Available online at www.sciencedirect.com

Journal of

CrossMark SClenceD| reCt Differential
5 Equations
ELSEVIER J. Differential Equations 260 (2016) 971-990 —_—

www.elsevier.com/locate/jde

Bifurcation of ten small-amplitude limit cycles
by perturbing a quadratic Hamiltonian system
with cubic polynomials

Yun Tian *°, Pei Yu **

& Department of Applied Mathematics, Western University, London, Ontario, N6A 5B7 Canada
b Department of Mathematics, Shanghai Normal University, Shanghai, 200234, PR China
Received 1 November 2013; revised 4 September 2015
Available online 19 September 2015

Abstract

This paper contains two parts. In the first part, we shall study the Abelian integrals for Zotadek’s exam-
ple [13], in which the existence of 11 small-amplitude limit cycles around a singular point in a particular
cubic vector field is claimed. We will show that the bases chosen in the proof of [13] are not independent,
which leads to failure in drawing the conclusion of the existence of 11 limit cycles in this example. In the
second part, we present a good combination of Melnikov function method and focus value (or normal form)
computation method to study bifurcation of limit cycles. An example by perturbing a quadratic Hamil-
tonian system with cubic polynomials is presented to demonstrate the advantages of both methods, and
10 small-amplitude limit cycles bifurcating from a center are obtained by using up to Sth-order Melnikov
functions.
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1. Introduction

The well-known Hilbert’s 16th problem [1] has been studied for more than one century, and
the research on this problem is still very active today. To be more specific, consider the following
planar system:

X = Pu(x,y), y=0nlx,y), (D

where P,(x,y) and Q,(x, y) represent nth-degree polynomials in x and y. The second part of
Hilbert’s 16th problem is to find the upper bound, called Hilbert number H (n), on the number of
limit cycles that system (1) can have.

The progress in the solution of the problem is very slow. Even the simplest case n = 2 has not
been completely solved, though in the early 1990’s, Ilyashenko [2] and Ecalle [3] independently
proved that the number of limit cycles is finite for any given planar polynomial vector field.
For general quadratic polynomial systems, the best result is H(2) > 4, obtained more than 30
years ago [4,5]. Recently, this result was also obtained for near-integrable quadratic systems [6].
However, whether H (2) = 4 is still open. For cubic polynomial systems, many results have been
obtained on the lower bound of the Hilbert number. So far, the best result for cubic systems is
H(3) > 13 [7,8]. Note that the 13 limit cycles obtained in [7,8] are distributed around several
singular points. A comprehensive review on the study of Hilbert’s 16th problem can be found in
a survey article [9].

In order to help understand and attack Hilbert’s 16th problem, the so-called weakened
Hilbert’s 16th problem was posed by Arnold [10]. The problem is to ask for the maximal number
of isolated zeros of the Abelian integral or Melnikov function:

M, 8) = f Ox, y)dx — P(x, y)dy, @)
H(x,y)=h

where H(x,y), P(x,y) and Q(x, y) are all real polynomials in x and y, and the level curves
H (x,y) = h represent at least a family of closed orbits for 4 € (hy, h>), and § denotes the param-
eters (or coefficients) involved in P and Q. The weakened Hilbert’s 16th problem itself is a very
important and interesting problem, closely related to the study of limit cycles in the following
near-Hamiltonian system [11]:

)‘C:Hy(x7y)+8p(-xv y)v ).’:_Hx(xa)’)'FSQ(x» )’)» (3)

where 0 < ¢ « 1. Studying the bifurcation of limit cycles for such a system can be now trans-
formed to investigating the zeros of the Melnikov function M (k, §), given in (2).

When we focus on the maximum number of small-amplitude limit cycles, denoted by M (n),
bifurcating from an elementary center or an elementary focus, one of the best-known results
is M(2) = 3, which was proved by Bautin in 1952 [12]. For n = 3, several results have been
obtained (e.g. see [13—15]). Among them, in 1995 Zotadek [13] first constructed a rational Dar-
boux integral to study existence of 11 small-amplitude limit cycles in cubic vector fields. This
pioneer work later motivated many researches in this area to study bifurcation of limit cycles.
The rational Darboux integral in [13] is given by
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Ho i _ (x* +4x2 + 4y)> ’ @
A @3 +5x3 4 5xy +5x/2 + a)
which generates the dynamical system in the form of
x=x +xy+5x/2+a,
y= —ax’ + 6x2y —3x2+ 4y2 + 2y — 2ax, ®)

with the integrating factor M = 20 f14 f2_5.

It can be shown that for a < —2%/4, system (5) has a center Co = (—a/2, —a2/4 —1/2) and
five (real or complex) critical points (r, —r> — 5/2 — a/r), where r satisfies the polynomial
equation 7> — 10r — 4a = 0. In addition, system (5) has a saddle point and a non-elementary
critical point at infinity. Let o = Hy(Cp) = —2/a. Around Cy, there exists a family of periodic
orbits given by {y : Hy(x,y) =h, 0 <h — hg < 1}. yp, approaches Cp as h — hg.

Recently, Yu and Han [14] applied a different method to study system (5) and only got 9
small-amplitude limit cycles around the center Cy. This difference motivated us to reconsider
system (5) carefully and finally find some not-easy-to-find mistakes in the proof of [13], which
lead to failure in drawing the conclusion of existence of 11 limit cycles. In the next section, we
shall present a detailed analysis on the Abelian integrals of system (5) and point out where the
mistakes were made in [13]. However, we must emphasize that although some flaws were found
in [13], the idea and methodology presented in this paper are still very valuable and useful. In
fact, our work was motivated by this paper as well as that [17].

In the second part, we will present a good combination of higher-order Melnikov function
method and focus value computation method to study the number of small-amplitude limit cycles.
As a matter of fact, in proving existence of small-amplitude limit cycles, higher-order Melnikov
functions are equivalent to higher e-order focus values. These two methods have their advantages
and disadvantages: Melnikov function method can be used to show the vanishing of a particular
order Melnikov function, which is equivalent to show the vanishing of all this particular e-order
focus values, and this cannot be proved by using focus value computation since one cannot ver-
ify an infinite number of focus values. On the other hand, for higher-order Melnikov functions,
it becomes extremely difficult to prove the independence of a choosing set of basis, while this
is straightforward by using focus value computation. In particular, we present an example to
demonstrate this good combination method and obtain 10 small-amplitude limit cycles by per-
turbing a quadratic Hamiltonian system with 3rd-degree polynomial functions.

In general, a perturbed quadratic Hamiltonian system can be described by

Y=y+axy+ay*+eP(x,y,¢),
. » 1y
y=—x+x —Ealy +eQ(x,y,¢), (6)

where P and Q are nth-degree polynomials in x and y with coefficients depending analytically
on the small parameter . When ¢ = 0, system (6) has a cubic Hamiltonian,

_1 2 2 _1 3 l 2 l 3
H(x,y)—z(x +y) 3% +2a1xy +3azy, @)

and its parameters a| and a; take values from the set,
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Q:{(al,az)eRZ:—lfal <2, O§a2§(l—%)\/1+a1}.

The Hamiltonian given in (7) is actually the so-called normal form [16] for all quadratic Hamil-
tonian systems which have a center at the origin. There exists a family of closed ovals around the
origin given by {I' : H(x,y) =h, h € (0, $)}.

For any 4 € (0, %) the displacement function d(/, €) of system (6) has a representation

d(h, &) =eM(h) + &> Ma(h) + > M3(h) + - - -, (8)

where M;(h) is called the ith-order Melnikov function, particularly the higher-order Melnikov
functions if i > 2. Then, we may determine the number of the limit cycles of system (6) emerging
from the closed ovals {I';} by studying the zeros of the first non-vanishing Melnikov function
M;(h)inh € (0, 1).

Suppose M1(h) #£ 0 in (8). Denote Z(n) the sharp upper bound of the number of zeros of
M (h) for system (6), where n = max(deg(P), deg(Q)). Gavrilov [18] proved Z(2) = 2 for the
Hamiltonian H with four distinct critical values (in a complex domain). Horozov and Iliev [19]
gave a linear estimate Z(n) < 5(n + 3). Also, some sharp upper bounds were obtained for certain
particular cubic Hamiltonians, for example: n — 1 for the Bogdanov—Takens Hamiltonian, H =
%()c2 +y2) — %x3 (see [20]), and [% (n — 1)] (where the notation [ - ] denotes the maximal integer
of the variable) for the Hamiltonian triangle, H = %(x2 + yz) — %x3 +x y2 (see [21]).

Moreover, for the Bogdanov—Takens Hamiltonian, there are some results on the upper bound
of the number of zeros of the first nonvanishing higher-order Melnikov function My (k). Li and
Zhang [22] got a sharp upper bound for k = 2: 2n — 2 when n is even and 2n — 3 when # is odd.
Iliev [17] obtained a sharp upper bound 3n — 4 for k = 3, by applying the Francoise’s proce-
dure [23] for computing higher-order Melnikov functions. The higher-order Melnikov functions
can be also easily expressed via iterated integrals, which will be seen in the next section.

In this paper, we study the number of small-amplitude limit cycles in (6) bifurcating from
the origin, using higher-order Melnikov functions. Hereafter we suppose P and Q are cubic
polynomials in the form of

00 3
P(x,y,e)=Y &" ' Pu(x,y) with Py(x,y)= > aijmx'y’,

m=1 i+j=1
oo 3 o

0,y &)=Y &' Qulx,y) with Qu(x, )= Y bijmx'y’. ©)
m=1 i+j=1

Our main result is given below, and its proof will be given in Section 4.

Theorem 1. Let the polynomials P and Q in (6) be given by (9). Then for any 1 <k <5, there
exist real values for (ay, az) € Q such that system (6) can have L%J + 4 small-amplitude limit
cycles around the origin under proper cubic perturbations, when My (h) is the first non-vanishing
Melnikov function in (8).

Remark 1. It follows from Theorem 1 that 10 small-amplitude limit cycles exist in the vicinity
of the origin of system (6) when k = 5.
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The rest of the paper is organized as follows. In the next section, we consider the example
given in [ 13], and show that the bases chosen in the proof are not independent, leading to failure in
drawing the conclusion of the existence of 11 limit cycles. In Section 3, we present some results
for polynomial one-forms with respect to the Hamiltonian (7), which are needed for the proof of
Theorem 1 in Section 4. Then, in Section 4 by choosing special forms for the polynomials P and
Q without loss of generality, we prove Theorem 1. Finally, conclusion is drawn in Section 5.

2. Abelian integrals of system (5)

In this section, we consider system (5) and briefly describe the methodology used in [13].
Suppose the perturbed system of (5) is described by

% =M ""Hoy +ep(x,y,e),
y=—M""Ho +eq(x,y,¢), (10)

where p(x,y,¢) and ¢g(x,y, ¢) are polynomials in x and y with coefficients depending ana-
lytically on the small parameter ¢, and max(deg(p), deg(g)) < 3. Note that the non-perturbed
system (10) (i.e. ¢ =0) has a center at Cy.

Let S be a section transversal to the closed orbit {y;, : Hy(x,y) =h, 0 <h — ho < 1}, with
as a parameter, we define the Poincaré map P (h, €) of system (10), and thus the corresponding
displacement function, d(k, ¢) = P(h, €) — h, has the form

dh,e)=¢ / M(qdx — pdy) = eM;(h) + &> My (h) + O(&%), (1)
L(h,e)

where L(h,¢) is a trajectory of the perturbed system (10). We can use the first non-vanishing
Melnikov function My (k) in (11) to investigate the number of the limit cycles around the center
Co. Generally, the zeros of My (h) correspond to the limit cycles of system (10) around C.

Let @ = gdx — pdy, deg(zw) = max(deg(p), deg(q)). Then, the first-order Melnikov func-
tion M1 (h) can be expressed in the form of

Ml(h)zngmg:o:hf o
J fif

Yh

e=0

When M (h) =0, we may use an iterated integral to express the second-order Melnikov function
M (h). The first integral of system (10) can be approximated as H, = Hy — ¢ H|, where the
function Hj is defined by H{(B) = ff M@ |—, evaluated along the orbit y;,, with A =y, (S
and B € yj,. Thus, for system (10) we have the second-order Melnikov function, given by

Mﬁh):%( / Mzzr)

He=h

12)

e=0

Suppose that the polynomials p and ¢ are expanded as
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p(x,y, &) =pi(x,y) +epa(x, y) + O(e?),
q(x,y,8) =qi1(x,y) +£q2(x, y) + O(&?).
Further, let @w; = g;idx — p;dy,i =1, 2. Then (12) can be rewritten as

_ d _ d(Mw) @2
Mz(h)_%( / Mwl) 6=0+wa2_?§7dH0 H1+h¢.flf2, (13)
Yh

H.=h Yh Vh

where d(:iw—l_gl) is the Gelfand-Leray form (see [26]).

In [13], the second-order Melnikov function M;(h) was used to study the small-amplitude
limit cycles of system (10) bifurcating from the center Cy. More precisely, twelve Abelian inte-
grals 1, (h) = fyh wi/(fif2),i=1,...,12, were chosen for (13), where one-forms w; are given
as follows:

o =x"ldx, k=1,2,3,4, ws=(18x>+18y+5)dx, we=xydx,
w7 =x%ydx, wg=xy’dx, wo=y3dx, wio=xy>dy, i1 =ydy,

w12 = y2(5 — 3x%)dx + xy(x* + 1)dy.

Then, by showing the independence of the integrals I, (h), 1 <i <12, itis claimed in [13] that
11 small-amplitude limit cycles can bifurcate from the center Cy after suitable cubic perturba-
tions.

Later, system (10) was re-investigated by using the method of focus values computation [14].
Based on the computation of e-order and g2-order focus values, the authors of [14] showed that
system (10) could have 9 small-amplitude limit cycles bifurcating from the center Cq. This ob-
vious difference motivated us to study system (5), and finally to find that any vector of the linear
space of integrals 1, (h) = fyh w/(f1f2), deg(w) < 3, can be expressed as a linear combination
of the ten integrals I, (h), 1 <i <11, i # 4. In the following, we show the details.

Nine one-forms n;, 1 < j <9, were obtained in [13] satisfying I, i (h) =0, where

ny = (x3 +2x)dx +dy,

m= (=3ax? + 12xy — 6x — 2a)dx — (3x? + y+ %)dy,

m = (6x% + 8y +2)dx — xdy,

N4 = (—?aax3 + 12x2y —6x% — 2ax)dx — (2)63 —a)dy,

ns = (ax® +3x% + 4y2 + 2ax)dx — xydy,

ne = (—ax> + 6x2y —3x% 4+ 4y2 +2y —2ax)dx — (x> + xy + %x +a)dy,

n = (3ax2y — 12xy2 + 6xy + 2ay)dx — (3x2y —ax3—3x2+ 3y2 — %y —2ax)dy,
ng = (—=5x3 — Txy + %x +a)dx + x2dy,

ng = (z—zlxy —Txy? 4+ ay)dx + (2x%y — %xZ +ax + y)dy.

We find another one-form 79, given by

mo=[—Fax® — 3y3 — (2a® — $)x? — 9axy + 6y + Lax + a*|dx + xy*dy,
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which can be shown to satisfy I,),,(h) = 0. To achieve this, consider the Darboux integral, H, =
(fireg)®
(rtegots Wit

g1 = %x“ + %ax3 + %xzy + %xz — %yz —4dax +4y,

=10 4 53 333 52 324 10, 5 10,y —
g2 =3ax +3yx 5X 3Xy 3aX° + 3Xy — 5x + zay —a,

which yields the following system,

X = M_lHoy — z;‘xy2 + 82[—%)67 + %ax6 + gxsy — %xs 4ax4y — %x3y2

-9
17 4,83 ,2,.3_ (34,16 2.3 4 2 1.2, 2 2
+ gax” +3x7y 4+ gxy —(g—i—ga)x—gaxy—gxy + gax

+3xy —3ay’ — 3 — 3aP)x + fay —al,
y=—M""Hy, +e[—%ax3 - §y3 — (2a* - %)x2 —9axy + 6y + %ax +a?]
+ 82[—%ax7 — %x6y + (g,—la2 + %)x6 + %axsy + §x4y2 + %a}c5 —2x*y
— gax3y2 — %x2y3 + (% — %az)x4 + %ax‘q’y +5x%y? + %y4 + %aﬁ
— 13—7x2y — 23—0a2x2y — %axy2 — %)ﬁ + (% +3a%)x? — %axy + %yz
- %ax -2~ 13—0a2)y —a?].
The above system has a center near Cy when a < —25/% and |e| < 1. Thus, all the Melnikov
functions of the above system vanish, and M;(h) = hly,,(h) =0, implying that I,,,,(h) = 0.
Next, a direct calculation using n;, 1 < j <9, yields
$am —na) = Qax3 — 6x%y +3x2 + 2ax)dx + x3dy £ i,
2501 +2m 4+ 6m8) = (—Fx3 = 3ax? — 9xy + 3x + a)dx — ydy £ ijp,
$(5n1 + 22 + 2an3 + 9ng + 2n9)
= (—10x> — %xy2 + %ax2 — %xy + %x + %ay + %a)dx + x2ydy £ ijo,
120 = 10)n1 — 8n2 — 1dans —2ans — 4n7 — 21y — 6no] = [(33 + 3a°)x
—3ax2y + %xy2 —dax? = 3xy + (%a2 - %)x - %ay - %a]dx +y2dy £,
%(36177] — 513 —n4) —n5+n6 = (ax® — 18x% — 18y — 5)dx = aws — ws £ 7.

Now, suppose we have 7> = f and % = g for any one-form w = fdx + gdy. By noticing that

m_ n 3 N 3 N5 )
P ___ys o= X, =X, ___xy7 __y ’
dy dy dy dy dy dy

78 2 M9 2 Mo ) 76 16

— =x", —=x"y, —=xy°, —=0, — #£0,

dy dy Y ay Y dy 8)67,é

we can see that n, 12, 13, 74, 15, N6- 17, N8, N9 and no are linearly independent. Thus, 719
does not lie in the span of n;, 1 < j <9, and so it follows from 1,7/. (h)y=0,j=1,...,10, that
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the dimension of the linear space of integrals I, (h), deg(w) < 3 is at most 10. Therefore, the
independence of integrals 1, (h), 1 <i <11, proved in [13] does not hold, and there are at most
10 independent integrals /,,(h) with deg(w) < 3. The basis can be chosen as I, (h), 1 < j <11,
J # 5, since I (h) = al,, (h) — 1,5 (h) =0, and thus we can remove I, (1) from the basis given
n [13].

Regarding wj;, the authors have obtained a one-form @, deg(®) = 3, based on focus value
computation such that the corresponding focus values for wj» = w1, + @ vanish up to a suffi-
ciently high order. This, together with the above result that 1, (4) can be removed from the basis,
implies that using w;, 1 < j < 12, can only yield 9 limit cycles.

3. Cubic Hamiltonian with cubic perturbations

In order to prove Theorem I, we need some preliminary results for cubic Hamiltonian given
in (7) with cubic perturbations. Using the idea and methodology of Zotadek [13] and [17], we
have the following results summarized in Lemmas 2-5.

Let w;j = x'yldx and oij = xiyldy.

Lemma 2. For the cubic Hamiltonian given in (7), the following identities hold.
1 i+l i .
(a) ojj = .—d(xly/+ ) — jl?a)i,wur],
j=2i+4 -2 i—2
(b) wij =wi—1,j + 21+4 Wi, j42 — j+zwi73,j+2 — T3R0i-3,j+3

xszdeH_Fd(mxz—Zyﬁ-Z_i_%xi—lyj+2+fl_2xi—2yj+3)7 P>

o _ 3] . 1 . ai(j=3)+6j-2 . ai(j+1)
(c) wo,j = az(j+1)[Hw0sJ—3 —§w1,j—3— G-  ®0.,j-1~ 3(] D @1,j-1
+”0,](x’)’)dH+dR0,](x7 )’)], .] = 3,
3 . (+2ai L aGjAdA6j42
(d) wl,j = m[le,]—S - Wwo,]ﬂ + g—j-a)o,] - le,]—l

“711’2(13“‘1)2400] 1— 6601,,'—3 +r1,j(x, y)dH +dRy j(x, y)], j>3;

where r; j(x,y) and R; j(x,y) are polynomials in x and y with degreesi + j —2 and i+ j +1,
respectively.

Proof. A direct calculation using integration by parts results in the formula (a). From the Hamil-
tonian, we have the equation %x3 = %(x2 +y) + %alxyz + %a2y3 — H, giving the relation,

x2dx = xdx + ydy + a—lyzdx +ayxydy +a2y2dy —dH,

2

which in turn yields

-2
wj,j =wi-1,j +0i- 2/+1+ a)l 2,j+2 ta10i—1,j+1 + a20i— 2/+2_xl jdH i>2. (14)

2

Then, combining (14) with the formula (a) we obtain the formula (b).
Similarly, the equation, %a2y3 =H — %(x2 + yz) + %x3 — %alxyz, generates
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1 | 1 .
gaﬂwJ==fhmJ—3—-EwHQJ—3—-Ewnfq—%ngsJ—3—-EaNW+Lj—L =3 (15

Finally, the formulas (c) and (d) follow the formula (b) and (15). O

From Lemma 2, we know that any polynomial one-form w, deg(w) = m, can be expressed in
the form of

m—i

w=r(x,y)dH +dR(x,y) + Z Zai,jwi,j-
i=0,1 j=0

The next lemma shows that there also exist some relationships among the one-forms w; j,
i=0,1.

Lemma 3. For any non-negative integer, m mod 3 # 2, there exist B; j m, Tm(x, y) and Ry (x,y)
satisfying the following identity,

m—i
DO Bijmwij =Fu(x. »)AH +d Ry (x, y), (16)
i=0,1j=0

where ﬁm (x,y) and 1, (x, y) are polynomials in x and y of degrees m + 1 and m — 1, respec-
tively; and B; j m are polynomials in ay and az, with By 0,0 = B1,0,1 =1, Bo,1,1 =0, and

m+4 a%
Bo,m+3,m+3 =m(02,30,m,m + Tﬂl,mfl,m)v
m+4
Bl,m+2,m+3 Zm(alﬂo,m,m +axBi,m—1,m), (17)

if B1,-1,0 is defined as B1,—1,0 =0.
Proof. We use the method of mathematical induction to prove this lemma. It is easy to see that

the conclusion is true for m = 0, 1. Now, suppose (16) holds for m mod 3 # 2. Then, we prove
that (16) also holds for m 4 3. Multiplying (16) by H on both sides yields

m—i
> > BijmHaojj=HindH + HdR,,. (18)
i=0,1 j=0
The right-hand side of (18) can be rewritten as

HFndH + HdR,, = (HF\ — Ry)dH + d(HR,,). (19)

For the left-hand side of (18), it follows from the formulas (c) and (d) in Lemma 2 that
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Hw;j=§& ji3+mijy3, i +j<m,

Hgy = 20D am+d
0,m = 3(m +3) 0,m+3 3m+2) 1L,m+2 T 1N0,m+3,
2
aj(m+4) ar(m +4)
ey 3mt2) , m>0, 20
W1,m—1 6(m +3) @0,m+3 + 3m+2) O m+2 + Nmt2, M > (20)

where n; j =r; jdH + dR; j, and &; ; is a one-form with deg(&; ;) <i + j. Then, substituting
(20) into the left-hand side of (18) yields

ZZﬂ Hony = o + L1 o
i,j i, j — az2pP0,m,m ~ Plm—1,m)@0,m+3
farf s, 3(m+3) 2
m—+4
3(m+2)
m—i

+ 0 B i), 2n

i=0,1 j=0

(al,BO,m,m + aZ,Bl,m—l,m)a)l,m+2

Finally, combining (21) with (18) and (19) shows that the conclusion is also true for m + 3.
The proof of the lemma is complete. O

Noting that Bo.00 = B1.0.1 = 1. B1,—1,0 = Po,1.1 =0, we know from (17) that Bk n—k m In
Lemma 3 are polynomials in a; and ay with positive coefficients for m mod 3 =k, k < 2. Thus,
it follows from (16) that wy ,—k, m mod 3 = k < 2, can be expressed in terms of other one-forms
w;,j, i+ j <mand r,dH + dR,,. This gives the following lemma.

Lemma 4. Any polynomial one-form w of degree m can be expressed as

I<j<m—i
w=r(x y)dH+dRx. )+ Y Y ajo;. (22)
i=0,1 j mod 330

where R(x,y) and r(x, y) are polynomials in x and y of degrees m + 1 and m — 1, respectively.

Now, we use (22) to obtain

1<j<m—i

M(h)_ygw_z > al,fa),/, (23)

i=0,1 j mod 35#0 T,

which implies that any Melnikov function M (h) = frh w, deg(w) = m, can be expressed as a
linear combination of integrals I;;(h) = frh w;ij, 1 =0,1, j mod 3 # 0. A reasonable expectation
is that the integrals I; j(h) form a basis for the linear space of Melnikov functions M (h) = fl’h .
Actually, it will be seen in the next section that the space of Melnikov functions M (k) could be
Chebyshev with accuracy at least 2. So the number of limit cycles in system (6) is not determined
by the number of elements in the basis. Further, the coefficients «; ; in (23) could become very



Y. Tian, P. Yu/ J. Differential Equations 260 (2016) 971-990 981

complicated when M (h) is a higher-order Melnikov function of system (6). In this case, it is
really not easy to prove the independence of ¢; ;s, which is the second big obstacle in the use of
the independence of the integrals /; ;(h) to determine the number of limit cycles.

To overcome the above mentioned difficulty, we turn to an alternative, which decreases the
complexity in computing M (h) by (22), but it still does not solve the problem of independence
of basis. Let w; = Q(x, y)dx — P;(x, y)dy. Then, for higher-order Melnikov functions of sys-
tem (6), we have the following result.

Lemma 5. (Cf. [17,23].) Let (9) hold. Assume that in system (6) for some k > 2, Melnikov
function M,,,(h) = 9§l"h D, =0,1<m<k—1, and ®,, can be expressed as

O = rmdH + d Ry, 4)

Then,

M;Ah):% (a)k~|— Z Viwj)y

£, i+j=k

rmdH +dRy=wn+ Y riwj, 1<m<k—1. (25)
i+j=m

Proof. We prove this lemma by using the method of mathematical induction. First, write system
(6) in the Pfaffian form,

dH — ew) — %wy —--- = 0. (26)
Multiplying (26) by 1 +ery + ...+~ 1r;_; and combing the like terms yield

dH +e(ridH — w1) + e*(rdH — riw; — ) + - -

+ X (—rm1w) — - = riwg—1 — wg) + 0 (T =0,
which, by using (25), can be written as
dH —edRy — - — " VAR _ — X (ri_yoo1 + -+ - + w1 + wp) + 05 = 0.

Then, we integrate the above equation along the phase curve y from point A to point B, which
are used to define the first return map. Note that

d(h,e) = /dH = H(B)— H(A) = O(|A — B))

14

and

‘/(ngl 2dRy 4+ AR =2 004 - B)).
14
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In addition, it follows from (8) that d(h, &) = O(Sk). Therefore, |A — B| = O(Sk) and we finally
obtain

d(h,e) =8k/(rk—1w1 4+ rog—1 + op) + 0,
y

which yields

Mk(h)=j£(wk+ > rioy).

£, it+j=k
The proof is finished. O

Remark 2. For the generic (system) parameters (a1, ap) € €2, system (6) satisfies Frangoise’s
s-property [24]: for any polynomial one-form w, if gfrh w =0, then w =rdH + dR for some
polynomials » and R. So the only condition which is needed in Lemma 5 is M, (h) = 0 when
generic Hamiltonians are considered.

Remark 3. For some cubic Hamiltonians, the Frangoise’s *x-property does not hold (see [25]). In
other words, in such systems we could have polynomial one-forms w satisfying frh o =0, but
o cannot be expressed in the form of w =rdH + dR, where r and R are some polynomials.
Therefore, it is required that ®,, should not contain such “bad”” one-forms for Melnikov function
M, (h) = 9§Fh ®,, =0 in Lemma 5.

4. Proof of Theorem 1
Now with the results obtained in the previous section, we are ready to prove Theorem 1.

Proof. We return to system (6) with P (x, y) and Q(x, y) defined in (9), and want to use higher-
order Melnikov functions to prove the existence of 10 small-amplitude limit cycles around the
origin.

Due to the difficulty in the proof of independence of basis, we use the computation of fo-
cus values to prove the theorem. However, the computation becomes very demanding or almost
impossible for computing higher-order focus values if all the coefficients are retained in the com-
putation, and in fact many terms are not necessarily needed. Thus, before computing the focus
values of system (6), without loss of generality, we want to simplify this system by choosing a
group of coefficients a;j,, b, in the polynomials P(x, y) and Q(x, y), which does not reduce
the number of limit cycles bifurcating from the origin.

In the following, we shall show how to choose a group of coefficients which are necessary
for the first non-vanishing Melnikov function My (%) in (8). Based on the results presented in the
previous section (in particular, Lemmas 2, 4 and 5), we provide an algorithm as follows.

Consider M1 (h) in system (6), we know M1 (h) = 561“;, w1. Using Lemma 4, we have

1 2
a)1:Qldx—Pldy:ZZaiﬂxiyjdx—}-rldH—f-de, 27
i=0 j=1
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with ri = —(b211 + 3azo1)y. Then,

Mi(h) = fl ((xo]]ydx + a11xydx + ocozlyzdx + oqzlxyzdx).
Ty
It is seen that M;(h) depends on «;j1, i = 0,1, j =1,2. So only four coefficients in the
polynomials Pi(x,y) and Q1(x,y) are needed in order to keep a;;1,7 =0,1, j = 1,2 being

independent without decreasing the number of zeros of M (k). We choose these four coefficients
as bjj1,i=0,1, j =1, 2. (Certainly, the choice is not unique.) Then, we have polynomials

Pi(x,y) =0, Qi(x,y) =bo11x +bii1xy + boa1y> + bra1xy>. (28)

Next, let us consider M»>(h) when M;(h) = 9§Fh ridH +dRy =0, ie., all o;;; =0 in (27).
Lemma 5 gives M (h) = frh @7, where @y = @) + riwi. Thus, by using Lemma 4, we obtain

1 2
w0y = Z Za,-jgxiyjdx + Ol()42y4dx +rodH +dR»,
i=0 j=1

which shows that M>(h) depends on «;j2,7 =0, 1, j =1, 2 and ag42. Obviously, the coefficient
a47 1s derived from rjw; by Lemma 4 because the one-form y4dx of degree 4 comes from rjw;.
For e-order perturbations, b;j1,i =0, 1, j =1, 2 are needed to get all ;j; =0 in (27). For r; we
may simply take by11 = 1 and a3g; =0, yielding r; = —y. We also see that the one-form y4dx
can be derived from x3ydx by using the formula (b) in Lemma 2. Hence, we may choose b30;
for apgo so that b301x3ydx could appear in riw;. For «;j2, i =0, 1, j = 1,2, by an argument
similar to that for M1 (h), we choose bg12, b112, bp22 and b12;. Hence, we obtain the following
polynomials,

Pi(x,y)=0, Qi(x,y)=boiix +biiixy + boa1y* + biaixy? + bsorx” + x%y,
Pr(x,y) =0, Qa(x,y) =boiox + bi1oxy + booay?* + bioaxy™. (29)
Following the above procedure, we can choose the coefficients for M3(h), and so on. In the
following, we list the polynomials for My (h) up to k =5 (the detailed arguments are omitted
here for brevity):
Pi(x,y) = az;x*y +ajxy?, j=1,2,3, Ps(x,y)=Ps(x,y) =0,
Q1(x,y) = bo11y + bi11xy + boa1y* + bi21xy* + bso1x® + boz1y” + barix?y,
Q2(x, y) = bo12y + bi12xy + boxay* + b1oaxy® + baoax® + bozay”,
03(x, ) = bo13y + bi13xy + boo3y* + b123xy? + bosx?,
Q4(x,y) = bo14y + br1axy + boaay? + b1oaxy? + b3pax”,
Qs(x,y) = boisy + bi1sxy + bopsy* + biosxy™. (30)
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Here, the difficult part is to compute the functions r;, i = 1,2, 3,4 in ;. Proving the indepen-
dence of the basis for each k is even more difficulty. Thus, we turn to focus value computation
which can be easily used to show the independence of the basis (i.e. the focus values).

Having determined the coefficients we need in P and Q of system (6), we now use the com-
putation of focus values to prove the existence of 10 small-amplitude limit cycles. We compute
the focus values up to & order as follows:

5
V=) ¢V, where Vi={vo,vi1 vz, ). (31)
i=0

We call v;; the jth gl-order focus value of system (6), and note that vo; =0, j =0,1,2,...
since at ¢ = 0 system (6) is a Hamiltonian system. The computation of V; is equivalent to the
computation of ith-order Melnikov function M; (k). But the computation of focus values is much
easier than that of the higher-order Melnikov functions. The disadvantage of the focus value
computation is that conditions obtained from the first few focus values are hard to be used to
prove vanishing of an infinite number of focus values. But this can be easily verified by the
above formulas ®;.

The focus values v;; can be obtained by using many different symbolic programs (e.g., the
Maple program developed in [27]). Firstly, note that v;o = % bo1i,i =1,2,....Inorder to execute
the Maple program, set bg;; =0, = 1,2, .... In addition, set bo;; = 1. Now, we start from V;
and obtain

vi1 = g (@121 + 3bo31 + biit — 3a1binn — 2azbea1 + 1).

Setting vi1 = 0 yields by3; = %(%alblll + 2a3bgo1 — arp1 — b111 — 1). Further, setting vip =0
results in

bia1 = aiboy1 —azi1 + m@a% +20a3 +4ay — 20)(b111 + 1).
Then, we have
Vi3 = W (b1 + D)(aj —3a? +4 —4ad) Fyy,
V14 = 7y7mcrsar—y (01 + D@} = 3a} +4 —4a3) Fia,
Vis = WZ—%Sm—Z) (i1 + 1)(@ —3a? +4 —4ad) Fy3,
where

Fi1 =3a? + 12a; — 4 — 4a3,

Fio =27a} — 90a} — 1308a? + 1608a; — 256 + (420a? + 1608a; — 1376 — 256a3)a3,

Fi3 = 19683a8 + 343 116a; — 124 524a} — 616867243 + 7612368a + 1585 344a,
— 1071424 + 4[3(140715a} + 622536a; + 39880a7 — 1689 568a; + 421 808)
— (404 508a} — 396 336a; + 267 856a3 — 1265424)a3]as.

It is easy to see that setting by1] = —1 results in vj3 = vi4 = v15 = - -- =0, as discussed above. In
order to obtain maximal number of small-amplitude limit cycles bifurcating from the origin, we
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have to use the coefficients a; and a; to solve Fi; = Fip =0 (i.e., v13 = vi4 = 0). If the solution
of F11 = Fjp =0 yields Fi3 # 0, i.e., we have parameter values such that vig = v =--- =
v14 = 0, but v15 # 0, then we obtain 5 small-amplitude limit cycles by properly perturbing bo11,
boz1, bo21, a1 and ay, respectively. To show this, we use the Groebner basis reduction procedure
to reduce Fip and Fi3 to

Fio= Fialp, =0 = 18(a1 +2)(11a; +46a] — 84a; + 24),

Fiz= Fislp, _p,_0 = — 512 (a1 +2)(3073a] — 5272a; + 1500) #0.

Then, solving the system of two equations, F1; = Fjp =0 (or Fj1 = 1312 = 0) we obtain the
solutions for a; as follows:

ar=d). a=dy=+}/3})? +124f, —4, i=1,23, forwhich
al, = —5.61185383 -, a? =036507058 -, a, =1.06496506---.  (32)

where the second number ‘1’ in the subscripts of ail and aé | denotes the solutions corresponding
to the first-order Melnikov function, i.e, kK = 1. Note that a; = —2 is not a solution of Fj; = 0.
Further, we obtain

det[M = 576as(a; + 1)(11a% + 40a; — 36) #0,

d(ar,az) ]F”:ﬁlzzo

since none of the factors in the above equations are included in F7; and F 12.

Summarizing the above results we can conclude that based on the &!'-order focus values
(equivalently based on the first-order Melnikov function M;(h)) we obtain 5 small-amplitude
limit cycles around the origin.

Now let b1 = —1, then b121 = a1bpa1 — 1 and byz; = —%((lu] + %611 — 2asbg21), un-
der which all ¢'-order focus values vanish, or equivalently, the first-order Melnikov function
M (h) = 0. Note here that a; and a; are not used in making M1(h) = 0. Then, one uses the
e2-order focus values to solve the polynomial equations va = vy = vp3 = 0, yielding the solu-
tions for bg3z, bia2 and by13. Under these solutions, we further obtain

— 1
v = 36 864(3a?+12a; —4—4a?) Fo bk,
1
FFoa,

FF3,

V =
25 31850496 (3a2+12a; —4—4a?)
1

V26 = 7072972293124 +12a; —4—4a2)

for which we have applied the Groebner basis reduction procedure to obtain

Fyo = [2(3aj — 4a3)boa1 — 3(a3 — 4a3)bso1 — 6atazi + 4azaiz) — 4arazbyy |ban
+12ay(arai21 — azaz11)boz1,
F>1 = 8la} — 648a; — 648a? + 1632a; — 880 — (504a? — 1632a; — 1696 + 880a3)a3,
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Fx = Fxlpy,—o
= 1408[243a; — 52247 + 5172a; + 6664 + (1053a] — 2424a,
— 5572+ 1300a3)a3 |a3 — 50688(63a; + 56ai — 148a; + 80),
Fp3= Fa3l g, — =0
=72(675 121 644a; + 475639 745a7 — 1491227 668a; + 849702 020)
+ {3893 15524547 + 22056 197796a; — 131201934 348a; — 117343356 608

+20[303274623a; + 3083354476 — 26(55458a; — 130879)a3 |a3 }a3 # 0.
Similarly, we obtain the following solutions satisfying F; = F»; = 0:

ay=dl,, i=12,...7,

; 10 179a%—81 86443 —179 172a%+204 992a> —32 4964% — 124 032a; +66 880 :
a=a, = 1 1 1 1 1 (a1 =al,)
22 4(5109a}+12076a3 —75 936a7 — 167 664a; +48 944) ’ 127
where
aj,=—243192492---, a},=0.12148877---, aj, =0.23963547 -,
al, =0.89471272---, a}, =1.60031174---, a% =7.33752703 - -,
aj, = 10.40950390- - - . (33)

In addition, we can show that for the above solutions the following determinant is non-zero,

det | 2421, F2) )
9(ar.a2) | gy =Fp=0

= 300238 4, {36(1 57144547 + 860083a} — 320784841 + 1911580)
+a3[4977612a; + 2404570547 — 138196 596a; — 132836 684
+20a3 (—119877ay + 2945227 + 169a3 (459a; + 1799))]} # 0.

The above results show that we have parameter values such that vog0 = v31 =--- = vp5 =0, but
v26 7 0. Then, taking proper perturbations on the coefficients bo12, bo32, b122, b112, a1 and a;
yields 6 small-amplitude limit cycles around the origin of system (6) when the £2-order focus
values (or the second-order Melnikov function M;(h)) are used.

In order to get more limit cycles, we let F9 = 0 and solve this equation for b3gq, yielding
all the s2-order focus values v2; = 0. Under these conditions, we then use the &3-order focus
values v3; to determine the number of small-amplitude limit cycles. Similarly, we may linearly
solve the polynomial equations v3; = v3y = v33 = v34 = 0 for the coefficients b3, b123, b113
and b3pp. After this, no coefficients can be solved linearly. So we solve a1 from the equation,
v35 = 0, which is quadratic about a1, to obtain two solutions ail. We choose a1 = a?l | and
then v3¢, v37 and v3g are simplified to

V36 = —624 F30 F31, v37=—1248 F39 F32, v3g = —208 F3 F33,
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where F3g is a lengthy irrational function, and we further apply the Groebner reduction procedure
to F3p and F33 to obtain

F31 =405a} + 6264a; + 6264a7 — 5664a; + 1360 — 8(99a7 + 708a; + 524 — 170a3)a3,
F3 = F3lpy,—0
=4(261117a; + 30742247 — 260532a; + 60680) — [9(1035a] + 132664}
+ 111492a; + 84376 + 5(513a; — 4824a; — 57156 + 2660a3)a3 a3,

Fy = F32l gy =0
=4(152348063 67943 + 175217936 814a] — 151386504 684a;

+35757329960) + {7428338 685a; — 388966372384}

— 568264 627 476a; — 439876872808 — 20[714254 595a; — 6998 804702

—380(11970a; + 132193)a3]a3 }a3 # 0.
Solving F3; = F3; =0 yields

a; =a1;3=0.01871627-- -,

99a7,+708a 13+524—12\/ 1104+8496a;13+504a2, —2724a3, —171af,
ap=a3== 310 . (34)

Further, we have det[d(F31, F3)/d(a1, a2)] = —0.1124026367 - - x 10'° £ 0 at (a1, a2) =
(a13, az3). This, together with the above results, suggests that we may have parameter values
such that v3; =0,i =0,1,2,...,7, v3g # 0, and so the system could have 8 small-amplitude
limit cycles, by properly applying perturbations on the coefficients, bo13, bo23, b123, b113, b302,
a»r11, a; and ap.

Now, we want all ¢3-order focus values to vanish (i.e., M3(h) = 0). This can be achieved
by solving the coefficient ajz; from a polynomial equation. Having obtained the conditions for
which all the e'-, ¢2- and &3-order focus values vanish, we now use the g*-order focus values to
linearly solve for bop4, b124, b114, b303, a212 and aj2; one by one from the equations v4; = vap =
v43 = V44 = v45 = v46 = 0. Then, the higher-order focus values are given by

13 s FaoFu, o aasen FaoFa,

V4T = 1179 648 V48 = 127401984 FaoFu3,

Vi = 13
49 = 744611 809 280

where Fy0 is a common factor, and F41, F42 and Fy43 are polynomials in a; and a,. Similarly, we
obtain the solutions of a; and a, for F41 = F4p =0, but F43 # 0, given as follows:

ap :a’i4, a) = :I:aé4 = iaz(a’i4), i=1,2,...,6, where
al, =—4.58252393..., a?, =—1.72294798 .-, a3}, = —0.21827689-- -,
at, =—0.09420293---, aj, =0.14811742---, ab, =1.45012903-- -, (35)

and a,(.) denotes a rational function of the variable, which satisfy F43 7 0 and det[d(Fa1, Fa2) /
d(ar,ar)] Fay=Fup=0 # 0. This suggests that with the g*-order focus values, we can obtain 9
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small-amplitude limit cycles by properly perturbing the coefficients, bo14, bo24, b124, b114, b303,
a12, a2, a1 and a.
Finally, in order to have all the g*-order focus values to become zero, we let by = _ZaLzz_
1

Then, we obtain the simplified conditions, under which all the & 1 ¢2_ ¢3_ ¢*-order focus values

vanish. Then, we use the 7-order focus values to find 10 small-amplitude limit cycles. Linearly
solving the seven polynomial equations, vs; = vs» = --- = v57 = 0 one by one for the seven
coefficients, bozs, b125, b115, b304, a213, a123 and bgoo. Then, vsg, vsg and vsyg are given in terms
of a; and ay:

_ 187 _ —187 _ 17
Us8 = 5193152000 £50£51, V59 = go5904 300000 £50F52, V510 = Trg908s1840000 1501535

where the common factor Fs is a rational function of a; and a3, and Fs;,i =1, 2, 3 are polyno-
mials in a; and a», with degrees 6, 7 and 8 with respect to a%, respectively. It can be shown that
there are in a total 12 real solutions for (aj, az) such that F5; = Fsp =0, but Fs53 # 0, given as
follows:

ai=dls, ay=+abs=+ar(als) i=12,...,6, where
als = —2.39560267---, ais=—1.53681619---, ajs = —0.38249860- - -,
ajs =—0.19575710---, ajs=0.05960015---, als=0.29402249 -, (36)

and a»(.) denotes a rational function of the variable, which satisfy Fs53 7 0 and det[d(Fs1, F52) /
d(a1, a2)] s, =F5,=0 # 0, implying that we can apply perturbations on the 10 parameters, bois,
bozs, b125, b115, b3oa, a213, a123, b2z, a1 and a; to obtain 10 small-amplitude limit cycles around
the origin.

Finally, we need to check the critical values given in equations (32), (33), (34), (35) and (36)
which are properly distributed in the bifurcation diagram in terms of the parameters a; and a»
with the Hamiltonian function H (x, y) given in (7). (See Fig. 1 in [16] for the Hamiltonian
function H(x,y) = %()c2 +y?) — %xS +axy? + %by3, in terms of the parameters a and b.) For
convenience, we define the following points in the aj—a, plane:

k=1: Pi=( 0.3650705869..., 0.4417795388...
k=2: P,=( 0.1214887712..., 0.6855794168...

Py =( 0.8947127237..., 0.3648137316...
k=3: P,=( 0.0187162703..., 0.5708409903...
k=4: P5;=(—0.0942029335..., 0.6741464973 ...

Ps =( 0.1481174260..., 0.2303270018...
k=5: P;=(-0.1957571086..., 0.7336772199...

Ps =( 0.0596001501..., 0.4237619510...

~ O~~~ ~ ~

)

where the number k denotes the order of Melnikov functions. Note that all of these points satisfy
the conditions —1 <aj <2 and 0 <ay < (1 —ay/2)s/1 + aj, that is, they are inside the curve
defined by
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Phase portrait at P; Phase portrait at other points

f=01-9)P0+a)

ay
A
>

1 0 2

Fig. 1. Distribution of points P; and their corresponding phase portraits.

aq 2
a; = (1 - 7) (I +ap),

as shown in Fig. 1. But it should be noted that there are other points outside the curve (not shown
in this figure) which are also solutions. For each k, there exist proper Hamiltonian functions for
which the conclusion in Theorem 1 holds. It has been seen from our solution procedures that
ap = 0 is not allowed, and none of the above cases is degenerate. In particular, the degenerate
case, defined by af = Za%, does not belong to our parameter values. The corresponding phase
portraits for the eight sets of parameter values (8 points P;) are also sketched in Fig. 1.

The above results indeed show that by using the kth-order Melnikov function My, we can
obtain L%J + 4 number small-amplitude limit cycles bifurcating from the origin of system (6).

The proof for Theorem 1 is complete. O

5. Conclusion

In this paper, we have shown that the bases chosen in the proof of [13] are not independent,
leading to the conclusion of the existence of 11 limit cycles in this example being not true.
Further, with an example, we have demonstrated a good method combining both advantages of
the Melnikov function method and the focus value computation method in studying bifurcation
of limit cycles. In particular, we perturb a quadratic Hamiltonian system with cubic polynomials
to obtain 10 small-amplitude limit cycles by using up to Sth-order Melnikov functions. This
illustrates the usefulness of the combination method, and it is expected that this method can be
applied to investigate other polynomial systems to obtain more limit cycles.
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