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Abstract

A new method with an efficient algorithm is developed for computing the Lyapunov constants of pla-
nar switching systems, and then applied to study bifurcation of limit cycles in a switching Bautin system. 
A complete classification on the conditions of a singular point being a center in this Bautin system is ob-
tained. Further, an example of switching systems is constructed to show the existence of 10 small-amplitude 
limit cycles bifurcating from a center. This is a new lower bound of the maximal number of small-amplitude 
limit cycles obtained in quadratic switching systems near a singular point.
© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

Many problems arising in science and engineering are modeled by dynamical systems whose 
vector fields (i.e., the right-hand sides of the equations) are not continuous or not differentiable. 
These systems are indistinctly called discontinuous or non-smooth systems. A full discussion on 
this subject can be found in the classical books [1,2].

During the past few decades, increasing interest has been attracted to the qualitative analysis of 
non-smooth systems, because non-smooth systems describe some real problems more accurately 
and display rich complex dynamical phenomena, which must not be disregarded in applications, 
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for instance the squealing noise in car brakes [3,4], or the absence of a thermal equilibrium in 
gases modeled by scattering billiards [5,6]. Because of various forms of non-smoothness, non-
smooth systems can exhibit not only the classical bifurcations, like Hopf bifurcation, homoclinic 
bifurcation, but also more complicated bifurcations that only non-smooth systems can have, such 
as border-collision bifurcation [7–9], grazing bifurcation [10,11] and so on. A great deal of work 
has been done to generalize the classical bifurcation methods for smooth systems to non-smooth 
ones, see for instance [12–17].

One class of planar non-smooth dynamical systems is the so-called switching system, which 
has different definitions of the continuous vector fields in two different regions divided by a line 
(or a curve). Our attention in this paper is focused on the switching systems, given in the form 
of

(ẋ, ẏ) =
{(

δx − y + f +(x, y,μ), x + δy + g+(x, y,μ)
)
, if y > 0,(

δx − y + f −(x, y,μ), x + δy + g−(x, y,μ)
)
, if y < 0,

(1)

where μ ∈ Rm is a parameter vector and δ = μ1, f ±(x, y, μ) and g±(x, y, μ) are analytic func-
tions in x and y starting at least from second-order terms. Obviously, the origin is an equilibrium 
of system (1). There are two systems in (1): the system defined in the upper half-plane for y > 0, 
called the upper system, and the system defined in the lower half-plane for y < 0, called the 
lower system.

Many contributions have been made to the study of Hopf bifurcation in switching systems, 
see for example [12,13,16,18–20]. As in the study of smooth dynamical systems, the center 
problem, determining the center conditions of a singular point being a center, and the cyclicity 
problem, finding the maximal number of small-amplitude limit cycles around a singular point, 
are fundamental in the analysis of Hopf bifurcation in switching systems. These two problems in 
switching systems can be investigated by computing the Lyapunov constants [12,15,16]. Gasull 
and Torregrosa [12] applied a suitable decomposition of certain one-forms and developed a new 
method for computing the Lyapunov constants of switching systems.

For the center problem, it is well-known that a singular point is a center in planar smooth 
systems if and only if there exists a local first integral around the singular point. However, the 
situation is quite complicated in switching systems. The origin of system (1) can be a center 
even if it is not a center of either the upper system or the lower system. On the other hand, if 
the origin is a center for both the upper system and the lower system of (1), one can not ensure 
that system (1) has a center at the origin. It also requires that their first integrals of the upper and 
lower systems coincide on the line y = 0. So far, some center conditions have been obtained for 
some switching Kukles systems [12], switching Liénard systems [13,18] and switching Bautin 
systems [16].

It is well known that planar linear systems can not produce limit cycles. For general planar 
quadratic systems with a focus or center, Bautin [21] obtained the following form:

ẋ = δx − y − a3x
2 + (a5 + 2a2)xy + a6y

2,

ẏ = x + δy + a2x
2 + (a4 + 2a3)xy − a2y

2, (2)

with a focus or center at the origin, which is now called Bautin system, and proved that system (2)
can have 3 small-amplitude limit cycles around the origin. Note that Bautin system has one less 
parameter. For cubic systems, it is only proved that 12 small-amplitude limit cycles can appear 



Y. Tian, P. Yu / J. Differential Equations 259 (2015) 1203–1226 1205
around a center [22]. With the same degrees, switching polynomial systems can exhibit more 
limit cycles. For example, Han and Zhang [20] proved that 2 limit cycles can appear near a 
focus in linear switching systems. Without loss of generality, quadratic switching systems can be 
written as

(
ẋ

ẏ

)
=

⎧⎪⎪⎨⎪⎪⎩
(

δx − y − a3x
2 + (a5 + a2)xy + (a6 + a3)y

2

x + δy + a2x
2 + (a4 − a3)xy + (a1 − a2)y

2

)
, if y > 0,(

δx − y − b3x
2 + (b5 + b2)xy + (b6 + b3)y

2

x + δy + b2x
2 + (b4 − b3)xy + (b1 − b2)y

2

)
, if y < 0.

(3)

The number of small-amplitude limit cycles bifurcating from a focus in system (3) was inves-
tigated in [12,15–17]. Among them, it was shown in [12] that system (3) can have at most 5
small-amplitude limit cycles when its lower system is linear. Recently, 9 small-amplitude limit 
cycles were obtained in [15] from a concrete example of switching Bautin systems through per-
turbations, in which the upper and lower systems are both Bautin systems.

In this paper, we develop a recursive procedure to compute the Lyapunov constants of the 
general system (1), which only involves algebraic computations, and then apply this method to 
study bifurcation of limit cycles in the following switching Bautin system, obtained by setting 
a1 = b1 = 0 in (3),

(
ẋ

ẏ

)
=

⎧⎪⎪⎨⎪⎪⎩
(

δx − y − a3x
2 + (a5 + a2)xy + (a6 + a3)y

2

x + δy + a2x
2 + (a4 − a3)xy − a2y

2

)
, if y > 0,(

δx − y − b3x
2 + (b5 + b2)xy + (b6 + b3)y

2

x + δy + b2x
2 + (b4 − b3)xy − b2y

2

)
, if y < 0.

(4)

Note that the upper and lower systems in (4) are not exactly in the form of Bautin’s system (2), 
but a simple transformation on the parameters can make them equivalent. For system (4) we 
obtain a complete center classification under the condition a6b6 = 0. Moreover, we introduce 
perturbations into system (4) with a center, and obtain 10 small-amplitude limit cycles.

Denote by E the interchange of parameters (a2, a3, a4, a5, a6) ↔ (b2, −b3, −b4, b4, b5, −b6). 
Note that by the change of variables (x, y, t) → (x, −y, −t), the upper system and the lower 
system in (4) exchange their equations, which can be derived equivalently by the interchange E
in (4).

Theorem 1. Assume a6b6 = 0. Then, system (4) has a center at the origin if and only if 
δ = b6 = 0, b5 = a5, and one of the following conditions or the corresponding one under the 
interchange of parameters E holds:

I : a2 = a5 = b2b3 = 0,

II : a2 − a5 = (b2 − a2)(b2 + 2a2) = b3 = a4 − 3a3 = 0,

III : a2 − a5 = b2 = a4 − 3a3 = b4b3 − 2a2
5 = 0,

IV : a2 − a5 = a2 − b2 = a4 − 3a3 = b4 − 3b3 = 0,

V : a6 = b3 = a3a4 − b2(a5 + b2) = a2 = 0,

VI : a6 = b3 = a3 + a4 = 3a2 + a5 = 0, (a2 − b2)(2a2 − b2) = 0,
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VII : a6 = a3 = a5 = b3 = 0,

VIII : a6 = b3 = a3 = (b2 − a2)(a2 + b2 + a5) = 0,

IX : a6 = b3b4 − a3a4 = b2 = a2 = 0,

X : a6 = b4 − a4 = b2 − a2 = b3 − a3 = 0,

XI : a6 = b4 + a4 = b2 − a2 = b3 + a3 = 0,

XII : a6 = 9b3b4 + 2a2
5 = a4 + a3 = 3a2 + b5 = b2 = 0,

XIII : a6 = b4 + b3 = a4 + a3 = 3a2 + a5 = a2 − b2 = 0,

XIV : a6 = a2 + b2 − a5 = 0, (2b2 − a2)a
2
3 = (b2 − a2)

2a5 = (2a2 − b2)b
2
3,

(2b2 − a2)a
2
4 = (3a2 − 4b2)

2a5, (2a2 − b2)b
2
4 = (3b2 − 4a2)

2a5.

It is important to determine the maximal number of small-amplitude limit cycles bifurcating 
from the origin of system (4). One approach to get these small-amplitude limit cycles is via 
perturbations on the parameters with one of the conditions I–XIV, and thus limit cycles bifurcate 
from a center. In fact, we have obtained the following new result, which is the best so far for 
quadratic switching systems.

Theorem 2. For system (3) with the conditions a1 = b1 = 0, δ = b6 = 0, b5 = a5, and that given 
in the item X of Theorem 1, 10 limit cycles can appear near the origin under small perturbations.

Remark 3. Note that in Theorem 2 when a1 = b1 = 0, the general quadratic switching system (3)
becomes the switching Bautin system (4). Further, when other conditions are satisfied, the origin 
of the switching Bautin system becomes a center. Then, perturbing the special system (3) with a 
center at the origin yields 10 small-amplitude limit cycles.

The proofs for the above two theorems will be given later in Section 4.

2. Preliminary

Using x = r cos(θ) and y = r sin(θ), and treating time t as a parameter, we obtain the equa-
tions describing the orbits of system (1) on the phase plane,

dr

dθ
=

⎧⎪⎪⎨⎪⎪⎩
δr + R+(r, θ)

1 + �+(r, θ)
, if θ ∈ (0,π),

δr + R−(r, θ)

1 + �−(r, θ)
, if θ ∈ (π,2π),

(5)

where

R±(r, θ) = cos(θ)f ±(r cos(θ), r sin(θ),μ) + sin(θ)g±(r cos(θ), r sin(θ),μ),

�±(r, θ) = 1(
cos(θ)g±(r cos(θ), r sin(θ),μ) − sin(θ)f ±(r cos(θ), r sin(θ),μ)

)
.

r
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Fig. 1. (a) Poincaré map for system (1), and (b) Half-return maps P+ and (P−)−1.

Let r+(θ, ρ) and r−(θ, ρ) be the solutions of the upper and lower systems of (5), respectively, 
with r+(0, ρ) = r−(π, ρ) = ρ. Then, through the positive half-return map P+(ρ) = r+(π, ρ)

and the negative half-return map P−(ρ) = r−(2π, ρ), we can define the Poincaré map P(ρ) =
P−(P+(ρ)), as illustrated in Fig. 1(a).

Suppose the displacement function d(ρ) =P(ρ) − ρ can be expanded as

d(ρ) = V1ρ + V2ρ
2 + V3ρ

3 + · · · , (6)

where Vk is called the kth-order Lyapunov constant of the switching system (1). It is easy to see 
that the origin is a center of system (1) if and only if d(ρ) ≡ 0 for 0 < ρ � 1, which means that 
all the Lyapunov constants in (6) vanish. The isolated zeros of d(ρ) = 0 near ρ = 0 correspond 
to the limit cycles around the origin. It is not difficult to get V1 = e2δπ − 1 since P±(ρ) =
eδπρ + O(ρ2). Thus, V1 = 0 if and only if δ = 0. It is well known that for the first nonzero 
Lyapunov constant Vk in a smooth system, k must be an odd number [23, Lemma 2.1.1]. While 
if Vk is the first nonzero term in (6), k could be any positive integer. Because of this small 
difference, the theorem used to determine the number of limit cycles by Lyapunov constants 
should take some corresponding changes. We have the following lemma.

Lemma 4. Assume that there exists a sequence of Lyapunov constants of system (1), Vi0, Vi1 ,

. . . , Vik , with 1 = i0 < i1 < · · · < ik , such that Vj = O(|Vi0 , . . . , Vil |) for any il < j < il+1. If for 
system (1) at the critical point μ = μ0, Vi0 = Vi1 = · · · = Vik−1 = 0, Vik �= 0, and

rank

[
∂(Vi0 ,Vi1, . . . , Vik−1)

∂(μ1,μ2, . . . ,μm)
(μ0)

]
= k,

then k limit cycles can appear near the origin of system (1) for some μ near μ0.

Lemma 4 is based on Theorem 2.3.2 in [23]. So we give a brief proof here. By the assumption 
of Lemma 4, the displacement function d(ρ) in (6) can be rewritten in the form

d(ρ) = Vi0ρ
i0(1 + P0(ρ)) + · · · + Vik−1ρ

ik−1(1 + Pk−1(ρ)) + Vikρ
ik + O(ρik+1),

where Pl(ρ) = O(ρjl ), l = 0, . . . , k − 1, jl is the smallest positive integer satisfying il + jl <

il+jl
, otherwise Pl(ρ) = 0. Since Vi0, Vi1, . . . , Vik−1 are independent with respect to μ, we can 

vary μ around μ0 such that
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0 < |Vi0 | � |Vi1 | � · · · � |Vik−1 | � 1, Vij Vij+1 < 0, j = 0, . . . , k − 1,

which ensures the existence of k positive zeros of d(ρ) in ρ around ρ = 0.
Based on Lemma 4, we remark that the expressions in this paper for Vk , k = 2, 3, . . . , are ob-

tained by setting V1 = V2 = · · · = Vk−1 = 0. Then, for any il < j < il+1, Vj = O(|Vi0 , . . . , Vil |)
in Lemma 4 becomes Vj ≡ 0.

From now on, we assume that δ = 0 in system (1) and so V1 = 0. It is very difficult to compute 
the remaining Lyapunov constants by using (6), since it involves the composition of two maps 
P+(ρ) and P−(ρ). To simplify the computation of Lyapunov constants, the authors of [12]
introduced a new function,

P+(ρ) − (P−)−1(ρ) = W1ρ + W2ρ
2 + W3ρ

3 + · · · , (7)

where (P−)−1(ρ) is the inverse map of P−(ρ). For (P−)−1(ρ), we have (P−)−1(ρ) = P+− (ρ), 
where P+− (ρ) is the positive half-return map of the system obtained from the lower system with 
the change of variables (x, y, t) → (x, −y, −t) (see Fig. 1(b)). Thus, to get (7) we only need 
to compute the two positive half-return maps P+(ρ) and P+− (ρ). It is proved [12] that for (6)
and (7), the conditions Vk �= 0, Vj = 0, 1 ≤ j ≤ k − 1, are equivalent to Wk �= 0, Wj = 0, 1 ≤
j ≤ k − 1. In Section 3, we shall present a new method to compute Wk’s in (7). Because of the 
equivalence of Vk and Wk , we still use Vk instead of Wk in the rest of the paper for simplicity.

Note that any Lyapunov constant Vk is a polynomial in terms of the coefficients of system (1). 
Thus, having obtained the Lyapunov constants, we need to solve a system of multivariate poly-
nomial equations, and to find the center conditions. We shall use the Maple built-in command 
“resultant” to solve these polynomial equations and find their common zeros.

Denote by R[x1, x2, . . . , xr ] the polynomial ring of multivariate polynomials in x1, x2, . . . , xr

with coefficients in R. Let

p(x1, x2, . . . , xr ) =
m∑

i=0

pi(x1, . . . , xr−1)x
i
r ,

q(x1, x2, . . . , xr ) =
n∑

i=0

qi(x1, . . . , xr−1)x
i
r (8)

be two polynomials in R[x1, x2, . . . , xr ] of respective positive degrees m and n in xr . The fol-
lowing matrix is called the Sylvester matrix of p and q with respect to xr ,

Syl(p, q, xr) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

pm pm−1 · · · p0
pm pm−1 · · · p0

. . .
. . .

. . .

pm pm−1 · · · p0
qn qn−1 · · · q0

qn qn−1 · · · q0
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎬⎪⎪⎭n

⎫⎪⎪⎬⎪⎪⎭m

,

qn qn−1 · · · q0
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whose determinant is called the resultant of p and q with respect to xr , denoted by Res(p, q, xr). 
We have the following lemma.

Lemma 5. (See [24, Chapter 7].) Consider two multivariate polynomials p(x1, x2, . . . , xr) and 
q(x1, x2, . . . , xr) in R[x1, x2, . . . , xr ] given by (8). Let Res(p, q, xr) = h(x1, . . . , xr−1). Then:

1. If the real vector 〈α1, α2, . . . , αr 〉 ∈ Rr is a common zero of the two equations p(x1, x2,

. . . , xr) = q(x1, x2, . . . , xr) = 0, then h(α1, . . . , αr−1) = 0.
2. Conversely, if h(α1, . . . , αr−1) = 0, then at least one of the following four conditions holds:

(a) pm(α1, . . . , αr−1) = · · · = p0(α1, . . . , αr−1) = 0, or
(b) qn(α1, . . . , αr−1) = · · · = q0(α1, . . . , αr−1) = 0, or
(c) pm(α1, . . . , αr−1) = qn(α1, . . . , αr−1) = 0, or
(d) for some αr ∈ R, 〈α1, . . . , αr 〉 is a common zero of both p(x1, . . . , xr) and q(x1, . . . , xr).

From the first statement of Lemma 5, we know that if the resultant h does not have zeros on 
the region D ⊂ Rr−1, then polynomials p and q do not have common zeros in D × R. Accord-
ing to the second statement, in order to solve p = q = 0, we first find the zeros of h = 0, and 
then substitute them back into p and q to solve for xr . In this way, no zeros should be missed. 
For m multivariate polynomials with m variables, we can apply the command “resultant” repeat-
edly. For instance, take m = 3. To solve Fj (x1, x2, x3) = 0, j = 1, 2, 3, suppose we compute 
Res(F1, Fj , x1) to obtain Res(F1, Fj , x1) = Fa(x2, x3)Ej (x2, x3), j = 2, 3. Then, we need to 
find the solutions for Fa(x2, x3) = 0 and E2(x2, x3) = E3(x2, x3) = 0. For E2 = E3 = 0, we can 
apply the command “resultant” again, like solving Res(E2, E3, x2) = 0.

3. Computation of Lyapunov constants

Since W1 = 0 (or V1 = 0) yields δ = 0, to compute higher-order Wk’s for the upper and lower 
systems in (1), we only need to consider a differential system of the form,

ẋ = −y +
+∞∑
i=2

Pi(x, y), ẏ = x +
+∞∑
i=2

Qi(x, y), (9)

where Pi(x, y) and Qi(x, y) are homogeneous polynomials in x and y of degree i. Obviously, 
system (9) has a Hopf singular point at the origin. Introducing the transformation x = r cos(θ)

and y = r sin(θ) into (9) yields

ṙ =
+∞∑
i=2

(cos(θ)Pi + sin(θ)Qi) =
+∞∑
i=2

Ai(θ)ri,

θ̇ = 1 +
+∞∑
i=2

(cos(θ)Qi − sin(θ)Pi)/r = 1 +
+∞∑
i=2

Bi(θ)ri−1, (10)

where

Ai(θ) = cos(θ)Pi(cos(θ), sin(θ)) + sin(θ)Qi(cos(θ), sin(θ)),

Bi(θ) = cos(θ)Qi(cos(θ), sin(θ)) − sin(θ)Pi(cos(θ), sin(θ)). (11)
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Let r(θ, ρ) be the solution of system (10) with r(0, ρ) = ρ. Suppose that r(θ, ρ) can be expressed 
as the power series of ρ in the form of

r(θ, ρ) = r1(θ)ρ + r2(θ)ρ2 + r3(θ)ρ3 + · · · , |ρ| � 1, (12)

where r1(0) = 1, ri(0) = 0, i ≥ 2. Then, we have the positive half-return map of system (9), 
given by

P+(ρ) = r(π,ρ) = r1(π)ρ + r2(π)ρ2 + r3(π)ρ3 + · · · , for |ρ| � 1.

Hence, we need to compute rj (θ) in order to obtain the Lyapunov constants. To achieve this, 
eliminating the time t from (10) we have

dr

dθ
=

∑+∞
i=2 Ai(θ)ri

1 + ∑+∞
i=2 Bi(θ)ri−1

, (13)

which can be rewritten in the power series of r as

dr

dθ
= R2(θ)r2 + R3(θ)r3 + R4(θ)r4 + · · · , (14)

where Ri(θ) is a polynomial in sin(θ) and cos(θ).

Lemma 6. For system (13), let (11) and (14) hold. Then deg(Ri(θ), {sin(θ), cos(θ)}) = 3(i − 1)

and Ri(θ) is odd (even) in sin(θ) and cos(θ) if i is even (odd).

Proof. It follows from (11) that Ai(θ) and Bi(θ) are homogeneous polynomials of sin(θ) and 
cos(θ) of degree i + 1. Also note that

1

1 + ∑+∞
i=2 Bi(θ)ri−1

= 1 +
+∞∑
j=1

(
−

+∞∑
i=2

Bi(θ)ri−1
)j = 1 +

+∞∑
i=1

B̃i(θ)ri , |r| � 1.

Thus, B̃i(θ)ri is a linear combination of the products of B2r, B3r
2, . . . , Bi+1r

i . Suppose that 
B̃i(θ) = ∑

Bi1Bi2 · · ·Bim . Then 
∑m

j=1(ij − 1) = i. Since ij ≥ 2, the largest value for m should 
be i. Further, we have

deg(Bi1Bi2 · · ·Bim, {sin(θ), cos(θ)}) =
m∑

j=1

(ij + 1) = i + 2m ≤ 3i. (15)

Therefore, deg(B̃i , {sin(θ), cos(θ)}) = 3i, and further it follows from (15) that R̃i(θ) is odd 
(even) in sin(θ) and cos(θ) if i is odd (even).

Clearly, we have

∑+∞
i=2 Ai(θ)ri

1 + ∑+∞
Bi(θ)ri−1

=
( +∞∑

Ai(θ)ri
)(

1 +
+∞∑

B̃i(θ)ri
)
.

i=2 i=2 i=1
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Combining the above equation with (13) and (14) yields

Ri(θ) =
i−1∑
j=2

Aj(θ)B̃i−j (θ) + Ai(θ).

Finally, taking into account that Aj(θ) is a homogeneous polynomial in sin(θ) and cos(θ) of 
degree j + 1 for any j ≥ 2, the proof is complete. �

Further, assume that rj (θ, ρ) = ∑+∞
i=j rj,i (θ)ρi for any j ≥ 2. Substituting Eq. (12) into sys-

tem (14) and comparing the coefficients yields r ′
1(θ) = 0 and

r ′
i (θ) = Ri(θ) + Ri−1(θ)ri−1,i (θ) + · · · + R2(θ)r2,i (θ), i ≥ 2. (16)

It is easy to get r1(θ) = 1, r2(θ) = ∫ θ

0 R2(θ)dθ and

r3(θ) =
θ∫

0

(R3(θ) + 2R2(θ)r2(θ))dθ =
θ∫

0

R3(θ)dθ + r2
2 (θ).

But computation of ri(θ) becomes more and more involved by direct integration, as i grows. To 
overcome this difficulty, we present a new method to compute ri(θ), which is closely related to 
the proof of the following theorem.

Theorem 7. Suppose r(θ, ρ) is the solution of system (9) with r(0, ρ) = ρ, and let (12) hold. 
Then, for any i ≥ 1, we have

ri(θ) =
3i−3∑
j=1

(Si,j (θ) sinj (θ) + Ci,j (θ) sinj−1(θ) cos(θ)) + Ci,0(θ), (17)

where Si,j (θ) and Ci,j (θ) are polynomials in θ .

Proof. We apply the method of mathematics induction to prove this lemma. It is easy to see that 
the conclusion is true for i = 1, since r1(θ) = 1. Then, suppose (17) holds for i − 1 and we will 
show that (17) is also true for i.

Firstly, we need to prove deg(rj,i (θ), {sin(θ), cos(θ)}) = 3(i − j) for any 2 ≤ j ≤ i − 1. Note 
that

rj (θ, ρ) = ρj (1 + r2(θ)ρ + r3(θ)ρ2 + · · ·)j = ρj (1 + rj,j+1(θ)ρ + rj,j+2(θ)ρ2 + · · ·).
Thus, rj,i (θ)ρi−j should be a linear combination of the products of rk(θ)ρk−1, 2 ≤ k ≤ i − 1. 
Suppose that rj,i(θ) = ∑

ri1ri2 · · · rin , where ik ≤ i−1, k = 1, . . . , n. Then 
∑n

k=1(ik −1) = i−j . 
Since deg(rik (θ), {sin(θ), cos(θ)}) = 3(ik − 1), we have

deg(rj,i (θ), {sin(θ), cos(θ)}) = max
( n∑

3(ik − 1)
)

= 3(i − j).
k=1
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From Lemma 6, we know deg(Rj (θ), {sin(θ), cos(θ)}) = 3(j − 1). Then, the right hand-side 
of Eq. (16) has degree 3(i − 1) in sin(θ) and cos(θ). Applying sin2(θ) + cos2(θ) = 1 to Eq. (16)
and decreasing the degree in cos(θ) gives

r ′
i (θ) =

3i−3∑
j=1

(Ti,j (θ) sinj (θ) + Di,j (θ) sinj−1(θ) cos(θ)) + Di,0(θ), (18)

where Ti,j (θ) and Di,j (θ) are polynomials in θ . Then,

ri(θ) =
3i−3∑
j=1

( θ∫
0

Ti,j (θ) sinj (θ)dθ +
θ∫

0

Di,j (θ) sinj−1(θ) cos(θ)dθ
)

+
θ∫

0

Di,0(θ)dθ.

On the other hand, for any polynomial f (θ) and number j we have∫
f (θ) sinj (θ) cos(θ)dθ = 1

j + 1
f (θ) sinj+1(θ) − 1

j + 1

∫
f ′(θ) sinj+1(θ)dθ, (19)

and∫
f (θ) sinj+1(θ)dθ

=
∫

f (θ) sinj (θ)d(− cos(θ))

= −f (θ) sinj (θ) cos(θ) +
∫

f ′(θ) sinj (θ) cos(θ)dθ + j

∫
f (θ) sinj−1(θ) cos2(θ)dθ

= −f (θ) sinj (θ) cos(θ) + 1

j + 1
f ′(θ) sinj+1(θ) − 1

j + 1

∫
f ′′(θ) sinj+1(θ)dθ

+ j

∫
f (θ) sinj−1(θ)dθ − j

∫
f (θ) sinj+1(θ)dθ.

Hence,∫
f (θ) sinj+1(θ)dθ = − 1

j + 1
f (θ) sinj (θ) cos(θ) + 1

(j + 1)2
f ′(θ) sinj+1(θ)

− 1

(j + 1)2

∫
f ′′(θ) sinj+1(θ)dθ + j

j + 1

∫
f (θ) sinj−1(θ)dθ.

(20)

It follows from Eqs. (19) and (20) that the conclusion is true for i, and thus the proof is com-
plete. �

From the above proof, we have seen that the procedure of computing ri(θ) contains the fol-
lowing four steps:



Y. Tian, P. Yu / J. Differential Equations 259 (2015) 1203–1226 1213
(1) computing rj,i(θ), 2 ≤ j ≤ i − 1;
(2) substituting rj,i(θ) into (16), and applying cos2(θ) = 1 − sin2(θ) to get (18);

(3) for any j in descending order, using (19) and (20) repeatedly to compute 
∫ θ

0 Ti,j (θ) sinj (θ)dθ

and 
∫ θ

0 Di,j (θ) sinj−1(θ) cos(θ)dθ by decreasing the degrees of polynomials Ti,j (θ) and 
Di,j (θ); and finally,

(4) computing 
∫ θ

0 Di,0(θ)dθ .

4. Proofs of Theorems 1 and 2

Now, we are ready to prove Theorems 1 and 2.

Proof of Theorem 1. If a6b6 �= 0, solving the multivariate polynomial equations based on the 
Lyapunov constants becomes extremely difficult, even if we could compute the Lyapunov con-
stants up to an order we wish. If we assume a6b6 = 0, then the third-order Lyapunov constant can 
be factorized and thus the computation is simplified. Now under the condition a6b6 = 0, without 
loss of generality, we may let b6 = 0. Denote by C(E) the condition which is obtained from the 
condition C with the interchange of variables E .

For system (4), as discussed in the previous section, we have δ = 0 due to V1 = 0. From the 
second Lyapunov constant V2 = 2

3 (a5 − b5), we solve V2 = 0 to get b5 = a5. Then, we obtain 
V3 = −π

8 (a2 − a5)a6.
First, we assume a6 �= 0. Then, V3 = 0 yields a2 = a5. Further, by linearly solving V4 = 0

for b4, we have

b4 = 1

a5b3

[
2a3

5 − b2a
2
5 − (3a2

3 − a3a4 + 6a3a6 − 2a4a6 + b2
2)a5 + 3b2b

2
3

]
, a5b3 �= 0. (21)

In the case a5 = 0, we have V4 = 2
5b2b

2
3, which yields the center condition I by solving V4 = 0. 

If a5 �= 0 and b3 = 0, we obtain

a4 = 1

a3 + 2a6
(3a2

3 + 6a3a6 − 2a2
5 + a5b2 + b2

2), (22)

by solving V4 = 0 when a3 + 2a6 �= 0. Under the condition (22), V5 is given by

V5 = πa5a6

48(a3 + 2a6)2
(b2 + 2a5)(b2 − a5)(5a3a6 + 2a2

5 − a5b2 + 10a2
6 − b2

2).

From V5 = 0, we have condition II if (b2 + 2a5)(b2 − a5) = 0, or get another equation,

a3 = − 1

5a6
(2a2

5 − a5b2 + 10a2
6 − b2

2).

When the above equation holds, V6 and V7 are given by V6 = 2a5
875a2

6
F11 and V7 = πa5a6

64 F12, 

where



1214 Y. Tian, P. Yu / J. Differential Equations 259 (2015) 1203–1226
F11 = −3b6
2 − 9a5b

5
2 + (9a2

5 + 30a2
6)b4

2 + (33a3
5 + 60a5a

2
6)b3

2 − (18a4
5 + 90a2

5a2
6

− 50a4
6)b2

2 − (36a5
5 + 120a3

5a2
6 − 50a5a

4
6)b2 + 24a6

5 + 120a4
5a2

6 − 350a2
5a4

6,

F12 = b4
2 + 2a5b

3
2 − (3a2

5 + 5a2
6)b2

2 − (4a3
5 + 5a5a

2
6)b2 + 4a4

5 + 35a2
5a2

6 .

Then, Res(F11, F12, b2) = 244 140 625a12
6 a8

5(9a2
5 + 40a2

6)2 �= 0 since a5a6 �= 0, which means V6
and V7 do not have common solutions.

If b3 = a3 + 2a6 = 0, we have

V4 = −2a5

15
(b2 + 2a5)(b2 − a5), V5 = −πa5a6

48
(a4 + 6a6)(a4 + a6),

V6 = 4a5a6

315
(a4 + 6a6)

[
2(a4 + a6)(a4 − 4a6) + 9a2

5

]
.

Thus, V4 = V5 = V6 = 0 yields (b2 + 2a5)(b2 − a5) = a4 + 6a6 = 0, which are clearly included 
in the condition II.

When (21) holds, we obtain

V5 = −πa5a6

48
(3a3 − a4)(3a3 − a4 + 5a6). (23)

Taking a4 = 3a3 yields V5 = 0 and V6 = − 2b2
3

21 b2(a5 − b2)(4a5 + 3b2). Setting V6 = 0 yields 
b2(a5 − b2) = 0, which gives the conditions III and IV, or b2 = − 4

3a5 which results in V7 ≡ 0
but V8 = 448

2187a5
5b2

3 �= 0 since a5b3 �= 0.
For (23), if a4 = 3a3 + 5a6, we have V5 = 0, and then obtain

B3 = 3a5a6

b2D21
(3a3

3 + 12a2
3a6 + 10a3a

2
6 + 2a2

5a6 − 4a3
6), b2D21 �= 0, (24)

by linearly solving V6 = 0, where B3 = b2
3 and D21 = 9a3a6 + 4a2

5 − a5b2 + 18a2
6 − 3b2

2. If 

b2 = 0, we have V6 = 2a5a6
7 F21 and V7 = 25πa5a3

6
64 F22, where

F21 = 3a3
3 + 12a2

3a6 + 10a3a
2
6 + 2a2

5a6 − 4a3
6, F22 = a2

3 + 3a3a6 + a2
5 + 2a2

6 .

Then, Res(F21, F22, b2) = a4
5(9a2

5 + 40a2
6) �= 0, which means that there do not exist center 

conditions for this case. If D21 = 0, we have a3 = − 1
9a6

(4a2
5 − a5b2 + 18a2

6 − 3b2
2), and 

V6 = − 2a5
1701a2

6
F23, V7 = 25πa5a6

5184 F24, where F23 and F24 are polynomials in a5, a6 and b2. Sim-

ilarly, it can be easily shown that the two equations, V6 = V7 = 0, do not have solutions by 
verifying Res(F23, F24, b2) �= 0.

Now suppose (24) holds. Then, we have V7 = 25πa5a
3
6

64 F31, V8 = 2a5a6
27D21

(F32a3 + D31), V9 ≡ 0

and V10 = 2a5a6
18 711D2

21
F33 with

F31 = a2
3 + 3a3a6 + a2

5 + 2a2
6,

F32 = a6[−a6
5 + b2a

5
5 − (17a2

6 + 18b2
2)a

4
5 − (13a2

6b2 − 9b3
2)a

3
5

− (30a4 + 60a2b2 − 9b4)a2 + (−30a4b2 + 90a2b3)a5 + 90a2b4],
6 6 2 2 5 6 6 2 6 2
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D31 = 16a6
5 + 14b2a

5
5 + (16a2

6 + 24b2
2)a

4
5 + (14a2

6b2 − 27b3
2)a

3
5

+ (15a4
6 + 30a2

6b2
2 − 27b4

2)a
2
5 + (15a4

6b2 − 45a2
6b3

2)a5 − 45a2
6b4

2.

If D31 = 0, it follows from V8 = 0 that F32 = 0. Note that D31 and F32 are homogeneous 
polynomials in a6, a5 and b2. Thus, by a variable scaling: a5 → a5a6 and b2 → b2a6, we can 
eliminate a6. Without loss of generality, we take a6 = 1, and then obtain Res(F32, D31, b2) =
−21 870a24

5 (3 862 879a6
5 + 35 074 080a4

5 + 92 750 400a2
5 + 50 112 000) �= 0 for nonzero a5. This 

indicates that there are no solutions for the equations: D31 = F32 = 0. If D31 �= 0, we have 

a3 = − F32
D31

, and F31 = a4
5

D2
31

F̃31, F33 = a4
5a6

D8
31

F̃33, where F̃31 and F̃33 are homogeneous polynomi-

als in a6, a5 and b2. Similarly, by verifying Res(F̃31, F̃33, b2) �= 0, we conclude that V7 = V10 = 0
do not have common zeros when a5a6 �= 0.

Now we consider the case a6 = 0, for which V3 = 0, and get

b4 = 1

a5b3
[(a2 − b2)a

2
5 + (a2

2 + a3a4 − b2
2)a5 − 3a2a

2
3 + 3b2b

2
3], a5b3 �= 0, (25)

by solving V4 = 0. If b3 = 0, V4 = 0 yields a4 = − 1
a3a5

[a5a
2
2 − (3a2

3 + a2
5)a2 − b2a

2
5 − b2

2a5]
provided a3a5 �= 0. Further, we have V5 ≡ 0, V6 = − 2a2

3
105a2F41, V7 ≡ 0, and V8 = − 2a2

3
2835a5

a2F42, 
where

F41 = 15a2
2 + 5a2a5 − 2a2

5 − 9a5b2 − 9b2
2,

F42 = 315a5a
4
2 + (675a2

3 + 315a2
5)a3

2 + (225a2
3a5 + 1890a3

5 + 225a2
5b2

+ 225a5b
2
2)a

2
2 − (90a2

3a2
5 + 405a2

3a5b2 + 405a2
3b2

2 − 602a4
5 − 54a3

5b2

− 54a2
5b2

2)a2 − 248a5
5 − 1176a4

5b2 − 1446a3
5b2

2 − 540a2
5b3

2 − 270a5b
4
2.

Obviously, a2 = 0 is a solution of V6 = V8 = 0, resulting in condition V. For F41 = F42 = 0, we 
have

Res(F41,F42, a2) = 2700a2
5(a5 + 3b2)

2(2a5 + 3b2)
2(b2 − a5)(b2 + 2a5)

× (29a2
5 + 108a5b2 + 108b2

2).

Solving F41 = F42 = Res(F41, F42, a2) = 0, we obtain condition VI, derived from (a5 +
3b2)(2a5 + 3b2) = 0, and other center conditions derived from (b2 − a5)(b2 + 2a5) = 0 are 
already included in condition II. If b3 = a3 = 0, V4 = 2

15a5(a2 − b2)(a2 + a5 + b2). Solving 
V4 = 0 we have the conditions VII and VIII. If b3 = a5 = 0, center conditions obtained from 
V4 = 0 are included in the condition I or the condition VII, where V4 = − 2

5a2a
2
3 . If b3 �= 0 and 

a5 = 0, we obtain b2 = 1
b2

3
a2a

2
3 from V4 = 0. Then V5 ≡ 0 and V6 = 2

35b4
3
a2a

2
3(8a2

2a4
3 − 8a2

2b4
3 −

3a3a4b
4
3 + 3b5

3b4). When a2a3 = 0, we get subcases of I and I(E). Otherwise, we linearly solve 
V6 = 0 using b4, for which V7 ≡ 0, and further obtain

V8 = 2a3
2a2

3

945b8
(b2

3 − a2
3)

[
75a3b

4
3(a

2
3 + b2

3)a4 − 105a4
3(a2

3 + b2
3)a

2
2 + 95b4

3(a
2
3 + b2

3)a
2
2 − 21a2

3b6
3

]
.

3
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When b2
3 − a2

3 = 0, we obtain subcases of X and XI. Otherwise, we linearly solve V8 = 0 using 
a4 to obtain

V10 = − 4a3
2a2

3(a2
3 − b2

3)

37 125b12
3 (a2

3 + b2
3)

F43, V12 = − 4a3
2a2

3(a2
3 − b2

3)

4 021 875b16
3 (a2

3 + b2
3)

2
F44,

V14 = − 4a3
2a2

3(a2
3 − b2

3)

4 524 609 375b20
3 (a2

3 + b2
3)

3
F45, V9 = V11 = V13 ≡ 0, (26)

where F43, F44 and F45 are homogeneous polynomials in a3, a2 and b3. Thus, without loss of 
generality, taking b3 = 1 yields

F43 = 150a4
2a12

3 + 300a4
2a10

3 − (50a4
2 − 465a2

2)a8
3 − (400a4

2 − 1240a2
2)a6

3 − (50a4
2

− 1240a2
2 + 48)a4

3 + (300a4
2 + 465a2

2)a2
3 + 150a4

2,

F44 = 35 250a6
2a18

3 + 105 750a6
2a16

3 + (90 250a6
2 + 111 675a4

2)a14
3 − (11 250a6

2

− 403 975a4
2)a12

3 − (62 000a6
2 − 675 150a4

2 + 4335a2
2)a10

3 − (62 000a6
2

− 765 700a4
2 − 4165a2

2)a8
3 − (11 250a6

2 − 675 150a4
2 − 4165a2

2 + 2352)a6
3

+ (90 250a6
2 + 403 975a4

2 − 4335a2
2)a4

3 + (105 750a6
2 + 111 675a4

2)a2
3

+ 35 250a6
2,

F45 = 64 267 500a8
2a24

3 + 257 070 000a8
2a22

3 + (374 412 500a8
2 + 209 282 250a6

2)a20
3

+ (212 300 000a8
2 + 963 353 000a6

2)a18
3 − (5 995 000a8

2 + 2 057 488 500a6
2

+ 9 179 400a4
2)a16

3 − (57 200 000a8
2 − 2 903 448 125a6

2 − 82 855 050a4
2)a14

3

− (41 030 000a8
2 − 3 282 832 625a6

2 − 209 672 700a4
2 + 8 036 550a2

2)a12
3

− (57 200 000a8
2 + 3 282 832 625a6

2 + 271 994 100a4
2 − 11 441 925a2

2)a10
3

− (5 995 000a8
2 + 2 903 448 125a6

2 + 209 672 700a4
2 − 11 441 925a2

2

− 889 056)a8
3 + (212 300 000a8

2 + 2 057 488 500a6
2 + 82 855 050a4

2

− 8 036 550a2
2)a6

3 + (374 412 500a8
2 + 963 353 000a6

2 + 9 179 400a4
2)a4

3

+ (257 070 000a8
2 + 209 282 250a6

2)a2
3 + 64 267 500a8

2,

from which we have

Res(F43,F44, a3) = 4.7937764808 · · · × 1056a80
2 E2

cE
2
41,

Res(F43,F45, a3) = 1.4812312887 · · · × 1077a104
2 E2

cE
2
42,

where Ec = (5a2
2 + 1)2 + 5a2

2 �= 0, and E41 and E42 are polynomials in a2 of degrees 16 and 24, 
respectively, satisfying Res(E41, E42, a2) �= 0. Therefore, there are no solutions to satisfy the 
equations: V10 = V12 = V14 = 0, given in (26).
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Next, with (25) holding, we get V5 ≡ 0 and further solve V6 = 0 to obtain

a4 = 1

9a5a3E0

[
(−2a2a

2
3 + 2b2b

2
3)a

3
5 + (−4a2

2a2
3 + 9a2b2b

2
3 − 5b2

2b
2
3)a

2
5

+ (6a3
2a2

3 + 9a2
2b2b

2
3 − 15b3

2b
2
3)a5 + 27a2

2a4
3 − 27a2a

2
3b2b

2
3

]
, (27)

provided a5a3E0 �= 0, where E0 = a2a
2
3 − b2b

2
3. The equation a3E0 = 0 yields the condi-

tions IX–XI, V(E) and VI(E), as well as a subcase of II(E). Here, we omit the details of the 
discussion for the case a5a3E0 �= 0, since it is similar to the case a5b3 = 0 for V4 = 0.

When (25) and (27) hold, we have a3a5b3E0 �= 0, V7 = V9 = V11 = V13 = V15 ≡ 0 and

V8 = 2F1

1701a5E0
, V10 = 2F2

56 133a2
5E2

0

, V12 = 2F3

19 702 683a3
5E3

0

,

V14 = 2F4

6 206 345 145a4
5E4

0

, V16 = 2F5

949 570 807 185a5
5E5

0

,

where Fj , 1 ≤ j ≤ 5, is a homogeneous polynomial in a2, a3, a5, b2, b3, and also a polynomial 
in a2

3 and b2
3. Taking a5 = 1, and letting A3 = a2

3 and B3 = b2
3, we obtain

F1 = a2
2[135b2(3a2 + 3b2 + 1)(a2 − b2)B3 + 2a2(a2 − 1)(3a2 + 1)(6a2 + 1)]A2

3

+ a2b2[135b2(3a2 + 3b2 + 1)(a2 − b2)B3 − 189a4
2 + 450a2

2b2
2 − 189b4

2 − 189a3
2

+ 171a2
2b2 + 171a2b

2
2 − 189b3

2 − 48a2
2 + 64a2b2 − 48b2

2 − 2a2 − 2b2)]B3A3

+ 2b3
2(b2 − 1)(3b2 + 1)(6b2 + 1)B2

3 ,

F2 = 63[135b2(3a2 + 3b2 + 1)(a2 − b2)B3i + 2a2(a2 − 1)(3a2 + 1)(6a2 + 1)]a4
2A4

3

− a3
2[8505b2

2(3a2 + 3b2 + 1)(a2 − b2)B
2
3 − 18b2(2898a4

2 − 3150a2
2b2

2 + 2421a3
2

− 1050a2
2b2 − 1245a2b

2
2 + 5387a2

2 − 415a2b2 − 4860b2
2 + 1634a2 − 1620b2)B3

− 2a2(a2 − 1)(3a2 + 1)(672a3
2 + 416a2

2 + 1349a2 + 216)]A3
3

− a2
2b2B3[8505b2

2(3a2 + 3b2 + 1)(a2 − b2)B
2
3 + 18b2(a2 − b2)(3024a3

2 + 3024a2
2b2

+ 3024a2b
2
2 + 3024b3

2 + 2358a2
2 + 2553a2b2 + 2358b2

2 + 10 191a2 + 10 191b2

+ 3247)B3 − 16 821a6
2 + 40 635a4

2b2
2 − 6615a2

2b4
2 − 5103b6

2 − 26 397a5
2

+ 15 495a4
2b2 + 28 218a3

2b2
2 − 7182a2

2b3
2 − 2205a2b

4
2 − 8505b5

2 − 47 076a4
2

+ 10 706a3
2b2 + 99 634a2

2b2
2 − 2394a2b

3
2 − 45 612b4

2 − 47 564a3
2 + 38 500a2

2b2

+ 36 100a2b
2
2 − 41 832b3

2 − 13 986a2
2 + 13 724a2b2 − 10 424b2

2 − 864a2 − 432b2]A2
3

+ a2b
2
2B

2
3 [8505b2

2(3a2 + 3b2 + 1)(a2 − b2)B
2
3 + 18b2(3150a2

2b2
2 − 2898b4

2

+ 1245a2
2b2 + 1050a2b

2
2 − 2421b3

2 + 4860a2
2 + 415a2b2 − 5387b2

2 + 1620a2

− 1634b2)B3 − 5103a6
2 − 6615a4

2b2
2 + 40 635a2

2b4
2 − 16 821b6

2 − 8505a5
2

− 2205a4b2 − 7182a3b2 + 28 218a2b3 + 15 495a2b
4 − 26 397b5 − 45 612a4
2 2 2 2 2 2 2 2
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− 2394a3
2b2 + 99 634a2

2b2
2 + 10 706a2b

3
2 − 47 076b4

2 − 41 832a3
2 + 36 100a2

2b2

+ 38 500a2b
2
2 − 47 564b3

2 − 10 424a2
2 + 13 724a2b2 − 13 986b2

2 − 432a2 − 864b2]A3

− 2b4
2(3b2 + 1)(b2 − 1)(378B3b

2
2 + 672b3

2 + 63B3b2 + 416b2
2 + 1349b2 + 216)B3

3 .

The other three lengthy polynomials F3, F4 and F5 are omitted here for brevity. In order to solve 
F1 = F2 = F3 = F4 = F5 = 0, we compute the following resultants:

Res(F1,F2,A3) = −5292FaE1, Res(F1,F3,A3) = −47 628FaFbE2,

Res(F1,F4,A3) = −7 001 316FaF
2
b E3, Res(F1,F5,A3) = −7 001 316FaF

3
b E4, (28)

where

Fa = B6
3a8

2b7
2(3b2 + 1)(b2 − 1)(3a2 + 3b2 + 1)2(a2 − b2)

6(405B3a
2
2b2 − 405B3b

3
2

+ 36a4
2 + 135B3a2b2 − 135B3b

2
2 − 18a3

2 − 16a2
2 − 2a2),

Fb = B2
3a4

2b2
2(3a2 + 3b2 + 1)(a2 − b2)

2,

and Ej , 1 ≤ j ≤ 4, is a polynomial in B3, a2 and b2. Note that all the resultants, Res(F1, Fj , A3), 
j = 2, 3, 4, 5, contain the common factor Fa . Thus, the conditions III(E), XII, XIII and XIII(E)

can be easily obtained from the equation a2b2(a2 − b2) = 0. For example, taking a2 = 0 we have 
F1 = 2b3

2(b2 − 1)(3b2 + 1)(6b2 + 1)B2
3 , and then b2 �= 0 since E0 �= 0. We can get the condi-

tion III(E) if b2 = 1, and the condition XII if b2 = − 1
3 . If b2 = − 1

6 , then F2 = − 49
139 968B3

3 < 0. 
Note that E0 �= 0, A3 > 0 and B3 > 0 due to (25) and (27). The rest factors in Fa can not 
lead to new center conditions. Here, we only present the details for the case b2 − 1 = 0 with 
a2b2(a2 − b2) �= 0. Similar procedures can be applied to discuss other cases.

Assume a2b2(a2 − b2) �= 0. When b2 = 1, and so a2 �= 1, we have

F1 = a2A3(a2 − 1)G1, F2 = a2A3(a2 − 1)G2,

F3 = a2A3(a2 − 1)G3, F4 = a2A3(a2 − 1)G4, (29)

where Gj , 1 ≤ j ≤ 4, is a polynomial in a2, A3 and B3. Then,

Res(G1,G2,B3) = −714 420A2
3a

3
2(1 + 3a2)(3a2 + 4)3(a2 − 1)2G5,

Res(G1,G3,B3) = 173 604 060A3
3a

4
2(1 + 3a2)(3a2 + 4)4(a2 − 1)3G6,

Res(G1,G4,B3) = −2 067 103 542 420A4
3a

5
2(1 + 3a2)(3a2 + 4)5(a2 − 1)4G7,

where Gj , 5 ≤ j ≤ 7, is a polynomial in a2 and A3. We first consider the condition from the 
common factor, (1 + 3a2)(3a2 + 4) = 0. If a2 = − 1

3 , then G1 = −B3I11 and G2 = 1
9B3I12, 

where I11 = 135A3 + 405B3 + 328 and

I12 = 229 635B3
3 + (76 545A3 + 1 499 310)B2

3 − (25 515A2
3 − 758 700A3

− 1 052 136)B3 − 8505A3 + 86 310A2 + 256 312A3,
3 3
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satisfying Res(I11, I12, B3) = 14 696 640(1080A3 + 42 107) > 0. Thus, there are no solutions 
satisfying the equations: G1 = G2 = G3 = G4 = 0, if a2 = − 1

3 . If a2 = − 4
3 , then G1 = 56

3 (4A3 +
3B3) > 0. Next we consider the equations, G5 = G6 = G7 = 0, and have

Res(G5,G6,A3) = 2 789 427 520 800a8
2GsGaG81G82,

Res(G5,G7,A3) = −376 572 715 308 000a12
2 (3a2 + 4)GsGaG91G92,

where Gj1 and Gj2, j = 8, 9 are polynomials in a2 and

Gs = (a2 − 8)(3a2 + 5)(3a2 − 8)(3a2 + 4)2,

Ga = 486a4
2 + 945a3

2 − 1227a2
2 − 2779a2 − 428.

If a2 = 8, we have G5 = 12 544(9A3 + 196)I21 and G6 = 39 337 984(9A3 + 196)I22, where 
I21 = 244 111 680A3 − 240 599 605 103 and

I22 = 672 679 027 641 600A3
3 + 95 795 633 236 828 680A2

3

− 282 894 493 179 800 916 477A3 − 4 376 089 823 211 446 777 789,

satisfying Res(I21, I22, A3) �= 0. Hence, there do not exist solutions to satisfy the equations: 
G5 = G6 = G7 = 0, when a2 = 8. In a similar way, it can be shown that no solutions exist for 
the equations: G5 = G6 = G7 = 0, if (3a2 + 5)(3a2 − 8)(3a2 + 4) = 0. If Ga = 0, we compute 
I31 = Res(Ga, G5, a2) and I32 = Res(Ga, G6, a2), with Res(I31, I32, A3) �= 0. Moreover, we 
get Res(G8i , G9j , a2) �= 0 for i, j = 1, 2, and thus there are no solutions to satisfy the equations: 
G8i = G9j = 0. Therefore, for b2 = 1, no common zeros exist for the equations: F1 = F2 = F3 =
F4 = 0.

For (28), we consider the equations: E1 = E2 = E3 = E4 = 0, under the condition 
a5A3E0Fa �= 0, and get

Res(E1,E2,B3) = −3 050 238 993 994 800FcE5,

Res(E1,E3,B3) = −900 567 811 781 994 726 000FcFdE6,

Res(E1,E4,B3) = −387 664 913 353 600 397 935 934 460 000FcF
2
d E7, (30)

where

Fc = a3
2b19

2 (3a2 + 3b2 + 1)2(3a2 + 1)2(a2 − 1)2(3b2 + 2 + 3a2)

× (a2 + b2 − 1)EaEbEcEd,

Fd = a2b
9
2(3a2 + 3b2 + 1)(3a2 + 1)(a2 − 1),

Ea = a2
2 − (7b2 + 1)a2 + b2

2 − b2,

Eb = 3a2
2 − (6b2 + 2)a2 + 3b2

2 − 2b2 − 1,

Ec = 486a4
2 + (486b2 + 459)a3

2 − (1134b2
2 + 207b2 − 114)a2

2

− (1134b3 + 1323b2 + 321b2 + 1)a2 − 189b3 − 189b2 − 48b2 − 2,
2 2 2 2



1220 Y. Tian, P. Yu / J. Differential Equations 259 (2015) 1203–1226
Ed = (1134b2 + 189)a3
2 + (1134b2

2 + 1323b2 + 189)a2
2

− (486b3
2 − 207b2

2 − 321b2 − 48)a2 − 486b4
2 − 459b3

2 − 114b2
2 + b2 + 2.

Note that all the resultants, Res(E1, Ej , B3), j = 2, 3, 4, contain the common factor Fc.
If a2 + b2 − 1 = 0, we have a2 = −b2 + 1 and

E1 = 2b2IaI41, E2 = 4b2
2IaI42, E3 = 8b3

2IaI43,

where Ia = (3b2 − 2)B3 + (2b2 − 1)2. Then, Ia = 0 yields E1 = E2 = E3 = 0, i.e.,
Res(F1, Fj , A3) = 0, j = 2, 3, 4, when a2 = −b2 + 1. We substitute a2 = −b2 + 1 into Fj

to yield F̃j , j = 1, 2, 3. Next, we need to solve the equations: Ia = F̃1 = F̃2 = F̃3 = 0, and 
obtain

Res(Ia, F̃1,B3) = 2b2(b2 − 1)IbI51, Res(Ia, F̃2,B3) = 2b2(b2 − 1)IbI52,

Res(Ia, F̃3,B3) = 2b2(b2 − 1)IbI53, with Ib = (3b2 − 1)A3 − (2b2 − 1)2.

Note that b2(b2 − 1) �= 0 since Fa �= 0. If Ia = Ib = 0, then F̃1 = F̃2 = F̃3 = 0, and we obtain the 
condition XIV. For I51 = I52 = I53 = 0, we have

Res(I51, I52,A3) = 7b3
2(3b2 + 1)(b2 − 1)3(3b2 − 2)5(2b2 − 1)6JaJ1,

Res(I51, I53,A3) = −21b4
2(3b2 + 1)(b2 − 1)5(3b2 − 2)8(2b2 − 1)9JaJ2,

where (3b2 + 1)(b2 − 1) �= 0, and

Ja = 18b3
2 + 651b2

2 − 748b2 + 214,

J1 = 605 304b4
2 − 2 895 060b3

2 + 2 555 877b2
2 − 373 639b2 − 148 730,

J2 = 378 882 563 472b10
2 − 29 071 087 999 056b9

2 + 180 968 668 598 610b8
2

− 499 455 418 644 927b7
2 + 1 319 463 134 471 394b6

2 − 2 296 405 188 740 916b5
2

+ 2 157 213 472 303 974b4
2 − 1 020 839 133 559 269b3

2 + 181 189 011 015 338b2
2

+ 20 664 548 818 076b2 − 8 460 097 956 280.

If 3b2 − 2 = 0, then Ia = 1
9 �= 0. If 2b2 − 1 = 0, then Ia = − 1

2B3 �= 0. Moreover, we get 
Res(Ja, I51, b2) �= 0 and Res(J1, J2, b2) �= 0. Thus, there are no solutions to satisfy the equa-
tions: I51 = I52 = I53 = 0. For I41 = I42 = I43 = 0, we have

Res(I41, I42,B3) = 18 075 490 334 784 000b8
2(b2 − 1)2(3b2 − 4)2IcIdJ3,

Res(I41, I43,B3) = 1 067 339 6287 786 604 160 000b12
2 (b2 − 1)3(3b2 − 4)3IcIdJ4,

where Ic = 186b2
2 + 235b2 − 528, Id = 186b2

2 − 607b2 − 107, and J3 and J4 are polynomials 
in b2. Similarly, we can show that there are no solutions to satisfy the equations: for I41 = I42 =
I43 = 0.
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For the other factors contained in Fc, using similar procedures, we can show that no more 
center conditions exist, and thus the details are omitted. Since Ej ’s given in (30), j = 5, 6, 7, are 
polynomials in a2 and b2, it is straightforward to prove that the equations: E5 = E6 = E7 = 0
can not result in more center conditions. It should be pointed out that although the computations 
are straightforward, it is very time-consuming and memory demanding.

Finally, we prove the sufficiency for the center conditions I–XIV by deriving their corre-
sponding first integrals. We shall not discuss all the cases one by one. Actually, most of the cases 
belong to three special types of systems. We use the following notation in the remaining proof: 
for any C ∈ {I, . . . , XIV}, C+ denotes the upper system of system (4) under the condition C, 
C− the lower system of (4) under the condition C.

First, it is well known that a quadratic Hamiltonian system is given by

ẋ = −y − Ax2 + 2Bxy + (C + A)y2, ẏ = x + Bx2 + 2Axy − By2

with the Hamiltonian H = 1
2 (x2 + y2) + 1

3Bx3 + Ax2y − Bxy2 − 1
3 (A + C)y3. Under the con-

ditions I–XIV, the upper systems of II+–IV+ are Hamiltonian systems. The general form for I+
and I− (b2 = 0) is given by

ẋ = −y + Ax2 + By2, ẏ = x + Cxy,

with the first integral

H = (Cy + 1)−
2A
C

[
x2

2
+ By2

2(A − C)
− (A − B − C)y

(A − C)(2A − C)
− A − B − C

2A(A − C)(2A − C)

]
,

if C(A − C)(2A − C) �= 0; or

H = e−2Ay
(1

2
x2 + B

2A
y2 − A − B

2A2
y − A − B

4A3

)
, if C = 0, A �= 0,

or H = −C3x2 + B + C

2(Cy + 1)2
+ 2B + C

Cy + 1
+ B ln(Cy + 1), if C �= 0, A = C,

or H = −4A3x2 + 2A + B

8A3(2Ay + 1)
− A + B

4A3
ln(2Ay + 1) + By

4A2
, if C �= 0, C = 2A.

Systems VI+, XII+ (b3 �= 0) and XIII± can be written in the form,

ẋ = −y − Ax2 + 2Bxy + Ay2, ẏ = x − Bx2 − 2Axy + By2,

with the first integral,

H = 4A2x2 + 4A2y2 − 2Ay − 2Bx + 1

2Ay + 2Bx − 1
.

All the remaining upper systems and lower systems except X±, XI± and XIV± can be written in 
the form,
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ẋ = −y + Axy, ẏ = x + Bx2 + Cxy − By2, (31)

with the first integral,

H = (−Ax + 1)2Bω(Bx + C

2
y − ω

2
y + 1)(ω+C)A(Bx + C

2
y + ω

2
y + 1)(ω−C)A,

if AB(ω2 − C2)ω �= 0, where ω = √
4AB + 4B2 + C2. When B = 0, system (31) has the first 

integral,

H = 1

2
y2 − 1

A2
(Ax + ln(1 − Ax)), if A �= 0, C = 0,

or H = 1

C2
(Cy − ln(Cy + 1)) − 1

A2
(Ax + ln(1 − Ax)), if AC �= 0,

or H = 1

C2
(Cy − ln(Cy + 1)) + 1

2
x2, if A = 0, C �= 0.

When B �= 0, we have the first integral given by

H = 4 ln(2Bx + Cy + 2) − 16B2

4B2 + C2
ln(|(4B2 + C2)x + 4B|)

+ 8(Bx + 1)

2Bx + Cy + 2
, if ω = 0.

For Bω �= 0, we obtain the first integral,

H = C − ω

2B2ω
ln(2Bx + Cy + ωy + 2) − C + ω

2B2ω
ln(2Bx + Cy − ωy + 2) + x

B
,

if A = 0, or

H = − 1

C2
ln(Bx + Cy + 1) + B2 + C2

B2C2
ln(Bx + 1) + B2y + C

B2C(Bx + 1)
,

if ω2 = C2.
For the center condition XIV, we have the following first integrals,

H± = 1

2
x2 + 1

2
y2 + a5

3
x3 ∓ a5(a5 − 2b2)

α±
x2y − (a5 − b2)xy2 ∓ α±

3
y3

+ b2(a5 − b2)

4
x4 ∓ a5b2(a5 − 2b2)

α±
x3y − 3a5b2(α

2± − b2
2)

2α2±
x2y2

± a5b2(a5 − b2)

α
xy3 − a2

5b2(a5 − 2b2)

2
y4,
± 4α±
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where α+ =
√

−a2
5 + 3a5b2 �= 0, α− =

√
2a2

5 − 3a5b2 �= 0. XIV±(α+ = 0) and XIV±(α− = 0)

are in the form of I±. Under the center condition X, system (4) is smooth, and has a center at the 
origin. Under the center condition XI, system (4) is symmetric with respect to the x-axis.

Therefore, for the fourteen center conditions we have obtained the first integrals H+(x, y)

and H−(x, y) for the upper system and the lower system in (4) near the origin. More specifically, 
for any center conditions I, . . . , XIV, either both H+(x, 0) and H−(x, 0) are even functions, or 
H+(x, 0) ≡ H−(x, 0), or H+(x, 0) = H+(ρ, 0) and H−(x, 0) = H−(ρ, 0) have common zeros 
x(ρ) satisfying x(ρ) → 0− as ρ → 0+.

This finishes the proof of Theorem 1.

Proof of Theorem 2. For system (3) with a1 = b1 = 0, δ = b6 = 0, b5 = a5, we add perturba-
tions on ak as ak → ak + εpk and bk → bk + εqk , k = 1, . . . , 6, and δ = εp0, where 0 < ε � 1. 
Then, V1,1 = e2p0πε − 1, which is the ε-order term in V1. Taking p0 = 0, we get V1,1 = 0, and 
then compute the Lyapunov constants, which are polynomials of ε. To prove the existence of 10
small-amplitude limit cycles, we need to solve the ε-order Lyapunov constants, i.e., the coeffi-
cient Vk,1 of ε in the kth-order Lyapunov constant Vk for all k > 1.

First, we get

V2,1 = 2

3
(2p1 + p5 − 2q1 − q5).

Setting p5 = −2p1 + 2q1 + q5 yields V2,1 = 0 and then we obtain

V3,1 = −π

8

[
(a4 − 3)(p1 + q1) + (1 − a5)(p6 + q6)

]
.

Letting

p6 = −q6 − (a4 − 3)(p1 + q1)

1 − a5
,

results in V3,1 = 0. Similarly, we can linearly solve the polynomial equations one by one, for 
V4,1 = 0 using p4, for V5,1 = 0 using q1, for V6,1 = 0 using p2, for V8,1 = 0 using p3, for 
V10,1 = 0 using q6 (V7,1 = V9,1 ≡ 0) and then obtain

V12,1 = − 32p1

125E0
FaFb, V14,1 = − 32p1

73 125E0
FaFc, V11,1 = V13,1 ≡ 0,

where

Fa = −(a4 − a5 − 2)(a2
4a5 + a4a

2
5 − 4a4a5 − 2a2

5 − 3a4 + a5 + 10),

Fb = 94 623 744a14
4 a6

5 + 930 466 816a15
4 a4

5 + 615 054 336a14
4 a5

5 − 275 404 800a13
4 a6

5

+ 1 342 162 944a12
4 a7

5 + 2 270 969 856a16
4 a2

5 + 5 488 177 152a15
4 a3

5

− 2 424 275 968a14
4 a4

5 + 10 977 847 296a13
4 a5

5 + 9 213 454 848a12
4 a6

5

+ 924 797 952a11a7 + 70 958 592a10a8 + · · · ,
4 5 4 5
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Fc = 3 643 883 520a16
4 a6

5 + 703 622 160 384a14
4 a8

5 + 35 831 521 280a17
4 a4

5

+ 23 685 242 880a16
4 a5

5 + 7 044 986 537 984a15
4 a6

5 + 4 776 306 345 984a14
4 a7

5

− 2 047 910 092 800a13
4 a8

5 + 9 980 323 651 584a12
4 a9

5 + 87 453 204 480a18
4 a2

5

+ 211 345 244 160a17
4 a3

5 + 18 137 210 559 488a16
4 a4

5 + 43 606 528 505 856a15
4 a5

5

− 16 936 192 867 328a14
4 a6

5 + 83 213 921 538 048a13
4 a7

5 + 70 628 108 476 416a12
4 a8

5

+ 6 876 797 571 072a11
4 a9

5 + 527 648 090 112a10
4 a10

5 + · · · ,
E0 = 436 926 698 208a7

4a7
5 + 4 296 445 865 712a8

4a5
5 + 318 301 099 644 528a7

4a6
5

+ 436 926 698 208a6
4a7

5 − 314 587 222 709 760a5
4a8

5 + 10 486 240 756 992a9
4a3

5

+ 3 127 375 663 540 128a8
4a4

5 + 2 056 104 220 650 480a7
4a5

5

− 4 828 695 405 245 712a6
4a6

5 − 1 589 648 559 755 256a5
4a7

5

+ 509 238 066 761 424a4
4a8

5 − 520 052 002 542 072a3
4a9

5 · · · .

By solving Fb = Fc = 0, we obtain a solution pair,

a4 = 5.9943463371 · · · , a5 = −8.1486126831 · · · , (32)

which satisfies

det

[
∂(V12,1,V14,1)

∂(a4, a5)

]
= −49.555 · · · �= 0.

Setting the non-used parameters q2 = q3 = q4 = q5 = 0, and p1 = 1, we obtain the following 
critical parameter values:

p2 = 0.3000212842 · · · , p3 = 0.8220632161 · · · , p4 = 15.5929246779 · · · ,
p6 = −4.6242893306 · · · , q6 = 4.6242893306 · · · , p5 = −4, q1 = −1, (33)

under which the Lyapunov constants become Vj,1 = 0, j = 2, 3, . . . , 15, and V16,1 = 13.3 · · · . 
Thus, with (32) and (33) holding, we have Vj,1 = 0, j = 2, . . . , 14, but V16,1 �= 0. Therefore, we 
can take perturbations in the backward order: on a5 for V14,1, on a4 for V12,1, on q6 for V10,1, on 
p3 for V8,1, on p2 for V6,1, on q1 for V5,1, on p4 for V4,1, on p6 for V3,1, on p5 for V2,1, on p0
for V1, to obtain 10 small-amplitude limit cycles bifurcating from the origin.

The proof of Theorem 2 is complete.

Remark 8. Theorem 2 guarantees the existence of 10 small-amplitude limit cycles in system (3)
with the perturbations in a neighborhood of the critical point, defined by the center conditions 
given in Theorem 2, near the origin (i.e., near ρ = 0). In order to estimate the small-amplitude 
limit cycles, one needs to obtain the approximation of the 10 positive roots solved from the 
truncated polynomial equation of (6), d(ρ) = V1,1 ρ+V2,1 ρ2 +· · ·+V16,1 ρ16 = 0. This requires 
to find a set of explicit perturbation values to have a true realization, which is not an easy task, in 
particular, for high multiple limit cycles bifurcations.
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5. Conclusion

In this paper, we have studied planar switching systems, in particular, a switching Bautin 
system. We have developed a computationally efficient algorithm to compute the Lyapunov con-
stants for planar switching systems. With the help of this algorithm and Maple built-in command 
‘resultant’, we present, with rigorous proof, a complete classification on the center problem for 
the Bautin switching system under the condition a6b6 = 0. Moreover, we have selected one of 
the center conditions to construct a special integrable system and then perturbed this system to 
obtain 10 small-amplitude limit cycles, which improves the existing result. The case a6b6 �= 0
causes extreme difficulty in solving multivariate polynomial equations based on the Lyapunov 
constants. We hope to develop more efficient methodology to find the solutions from these poly-
nomial equations in order to classify the center problem and obtain more limit cycles. An even 
more challenging research project is to study the center problem of the generic planar switching 
system (3).
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