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Abstract

This paper contains two parts. In the first part, we shall study the Abelian integrals for Żoła̧dek’s exam-
ple [13], in which the existence of 11 small-amplitude limit cycles around a singular point in a particular 
cubic vector field is claimed. We will show that the bases chosen in the proof of [13] are not independent, 
which leads to failure in drawing the conclusion of the existence of 11 limit cycles in this example. In the 
second part, we present a good combination of Melnikov function method and focus value (or normal form) 
computation method to study bifurcation of limit cycles. An example by perturbing a quadratic Hamil-
tonian system with cubic polynomials is presented to demonstrate the advantages of both methods, and 
10 small-amplitude limit cycles bifurcating from a center are obtained by using up to 5th-order Melnikov 
functions.
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1. Introduction

The well-known Hilbert’s 16th problem [1] has been studied for more than one century, and 
the research on this problem is still very active today. To be more specific, consider the following 
planar system:

ẋ = Pn(x, y), ẏ = Qn(x, y), (1)

where Pn(x, y) and Qn(x, y) represent nth-degree polynomials in x and y. The second part of 
Hilbert’s 16th problem is to find the upper bound, called Hilbert number H(n), on the number of 
limit cycles that system (1) can have.

The progress in the solution of the problem is very slow. Even the simplest case n = 2 has not 
been completely solved, though in the early 1990’s, Ilyashenko [2] and Écalle [3] independently 
proved that the number of limit cycles is finite for any given planar polynomial vector field. 
For general quadratic polynomial systems, the best result is H(2) ≥ 4, obtained more than 30
years ago [4,5]. Recently, this result was also obtained for near-integrable quadratic systems [6]. 
However, whether H(2) = 4 is still open. For cubic polynomial systems, many results have been 
obtained on the lower bound of the Hilbert number. So far, the best result for cubic systems is 
H(3) ≥ 13 [7,8]. Note that the 13 limit cycles obtained in [7,8] are distributed around several 
singular points. A comprehensive review on the study of Hilbert’s 16th problem can be found in 
a survey article [9].

In order to help understand and attack Hilbert’s 16th problem, the so-called weakened 
Hilbert’s 16th problem was posed by Arnold [10]. The problem is to ask for the maximal number 
of isolated zeros of the Abelian integral or Melnikov function:

M(h, δ) =
∮

H(x,y)=h

Q(x, y) dx − P(x, y) dy, (2)

where H(x, y), P(x, y) and Q(x, y) are all real polynomials in x and y, and the level curves 
H(x, y) = h represent at least a family of closed orbits for h ∈ (h1, h2), and δ denotes the param-
eters (or coefficients) involved in P and Q. The weakened Hilbert’s 16th problem itself is a very 
important and interesting problem, closely related to the study of limit cycles in the following 
near-Hamiltonian system [11]:

ẋ = Hy(x, y) + ε P (x, y), ẏ = −Hx(x, y) + ε Q(x, y), (3)

where 0 < ε � 1. Studying the bifurcation of limit cycles for such a system can be now trans-
formed to investigating the zeros of the Melnikov function M(h, δ), given in (2).

When we focus on the maximum number of small-amplitude limit cycles, denoted by M(n), 
bifurcating from an elementary center or an elementary focus, one of the best-known results 
is M(2) = 3, which was proved by Bautin in 1952 [12]. For n = 3, several results have been 
obtained (e.g. see [13–15]). Among them, in 1995 Żoła̧dek [13] first constructed a rational Dar-
boux integral to study existence of 11 small-amplitude limit cycles in cubic vector fields. This 
pioneer work later motivated many researches in this area to study bifurcation of limit cycles. 
The rational Darboux integral in [13] is given by
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H0 = f 5
1

f 4
2

= (x4 + 4x2 + 4y)5

(x5 + 5x3 + 5xy + 5x/2 + a)4
, (4)

which generates the dynamical system in the form of

ẋ = x3 + xy + 5x/2 + a,

ẏ = −ax3 + 6x2y − 3x2 + 4y2 + 2y − 2ax, (5)

with the integrating factor M = 20f 4
1 f −5

2 .
It can be shown that for a < −25/4, system (5) has a center C0 = (−a/2, −a2/4 − 1/2) and 

five (real or complex) critical points (r, −r2 − 5/2 − a/r), where r satisfies the polynomial 
equation r5 − 10r − 4a = 0. In addition, system (5) has a saddle point and a non-elementary 
critical point at infinity. Let h0 = H0(C0) = −2/a. Around C0, there exists a family of periodic 
orbits given by {γh : H0(x, y) = h, 0 < h − h0 � 1}. γh approaches C0 as h → h+

0 .
Recently, Yu and Han [14] applied a different method to study system (5) and only got 9

small-amplitude limit cycles around the center C0. This difference motivated us to reconsider 
system (5) carefully and finally find some not-easy-to-find mistakes in the proof of [13], which 
lead to failure in drawing the conclusion of existence of 11 limit cycles. In the next section, we 
shall present a detailed analysis on the Abelian integrals of system (5) and point out where the 
mistakes were made in [13]. However, we must emphasize that although some flaws were found 
in [13], the idea and methodology presented in this paper are still very valuable and useful. In 
fact, our work was motivated by this paper as well as that [17].

In the second part, we will present a good combination of higher-order Melnikov function 
method and focus value computation method to study the number of small-amplitude limit cycles. 
As a matter of fact, in proving existence of small-amplitude limit cycles, higher-order Melnikov 
functions are equivalent to higher ε-order focus values. These two methods have their advantages 
and disadvantages: Melnikov function method can be used to show the vanishing of a particular 
order Melnikov function, which is equivalent to show the vanishing of all this particular ε-order 
focus values, and this cannot be proved by using focus value computation since one cannot ver-
ify an infinite number of focus values. On the other hand, for higher-order Melnikov functions, 
it becomes extremely difficult to prove the independence of a choosing set of basis, while this 
is straightforward by using focus value computation. In particular, we present an example to 
demonstrate this good combination method and obtain 10 small-amplitude limit cycles by per-
turbing a quadratic Hamiltonian system with 3rd-degree polynomial functions.

In general, a perturbed quadratic Hamiltonian system can be described by

ẋ = y + a1xy + a2y
2 + εP (x, y, ε),

ẏ = −x + x2 − 1

2
a1y

2 + εQ(x, y, ε), (6)

where P and Q are nth-degree polynomials in x and y with coefficients depending analytically 
on the small parameter ε. When ε = 0, system (6) has a cubic Hamiltonian,

H(x,y) = 1

2
(x2 + y2) − 1

3
x3 + 1

2
a1xy2 + 1

3
a2y

3, (7)

and its parameters a1 and a2 take values from the set,
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� =
{
(a1, a2) ∈ R

2 : −1 ≤ a1 ≤ 2, 0 ≤ a2 ≤ (1 − a1

2
)
√

1 + a1

}
.

The Hamiltonian given in (7) is actually the so-called normal form [16] for all quadratic Hamil-
tonian systems which have a center at the origin. There exists a family of closed ovals around the 
origin given by {�h : H(x, y) = h, h ∈ (0, 16 )}.

For any h ∈ (0, 16 ) the displacement function d(h, ε) of system (6) has a representation

d(h, ε) = εM1(h) + ε2M2(h) + ε3M3(h) + · · · , (8)

where Mi(h) is called the ith-order Melnikov function, particularly the higher-order Melnikov 
functions if i ≥ 2. Then, we may determine the number of the limit cycles of system (6) emerging 
from the closed ovals {�h} by studying the zeros of the first non-vanishing Melnikov function 
Mi(h) in h ∈ (0, 16 ).

Suppose M1(h) �≡ 0 in (8). Denote Z(n) the sharp upper bound of the number of zeros of 
M1(h) for system (6), where n = max(deg(P ), deg(Q)). Gavrilov [18] proved Z(2) = 2 for the 
Hamiltonian H with four distinct critical values (in a complex domain). Horozov and Iliev [19]
gave a linear estimate Z(n) ≤ 5(n +3). Also, some sharp upper bounds were obtained for certain 
particular cubic Hamiltonians, for example: n − 1 for the Bogdanov–Takens Hamiltonian, H =
1
2 (x2 + y2) − 1

3x3 (see [20]), and [ 2
3 (n − 1)] (where the notation [ · ] denotes the maximal integer 

of the variable) for the Hamiltonian triangle, H = 1
2 (x2 + y2) − 1

3x3 + xy2 (see [21]).
Moreover, for the Bogdanov–Takens Hamiltonian, there are some results on the upper bound 

of the number of zeros of the first nonvanishing higher-order Melnikov function Mk(h). Li and
Zhang [22] got a sharp upper bound for k = 2: 2n − 2 when n is even and 2n − 3 when n is odd. 
Iliev [17] obtained a sharp upper bound 3n − 4 for k = 3, by applying the Françoise’s proce-
dure [23] for computing higher-order Melnikov functions. The higher-order Melnikov functions 
can be also easily expressed via iterated integrals, which will be seen in the next section.

In this paper, we study the number of small-amplitude limit cycles in (6) bifurcating from 
the origin, using higher-order Melnikov functions. Hereafter we suppose P and Q are cubic 
polynomials in the form of

P(x, y, ε) =
∞∑

m=1

εm−1Pm(x, y) with Pm(x, y) =
3∑

i+j=1

aijmxiyj ,

Q(x, y, ε) =
∞∑

m=1

εm−1Qm(x, y) with Qm(x, y) =
3∑

i+j=1

bijmxiyj . (9)

Our main result is given below, and its proof will be given in Section 4.

Theorem 1. Let the polynomials P and Q in (6) be given by (9). Then for any 1 ≤ k ≤ 5, there 
exist real values for (a1, a2) ∈ � such that system (6) can have � 4k

3 � + 4 small-amplitude limit 
cycles around the origin under proper cubic perturbations, when Mk(h) is the first non-vanishing 
Melnikov function in (8).

Remark 1. It follows from Theorem 1 that 10 small-amplitude limit cycles exist in the vicinity 
of the origin of system (6) when k = 5.
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The rest of the paper is organized as follows. In the next section, we consider the example 
given in [13], and show that the bases chosen in the proof are not independent, leading to failure in 
drawing the conclusion of the existence of 11 limit cycles. In Section 3, we present some results 
for polynomial one-forms with respect to the Hamiltonian (7), which are needed for the proof of 
Theorem 1 in Section 4. Then, in Section 4 by choosing special forms for the polynomials P and 
Q without loss of generality, we prove Theorem 1. Finally, conclusion is drawn in Section 5.

2. Abelian integrals of system (5)

In this section, we consider system (5) and briefly describe the methodology used in [13]. 
Suppose the perturbed system of (5) is described by

ẋ = M−1H0y + εp(x, y, ε),

ẏ = −M−1H0x + εq(x, y, ε), (10)

where p(x, y, ε) and q(x, y, ε) are polynomials in x and y with coefficients depending ana-
lytically on the small parameter ε, and max(deg(p), deg(q)) ≤ 3. Note that the non-perturbed 
system (10) (i.e. ε = 0) has a center at C0.

Let S be a section transversal to the closed orbit {γh : H0(x, y) = h, 0 < h − h0 � 1}, with h
as a parameter, we define the Poincaré map P(h, ε) of system (10), and thus the corresponding 
displacement function, d(h, ε) =P(h, ε) − h, has the form

d(h, ε) = ε

∫
L(h,ε)

M(qdx − pdy) = εM1(h) + ε2M2(h) + O(ε3), (11)

where L(h, ε) is a trajectory of the perturbed system (10). We can use the first non-vanishing 
Melnikov function Mk(h) in (11) to investigate the number of the limit cycles around the center 
C0. Generally, the zeros of Mk(h) correspond to the limit cycles of system (10) around C0.

Let � = qdx − pdy, deg(�) = max(deg(p), deg(q)). Then, the first-order Melnikov func-
tion M1(h) can be expressed in the form of

M1(h) =
∮
γh

M� |ε=0 = h

∮
γh

�

f1f2

∣∣∣∣
ε=0

.

When M1(h) ≡ 0, we may use an iterated integral to express the second-order Melnikov function 
M2(h). The first integral of system (10) can be approximated as Hε = H0 − εH1, where the 
function H1 is defined by H1(B) = ∫ B

A
M� |ε=0, evaluated along the orbit γh, with A = γh

⋂
S

and B ∈ γh. Thus, for system (10) we have the second-order Melnikov function, given by

M2(h) = d

dε

( ∫
Hε=h

M�
)∣∣∣∣

ε=0
. (12)

Suppose that the polynomials p and q are expanded as



976 Y. Tian, P. Yu / J. Differential Equations 260 (2016) 971–990
p(x, y, ε) = p1(x, y) + εp2(x, y) + O(ε2),

q(x, y, ε) = q1(x, y) + εq2(x, y) + O(ε2).

Further, let �i = qidx − pidy, i = 1, 2. Then (12) can be rewritten as

M2(h) = d

dε

( ∫
Hε=h

M�1

)∣∣∣∣
ε=0

+
∮
γh

M�2 =
∮
γh

d(M�1)

dH0
H1 + h

∮
γh

�2

f1f2
, (13)

where d(M�1)
dH0

is the Gelfand–Leray form (see [26]).
In [13], the second-order Melnikov function M2(h) was used to study the small-amplitude 

limit cycles of system (10) bifurcating from the center C0. More precisely, twelve Abelian inte-
grals Iωi

(h) = ∮
γh

ωi/(f1f2), i = 1, . . . , 12, were chosen for (13), where one-forms ωi are given 
as follows:

ωk = xk−1dx, k = 1,2,3,4, ω5 = (18x2 + 18y + 5)dx, ω6 = xydx,

ω7 = x2ydx, ω8 = xy2dx, ω9 = y3dx, ω10 = xy2dy, ω11 = y3dy,

ω12 = y2(5 − 3x2)dx + xy(x2 + 1)dy.

Then, by showing the independence of the integrals Iωi
(h), 1 ≤ i ≤ 12, it is claimed in [13] that 

11 small-amplitude limit cycles can bifurcate from the center C0 after suitable cubic perturba-
tions.

Later, system (10) was re-investigated by using the method of focus values computation [14]. 
Based on the computation of ε-order and ε2-order focus values, the authors of [14] showed that 
system (10) could have 9 small-amplitude limit cycles bifurcating from the center C0. This ob-
vious difference motivated us to study system (5), and finally to find that any vector of the linear 
space of integrals Iω(h) = ∮

γh
ω/(f1f2), deg(ω) ≤ 3, can be expressed as a linear combination 

of the ten integrals Iωi
(h), 1 ≤ i ≤ 11, i �= 4. In the following, we show the details.

Nine one-forms ηj , 1 ≤ j ≤ 9, were obtained in [13] satisfying Iηj
(h) = 0, where

η1 = (x3 + 2x)dx + dy,

η2 = (−3ax2 + 12xy − 6x − 2a)dx − (3x2 + y + 5
2 )dy,

η3 = (6x2 + 8y + 2)dx − xdy,

η4 = (−3ax3 + 12x2y − 6x2 − 2ax)dx − (2x3 − a)dy,

η5 = (ax3 + 3x2 + 4y2 + 2ax)dx − xydy,

η6 = (−ax3 + 6x2y − 3x2 + 4y2 + 2y − 2ax)dx − (x3 + xy + 5
2x + a)dy,

η7 = (3ax2y − 12xy2 + 6xy + 2ay)dx − (3x2y − ax3 − 3x2 + 3y2 − 1
2y − 2ax)dy,

η8 = (−5x3 − 7xy + 1
2x + a)dx + x2dy,

η9 = ( 21
2 xy − 7xy2 + ay)dx + (2x2y − 3

2x2 + ax + y)dy.

We find another one-form η10, given by

η10 = [− 29ax3 − 8y3 − (2a2 − 5 )x2 − 9axy + 6y2 + 13ax + a2
]
dx + xy2dy,
3 3 2 6
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which can be shown to satisfy Iη10(h) = 0. To achieve this, consider the Darboux integral, Hε =
(f1+εg1)

5

(f2+εg2)
4 , with

g1 = 2
3x4 + 8

3ax3 + 4
3x2y + 2

3x2 − 4
3y2 − 4ax + 4y,

g2 = 10
3 ax4 + 5

3yx3 − 5
2x3 − 5

3xy2 − 5
3ax2 + 10

3 xy − 5
2x + 10

3 ay − a,

which yields the following system,

ẋ = M−1H0y − εxy2 + ε2[− 2
9x7 + 2

9ax6 + 5
9x5y − 3

2x5 − 4
9ax4y − 1

3x3y2

+ 17
9 ax4 + 8

3x3y + 2
9xy3 − ( 34

9 + 16
9 a2)x3 − 4

3ax2y − 1
3xy2 + 2

9ax2

+ 7
3xy − 4

3ay2 − ( 5
2 − 8

3a2)x + 4
3ay − a],

ẏ = − M−1H0x + ε[− 29
3 ax3 − 8

3y3 − (2a2 − 5
2 )x2 − 9axy + 6y2 + 13

6 ax + a2]
+ ε2[− 4

9ax7 − 4
9x6y + ( 4

9a2 + 2
3 )x6 + 2

3ax5y + 10
9 x4y2 + 7

3ax5 − 2x4y

− 10
9 ax3y2 − 2

3x2y3 + ( 7
6 − 52

9 a2)x4 + 13
9 ax3y + 5x2y2 + 4

9y4 + 143
18 ax3

− 17
3 x2y − 20

3 a2x2y − 5
3axy2 − 20

9 y3 + ( 1
2 + 3a2)x2 − 22

9 axy + 10
3 y2

− 1
6ax − (2 − 10

3 a2)y − a2].

The above system has a center near C0 when a < −25/4 and |ε| � 1. Thus, all the Melnikov 
functions of the above system vanish, and M1(h) = hIη10(h) ≡ 0, implying that Iη10(h) = 0.

Next, a direct calculation using ηj , 1 ≤ j ≤ 9, yields

1
2 (aη1 − η4) = (2ax3 − 6x2y + 3x2 + 2ax)dx + x3dy � η̄4,

1
2 (5η1 + 2η2 + 6η8) = (− 25

2 x3 − 3ax2 − 9xy + 1
2x + a)dx − ydy � η̄2,

1
4 (5η1 + 2η2 + 2aη3 + 9η8 + 2η9)

= (−10x3 − 7
2xy2 + 3

2ax2 − 9
2xy + 5

8x + 9
2ay + 9

4a)dx + x2ydy � η̄9,

1
12 [2(a2 − 10)η1 − 8η2 − 14aη3 − 2aη4 − 4η7 − 21η8 − 6η9] = [( 85

12 + 2
3a2)x3

−3ax2y + 15
2 xy2 − 4ax2 − 3xy + ( 2

3a2 − 5
24 )x − 21

2 ay − 11
4 a]dx + y2dy � η̄7,

1
2 (3aη1 − 5η3 − η4) − η5 + η6 = (ax3 − 18x2 − 18y − 5)dx = aω4 − ω5 � η̄6.

Now, suppose we have ω
∂x

= f and ω
∂y

= g for any one-form ω = f dx + gdy. By noticing that

η1

∂y
= 1,

η̄2

∂y
= −y,

η3

∂y
= −x,

η̄4

∂y
= x3,

η5

∂y
= −xy,

η̄7

∂y
= y2,

η8

∂y
= x2,

η̄9

∂y
= x2y,

η10

∂y
= xy2,

η̄6

∂y
= 0,

η̄6

∂x
�= 0,

we can see that η1, η̄2, η3, η̄4, η5, η̄6. η̄7, η8, η̄9 and η10 are linearly independent. Thus, η10
does not lie in the span of ηj , 1 ≤ j ≤ 9, and so it follows from Iη (h) = 0, j = 1, . . . , 10, that 
j
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the dimension of the linear space of integrals Iω(h), deg(ω) ≤ 3 is at most 10. Therefore, the 
independence of integrals Iωi

(h), 1 ≤ i ≤ 11, proved in [13] does not hold, and there are at most 
10 independent integrals Iω(h) with deg(ω) ≤ 3. The basis can be chosen as Iωj

(h), 1 ≤ j ≤ 11, 
j �= 5, since Iη̄6(h) = αIω4(h) − Iω5(h) = 0, and thus we can remove Iω5(h) from the basis given 
in [13].

Regarding ω12, the authors have obtained a one-form ω̄, deg(ω̄) = 3, based on focus value 
computation such that the corresponding focus values for ω̃12 = ω12 + ω̄ vanish up to a suffi-
ciently high order. This, together with the above result that Iω5(h) can be removed from the basis, 
implies that using ωj , 1 ≤ j ≤ 12, can only yield 9 limit cycles.

3. Cubic Hamiltonian with cubic perturbations

In order to prove Theorem 1, we need some preliminary results for cubic Hamiltonian given 
in (7) with cubic perturbations. Using the idea and methodology of Żoła̧dek [13] and [17], we 
have the following results summarized in Lemmas 2–5.

Let ωij = xiyj dx and σij = xiyj dy.

Lemma 2. For the cubic Hamiltonian given in (7), the following identities hold.

(a) σij = 1
j+1 d(xiyj+1) − i

j+1ωi−1,j+1;
(b) ωij = ωi−1,j + j−2i+4

2j+4 a1ωi−2,j+2 − i−2
j+2ωi−3,j+2 − i−2

j+3a2ωi−3,j+3

− xi−2yjdH + d
( 1

j+2xi−2yj+2 + a1
j+2xi−1yj+2 + a2

j+3xi−2yj+3
)
, i ≥ 2;

(c) ω0,j = 3j
a2(j+1)

[
Hω0,j−3 − 1

6ω1,j−3 − a1(j−3)+6j−2
12(j−1)

ω0,j−1 − a1(j+1)
3(j−1)

ω1,j−1

+ r0,j (x, y)dH + dR0,j (x, y)
]
, j ≥ 3;

(d) ω1,j = 3j
a2(j+2)

[
Hω1,j−3 − (j+2)a2

1
6(j+1)

ω0,j+1 + a2
6j

ω0,j − a1(5j+3)+6j+2
12(j−1)

ω1,j−1

− a1j−3a1−2
12(j−1)

ω0,j−1 − 1
6ω1,j−3 + r1,j (x, y)dH + dR1,j (x, y)

]
, j ≥ 3;

where ri,j (x, y) and Ri,j (x, y) are polynomials in x and y with degrees i + j − 2 and i + j + 1, 
respectively.

Proof. A direct calculation using integration by parts results in the formula (a). From the Hamil-
tonian, we have the equation 1

3x3 = 1
2 (x2 + y2) + 1

2a1xy2 + 1
3a2y

3 − H , giving the relation,

x2dx = xdx + ydy + a1

2
y2dx + a1xydy + a2y

2dy − dH,

which in turn yields

ωi,j = ωi−1,j + σi−2,j+1 + a1

2
ωi−2,j+2 + a1σi−1,j+1 + a2σi−2,j+2 − xi−2yjdH, i ≥ 2. (14)

Then, combining (14) with the formula (a) we obtain the formula (b).
Similarly, the equation, 1a2y

3 = H − 1 (x2 + y2) + 1x3 − 1a1xy2, generates
3 2 3 2
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1

3
a2ωi,j = Hωi,j−3 − 1

2
ωi+2,j−3 − 1

2
ωi,j−1 + 1

3
ωi+3,j−3 − 1

2
a1ωi+1,j−1, j ≥ 3. (15)

Finally, the formulas (c) and (d) follow the formula (b) and (15). �
From Lemma 2, we know that any polynomial one-form ω, deg(ω) = m, can be expressed in 

the form of

ω = r(x, y)dH + dR(x, y) +
∑
i=0,1

m−i∑
j=0

αi,jωi,j .

The next lemma shows that there also exist some relationships among the one-forms ωi,j , 
i = 0,1.

Lemma 3. For any non-negative integer, m mod 3 �= 2, there exist βi,j,m, ̃rm(x, y) and R̃m(x, y)

satisfying the following identity,

∑
i=0,1

m−i∑
j=0

βi,j,mωi,j = r̃m(x, y)dH + dR̃m(x, y), (16)

where R̃m(x, y) and ̃rm(x, y) are polynomials in x and y of degrees m + 1 and m − 1, respec-
tively; and βi,j,m are polynomials in a1 and a2, with β0,0,0 = β1,0,1 = 1, β0,1,1 = 0, and

β0,m+3,m+3 = m + 4

3(m + 3)
(a2β0,m,m + a2

1

2
β1,m−1,m),

β1,m+2,m+3 = m + 4

3(m + 2)
(a1β0,m,m + a2β1,m−1,m), (17)

if β1,−1,0 is defined as β1,−1,0 = 0.

Proof. We use the method of mathematical induction to prove this lemma. It is easy to see that 
the conclusion is true for m = 0, 1. Now, suppose (16) holds for m mod 3 �= 2. Then, we prove 
that (16) also holds for m + 3. Multiplying (16) by H on both sides yields

∑
i=0,1

m−i∑
j=0

βi,j,mHωi,j = Hr̃mdH + HdR̃m. (18)

The right-hand side of (18) can be rewritten as

Hr̃mdH + HdR̃m = (H r̃m − R̃m)dH + d(HR̃m). (19)

For the left-hand side of (18), it follows from the formulas (c) and (d) in Lemma 2 that
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Hωi,j = ξi,j+3 + ηi,j+3, i + j < m,

Hω0,m = a2(m + 4)

3(m + 3)
ω0,m+3 + a1(m + 4)

3(m + 2)
ω1,m+2 + η0,m+3,

Hω1,m−1 = a2
1(m + 4)

6(m + 3)
ω0,m+3 + a2(m + 4)

3(m + 2)
ω1,m+2 + η1,m+2, m > 0, (20)

where ηi,j = ri,j dH + dRi,j , and ξi,j is a one-form with deg(ξi,j ) ≤ i + j . Then, substituting 
(20) into the left-hand side of (18) yields

∑
i=0,1

m−i∑
j=0

βi,jHωi,j = m + 4

3(m + 3)
(a2β0,m,m + a2

1

2
β1,m−1,m)ω0,m+3

+ m + 4

3(m + 2)
(a1β0,m,m + a2β1,m−1,m)ω1,m+2

+
∑
i=0,1

m−i∑
j=0

βi,j (ξi,j+3 + ηi,j+3). (21)

Finally, combining (21) with (18) and (19) shows that the conclusion is also true for m + 3.
The proof of the lemma is complete. �
Noting that β0,0,0 = β1,0,1 = 1, β1,−1,0 = β0,1,1 = 0, we know from (17) that βk,m−k,m in 

Lemma 3 are polynomials in a1 and a2 with positive coefficients for m mod 3 = k, k < 2. Thus, 
it follows from (16) that ωk,m−k , m mod 3 = k < 2, can be expressed in terms of other one-forms 
ωi,j , i + j ≤ m and rmdH + dRm. This gives the following lemma.

Lemma 4. Any polynomial one-form ω of degree m can be expressed as

ω = r(x, y)dH + dR(x, y) +
∑
i=0,1

1≤j≤m−i∑
j mod 3�=0

αijωij , (22)

where R(x, y) and r(x, y) are polynomials in x and y of degrees m + 1 and m − 1, respectively.

Now, we use (22) to obtain

M(h) =
∮
�h

ω =
∑
i=0,1

1≤j≤m−i∑
j mod 3�=0

αij

∮
�h

ωij , (23)

which implies that any Melnikov function M(h) = ∮
�h

ω, deg(ω) = m, can be expressed as a 
linear combination of integrals Iij (h) = ∮

�h
ωij , i = 0, 1, j mod 3 �= 0. A reasonable expectation 

is that the integrals Ii,j (h) form a basis for the linear space of Melnikov functions M(h) = ∮
�h

ω. 
Actually, it will be seen in the next section that the space of Melnikov functions M(h) could be 
Chebyshev with accuracy at least 2. So the number of limit cycles in system (6) is not determined 
by the number of elements in the basis. Further, the coefficients αi,j in (23) could become very 
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complicated when M(h) is a higher-order Melnikov function of system (6). In this case, it is 
really not easy to prove the independence of αi,j s, which is the second big obstacle in the use of 
the independence of the integrals Ii,j (h) to determine the number of limit cycles.

To overcome the above mentioned difficulty, we turn to an alternative, which decreases the 
complexity in computing M(h) by (22), but it still does not solve the problem of independence 
of basis. Let ωj = Qj(x, y)dx − Pj (x, y)dy. Then, for higher-order Melnikov functions of sys-
tem (6), we have the following result.

Lemma 5. (Cf. [17,23].) Let (9) hold. Assume that in system (6) for some k ≥ 2, Melnikov 
function Mm(h) = ∮

�h
�m ≡ 0, 1 ≤ m ≤ k − 1, and �m can be expressed as

�m = rmdH + dRm. (24)

Then,

Mk(h) =
∮
�h

(
ωk +

∑
i+j=k

riωj

)
,

rmdH + dRm = ωm +
∑

i+j=m

riωj , 1 ≤ m ≤ k − 1. (25)

Proof. We prove this lemma by using the method of mathematical induction. First, write system 
(6) in the Pfaffian form,

dH − εω1 − ε2ω2 − · · · = 0. (26)

Multiplying (26) by 1 + εr1 + . . . + εk−1rk−1 and combing the like terms yield

dH + ε(r1dH − ω1) + ε2(r2dH − r1ω1 − ω2) + · · ·
+ εk(−rk−1ω1 − · · · − r1ωk−1 − ωk) + O(εk+1) = 0,

which, by using (25), can be written as

dH − εdR1 − · · · − εk−1dRk−1 − εk(rk−1ω1 + · · · + r1ωk−1 + ωk) + O(εk+1) = 0.

Then, we integrate the above equation along the phase curve γ from point A to point B , which 
are used to define the first return map. Note that

d(h, ε) =
∫
γ

dH = H(B) − H(A) = O(|A − B|)

and

∣∣∣ ∫ (εdR1 + ε2dR2 + · · · + εk−1dRk−1)

∣∣∣ = ε O(|A − B|).

γ
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In addition, it follows from (8) that d(h, ε) = O(εk). Therefore, |A − B| = O(εk) and we finally 
obtain

d(h, ε) = εk

∫
γ

(rk−1ω1 + · · · + r1ωk−1 + ωk) + O(εk+1),

which yields

Mk(h) =
∮
�h

(
ωk +

∑
i+j=k

riωj

)
.

The proof is finished. �
Remark 2. For the generic (system) parameters (a1, a2) ∈ �, system (6) satisfies Françoise’s 
∗-property [24]: for any polynomial one-form ω, if 

∮
�h

ω ≡ 0, then ω = rdH + dR for some 
polynomials r and R. So the only condition which is needed in Lemma 5 is Mm(h) ≡ 0 when 
generic Hamiltonians are considered.

Remark 3. For some cubic Hamiltonians, the Françoise’s ∗-property does not hold (see [25]). In 
other words, in such systems we could have polynomial one-forms ω satisfying 

∮
�h

ω ≡ 0, but 
ω cannot be expressed in the form of ω = rdH + dR, where r and R are some polynomials. 
Therefore, it is required that �m should not contain such “bad” one-forms for Melnikov function 
Mm(h) = ∮

�h
�m ≡ 0 in Lemma 5.

4. Proof of Theorem 1

Now with the results obtained in the previous section, we are ready to prove Theorem 1.

Proof. We return to system (6) with P(x, y) and Q(x, y) defined in (9), and want to use higher-
order Melnikov functions to prove the existence of 10 small-amplitude limit cycles around the 
origin.

Due to the difficulty in the proof of independence of basis, we use the computation of fo-
cus values to prove the theorem. However, the computation becomes very demanding or almost 
impossible for computing higher-order focus values if all the coefficients are retained in the com-
putation, and in fact many terms are not necessarily needed. Thus, before computing the focus 
values of system (6), without loss of generality, we want to simplify this system by choosing a 
group of coefficients aijm, bijm in the polynomials P(x, y) and Q(x, y), which does not reduce 
the number of limit cycles bifurcating from the origin.

In the following, we shall show how to choose a group of coefficients which are necessary 
for the first non-vanishing Melnikov function Mk(h) in (8). Based on the results presented in the 
previous section (in particular, Lemmas 2, 4 and 5), we provide an algorithm as follows.

Consider M1(h) in system (6), we know M1(h) = ∮
�h

ω1. Using Lemma 4, we have

ω1 = Q1dx − P1dy =
1∑ 2∑

αij1x
iyj dx + r1dH + dR1, (27)
i=0 j=1
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with r1 = −(b211 + 3a301)y. Then,

M1(h) =
∮
�h

(
α011ydx + α111xydx + α021y

2dx + α121xy2dx
)
.

It is seen that M1(h) depends on αij1, i = 0, 1, j = 1, 2. So only four coefficients in the 
polynomials P1(x, y) and Q1(x, y) are needed in order to keep αij1, i = 0, 1, j = 1, 2 being 
independent without decreasing the number of zeros of M1(h). We choose these four coefficients 
as bij1, i = 0, 1, j = 1, 2. (Certainly, the choice is not unique.) Then, we have polynomials

P1(x, y) = 0, Q1(x, y) = b011x + b111xy + b021y
2 + b121xy2. (28)

Next, let us consider M2(h) when M1(h) = ∮
�h

r1dH + dR1 ≡ 0, i.e., all αij1 = 0 in (27). 
Lemma 5 gives M2(h) = ∮

�h
ω̃2, where ω̃2 = ω2 + r1ω1. Thus, by using Lemma 4, we obtain

ω̃2 =
1∑

i=0

2∑
j=1

αij2x
iyj dx + α042y

4dx + r2dH + dR2,

which shows that M2(h) depends on αij2, i = 0, 1, j = 1, 2 and α042. Obviously, the coefficient 
α042 is derived from r1ω1 by Lemma 4 because the one-form y4dx of degree 4 comes from r1ω1. 
For ε-order perturbations, bij1, i = 0, 1, j = 1, 2 are needed to get all αij1 = 0 in (27). For r1 we 
may simply take b211 = 1 and a301 = 0, yielding r1 = −y. We also see that the one-form y4dx

can be derived from x3ydx by using the formula (b) in Lemma 2. Hence, we may choose b301
for α042 so that b301x

3ydx could appear in r1ω1. For αij2, i = 0, 1, j = 1, 2, by an argument 
similar to that for M1(h), we choose b012, b112, b022 and b122. Hence, we obtain the following 
polynomials,

P1(x, y) = 0, Q1(x, y) = b011x + b111xy + b021y
2 + b121xy2 + b301x

3 + x2y,

P2(x, y) = 0, Q2(x, y) = b012x + b112xy + b022y
2 + b122xy2. (29)

Following the above procedure, we can choose the coefficients for M3(h), and so on. In the 
following, we list the polynomials for Mk(h) up to k = 5 (the detailed arguments are omitted 
here for brevity):

Pj (x, y) = a21j x
2y + a12j xy2, j = 1,2,3, P4(x, y) = P5(x, y) = 0,

Q1(x, y) = b011y + b111xy + b021y
2 + b121xy2 + b301x

3 + b031y
3 + b211x

2y,

Q2(x, y) = b012y + b112xy + b022y
2 + b122xy2 + b302x

3 + b032y
3,

Q3(x, y) = b013y + b113xy + b023y
2 + b123xy2 + b303x

3,

Q4(x, y) = b014y + b114xy + b024y
2 + b124xy2 + b304x

3,

Q (x, y) = b y + b xy + b y2 + b xy2. (30)
5 015 115 025 125
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Here, the difficult part is to compute the functions ri , i = 1, 2, 3, 4 in ω̃i . Proving the indepen-
dence of the basis for each k is even more difficulty. Thus, we turn to focus value computation 
which can be easily used to show the independence of the basis (i.e. the focus values).

Having determined the coefficients we need in P and Q of system (6), we now use the com-
putation of focus values to prove the existence of 10 small-amplitude limit cycles. We compute 
the focus values up to ε5 order as follows:

V =
5∑

i=0

εiVi, where Vi = {vi0, vi1, vi2, · · · }. (31)

We call vij the j th εi -order focus value of system (6), and note that v0j = 0, j = 0, 1, 2, . . .
since at ε = 0 system (6) is a Hamiltonian system. The computation of Vi is equivalent to the 
computation of ith-order Melnikov function Mi(h). But the computation of focus values is much 
easier than that of the higher-order Melnikov functions. The disadvantage of the focus value 
computation is that conditions obtained from the first few focus values are hard to be used to 
prove vanishing of an infinite number of focus values. But this can be easily verified by the 
above formulas ω̃i .

The focus values vij can be obtained by using many different symbolic programs (e.g., the 
Maple program developed in [27]). Firstly, note that vi0 = 1

2 b01i , i = 1, 2, . . . . In order to execute 
the Maple program, set b01i = 0, i = 1, 2, . . . . In addition, set b211 = 1. Now, we start from V1
and obtain

v11 = 1
8 (a121 + 3b031 + b111 − 1

2a1b111 − 2a2b021 + 1).

Setting v11 = 0 yields b031 = 1
3 ( 1

2a1b111 + 2a2b021 − a121 − b111 − 1). Further, setting v12 = 0
results in

b121 = a1b021 − a211 + 1
4a2(5a1−2)

(3a2
1 + 20a2

2 + 4a1 − 20)(b111 + 1).

Then, we have

v13 = 35
3072(5a1−2)

(b111 + 1)(a3
1 − 3a2

1 + 4 − 4a2
2)F11,

v14 = −7
73 728(+5a1−2)

(b111 + 1)(a3
1 − 3a2

1 + 4 − 4a2
2)F12,

v15 = −7
84 934 656(+5a1−2)

(b111 + 1)(a3
1 − 3a2

1 + 4 − 4a2
2)F13,

where

F11 = 3a2
1 + 12a1 − 4 − 4a2

2,

F12 = 27a4
1 − 90a3

1 − 1308a2
1 + 1608a1 − 256 + (420a2

1 + 1608a1 − 1376 − 256a2
2)a2

2,

F13 = 19 683a6
1 + 343 116a5

1 − 124 524a4
1 − 6 168 672a3

1 + 7 612 368a2
1 + 1 585 344a1

−1 071 424 + 4[3(140 715a4
1 + 622 536a3

1 + 39 880a2
1 − 1 689 568a1 + 421 808)

− (404 508a2
1 − 396 336a1 + 267 856a2

2 − 1 265 424)a2
2]a2

2 .

It is easy to see that setting b111 = −1 results in v13 = v14 = v15 = · · · = 0, as discussed above. In 
order to obtain maximal number of small-amplitude limit cycles bifurcating from the origin, we 
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have to use the coefficients a1 and a2 to solve F11 = F12 = 0 (i.e., v13 = v14 = 0). If the solution 
of F11 = F12 = 0 yields F13 �= 0, i.e., we have parameter values such that v10 = v11 = · · · =
v14 = 0, but v15 �= 0, then we obtain 5 small-amplitude limit cycles by properly perturbing b011, 
b031, b021, a1 and a2, respectively. To show this, we use the Groebner basis reduction procedure 
to reduce F12 and F13 to

F̃12 = F12|F11=0 = 18(a1 + 2)(11a3
1 + 46a2

1 − 84a1 + 24),

F̃13 = F13|F11=F̃12=0 = − 179 712
121 (a1 + 2)(3073a2

1 − 5272a1 + 1500) �= 0.

Then, solving the system of two equations, F11 = F12 = 0 (or F11 = F̃12 = 0) we obtain the 
solutions for a1 as follows:

a1 = ai
11, a2 = ai

21 = ± 1
2

√
3(ai

11)
2 + 12ai

11 − 4, i = 1,2,3, for which

a1
11 = −5.61185383 · · · , a2

11 = 0.36507058 · · · , a3
11 = 1.06496506 · · · , (32)

where the second number ‘1’ in the subscripts of ai
11 and ai

21 denotes the solutions corresponding 
to the first-order Melnikov function, i.e, k = 1. Note that a1 = −2 is not a solution of F11 = 0. 
Further, we obtain

det
[

∂(F11,F12)
∂(a1,a2)

]
F11=F̃12=0

= 576a2(a1 + 1)(11a2
1 + 40a1 − 36) �= 0,

since none of the factors in the above equations are included in F11 and F̃12.
Summarizing the above results we can conclude that based on the ε1-order focus values 

(equivalently based on the first-order Melnikov function M1(h)) we obtain 5 small-amplitude 
limit cycles around the origin.

Now let b111 = −1, then b121 = a1b021 − 1 and b031 = − 1
3 (a121 + 1

2a1 − 2a2b021), un-
der which all ε1-order focus values vanish, or equivalently, the first-order Melnikov function 
M1(h) ≡ 0. Note here that a1 and a2 are not used in making M1(h) ≡ 0. Then, one uses the 
ε2-order focus values to solve the polynomial equations v21 = v22 = v23 = 0, yielding the solu-
tions for b032, b122 and b112. Under these solutions, we further obtain

v24 = − 1
36 864(3a2

1+12a1−4−4a2
2 )

F20F21,

v25 = 1
31 850 496(3a2

1+12a1−4−4a2
2 )

F20F22,

v26 = 11
107 297 229 312(3a2

1+12a1−4−4a2
2 )

F20F23,

for which we have applied the Groebner basis reduction procedure to obtain

F20 = [
2(3a3

1 − 4a2
2)b021 − 3(a3

1 − 4a2
2)b301 − 6a2

1a211 + 4a2a121 − 4a1a2b211
]
b211

+12a1(a1a121 − a2a211)b021,

F = 81a4 − 648a3 − 648a2 + 1632a − 880 − (504a2 − 1632a − 1696 + 880a2)a2,
21 1 1 1 1 1 1 2 2
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F̃22 = F22|F21=0

= 1408
[
243a3

1 − 522a2
1 + 5172a1 + 6664 + (1053a2

1 − 2424a1

− 5572 + 1300a2
2)a2

2

]
a2

2 − 50 688(63a3
1 + 56a2

1 − 148a1 + 80),

F̃23 = F23|F21=F̃22=0

= 72(675 121 644a3
1 + 475 639 745a2

1 − 1 491 227 668a1 + 849 702 020)

+ {
3 893 155 245a3

1 + 22 056 197 796a2
1 − 131 201 934 348a1 − 117 343 356 608

+ 20
[
303 274 623a1 + 3 083 354 476 − 26(55 458a1 − 130 879)a2

2

]
a2

2

}
a2

2 �= 0.

Similarly, we obtain the following solutions satisfying F21 = F̃22 = 0:

a1 = ai
12, i = 1,2, . . . ,7,

a2 = ai
22 =

√
10 179a6

1−81 864a5
1−179 172a4

1+204 992a3
1−32 496a2

1−124 032a1+66 880

4(5109a4
1+12 076a3

1−75 936a2
1−167 664a1+48 944)

, (a1 = ai
12),

where

a1
12 = −2.43192492 · · · , a2

12 = 0.12148877 · · · , a3
12 = 0.23963547 · · · ,

a4
12 = 0.89471272 · · · , a5

12 = 1.60031174 · · · , a6
12 = 7.33752703 · · · ,

a7
12 = 10.40950390 · · · . (33)

In addition, we can show that for the above solutions the following determinant is non-zero,

det
[

∂(F21,F22)
∂(a1,a2)

]
F21=F̃22=0

= 360 448
351 a2

{
36(1 571 445a3

1 + 860 083a2
1 − 3 207 848a1 + 1 911 580)

+ a2
2

[
4 977 612a3

1 + 24 045 705a2
1 − 138 196 596a1 − 132 836 684

+ 20a2
2

(−119 877a1 + 2 945 227 + 169a2
2(459a1 + 1799)

)]} �= 0.

The above results show that we have parameter values such that v20 = v21 = · · · = v25 = 0, but 
v26 �= 0. Then, taking proper perturbations on the coefficients b012, b032, b122, b112, a1 and a2
yields 6 small-amplitude limit cycles around the origin of system (6) when the ε2-order focus 
values (or the second-order Melnikov function M2(h)) are used.

In order to get more limit cycles, we let F20 = 0 and solve this equation for b301, yielding 
all the ε2-order focus values v2j = 0. Under these conditions, we then use the ε3-order focus 
values v3j to determine the number of small-amplitude limit cycles. Similarly, we may linearly 
solve the polynomial equations v31 = v32 = v33 = v34 = 0 for the coefficients b023, b123, b113
and b302. After this, no coefficients can be solved linearly. So we solve a211 from the equation, 
v35 = 0, which is quadratic about a211, to obtain two solutions a±

211. We choose a211 = a+
211 and 

then v36, v37 and v38 are simplified to

v36 = −624F30 F31, v37 = −1248F30 F32, v38 = −208F30 F33,
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where F30 is a lengthy irrational function, and we further apply the Groebner reduction procedure 
to F32 and F33 to obtain

F31 =405a4
1 + 6264a3

1 + 6264a2
1 − 5664a1 + 1360 − 8(99a2

1 + 708a1 + 524 − 170a2
2)a2

2,

F̃32 = F32|F31=0

=4(261 117a3
1 + 307 422a2

1 − 260 532a1 + 60 680) − [
9(1035a3

1 + 13 266a2
1

+ 111 492a1 + 84 376 + 5(513a2
1 − 4824a1 − 57 156 + 2660a2

2)a2
2

]
a2

2,

F̃33 = F32|F31=F̃32=0

=4(152 348 063 679a3
1 + 175 217 936 814a2

1 − 151 386 504 684a1

+ 35 757 329 960) + {
7 428 338 685a3

1 − 38 896 637 238a2
1

− 568 264 627 476a1 − 439 876 872 808 − 20
[
714 254 595a1 − 6 998 804 702

− 380(11 970a1 + 132 193)a2
2

]
a2

2

}
a2

2 �= 0.

Solving F31 = F̃32 = 0 yields

a1 = a13 = 0.01871627 · · · ,

a2 = a23 = ±
√

99a2
13+708a13+524−12

√
1104+8496a13+504a2

13−2724a3
13−171a4

13

340 . (34)

Further, we have det
[
∂(F31,F32)/∂(a1, a2)

] = −0.1124026367 · · · × 1010 �= 0 at (a1, a2) =
(a13, a23). This, together with the above results, suggests that we may have parameter values 
such that v3i = 0, i = 0, 1, 2, . . . , 7, v38 �= 0, and so the system could have 8 small-amplitude 
limit cycles, by properly applying perturbations on the coefficients, b013, b023, b123, b113, b302, 
a211, a1 and a2.

Now, we want all ε3-order focus values to vanish (i.e., M3(h) ≡ 0). This can be achieved 
by solving the coefficient a121 from a polynomial equation. Having obtained the conditions for 
which all the ε1-, ε2- and ε3-order focus values vanish, we now use the ε4-order focus values to 
linearly solve for b024, b124, b114, b303, a212 and a122 one by one from the equations v41 = v42 =
v43 = v44 = v45 = v46 = 0. Then, the higher-order focus values are given by

v47 = 13
1 179 648 F40F41, v48 = −13

127 401 984 F40F42, v49 = 13
244 611 809 280 F40F43,

where F40 is a common factor, and F41, F42 and F43 are polynomials in a1 and a2. Similarly, we 
obtain the solutions of a1 and a2 for F41 = F42 = 0, but F43 �= 0, given as follows:

a1 = ai
14, a2 = ±ai

24 = ±a2(a
i
14), i = 1,2, . . . ,6, where

a1
14 = −4.58252393 · · · , a2

14 = −1.72294798 · · · , a3
14 = −0.21827689 · · · ,

a4
14 = −0.09420293 · · · , a5

14 = 0.14811742 · · · , a6
14 = 1.45012903 · · · , (35)

and a2(.) denotes a rational function of the variable, which satisfy F43 �= 0 and det [∂(F41,F42) /

∂(a1, a2)] ˜ �= 0. This suggests that with the ε4-order focus values, we can obtain 9

F41=F42=0
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small-amplitude limit cycles by properly perturbing the coefficients, b014, b024, b124, b114, b303, 
a212, a122, a1 and a2.

Finally, in order to have all the ε4-order focus values to become zero, we let b021 = − 2a2
a2

1
. 

Then, we obtain the simplified conditions, under which all the ε1-, ε2-, ε3-, ε4-order focus values 
vanish. Then, we use the ε5-order focus values to find 10 small-amplitude limit cycles. Linearly 
solving the seven polynomial equations, v51 = v52 = · · · = v57 = 0 one by one for the seven 
coefficients, b025, b125, b115, b304, a213, a123 and b022. Then, v58, v59 and v510 are given in terms 
of a1 and a2:

v58 = 187
6 193 152 000 F50F51, v59 = −187

990 904 320 000 F50F52, v510 = 17
11 890 851 840 000 F50F53,

where the common factor F50 is a rational function of a1 and a2, and F5i , i = 1, 2, 3 are polyno-
mials in a1 and a2, with degrees 6, 7 and 8 with respect to a2

2 , respectively. It can be shown that 
there are in a total 12 real solutions for (a1, a2) such that F51 = F52 = 0, but F53 �= 0, given as 
follows:

a1 = ai
15, a2 = ±ai

25 = ±a2(a
i
15) i = 1,2, . . . ,6, where

a1
15 = −2.39560267 · · · , a2

15 = −1.53681619 · · · , a3
15 = −0.38249860 · · · ,

a4
15 = −0.19575710 · · · , a5

15 = 0.05960015 · · · , a6
15 = 0.29402249 · · · , (36)

and a2(.) denotes a rational function of the variable, which satisfy F53 �= 0 and det [∂(F51,F52) /

∂(a1, a2)]F51=F52=0 �= 0, implying that we can apply perturbations on the 10 parameters, b015, 
b025, b125, b115, b304, a213, a123, b022, a1 and a2 to obtain 10 small-amplitude limit cycles around 
the origin.

Finally, we need to check the critical values given in equations (32), (33), (34), (35) and (36)
which are properly distributed in the bifurcation diagram in terms of the parameters a1 and a2
with the Hamiltonian function H(x, y) given in (7). (See Fig. 1 in [16] for the Hamiltonian 
function H(x, y) = 1

2 (x2 + y2) − 1
3x3 + axy2 + 1

3by3, in terms of the parameters a and b.) For 
convenience, we define the following points in the a1–a2 plane:

k = 1 : P1 = ( 0.3650705869 . . . , 0.4417795388 . . . )

k = 2 : P2 = ( 0.1214887712 . . . , 0.6855794168 . . . )

P3 = ( 0.8947127237 . . . , 0.3648137316 . . . )

k = 3 : P4 = ( 0.0187162703 . . . , 0.5708409903 . . . )

k = 4 : P5 = (−0.0942029335 . . . , 0.6741464973 . . . )

P6 = ( 0.1481174260 . . . , 0.2303270018 . . . )

k = 5 : P7 = (−0.1957571086 . . . , 0.7336772199 . . . )

P8 = ( 0.0596001501 . . . , 0.4237619510 . . . ),

where the number k denotes the order of Melnikov functions. Note that all of these points satisfy 
the conditions −1 ≤ a1 ≤ 2 and 0 ≤ a2 ≤ (1 − a1/2)

√
1 + a1, that is, they are inside the curve 

defined by
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Fig. 1. Distribution of points Pi and their corresponding phase portraits.

a2
2 =

(
1 − a1

2

)2
(1 + a1),

as shown in Fig. 1. But it should be noted that there are other points outside the curve (not shown 
in this figure) which are also solutions. For each k, there exist proper Hamiltonian functions for 
which the conclusion in Theorem 1 holds. It has been seen from our solution procedures that 
a2 = 0 is not allowed, and none of the above cases is degenerate. In particular, the degenerate 
case, defined by a3

1 = 2a2
2 , does not belong to our parameter values. The corresponding phase 

portraits for the eight sets of parameter values (8 points Pi ) are also sketched in Fig. 1.
The above results indeed show that by using the kth-order Melnikov function Mk, we can 

obtain � 4k
3 � + 4 number small-amplitude limit cycles bifurcating from the origin of system (6).

The proof for Theorem 1 is complete. �
5. Conclusion

In this paper, we have shown that the bases chosen in the proof of [13] are not independent, 
leading to the conclusion of the existence of 11 limit cycles in this example being not true. 
Further, with an example, we have demonstrated a good method combining both advantages of 
the Melnikov function method and the focus value computation method in studying bifurcation 
of limit cycles. In particular, we perturb a quadratic Hamiltonian system with cubic polynomials 
to obtain 10 small-amplitude limit cycles by using up to 5th-order Melnikov functions. This 
illustrates the usefulness of the combination method, and it is expected that this method can be 
applied to investigate other polynomial systems to obtain more limit cycles.
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