a_{2}^{3}-\left(1134 b_{2}^{2}+207 b_{2}-114\right) a_{2}^{2} \\
& -\left(1134 b_{2}^{3}+1323 b_{2}^{2}+321 b_{2}+1\right) a_{2}-189 b_{2}^{3}-189 b_{2}^{2}-48 b_{2}-2
\end{aligned}
$$

$$
\begin{aligned}
E_{d}= & \left(1134 b_{2}+189\right) a_{2}^{3}+\left(1134 b_{2}^{2}+1323 b_{2}+189\right) a_{2}^{2} \\
& -\left(486 b_{2}^{3}-207 b_{2}^{2}-321 b_{2}-48\right) a_{2}-486 b_{2}^{4}-459 b_{2}^{3}-114 b_{2}^{2}+b_{2}+2
\end{aligned}
$$

Note that all the resultants, $\operatorname{Res}\left(E_{1}, E_{j}, B_{3}\right), j=2,3,4$, contain the common factor F_{c}.
If $a_{2}+b_{2}-1=0$, we have $a_{2}=-b_{2}+1$ and

$$
E_{1}=2 b_{2} I_{a} I_{41}, \quad E_{2}=4 b_{2}^{2} I_{a} I_{42}, \quad E_{3}=8 b_{2}^{3} I_{a} I_{43},
$$

where $I_{a}=\left(3 b_{2}-2\right) B_{3}+\left(2 b_{2}-1\right)^{2}$. Then, $I_{a}=0$ yields $E_{1}=E_{2}=E_{3}=0$, i.e., $\operatorname{Res}\left(F_{1}, F_{j}, A_{3}\right)=0, j=2,3,4$, when $a_{2}=-b_{2}+1$. We substitute $a_{2}=-b_{2}+1$ into F_{j} to yield $\widetilde{F}_{j}, j=1,2,3$. Next, we need to solve the equations: $I_{a}=\widetilde{F}_{1}=\widetilde{F}_{2}=\widetilde{F}_{3}=0$, and obtain

$$
\begin{array}{ll}
\operatorname{Res}\left(I_{a}, \widetilde{F}_{1}, B_{3}\right)=2 b_{2}\left(b_{2}-1\right) I_{b} I_{51}, & \operatorname{Res}\left(I_{a}, \widetilde{F}_{2}, B_{3}\right)=2 b_{2}\left(b_{2}-1\right) I_{b} I_{52} \\
\operatorname{Res}\left(I_{a}, \widetilde{F}_{3}, B_{3}\right)=2 b_{2}\left(b_{2}-1\right) I_{b} I_{53}, & \text { with } I_{b}=\left(3 b_{2}-1\right) A_{3}-\left(2 b_{2}-1\right)^{2}
\end{array}
$$

Note that $b_{2}\left(b_{2}-1\right) \neq 0$ since $F_{a} \neq 0$. If $I_{a}=I_{b}=0$, then $\widetilde{F}_{1}=\widetilde{F}_{2}=\widetilde{F}_{3}=0$, and we obtain the condition XIV. For $I_{51}=I_{52}=I_{53}=0$, we have

$$
\begin{aligned}
& \operatorname{Res}\left(I_{51}, I_{52}, A_{3}\right)=7 b_{2}^{3}\left(3 b_{2}+1\right)\left(b_{2}-1\right)^{3}\left(3 b_{2}-2\right)^{5}\left(2 b_{2}-1\right)^{6} J_{a} J_{1}, \\
& \operatorname{Res}\left(I_{51}, I_{53}, A_{3}\right)=-21 b_{2}^{4}\left(3 b_{2}+1\right)\left(b_{2}-1\right)^{5}\left(3 b_{2}-2\right)^{8}\left(2 b_{2}-1\right)^{9} J_{a} J_{2},
\end{aligned}
$$

where $\left(3 b_{2}+1\right)\left(b_{2}-1\right) \neq 0$, and

$$
\begin{aligned}
J_{a}= & 18 b_{2}^{3}+651 b_{2}^{2}-748 b_{2}+214, \\
J_{1}= & 605304 b_{2}^{4}-2895060 b_{2}^{3}+2555877 b_{2}^{2}-373639 b_{2}-148730, \\
J_{2}= & 378882563472 b_{2}^{10}-29071087999056 b_{2}^{9}+180968668598610 b_{2}^{8} \\
& -499455418644927 b_{2}^{7}+1319463134471394 b_{2}^{6}-2296405188740916 b_{2}^{5} \\
& +2157213472303974 b_{2}^{4}-1020839133559269 b_{2}^{3}+181189011015338 b_{2}^{2} \\
& +20664548818076 b_{2}-8460097956280 .
\end{aligned}
$$

If $3 b_{2}-2=0$, then $I_{a}=\frac{1}{9} \neq 0$. If $2 b_{2}-1=0$, then $I_{a}=-\frac{1}{2} B_{3} \neq 0$. Moreover, we get $\operatorname{Res}\left(J_{a}, I_{51}, b_{2}\right) \neq 0$ and $\operatorname{Res}\left(J_{1}, J_{2}, b_{2}\right) \neq 0$. Thus, there are no solutions to satisfy the equations: $I_{51}=I_{52}=I_{53}=0$. For $I_{41}=I_{42}=I_{43}=0$, we have

$$
\begin{aligned}
& \operatorname{Res}\left(I_{41}, I_{42}, B_{3}\right)=18075490334784000 b_{2}^{8}\left(b_{2}-1\right)^{2}\left(3 b_{2}-4\right)^{2} I_{c} I_{d} J_{3}, \\
& \operatorname{Res}\left(I_{41}, I_{43}, B_{3}\right)=10673396287786604160000 b_{2}^{12}\left(b_{2}-1\right)^{3}\left(3 b_{2}-4\right)^{3} I_{c} I_{d} J_{4},
\end{aligned}
$$

where $I_{c}=186 b_{2}^{2}+235 b_{2}-528, I_{d}=186 b_{2}^{2}-607 b_{2}-107$, and J_{3} and J_{4} are polynomials in b_{2}. Similarly, we can show that there are no solutions to satisfy the equations: for $I_{41}=I_{42}=$ $I_{43}=0$.

For the other factors contained in F_{c}, using similar procedures, we can show that no more center conditions exist, and thus the details are omitted. Since E_{j} 's given in $(30), j=5,6,7$, are polynomials in a_{2} and b_{2}, it is straightforward to prove that the equations: $E_{5}=E_{6}=E_{7}=0$ can not result in more center conditions. It should be pointed out that although the computations are straightforward, it is very time-consuming and memory demanding.

Finally, we prove the sufficiency for the center conditions I-XIV by deriving their corresponding first integrals. We shall not discuss all the cases one by one. Actually, most of the cases belong to three special types of systems. We use the following notation in the remaining proof: for any $\mathrm{C} \in\{\mathrm{I}, \ldots, \mathrm{XIV}\}, \mathrm{C}^{+}$denotes the upper system of system (4) under the condition C , C^{-}the lower system of (4) under the condition C .

First, it is well known that a quadratic Hamiltonian system is given by

$$
\dot{x}=-y-A x^{2}+2 B x y+(C+A) y^{2}, \quad \dot{y}=x+B x^{2}+2 A x y-B y^{2}
$$

with the Hamiltonian $H=\frac{1}{2}\left(x^{2}+y^{2}\right)+\frac{1}{3} B x^{3}+A x^{2} y-B x y^{2}-\frac{1}{3}(A+C) y^{3}$. Under the conditions I-XIV, the upper systems of $\mathrm{II}^{+}-\mathrm{IV}^{+}$are Hamiltonian systems. The general form for I^{+} and $\mathrm{I}^{-}\left(b_{2}=0\right)$ is given by

$$
\dot{x}=-y+A x^{2}+B y^{2}, \quad \dot{y}=x+C x y,
$$

with the first integral

$$
H=(C y+1)^{-\frac{2 A}{C}}\left[\frac{x^{2}}{2}+\frac{B y^{2}}{2(A-C)}-\frac{(A-B-C) y}{(A-C)(2 A-C)}-\frac{A-B-C}{2 A(A-C)(2 A-C)}\right],
$$

if $C(A-C)(2 A-C) \neq 0$; or

$$
\begin{aligned}
H & =e^{-2 A y}\left(\frac{1}{2} x^{2}+\frac{B}{2 A} y^{2}-\frac{A-B}{2 A^{2}} y-\frac{A-B}{4 A^{3}}\right), \quad \text { if } C=0, A \neq 0, \\
\text { or } \quad H & =-\frac{C^{3} x^{2}+B+C}{2(C y+1)^{2}}+\frac{2 B+C}{C y+1}+B \ln (C y+1), \quad \text { if } C \neq 0, A=C, \\
\text { or } \quad H & =-\frac{4 A^{3} x^{2}+2 A+B}{8 A^{3}(2 A y+1)}-\frac{A+B}{4 A^{3}} \ln (2 A y+1)+\frac{B y}{4 A^{2}}, \quad \text { if } C \neq 0, C=2 A .
\end{aligned}
$$

Systems $\mathrm{VI}^{+}, \mathrm{XII}^{+}\left(b_{3} \neq 0\right)$ and $\mathrm{XIII}^{ \pm}$can be written in the form,

$$
\dot{x}=-y-A x^{2}+2 B x y+A y^{2}, \quad \dot{y}=x-B x^{2}-2 A x y+B y^{2},
$$

with the first integral,

$$
H=\frac{4 A^{2} x^{2}+4 A^{2} y^{2}-2 A y-2 B x+1}{2 A y+2 B x-1}
$$

All the remaining upper systems and lower systems except $\mathrm{X}^{ \pm}, \mathrm{XI}^{ \pm}$and $\mathrm{XIV}^{ \pm}$can be written in the form,

$$
\begin{equation*}
\dot{x}=-y+A x y, \quad \dot{y}=x+B x^{2}+C x y-B y^{2}, \tag{31}
\end{equation*}
$$

with the first integral,

$$
H=(-A x+1)^{2 B \omega}\left(B x+\frac{C}{2} y-\frac{\omega}{2} y+1\right)^{(\omega+C) A}\left(B x+\frac{C}{2} y+\frac{\omega}{2} y+1\right)^{(\omega-C) A},
$$

if $A B\left(\omega^{2}-C^{2}\right) \omega \neq 0$, where $\omega=\sqrt{4 A B+4 B^{2}+C^{2}}$. When $B=0$, system (31) has the first integral,

$$
\begin{aligned}
H & =\frac{1}{2} y^{2}-\frac{1}{A^{2}}(A x+\ln (1-A x)), \quad \text { if } A \neq 0, C=0, \\
\text { or } \quad H & =\frac{1}{C^{2}}(C y-\ln (C y+1))-\frac{1}{A^{2}}(A x+\ln (1-A x)), \quad \text { if } A C \neq 0, \\
\text { or } \quad H & =\frac{1}{C^{2}}(C y-\ln (C y+1))+\frac{1}{2} x^{2}, \quad \text { if } A=0, C \neq 0 .
\end{aligned}
$$

When $B \neq 0$, we have the first integral given by

$$
\begin{aligned}
H= & 4 \ln (2 B x+C y+2)-\frac{16 B^{2}}{4 B^{2}+C^{2}} \ln \left(\left|\left(4 B^{2}+C^{2}\right) x+4 B\right|\right) \\
& +\frac{8(B x+1)}{2 B x+C y+2}, \quad \text { if } \omega=0
\end{aligned}
$$

For $B \omega \neq 0$, we obtain the first integral,

$$
H=\frac{C-\omega}{2 B^{2} \omega} \ln (2 B x+C y+\omega y+2)-\frac{C+\omega}{2 B^{2} \omega} \ln (2 B x+C y-\omega y+2)+\frac{x}{B},
$$

if $A=0$, or

$$
H=-\frac{1}{C^{2}} \ln (B x+C y+1)+\frac{B^{2}+C^{2}}{B^{2} C^{2}} \ln (B x+1)+\frac{B^{2} y+C}{B^{2} C(B x+1)},
$$

if $\omega^{2}=C^{2}$.
For the center condition XIV, we have the following first integrals,

$$
\begin{aligned}
H^{ \pm}= & \frac{1}{2} x^{2}+\frac{1}{2} y^{2}+\frac{a_{5}}{3} x^{3} \mp \frac{a_{5}\left(a_{5}-2 b_{2}\right)}{\alpha_{ \pm}} x^{2} y-\left(a_{5}-b_{2}\right) x y^{2} \mp \frac{\alpha_{ \pm}}{3} y^{3} \\
& +\frac{b_{2}\left(a_{5}-b_{2}\right)}{4} x^{4} \mp \frac{a_{5} b_{2}\left(a_{5}-2 b_{2}\right)}{\alpha_{ \pm}} x^{3} y-\frac{3 a_{5} b_{2}\left(\alpha_{ \pm}^{2}-b_{2}^{2}\right)}{2 \alpha_{ \pm}^{2}} x^{2} y^{2} \\
& \pm \frac{a_{5} b_{2}\left(a_{5}-b_{2}\right)}{\alpha_{ \pm}} x y^{3}-\frac{a_{5}^{2} b_{2}\left(a_{5}-2 b_{2}\right)}{4 \alpha_{ \pm}^{2}} y^{4},
\end{aligned}
$$

where $\alpha_{+}=\sqrt{-a_{5}^{2}+3 a_{5} b_{2}} \neq 0, \alpha_{-}=\sqrt{2 a_{5}^{2}-3 a_{5} b_{2}} \neq 0 . \operatorname{XIV}^{ \pm}\left(\alpha_{+}=0\right)$ and $\operatorname{XIV}^{ \pm}\left(\alpha_{-}=0\right)$ are in the form of $\mathrm{I}^{ \pm}$. Under the center condition X, system (4) is smooth, and has a center at the origin. Under the center condition XI, system (4) is symmetric with respect to the x-axis.

Therefore, for the fourteen center conditions we have obtained the first integrals $H^{+}(x, y)$ and $H^{-}(x, y)$ for the upper system and the lower system in (4) near the origin. More specifically, for any center conditions I, \ldots, XIV, either both $H^{+}(x, 0)$ and $H^{-}(x, 0)$ are even functions, or $H^{+}(x, 0) \equiv H^{-}(x, 0)$, or $H^{+}(x, 0)=H^{+}(\rho, 0)$ and $H^{-}(x, 0)=H^{-}(\rho, 0)$ have common zeros $x(\rho)$ satisfying $x(\rho) \rightarrow 0^{-}$as $\rho \rightarrow 0^{+}$.

This finishes the proof of Theorem 1.
Proof of Theorem 2. For system (3) with $a_{1}=b_{1}=0, \delta=b_{6}=0, b_{5}=a_{5}$, we add perturbations on a_{k} as $a_{k} \rightarrow a_{k}+\varepsilon p_{k}$ and $b_{k} \rightarrow b_{k}+\varepsilon q_{k}, k=1, \ldots, 6$, and $\delta=\varepsilon p_{0}$, where $0<\varepsilon \ll 1$. Then, $V_{1,1}=e^{2 p_{0} \pi \varepsilon}-1$, which is the ε-order term in V_{1}. Taking $p_{0}=0$, we get $V_{1,1}=0$, and then compute the Lyapunov constants, which are polynomials of ε. To prove the existence of 10 small-amplitude limit cycles, we need to solve the ε-order Lyapunov constants, i.e., the coefficient $V_{k, 1}$ of ε in the k th-order Lyapunov constant V_{k} for all $k>1$.

First, we get

$$
V_{2,1}=\frac{2}{3}\left(2 p_{1}+p_{5}-2 q_{1}-q_{5}\right)
$$

Setting $p_{5}=-2 p_{1}+2 q_{1}+q_{5}$ yields $V_{2,1}=0$ and then we obtain

$$
V_{3,1}=-\frac{\pi}{8}\left[\left(a_{4}-3\right)\left(p_{1}+q_{1}\right)+\left(1-a_{5}\right)\left(p_{6}+q_{6}\right)\right]
$$

Letting

$$
p_{6}=-q_{6}-\frac{\left(a_{4}-3\right)\left(p_{1}+q_{1}\right)}{1-a_{5}},
$$

results in $V_{3,1}=0$. Similarly, we can linearly solve the polynomial equations one by one, for $V_{4,1}=0$ using p_{4}, for $V_{5,1}=0$ using q_{1}, for $V_{6,1}=0$ using p_{2}, for $V_{8,1}=0$ using p_{3}, for $V_{10,1}=0$ using $q_{6}\left(V_{7,1}=V_{9,1} \equiv 0\right)$ and then obtain

$$
V_{12,1}=-\frac{32 p_{1}}{125 E_{0}} F_{a} F_{b}, \quad V_{14,1}=-\frac{32 p_{1}}{73125 E_{0}} F_{a} F_{c}, \quad V_{11,1}=V_{13,1} \equiv 0
$$

where

$$
\begin{aligned}
F_{a}= & -\left(a_{4}-a_{5}-2\right)\left(a_{4}^{2} a_{5}+a_{4} a_{5}^{2}-4 a_{4} a_{5}-2 a_{5}^{2}-3 a_{4}+a_{5}+10\right), \\
F_{b}= & 94623744 a_{4}^{14} a_{5}^{6}+930466816 a_{4}^{15} a_{5}^{4}+615054336 a_{4}^{14} a_{5}^{5}-275404800 a_{4}^{13} a_{5}^{6} \\
& +1342162944 a_{4}^{12} a_{5}^{7}+2270969856 a_{4}^{16} a_{5}^{2}+5488177152 a_{4}^{15} a_{5}^{3} \\
& -2424275968 a_{4}^{14} a_{5}^{4}+10977847296 a_{4}^{13} a_{5}^{5}+9213454848 a_{4}^{12} a_{5}^{6} \\
& +924797952 a_{4}^{11} a_{5}^{7}+70958592 a_{4}^{10} a_{5}^{8}+\cdots,
\end{aligned}
$$

$$
\begin{aligned}
F_{c}= & 3643883520 a_{4}^{16} a_{5}^{6}+703622160384 a_{4}^{14} a_{5}^{8}+35831521280 a_{4}^{17} a_{5}^{4} \\
& +23685242880 a_{4}^{16} a_{5}^{5}+7044986537984 a_{4}^{15} a_{5}^{6}+4776306345984 a_{4}^{14} a_{5}^{7} \\
& -2047910092800 a_{4}^{13} a_{5}^{8}+9980323651584 a_{4}^{12} a_{5}^{9}+87453204480 a_{4}^{18} a_{5}^{2} \\
& +211345244160 a_{4}^{17} a_{5}^{3}+18137210559488 a_{4}^{16} a_{5}^{4}+43606528505856 a_{4}^{15} a_{5}^{5} \\
& -16936192867328 a_{4}^{14} a_{5}^{6}+83213921538048 a_{4}^{13} a_{5}^{7}+70628108476416 a_{4}^{12} a_{5}^{8} \\
& +6876797571072 a_{4}^{11} a_{5}^{9}+527648090112 a_{4}^{10} a_{5}^{10}+\cdots, \\
E_{0}= & 436926698208 a_{4}^{7} a_{5}^{7}+4296445865712 a_{4}^{8} a_{5}^{5}+318301099644528 a_{4}^{7} a_{5}^{6} \\
& +436926698208 a_{4}^{6} a_{5}^{7}-314587222709760 a_{4}^{5} a_{5}^{8}+10486240756992 a_{4}^{9} a_{5}^{3} \\
& +3127375663540128 a_{4}^{8} a_{5}^{4}+2056104220650480 a_{4}^{7} a_{5}^{5} \\
& -4828695405245712 a_{4}^{6} a_{5}^{6}-1589648559755256 a_{4}^{5} a_{5}^{7} \\
& +509238066761424 a_{4}^{4} a_{5}^{8}-520052002542072 a_{4}^{3} a_{5}^{9} \cdots .
\end{aligned}
$$

By solving $F_{b}=F_{c}=0$, we obtain a solution pair,

$$
\begin{equation*}
a_{4}=5.9943463371 \cdots, \quad a_{5}=-8.1486126831 \cdots, \tag{32}
\end{equation*}
$$

which satisfies

$$
\operatorname{det}\left[\frac{\partial\left(V_{12,1}, V_{14,1}\right)}{\partial\left(a_{4}, a_{5}\right)}\right]=-49.555 \cdots \neq 0
$$

Setting the non-used parameters $q_{2}=q_{3}=q_{4}=q_{5}=0$, and $p_{1}=1$, we obtain the following critical parameter values:

$$
\begin{align*}
& p_{2}=0.3000212842 \cdots, \quad p_{3}=0.8220632161 \cdots, \quad p_{4}=15.5929246779 \cdots, \\
& p_{6}=-4.6242893306 \cdots, \quad q_{6}=4.6242893306 \cdots, \quad p_{5}=-4, \quad q_{1}=-1, \tag{33}
\end{align*}
$$

under which the Lyapunov constants become $V_{j, 1}=0, j=2,3, \ldots, 15$, and $V_{16,1}=13.3 \cdots$. Thus, with (32) and (33) holding, we have $V_{j, 1}=0, j=2, \ldots, 14$, but $V_{16,1} \neq 0$. Therefore, we can take perturbations in the backward order: on a_{5} for $V_{14,1}$, on a_{4} for $V_{12,1}$, on q_{6} for $V_{10,1}$, on p_{3} for $V_{8,1}$, on p_{2} for $V_{6,1}$, on q_{1} for $V_{5,1}$, on p_{4} for $V_{4,1}$, on p_{6} for $V_{3,1}$, on p_{5} for $V_{2,1}$, on p_{0} for V_{1}, to obtain 10 small-amplitude limit cycles bifurcating from the origin.

The proof of Theorem 2 is complete.

Remark 8. Theorem 2 guarantees the existence of 10 small-amplitude limit cycles in system (3) with the perturbations in a neighborhood of the critical point, defined by the center conditions given in Theorem 2, near the origin (i.e., near $\rho=0$). In order to estimate the small-amplitude limit cycles, one needs to obtain the approximation of the 10 positive roots solved from the truncated polynomial equation of $(6), d(\rho)=V_{1,1} \rho+V_{2,1} \rho^{2}+\cdots+V_{16,1} \rho^{16}=0$. This requires to find a set of explicit perturbation values to have a true realization, which is not an easy task, in particular, for high multiple limit cycles bifurcations.

5. Conclusion

In this paper, we have studied planar switching systems, in particular, a switching Bautin system. We have developed a computationally efficient algorithm to compute the Lyapunov constants for planar switching systems. With the help of this algorithm and Maple built-in command 'resultant', we present, with rigorous proof, a complete classification on the center problem for the Bautin switching system under the condition $a_{6} b_{6}=0$. Moreover, we have selected one of the center conditions to construct a special integrable system and then perturbed this system to obtain 10 small-amplitude limit cycles, which improves the existing result. The case $a_{6} b_{6} \neq 0$ causes extreme difficulty in solving multivariate polynomial equations based on the Lyapunov constants. We hope to develop more efficient methodology to find the solutions from these polynomial equations in order to classify the center problem and obtain more limit cycles. An even more challenging research project is to study the center problem of the generic planar switching system (3).

Acknowledgments

This work was supported by the National Science and Engineering Research Council of Canada (NSERC), grant No. R2686A02.

References

[1] A.F. Filippov, Differential Equation with Discontinuous Right-Hand Sides, Kluwer Academic, Netherlands, 1988.
[2] M. Kunze, Non-Smooth Dynamical Systems, Springer-Verlag, Berlin, 2000.
[3] R.A. Ibrahim, Friction-induced vibration, chatter, squeal, and chaos - part II: dynamics and modeling, Appl. Mech. Rev. 47 (7) (1994) 227-253.
[4] J. Badertscher, K.A. Cunefare, A.A. Ferri, Braking impact of normal dither signals, J. Vib. Acoust. 129 (1) (2007) 17-23.
[5] A. Kaplan, N. Friedman, M. Andersen, N. Davidson, Observation of islands of stability in soft wall atom-optics billiards, Phys. Rev. Lett. 87 (27) (2001) 27410114.
[6] T. Kinoshita, T. Wenger, D.S. Weiss, A quantum Newton's cradle, Nature 440 (2006) 900-903.
[7] H.E. Nusse, J.A. Yorke, Border-collision bifurcations including "period two to period three" for piecewise smooth systems, Phys. D 57 (1992) 39-57.
[8] Y. Zou, T. Kupper, W.-J. Beyn, Generalized Hopf bifurcation for planar Filippov systems continuous at the origin, J. Nonlinear Sci. 16 (2) (2006) 159-177.
[9] D.J.W. Simpson, J.D. Meiss, Andronov-Hopf bifurcations in planar, piecewise-smooth, continuous flows, Phys. Lett. A 371 (3) (2007) 213-220.
[10] C.J. Budd, Non-smooth dynamical systems and the grazing bifurcation, in: Nonlinear Mathematics and Its Applications, Cambridge University Press, Cambridge, 1996, pp. 219-235.
[11] M.D. Bernardo, C.J. Budd, A.R. Champneys, Grazing, skipping and sliding: analysis of the nonsmooth dynamics of the DC/DC buck converter, Nonlinearity 11 (1998) 859-890.
[12] A. Gasull, J. Torregrosa, Center-focus problem for discontinuous planar differential equations, Internat. J. Bifur. Chaos 13 (7) (2003) 1755-1765.
[13] X. Liu, M. Han, Hopf bifurcation for non-smooth Liénard systems, Internat. J. Bifur. Chaos 19 (7) (2009) 2401-2415.
[14] Y. Tian, M. Han, Hopf bifurcation for two types of Liénard systems, J. Differential Equations 251 (4-5) (2011) 834-859.
[15] X. Chen, Z. Du, Limit cycles bifurcate from centers of discontinuous quadratic systems, Comput. Math. Appl. 59 (2010) 3836-3848.
[16] X. Chen, W. Zhang, Isochronicity of centers in a switching Bautin system, J. Differential Equations 252 (2012) 2877-2899.
[17] J. Llibre, A.C. Mereu, Limit cycles for discontinuous quadratic differential systems with two zones, J. Math. Anal. Appl. 413 (2) (2014) 763-775.
[18] B. Coll, R. Prohens, A. Gasull, The center problem for discontinuous Liénard differential equation, Internat. J. Bifur. Chaos 9 (1999) 1751-1761.
[19] B. Coll, A. Gasull, R. Prohens, Degenerate Hopf bifurcation in discontinuous planar systems, J. Math. Anal. Appl. 253 (2001) 671-690.
[20] M. Han, W. Zhang, On Hopf bifurcation in non-smooth planar systems, J. Differential Equations 248 (2010) 2399-2416.
[21] N. Bautin, On the number of limit cycles appearing from an equilibrium point of the focus or center type under varying coefficients, Mat. Sb. 30 (1952) 181-196.
[22] P. Yu, Y. Tian, Twelve limit cycles around a singular point in a planar cubic-degree polynomial system, Commun. Nonlinear Sci. Numer. Simul. 19 (2014) 2690-2705.
[23] M. Han, Bifurcation Theory of Limit Cycles, Science Press, Beijing, 2013.
[24] B. Mishra, Algorithmic Algebra, Springer-Verlag, New York, 1993.

[^0]: * Corresponding author.

 E-mail addresses: ytian56@uwo.ca (Y. Tian), pyu@uwo.ca (P. Yu).

