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Abstract

In this paper, we present a method of higher-order analysis on bifurcation of small limit cycles around 
an elementary center of integrable systems under perturbations. This method is equivalent to higher-order 
Melinikov function approach used for studying bifurcation of limit cycles around a center but simpler. 
Attention is focused on planar cubic polynomial systems and particularly it is shown that the system studied 
by Żoła̧dek (1995) [24] can indeed have eleven limit cycles under perturbations at least up to 7th order. 
Moreover, the pattern of numbers of limit cycles produced near the center is discussed up to 39th-order 
perturbations, and no more than eleven limit cycles are found.
© 2018 Elsevier Inc. All rights reserved.
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1. Introduction

Bifurcation theory of limit cycles is important for both theoretical development of qualita-
tive analysis and applications in solving real problems. It is closely related to the well-known 
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Hilbert’s 16th problem [2], whose second part asks for the upper bound, called Hilbert number 
H(n), on the number of limit cycles that the following system,

dx

dt
= Pn(x, y),

dy

dt
= Qn(x, y), (1)

can have, where Pn(x, y) and Qn(x, y) represent nth-degree polynomials in x and y. This 
problem has motivated many mathematicians and researchers in other disciplines to develop 
mathematical theories and methodologies in the areas of differential equations and dynamical 
systems. However, this problem has not been completely solved even for quadratic systems 
since Hilbert proposed the problem in the Second Congress of World Mathematicians in 1900. 
The maximal number of limit cycles obtained for some quadratic systems is 4 [3,4]. However, 
whether H(2) = 4 is still open. For cubic polynomial systems, many results have been obtained 
on the lower bound of the number of limit cycles. So far, the best result for cubic systems is 
H(3) ≥ 13 [5,6]. Note that the 13 limit cycles obtained in [5,6] are distributed around several 
singular points.

When the problem is restricted to consider the maximum number of small-amplitude limit cy-
cles, denoted by M(n), bifurcating from a focus or a center in system (1), one of the best-known 
results is M(2) = 3, which was obtained by Bautin in 1952 [10]. For n = 3, a number of results 
in this research direction have been obtained. So far the best result for the number of small limit 
cycles around a focus is 9 [11–13], and that around a center is 12 [14].

One of powerful tools used for analyzing local bifurcation of limit cycles around a focus or 
a center is normal form theory (e.g., see [15–18]). Suppose system (1) has an elementary focus 
or an elementary center at the origin. With the computation methods using computer algebra 
systems (e.g., see [9,19–22]), we obtain the normal form expressed in polar coordinates as

dr

dt
= r

(
v0 + v1 r2 + v2 r4 + · · · + vk r2k + · · · ),

dθ

dt
= ωc + τ0 + τ1 r2 + τ2 r4 + · · · + τk r2k + · · · ,

(2)

where r and θ represent the amplitude and phase of motion, respectively. vk (k = 0, 1, 2, · · · ) is 
called the kth-order focus value. v0 and τ0 are obtained from linear analysis. The first equation of 
(2) can be used for studying bifurcation and stability of limit cycles, while the second equation 
can be used to determine the frequency of the bifurcating periodic motion. Moreover, the coeffi-
cients τj can be used to determine the order or critical periods of a center (when vj = 0, j ≥ 0).

A particular attention has been paid to near-integrable polynomial systems, described in the 
form of [7,8]

dx

dt
= M−1(x, y,μ)Hy(x, y,μ) + ε p(x, y, ε, δ),

dy

dt
= −M−1(x, y,μ)Hx(x, y,μ) + ε q(x, y, ε, δ),

(3)

where 0 < ε � 1, μ and δ are vector parameters; H(x, y, μ) is an analytic function in x, y and 
μ; p(x, y, ε, δ) and q(x, y, ε, δ) are polynomials in x and y, and analytic in δ and ε. M(x, y, μ)

is an integrating factor of the unperturbed system (3)|ε=0.
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Suppose the unperturbed system (3)|ε=0 has an elementary center. Then, considering limit 
cycles bifurcation in system (3) around the center, we may use the normal form theory to obtain 
the first equation of (2) as follows:

dr

dt
= r

[
v0(ε) + v1(ε)r

2 + v2(ε)r
4 + · · · + vi(ε)r

2i + · · ·
]
, (4)

where

vi(ε) =
∞∑

k=1

εkVik, i = 0,1,2, . . . ,

in which Vik denotes the ith εk-order focus value, and will be used throughout this paper. Note 
that vi(ε) = O(ε) since the unperturbed system (3)|ε=0 is an integrable system. Further, because 
system (3) is analytic in ε, we can rearrange the terms in (4), and obtain

dr

dt
= V1(r) ε + V2(r) ε2 + · · · + Vk(r) εk + · · · , (5)

where

Vk(r) =
∞∑
i=0

Vik r2i+1, k = 1,2, . . . . (6)

Similarly, for the normal form of system (3) we have the second differential equation in (2), 
given by

dθ

dt
= T0(r) + O(ε),

with T0(0) �= 0, and thus

dr

dθ
= V1(r) ε + V2(r) ε2 + · · · + Vk(r) εk + · · ·

T0(r) + O(ε)
. (7)

Assume the solution r(θ, ρ, ε) of (7), satisfying the initial condition r(0, ρ, ε) = ρ, is given in 
the form of

r(θ, ρ, ε) = r0(θ, ρ) + r1(θ, ρ)ε + r2(θ, ρ)ε2 + · · · + rk(θ, ρ)εk + · · · ,

with 0 < ρ � 1. Then, r0(0, ρ) = ρ and rk(0, ρ) = 0, for k ≥ 1.
If there exists a positive integer K such that Vk(r) ≡ 0, 1 ≤ k < K , and VK(r) �≡ 0, then it 

follows from (7) that

r0(θ, ρ) = ρ, rk(θ, ρ) = 0, 1 ≤ k < K, and rK(θ,ρ) = VK(ρ)
θ.
T0(ρ)
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Thus, the displacement function d(ρ) of system (7) can be written as

d(ρ) = r(2π,ρ, ε) − ρ = 2π
VK(ρ)

T0(ρ)
εK + O(εK+1). (8)

Therefore, if we want to determine the number of small-amplitude limit cycles bifurcating from 
the center in system (3), we only need to study the number of isolated zeros of VK(ρ) for 
0 < ρ � 1, and have to obtain the expression of the first non-zero coefficient VK(r) in (5) by 
computing ViK , for i ≥ 0.

The above discussions show that the basic idea of using focus values is actually the same as 
that of the Melnikov function method. Using H(x, y) = h to parameterize the section (i.e. the 
Poincaré map), we obtain the displacement function of (3), given by

d(h) = M1(h)ε + M2(h)ε2 + · · · + Mk(h)εk + · · · , (9)

where

M1(h) =
∮

H(x,y,μ)=h

M(x, y,μ)
[
q(x, y,0, δ) dx − p(x, y,0, δ) dy

]
, (10)

evaluated along closed orbits H(x, y, μ) = h for h ∈ (h1, h2). Then, we can study the first non-
zero Melnikov function Mk(h) in (9) to determine the number of limit cycles in system (3). In 
the following, we remark on the comparison of the Melnikov function method and the method of 
normal forms (or focus values).

Remark 1.

(1) Let H = h, 0 < h −h1 � 1 define closed orbits around the center of system (5)|ε=0. It is easy 
to see that for any integer K ≥ 1, equation (8) holds if and only if Mk(h) ≡ 0, 1 ≤ k < K

and MK(h) �≡ 0 in (9). Moreover, VK(ρ) for 0 < ρ � 1 and MK(h) for 0 < h −h1 � 1 have 
the same maximum number of isolated zeros.

(2) As we can see, Vk(r) can be obtained by the computation of normal forms or focus values.
(3) In particular, when the original system is not a Hamiltonian system but an integrable sys-

tem, then even computing the coefficients of the first-order Melnikov function is much more 
involved than the computation of using the method of normal forms.

(4) However, the method of normal forms (or focus values) is restricted to Hopf and general-
ized Hopf bifurcations, while the Melnikov function method can also be applied to study 
bifurcation of limit cycles from homoclinic/heteroclinic loops or any closed orbits.

(5) Another method of using high-order perturbations of focus values can be found in [23] by 
Christopher. Like in our approach, linear terms of focus values are used firstly in [23] to 
estimate the cyclicity of centers. If the number of independent linear terms is less than the 
codimension, then higher order terms of focus values would be needed to obtain the cyclicity.

When we apply the method of normal form computation, some unnecessary perturbation pa-
rameters are involved in the computation of high-order focus values, which could be extremely 
computation demanding (in both time and memory), and makes it much more difficult to solve 
the problem. Meanwhile, before we use the first non-zero coefficient VK(r) in (5) to find limit 
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cycles, we need to prove Vk(r) ≡ 0, 1 ≤ k < K . The unnecessary parameters involved could 
greatly increase the difficulty of proving that.

In this paper, without loss of limit cycles, we introduce a linear transformation to eliminate un-
necessary parameters from system (3). With less parameters in (3), we can use the approximation 
of first integrals to prove Vk(r) ≡ 0. The idea will be illuminated in Section 2.

We will apply our method to study the bifurcation of small-amplitude limit cycles in the 
system

dx

dt
= a + 5

2
x + xy + x3 +

n∑
k=1

εkpk(x, y),

dy

dt
= −2ax + 2y − 3x2 + 4y2 − ax3 + 6x2y +

n∑
k=1

εkqk(x, y),

(11)

where

pk(x, y) = a00k +
3∑

i+j=1

aijk xiyj , qk(x, y) = b00k +
3∑

i+j=1

bijk xiyj , (12)

in which aijk and bijk are εk th-order coefficients (parameters). The unperturbed system (11)|ε=0

has a rational Darboux integral [24],

H0 = f 5
1

f 4
2

= (x4 + 4x2 + 4y)5

(x5 + 5x3 + 5xy + 5x/2 + a)4
, (13)

with the integrating factor M = 20f 4
1 f −5

2 . It can be shown that for a < −25/4, system (11)|ε=0

has a center at E0 = (− a
2 , − a2+2

4 ). The system (11)|ε=0 was proposed in [24], and it was claimed 
that this system could have 11 limit cycles around the center by studying the second-order Mel-
nikov function. Later, Yu and Han applied the normal form computation method and got only 9
limit cycles around E0 [25] by analyzing the ε- and ε2-order focus values. Recently, it has been 
shown [26] that errors are made in [24] for choosing 12 integrals as the basis of the linear space 
of corresponding Melnikov functions of system (11)|ε=0. In fact, among the 12 chosen integrals, 
two of them can be expressed as linear combinations of the other ten integrals, and therefore only 
9 limit cycles can exist, agreeing with that shown in [25].

It has been shown in [23,27] that another two cubic systems can have 11 small limit cycles 
produced from a center. Recently, the existence of 12 small limit cycles around a center is proved 
in a cubic Darboux system with cubic perturbations [14].

The rest of the paper is organized as follows. In the next section, we consider system (3), 
and construct a transformation to reduce the number of perturbation parameters, which greatly 
simplifies the analysis in the following section. Section 3 is devoted to the computation of higher 
εk-order focus values and the existence of 11 limit cycles in system (11), which needs computing 
at least ε7-order focus values. Finally, conclusion is drawn in Section 4.
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2. Preliminaries

The method of focus values (or normal forms) is one of important and powerful tools for the 
study of small-amplitude limit cycles generated from Hopf bifurcation. In general, a sufficient 
number of focus values would be needed if one wants to find more small-amplitude limit cycles. 
One main challenge is that the computation of focus values becomes more and more difficult 
as the order of focus values goes up. That is why computer algebra systems such as Maple 
and Mathematica have been used for computing the focus values to improve the computational 
efficiency (e.g. see [21,22]). Another approach is to eliminate certain parameters from the system, 
which is the method we shall develop here for near-integrable systems.

In most studies of near-integrable systems, full perturbations like those polynomials
p(x, y, ε, δ) and q(x, y, ε, δ) given in system (3) are considered. The parameter vector δ usually 
represents the coefficients in p and q . When normal forms are used to study small limit cycles, it 
is easy to get and solve the focus values of ε order (coefficients in V1(r)), because they are linear 
functions of the system parameters, namely the coefficients in p(x, y, 0, δ) and q(x, y, 0, δ). For 
the εk-order focus values (coefficients in Vk(r)), more parameters would be involved in the com-
putation. One can observe that some parameters are not necessary for obtaining the maximum 
number of limit cycles, and they only increase the difficulty in finding limit cycles.

When the first n functions Vk(r) in (5), 1 ≤ k ≤ n are applied to studying bifurcation of limit 
cycles, in order to remove unnecessary parameters without reducing the number of limit cycles, 
we may use the following transformation:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x → x + e1(ε)x + e2(ε)y + e3(ε),

y → y + e4(ε)x + e5(ε)y + e6(ε),

t → t + e7(ε)t,

μ → μ + e8(ε),

(14)

where

ei(ε) = ei1ε + ei2ε
2 + · · · + einε

n, i = 1, · · · ,8.

Note that (14)|ε=0 is an identity map. Thus, (14) keeps the unperturbed system of (3) unchanged. 
Furthermore, the new system obtained by using (14) can be still written in the same form of 
(3). So we only need to find proper ei(ε)’s to get simpler perturbation functions without loss of 
generality.

To illustrate how to obtain ei(ε), we take system (11) as an example. The coefficients aijk and 
bijk in (11) are the parameters. Substituting the transformation (14) into system (11) yields

dx

dt
= a + 5

2
x + xy + x3 +

n∑
k=1

εkp̃k(x, y) + o(εn),

dy

dt
= −2ax + 2y − 3x2 + 4y2 − ax3 + 6x2y +

n∑
εkq̃k(x, y) + o(εn),

(15)
k=1
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where

p̃k(x, y) = ã00k +
3∑

i+j=1

ãijk xiyj , q̃k(x, y) = b̃00k +
3∑

i+j=1

b̃ijk xiyj . (16)

Obviously, the coefficients ãijk and b̃ijk in (16) are linear in emk , m = 1, . . . , 8. Let Ek =
(e1k, e2k, · · · , e8k)

T . For any 1 ≤ k ≤ n, ãijk and b̃ijk can be written in the form of

ãijk = AijEk + ηijk, b̃ijk = BijEk + ζijk,

where Aij and Bij are 1 × 8 matrices, and ηijk and ζijk , given by

ηijk = ηijk(E1, · · · ,Ek−1, aml1, · · · , amlk, bml1, · · · , bmlk),

ζijk = ζijk(E1, · · · ,Ek−1, aml1, · · · , amlk, bml1, · · · , bmlk),
(17)

are polynomials in eml , 1 ≤ l ≤ k − 1, and the coefficients in the perturbation functions (12).
Note that Aij and Bij are not dependent on k. We hope that we can find some proper values for 

eik to make some of the coefficients ãijk and b̃ijk vanish or satisfy some conditions, so that the 
computation of the focus values would become easier. For instance, we can choose for 1 ≤ k ≤ n,

ã10k = ã01k = ã20k = ã11k = ã02k = ã30k = 0, and

ãpk
� p̃k(− a

2 ,− a2+4
4 ) = 0, ãqk

� q̃k(− a
2 ,− a2+4

4 ) = 0.
(18)

The last two equations in (18) keep the equilibrium of system (11) in a neighborhood of E0 with 
radius o(εn). A direct computation yields

ã10k = 2ae2k + e6k + 5
2e7k + η10k, ã01k = 1

2e2k + e3k + η01k,

ã20k = 3e2k + 3e3k + e4k + η20k, ã11k = e5k + e7k + η11k,

ã02k = −3e2k + η02k, ã30k = 2e1k + ae1k + e7k + η30k,

ãpk
= − 1

4a(4 + a2)e1k − 1
8 (4 + a2)(2 + a2)e2k + 1

4 (4 + a2)e3k

+ 1
4a2e4k + 1

8a(2 + a2)e5k − 1
2ae6k + e8k + η̃k,

ãqk
= − 1

8a2(16 + 3a2)e1k − 1
16a(16 + 3a2)(2 + a2)e2k

+ 1
4a(16 + 3a2)e3k + 1

4a(4 + a2)e4k + 1
8 (4 + a2)(2 + a2)e5k

− 1
4 (4 + a2)e6k + 1

8a(a2 + 8)e8k + ζ̃k,

(19)

where η̃k and ζ̃k are also functions in ηijl and ζij l with 1 ≤ l ≤ k − 1, respectively.
Because

det

[
∂(ã10k, ã01k, ã20k, ã11k, ã02k, ã30k, ãpk

, ãqk
)

∂(e1k, e2k, e3k, e4k, e5k, e6k, e7k, e8k)

]
= 3

4
(32 − a4) < 0

for a < −2−5/4, we can solve (19) for emk to obtain



Y. Tian, P. Yu / J. Differential Equations 264 (2018) 5950–5976 5957
emk = emk(η10k, η01k, η20k, η11k, η02k, η30k, η̃k, ζ̃k), 1 ≤ m ≤ 8,

which can be rewritten by using (17) as

emk = ẽmk(E1, · · · ,Ek−1, aij1, · · · , aijk, bij1, · · · , bijk).

Note that em1 only depends on aij1 and bij1. Therefore, for all 1 ≤ m ≤ 8, 1 ≤ k ≤ n, emk can be 
expressed as a polynomial in aijl and bijl , 1 ≤ l ≤ k. In other words, (18) has solutions for all 
1 ≤ k ≤ n.

Thus, without loss of generality, we assume that (12) takes the following form,

pk(x, y) = a00k + a21kx
2y + a12kxy2 + a03ky

3,

qk(x, y) = b00k + b10kx + b01ky + b20kx
2 + b11kxy + b02ky

2

+ b30kx
3 + b21kx

2y + b12kxy2 + b03ky
3,

(20)

with

a00k = 1
64 (a2 + 2)

[
(a2 + 2)2 a03k + 2a(a2 + 2) a12k + 4a2a21k

]
,

b00k = 1
64

{
8a3b30k + 16a(2b10k − ab20k) + 4(a2 + 2)(4b01k − 2ab11k + a2b21k)

− (a2 + 2)2[4b02k − 2ab12k − (a2 + 2)b03k

]}
.

(21)

As mentioned in Section 1, to find limit cycles around E0 in system (11), we apply normal 
form theory to compute the focus values and then solve the multivariate polynomial equations 
based on the focus values. Particularly, we have

b01k = 1
16

[
4a(2b11k − ab21k) − (a2 + 2)2(a12k + 3b03k)

+ 4(a2 + 2)(2b02k − aa21k − ab12k)
]
,

(22)

solved from the zeroth-order focus value V0k = 0, where

V0k = 1
32

{
16b01k − 4a(2b11k − ab21k) + (a2 + 2)2(a12k + 3b03k)

− 4(a2 + 2)(2b02k − aa21k − ab12k)
]
.

(23)

Higher-order focus values are relatively complex, and we shall study them in Section 3.
When we want to use focus values ViK in VK(r), i = 0, 1, 2, · · · , to study limit cycles, we 

first need to show Vk(r) ≡ 0, 1 ≤ k < K , or dr
dt

= O(εK) in (5). In order to prove this, we use the 
approximation of first integrals, and claim that if there exists an analytic function HK(x, y, ε)
such that

(M−1Hy + εp)
∂HK

∂x
+ (−M−1Hx + εq)

∂HK

∂y
= O(εK), (24)

then dr
dt

= O(εK). This claim can be easily proved by using the closed contour HK = h as the 
parameter to express the displacement function.
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Usually, like that considered in [14,25] the method of focus values is used only to prove how 
many limit cycles around the equilibrium point that system (3) can have. Combining it with the 
approximation of first integrals, we can obtain the maximal number of small limit cycles for 
parameters in a neighborhood of critical conditions. Furthermore, if the focus values are linear 
functions in parameters, we have a global result as follows.

Theorem 1. Consider system (5) and assume Vk(r) ≡ 0, 1 ≤ k < K . Suppose that for an integer 
m ≥ 1, each ViK , 0 ≤ i < m is linear in δ, and further the following two conditions hold:

(i) rank
[

∂(V0K,··· ,Vm−1,K )

∂(δ1,··· ,δm)

]
= m,

(ii) VK(r) ≡ 0, if ViK = 0, i = 0, 1, · · · , m − 1.

Then, for any given N > 0, there exist ε0 > 0 and a neighborhood V of the origin such that 
system (3) has at most m − 1 limit cycles in V for 0 < |ε| < ε0, |δ| ≤ N . Moreover, m − 1 limit 
cycles can appear in an arbitrary neighborhood of the origin for some values of (ε, δ).

The above theorem can be proved following the proof of Theorem 2.4.3 given in [1] with a 
minor modification. So the proof is omitted here.

3. Higher-order analysis leading to 11 limit cycles in system (11)

In this section, we focus on system (11) and show that it can have 11 limit cycles by using 
perturbations at least up to 7th order. In the following, we will use the transformed system (11)
with the simplified perturbations given in (19) for the analysis.

In order to compute the focus values of this system, we first shift the equilibrium of system 
(11), (x, y) = (− a

2 +o(εn), − a2+2
4 +o(εn)) to the origin and then use a computer algebra system 

and software package (e.g., the Maple program in [19]) to obtain the focus values in terms of the 
parameters a, aijk and bijk . We shall give detailed analysis for the first few lower-order focus 
values, and then summarize the results obtained from higher-order analysis.

For convenience, define the vectors:

W 8
k = (

V1k,V2k, · · · ,V8k

)
,

W 9
k = (

V1k,V2k, · · · ,V9k

)
,

W 10
k = (

V1k,V2k, · · · ,V10k

)
,

S8
k = (

b10k, b20k, b11k, b02k, b30k, b21k, b12k, b03k

)
,

S9
k = (

b10k, b20k, b11k, b02k, b30k, b21k, b12k, b03k, a03k

)
,

S10
k = (

b10k, b20k, b11k, b02k, b30k, b21k, b12k, b03k, a03k, a12(3m)

)
,

(25)

where in S10
k , k = 7m for Case (A) and k = 13m for Case (B) (m ≥ 1, integer) to be considered 

in Sections 3.4 and 3.5; and the determinants:

det8k = det

[
∂W 8

k

∂S8

]
, det9k = det

[
∂W 9

k

∂S9

]
, det10

k = det

[
∂W 10

k

∂S10

]
; (26)
k k k
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and the functions:

F1 = − 373423834799904305184768
5 a36(a4−32)8 ,

F2 = 3013505105717894236809449177088
5 a45(a4−32)9 ,

F3 = − 57397219210893210316046010501071634432
a55(a4−32)10 ,

F4 = − 279638476916415193342384256641414767487418
a66(a4−32)11 ,

G1 = − 258237837
32 a9(a4−32)

,

G2 = 23476167
64 a11(a4−32)2 (57697a4 − 35728a2 − 88704),

G3 = − 23476167
1024 a13(a4−32)3 (2304313595a8 − 1702233920a6 − 11829269248a4

− 39211065344a2 + 8642101248),

G4 = − 75246080
a10(a4−32)

,

G5 = 9405760
3 a12(a4−32)2 (75767a4 − 46944a2 − 96768),

G6 = − 180880
3 a14(a4−32)3 (11681524055a8 − 8555309984a6 − 56944147200a4

− 204210659328a2 + 30640177152),

G7 = 2006968901247765
2883584 a11(a4−32)

,

G8 = − 154382223172905
2883584 a13(a4−32)2 (48667a4 − 30160a2 − 52416),

G9 = 66163809931245
46137344 a15(a4−32)3 (6314158847a8 − 4591849024a6

− 29599122432a4 − 112639700992a2 + 11915624448).

(27)

Note that Fi �= 0, i = 1, 2, 3, and Gi �= 0, i = 1, 2, . . . , 9, since a4 − 32 > 0 for a < −2−5/4.

3.1. ε- and ε2-order analysis

The ε-order focus values V11, V21, · · · , V111 are obtained by using the algorithm and Maple 
program developed in [19]. Their expressions are lengthy, and here we only present the first one 
for brevity,

V11 = − 1
64a(a4−32)

{
6912b101 − 5760a b201

+ 16(a4 − 36a2 + 40) b111 + 48a(a4 + 36a2 + 160) b021

+ 3456a2 b301 − 24a(a4 − 12a2 + 40) b211

− 16(3a6 + 68a4 + 300a2 + 20) b121 (28)

− 24a(3a6 + 65a4 + 300a2 + 224) b031

+ 27(a2 + 2)(7a6 + 82a4 + 320a2 + 128) a031
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+ 8a(24a6 + 223a4 + 1140a2 + 1180) a121

+ 8(21a6 − 73a4 + 480a2 + 320) a211
}
.

It is noted that all Vi1’s are linear polynomials in aij1 and bij1. It can be shown that

det81 = F1 �= 0, det91 = F2 �= 0, det10
1 = 0. (29)

In fact, with the solution of S8
1 solved from W 8

1 = 0, we obtain

V91 = G1 a031, V101 = G2 a031, V111 = G3 a031, (30)

where Gi ’s are given in (27). Noticing G1 �= 0 for a < −25/4, we have V91 �= 0 if a031 �= 0. 
Moreover, det81 �= 0 and (23) indicate that perturbing W 8

1 and V01 around the solutions S8
1 and 

b011 (see (22)) does yield 9 small limit cycles around the equilibrium E0.
It is seen from (30) that V91 = V101 = V111 = 0 for a031 = 0. For convenience, define the 

critical condition S8
1c, satisfying (22), W 8

1 = 0 and a031 = 0, as

S8
1c:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

b011 = C1 a121 − 9
8a3a211,

a031 = b211 = 0, b121 = 7
2 a211, b021 = −6a121, b031 = 8

3 a121,

b111 = 9a a121 + 9
2 a211, b101 = C2 a121 + C3 a211,

b201 = C4 a121 + C5 a211, b301 = C6 a121 + C7 a211,

(31)

where Ci ’s are given in Appendix A.
We have the following result.

Theorem 2. The equilibrium E0 of system (11) is a center up to ε-order, i.e. all ε-order focus 
values vanish if and only if the condition S8

1c holds. Furthermore, there exist at most 9 small limit 
cycles around E0 for all parameters aij1 and bij1, and 9 small limit cycles can be obtained for 
some parameter values near S8

1c.

Proof. The existence of 9 small limit cycles has been shown under the solution S8
1 with a031 �= 0

and det81 �= 0. It is obvious that the critical condition S8
1c is necessary for all ε-order focus values 

to vanish since Vi1 = 0, 0 ≤ i ≤ 11 under this condition. To prove sufficiency, under the critical 
condition S8

1c, we use (24) to obtain the following ε-order approximation of the first integral,

H1(x, y, ε) = f1 + εf11

f2 + εf21
, (32)

where f1 and f2 are given in (13), f11 = a121r1 + a211r2 and f21 = a121r3 + a211r4 with

r1 = − 1
48

[
a2(3a2 + 4)(5 + 2y + 2x2 + x4) + 220 − 192ax + 280y

+ 120x2 − 64y2 + 128ax3 + 64x2y + 76x4],
r2 = − 1a(5a2 − 4) + 5x − 1a(a2 − 4)(2y + 2x2 + x4) + 2xy − 2x3, (33)
8 8
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r3 = 1
192

[
a2(3a2 + 4)(4a − 15x + 10xy + 10x3) + 304a + 16a3 − 180x

− 40
(
16ay − 8ax2 + 5xy − 23x3 − 8xy2 + 16ax4 + 8x3y

)]
,

r4 = a2

8 (a2 − 1) − a( 15
32a2 + 5

8 )x + 5
2x2( 3

2 + y − x2) + 5
16a(a2 − 4)x(y + x2).

This implies that setting the first 10 focus values Vi1 = 0, i = 0, · · · , 9 yields Vi1 = 0 for all 
i ≥ 10. Moreover, due to that all Vi1 are linear in all parameters aij1 and bij1, by Theorem 1 at 
most 9 small limit cycles can be obtained for this case. The proof is complete. �

Now suppose the condition S8
1c holds and so all ε-order focus values vanish, we then need 

to use the ε2-order focus values to study bifurcation of limit cycles. With an almost exact same 
procedure as that used in the ε-order analysis, we can find a solution S8

2 such that W 8
2 = 0, and 

then

V92 = G1 a032, V102 = G2 a032, V112 = G3 a032, det82 = F1 �= 0, (34)

where F1 and Gi ’s are given in (27). Note that the above equations are exactly the same as those 
given in (29) and (30), if we replace k = 1 by k = 2 in (29) and (30). This clearly shows that 
there can exist 9 limit cycles around the equilibrium E0 when all ε-order focus values vanish. It 
is also noted that all Vi2 are linear polynomials in aij2 and bij2.

Similarly, we see that setting a032 = 0 in (34) yields V92 = V102 = V112 = 0, implying that the 
solution S8

2 with a032 = 0 and b012 given in (22) defines a necessary condition for all ε2-order 
focus values to vanish. This critical condition is given below:

S8
2c:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b012 = 9
64a4a2

211 − 9
8a3a212 + C1a122 + C8a121a211 + C9a

2
121,

a032 = 0, b032 = 8
3 a122 + 5a2

121, b212 = a
2 a121(5a a121 − 9a211),

b122 = 7
2 a212 − 1

4 a121(31a a121 − 45a211),

b102 = C2 a122 + C3 a212 + C10 a2
121 + C11 a2

211 + C12 a121a211,

b202 = C4 a122 + C5 a212 + C13 a2
121 + C14 a2

211 + C15 a121a211,

b112 = 9a a122 + 9
2 a212 + 9a3

32 a2
211 + C16 a2

121 + C17 a121a211,

b022 = −6a122 + C18 a2
121 + C19 a121a211,

b302 = C6 a122 + C7 a212 + C20 a2
121 + C21 a2

211 + C22 a211a121,

(35)

where Ci ’s are given in Appendix A.
We have the following theorem.

Theorem 3. Assume S8
1c holds. The equilibrium E0 of system (11) is a center up to ε2-order, if 

and only if S8
2c holds. Furthermore, there exist at most 9 small limit cycles around E0 for all 

parameters aij2 and bij2, and 9 small limit cycles exist for some parameter values near S8
2c.

Proof. Similarly, we only need to prove sufficiency. With S8
1c and S8

2c holding, we can use (24)
to find the following ε2-order approximation of the first integral,
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H2(x, y, ε) = f1 + εf11 + ε2f12

f2 + εf21 + ε2f22
, (36)

where f11 and f21 are given in H1(x, y, ε) (see Eq. (32)), and

f21 = a122r1 + a212r2 + a2
121s1 + a2

211s2 + a121a211s3,

f22 = a122r3 + a212r4 + a2
121s4 + a2

211s5 + a121a211s6,

in which ri, i = 1, 2, 3, 4 are given in (33), and si, i = 1, 2, . . . , 8, are listed in Appendix B.
The existence of 9 small limit cycles is easily seen from V92 �= 0 and det82 �= 0 when a032 �= 0

under the critical condition S8
2c. On the other hand, the above results show that setting Vi2, 0 ≤

i ≤ 9 results in Vi2 = 0 for all i ≥ 10. Further, all Vi2’s are linear in aij2 and bij2, and S8
2c is the 

unique solution of Vi2 = 0, 0 ≤ i ≤ 9. Then by Theorem 1, at most 9 small limit cycles can be 
obtained around E0 for all parameters aij2 and bij2. �
3.2. ε3-order analysis

In this section, we assume the critical condition {S8
1c, S

8
2c}, which stands for that both the 

critical conditions S8
1c and S8

2c hold, under which all ε- and ε2-order focus values vanish. Thus, 
we use ε3-order focus values Vi3 to study bifurcation of limit cycles around the equilibrium E0. 
With a similar procedure, but for this order, we solve 9 equations W 9

3 = 0 to obtain the solution 
S9

3 for which

V103 = G4 a3
121, V113 = G5 a3

121, V123 = G6 a3
121, det93 = F2 �= 0, (37)

where F2 and Gi ’s are given in (27). Note that for this order, there is one more independent 
coefficient a033 in S9

3 for solving W 9
3 = 0, compared to the solutions S8

1 and S8
2 which have only 

8 independent coefficients to be used for solving the first 8 focus value equations. The equations 
in (37) show that when all ε- and ε2-order focus values vanish, the ε3-order focus values can 
have solutions such that Vi3 = 0, i = 0, 1, · · · , 9 but V103 �= 0, as well as det93 �= 0, implying that 
10 small limit cycles can bifurcate from the equilibrium E0.

Setting a121 = 0 in (37), we have V103 = V113 = V123 = 0, implying that under the solution 
S9

3 with a121 = 0 and b013 given in (22), the equilibrium E0 might be a center up to ε3 order. This 
critical condition is given by

S9
3c:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b013 = 9
32a4a211a212 − 9

8a3a213 + C1a123 + C8a122a211 + C23a
3
211,

a121 = a033 = 0, b033 = 8
3a123, b023 = −6a123 + C19a122a211

b213 = − 9a
16 a211(8a122 + a2

211), b123 = 7
2a213 + 45

32a211(8a122 + a2
211),

b113 = 9a a123 + 9
2a213 + a211

[ 9
16a3a212 + C17a122 + C24a

2
211

]
b103 = C2a123 + C3a213 + a211

[
2C11a212 + C12a122 + C25a

2
211

]
,

b203 = C4a123 + C5a213 + a211
[
2C14a212 + C15a122 + C26a

2
211

]
b = C a + C a + a

[
2C a + C a + C a2 ]

,

(38)
303 6 123 7 213 211 21 212 22 122 27 211
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under which the critical conditions S8
1c and S8

2c are simplified. Here, Ci ’s are given in Ap-
pendix A.

We have the following theorem.

Theorem 4. Let {S8
1c,S8

2c} hold. The equilibrium E0 of system (11) is a center up to ε3-order, if 
and only if the condition S9

3c holds. Furthermore, there exist 10 small limit cycles around E0 for 
some parameter values of aij3 and bij3 near the critical value defined by S9

3c when V103 �= 0.

Proof. Similarly again, we only need to prove sufficiency. Under the condition {S8
1c,S8

2c,S9
3c}, 

we obtain the following ε3-order approximation of first integral,

H3(x, y, ε) = f1 + εa211r1 + ε2(a122r1 + a212r2 + a2
211s2) + ε3f31

f2 + εa211r4 + ε2(a122r3 + a212r4 + a2
211s5) + ε3f32

, (39)

where

f31 = a123r1 + a213r2 + a211(a122t1 + a212t2 + a2
211t3),

f32 = a123r3 + a213r4 + a211(a122t4 + a212t5 + a2
211t6),

in which ri, i = 1, 2, 3, 4 are given in (33), and s2, s5 and ti , i = 1, 2, . . . , 6 are listed in Ap-
pendix B. This implies that setting Vi3 = 0, 0 ≤ i ≤ 10 yields Vi3 = 0 for all i ≥ 11. Then, there 
exist at most 10 small limit cycles for this case. On the other hand, 10 small limit cycles exist 
since when a121 �= 0, V101 �= 0 and det93 �= 0. �
3.3. ε4–ε6-order analysis

The analyses for ε4-, ε5- and ε6-order are similar to that of ε1-, ε2- and ε3-order, respectively.
Let {S8

1c,S8
2c,S9

3c} hold. Following the same procedure used in the previous sections, we can 
solve the equations W 8

4 = 0 to obtain a solution S8
4 such that

V94 = G1 a034, V104 = G2 a034, V114 = G3 a034, det84 = F1 �= 0, (40)

which has the exactly same form of the equations as those given in (30) and (34), implying that 
perturbing the ε4-order focus values from the solution S8

4 and b014 (see (22)) can yield 9 limit 
cycles around the equilibrium E0. Similarly, the solution S8

4 and b014 with a034 = 0 yields a 
critical condition S8

4c, under which the equilibrium E0 is a center up to ε4 order.
Then let {S8

1c,S8
2c,S9

3c,S8
4c} hold. In the same line, we can solve the equations W 8

5 = 0 to 
obtain a solution S8

5 such that

V95 = G1 A035, V105 = G2 A035, V115 = G3 A035, det85 = F1 �= 0, (41)

where

A035 = a035 + 1 a122 a211 (140a122 + 35a2 ). (42)
48 211
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This shows that perturbing the ε5-order focus values near the solution S8
5 and b015 given in (22)

can also yield 9 limit cycles around the equilibrium E0. It is easy to see that the solution of 
A035 = 0,

a035 = − 35
48 a122 a211 (4a122 + a2

211), (43)

yields V95 = V105 = V115 = 0. Now, we combine the solution S8
5 , b015 and a035 to obtain the 

critical condition S8
5c, under which the equilibrium E0 becomes a center up to ε5 order.

The lengthy critical conditions S8
4c and S8

5c are omitted here for brevity. Summarizing the 
above results leads to the following theorem.

Theorem 5. System (11) can have maximal 9 limit cycles around the equilibrium E0 under the 
condition {S8

1c,S8
2c,S9

3c} by perturbing the ε4-order focus values around the critical value S8
4c; 

and under the critical condition {S8
1c,S8

2c,S9
3c,S8

4c} by perturbing the ε5-order focus values near 
the critical point S8

5c. The equilibrium E0 becomes a center up to ε4 order under the condition 
{S8

1c,S8
2c,S9

3c,S8
4c}, and a center up to ε5 order under the condition {S8

1c,S8
2c,S9

3c,S8
4c,S8

5c}.
Remark 2. The proof for the center conditions in Theorem 5 is similar to that in proving Theo-
rems 2, 3 and 4 by finding the ε4-order and ε5-order approximations of the first integrals. This is 
the major and tedious part. For higher-order analysis, the proofs are similar. We omit the detailed 
proofs in the following analysis for brevity.

Next, suppose the condition {S8
1c,S8

2c,S9
3c,S8

4c,S8
5c} is satisfied, then all εk, k = 1, 2, . . . , 5, 

order focus values vanish. Following a similar analysis as that for ε3 order, we solve the equations 
W 9

6 = 0 to obtain a solution S9
6 such that

V106 = G4 a2
122

(
a122 + 9

8 a2
211

)
,

V116 = G5 a2
122

(
a122 + 9

8 a2
211

)
,

V126 = G6 a2
122

(
a122 + 9

8 a2
211

)
, det96 = F2 �= 0,

(44)

which indeed shows the existence of 10 limit cycles around the equilibrium E0, gener-
ated from perturbing the ε6-order focus values near the solution S9

6 under the condition 
{S8

1c,S8
2c,S9

3c,S8
4c,S8

5c}. Moreover, when a122 = − 9
8 a2

211 or a122 = 0, we have V106 = V116 =
V126 = 0, indicating that the solution S9

6 with either a122 = − 9
8 a2

211 or a122 = 0, plus b016 given 
by (22)|k=6, yields a critical condition S9a

6c (corresponding to the former) or S9b
6c (corresponding 

to the latter) under which all ε6-order focus values vanish. Thus, under the critical condition 
{S8

1c,S8
2c,S9

3c,S8
4c,S8

5c,S9
6c} (S9

6c equals either S9a
6c or S9b

6c), the equilibrium E0 becomes a center 
up to ε6 order.

We have the following theorem for this order.

Theorem 6. System (11) can have maximal 10 limit cycles bifurcating from the equilibrium E0
under the condition {S8

1c,S8
2c,S9

3c,S8
4c,S8

5c} by perturbing the ε6-order focus values near the 
critical point S9a

6c or S9b
6c . Further, the equilibrium E0 becomes a center up to ε6 order under 

the condition {S8
1c,S8

2c,S9
3c,S8

4c,S8
5c,S9

6c}, for which all εk-order (k = 1, 2, . . . , 6) focus values 
vanish.
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Suppose the condition {S8
1c,S8

2c,S9
3c,S8

4c,S8
5c,S9

6c} holds. Then, all the εk-order (k =
1, 2, . . . , 6) focus values vanish. We have two cases for higher-order analysis, defined as

Case (A) {S8
1c,S8

2c,S9
3c,S8

4c,S8
5c,S9a

6c},
Case (B) {S8

1c,S8
2c,S9

3c,S8
4c,S8

5c,S9b
6c}.

(45)

3.4. Higher-order analysis for Case (A)

First we consider Case (A), under which we will show that 11 limit cycles can bifurcate from 
the equilibrium E0 based on the ε7-order focus values.

3.4.1. ε7-order analysis
Under the condition (A) defined in (45) with a122 = − 9

8a2
211, we obtain

det10
7 = F3 a4

211, det11
7 = F4 a10

211, (46)

which shows that det10
7 �= 0 and det11

7 �= 0 when a211 �= 0, implying that we may have solutions 
such that the first ten focus values vanish but V117 �= 0 and so 11 small limit cycles may be 
obtained. Indeed, we can solve the first ten focus values equations: W 10

k = 0 to obtain a solution 
S10

7 such that

V117 = G7 a7
211, V127 = G8 a7

211, V137 = G9 a7
211, (47)

which clearly shows that V117 �= 0 if a211 �= 0. In addition, due to det10
7 �= 0 when a211 �= 0, 

implying that 11 small limit cycles exist.
Letting a211 = 0, we have V117 = V127 = V137 = 0, leading to a critical condition S10

7c, defined 
by

S10
7c :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b017 = C1a127 − 9
8a3a217 + C8C28 + 9

32a4C29 + C23C30,

a211 = a123 = a037 = 0, b037 = 8
3 a127,

b027 = −6a127 + C19C28, b217 = − 9a
16 (8C28 + C30),

b127 = 7
2a217 + 45

32 (8C28 + C30),

b107 = C2a127 + C3a217 + 2C11C29 + C12C28 + C25C30,

b207 = C4a127 + C5a217 + 2C14C29 + C15C28 + C26C30,

b117 = 9a a127 + 9
2 a217 + 9a3

16 C29 + C17C28 + C24C30,

b307 = C6a127 + C7a217 + 2C21C29 + C22C28 + C27C30,

(48)

where Ci ’s are given in Appendix A.
We have the following result.

Theorem 7. Let {S8
1c,S8

2c,S9
3c,S8

4c,S8
5c,S9a

6c} hold. The equilibrium E0 of (11) becomes a center 
up to ε7 order under S10

7c for which all ε7-order focus values vanish. Furthermore, there exist 11
small limit cycles around E0 for parameter values of aij7 and bij7 near the critical point S10

7c .
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3.4.2. Higher-order analysis
For higher-order analysis (k ≥ 8), we first briefly list the results for a few orders to see the 

patterns and then summarize the results in a table for higher orders.
The analysis on εk (k = 8, 9, 10, 11) orders show the same pattern, giving 9 limit cycles for 

each order, as follows:

Order k:
(k = 8,9,10,11)

{S8
k ,W 8

k },
{

V9k = G1 A03k, V10k = G2 A03k,

V11k = G3 A03k, det8k = F1,
(49)

where {Sm
k , Wm

k } denotes the solution Sm
k solved from Wm

k = 0, and

A038 = a038, A039 = a039,

A0310 = a0310 + 35
48 a124 a212 (4a124 + a2

212),

A0311 = a0311 + 35
48

[
a125a212(8a124 + a2

212) + a124a213(4a124 + 3a2
212)

]
.

This clearly shows that for each order of k = 8, 9, 10, 11, one can solve A03k = 0 to get a unique 
solution for a03k under which (together with the solutions Sm

k and b01k obtained in the previous 
orders and the current order) the equilibrium E0 becomes a center up to that order.

When the equilibrium E0 is a center up to 11th order, as given in (49) we obtain the following 
result for order 12:

Order 12: {S9
12,W

9
12},

⎧⎪⎨
⎪⎩

V1012 = G4 a2
124

(
a124 + 9

8a2
212

)
,

V1112 = G5 a2
124

(
a124 + 9

8a2
212

)
,

V1212 = G6 a2
124

(
a124 + 9

8a2
212

)
, det912 = F2,

(50)

which has the exactly the same pattern as order 6, shown in (44), indicating that 10 limit cycles 
can be obtained from this order, and there are two solutions from the equations V1012 = V1112 =
V1212 = 0: a124 = − 9

8a2
212 and a124 = 0, which are again similar to that as in order 6. When 

a124 = 0, it will be shown in Section 3.6 that it yields the same pattern as that for Case (B) in 
higher orders. So in this section, we choose a124 = − 9

8a2
212, like we chose a122 = − 9

8a2
212 in 

order 6 to obtain the center condition.
Let a124 = − 9

8a2
212, under which (together with the solutions obtained from previous orders 

and this order) the equilibrium E0 becomes a center up to ε12 order. Then, we have the result for 
ε13 order:

Order 13: {S9
13,W

9
13},

⎧⎪⎨
⎪⎩

V1013 = 81
64G4 a4

212

(
a125 + 9

4 a212a213
)
,

V1113 = 81
64G5 a4

212

(
a125 + 9

4 a212a213
)
,

V1213 = 81
64G6 a4

212

(
a125 + 9

4 a212a213
)
, det913 = F2,

(51)

which shows that perturbing ε13-order focus values can also yield 10 small limit cycles around 
the equilibrium E0. It can be seen from (51) that either a212 = 0 or a125 = − 9

4a212a213 leads to 
the equilibrium E0 being a center. However, it can be shown that setting a212 = 0 at this order 
will not yield 11 small limit cycles at the next order though it will resume the same pattern at 
higher orders.
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So let a125 = − 9
4a212a213. Then, we obtain the following result for ε14 order:

Order 14: {S10
14 ,W 10

14 },
{

V1114 = G7 a7
212, V1214 = G8 a7

212,

V1314 = G9 a7
212, det10

14 = F3 �= 0,
(52)

which shows that perturbing ε14-order focus values can yield 11 limit cycles around the equilib-
rium E0, and setting a212 = 0 leads to E0 being a center up to ε14 order. It has been noted that 
choosing a212 = 0 at order 13 or 14 makes differences. More precisely, as shown in Table 1, if 
taking a125 = − 9

4a212a213 at order 13, we have small limit cycles 11, 9, 9, 9, 9 for the orders 
14–18; while if taking a212 = 0 at order 13, then the limit cycles obtained for the orders 14–18
are 9, 10, 9, 9, 10, and then the two different choices merge into the same pattern from order 
19. Note that the choice a212 = 0 at order 13 does not yield 11 small limit cycles at order 14, 
but gives two more 10 small limit cycles at orders 15 and 18. However, it returns to the general 
pattern at order 19. So we treat a212 = 0 as a special case of the case a125 = − 9

4a212a213.
Summarizing the above results we have the following pattern: 11 limit cycles are obtained 

from ε7 order, then 9 limit cycles from four consecutive εk orders (k = 8, 9, 10, 11), and then 
10 limit cycles from two consecutive εk orders (k = 12, 13), and finally return to 11 limit cycles 
at ε14 order. This pattern, starting from order 8, four 9 limit cycles, followed by two 10 limit 
cycles, and then 11 limit cycle, has been verified up to ε35 order. We call this as 94–102–111

generic pattern, and the corresponding solution (or center condition) is called generic solution
(or generic center condition). By generic we mean that one should always choose a non-zero 
solution (if it exists) when one solves the center conditions at each order. Other types of solutions 
are called non-generic. For example, as discussed above, if choosing the non-generic solution 
a212 = 0 at order 13, then 11 limit cycles will be missed at order 14 but the solution procedure 
will return to the generic 94–102–111 pattern at order 19. However, it should be noted that a 
non-generic solution in Case (A) does not always lead to the generic 94–102–111 pattern. For 
instance, choosing the non-generic solution a124 = 0 at order 12 will generate solutions in the 
form of generic patter of Case (B) at a higher order, as shown in the next section.

Remark 3. It has been observed from the above analysis, the values of the parameter a in the 
Hamiltonian function does not affect the number of limit cycles. In other words, a can not be used 
to increase the number of bifurcating limit cycles. Thus, to simply the computations in higher 
order analysis, we set a = − 3 in higher-order (k ≥ 15) computations, which greatly simplify the 
computations.

We summarize the results of Case (A) in Table 1, where k is the order of εk focus values, 
(Sm

k , Wm
k ) represents the solution Sm

k solved from Wm
k = 0, and LC denotes limit cycles around 

the equilibrium E0 obtained by perturbing the εk-order focus values. The “Condition for Cen-
ter” in each row only lists the condition for the current row, which assumes that the conditions 
in the previous rows hold. For example, when k = 4, S8

4c only gives the center condition for 
k = 4, which should be combined with the conditions given in the previous rows: S8

1c, S8
2c

and S9
3c to get a complete center condition {S8

1c,S8
2c,S9

3c,S8
4c}. Note that the critical condition 

S8
kc contains the solutions S8

k , the b01k given in (22) and a particular coefficient. For example, 
S8

2c = {S8
2 , b012, a032}, S9

3c = {S9
3 , b013, a121}, and S10

7c = {S10
7 , b017, a211}, etc. The solutions of 

these key coefficients are given below.
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9 LC: k = 1,2,4,8,9 a03k = 0

k = 5 a035 = − 35
48a122a211(4a122 + a2

211)

k = 10 a0310 = − 35
48a124a212(4a124 + a2

212)

k = 11 a0311 = − 35
48

[
a212a125(8a124 + a2

212) + a213a124(4a124 + 3a2
212)

]
k = 15 a0315 = − 735

256a5
213

k = 16 a0316 = 35
768a3

213(128a127 − 27a214a213)

k = 17 a0317 = − 35
768a213

[
32a127(2a127 − 3a214a213)

−a2
213(128a128 + 54a2

214 − 27a215a213)
]

k = 18 a0318 = 35
6 a3

213a129 − 35
24a213a128(4a127 − 3a214a213)

− 35
48a127

[
a214(4a127 + 3a214a213) − 6a2

213a215
]

+ 3
4096a2

213

[
1120a214(a

2
214 + 6a215a213)

+3a2
213(2269a2

213 − 560a216)
]

k = 22 a0322 = 35
768a3

214(128a1210 − 486a2
215 − 27a216a214)

k = 23 a0323 = 35
768a2

214

[
a214(128a1211 − 27a217a214)

+a215(384a1210 − 108a214a216 − 198a2
215)

]
k = 24,25 a03k = · · ·
k = 29–32 a03k = · · ·

10 LC: k = 3 a121 = 0

k = 6 a122 = − 9
8a2

211

k = 12 a124 = − 9
8a2

212

k = 13 a125 = − 9
4a213a212

k = 19 a127 = − 9
4 a213a214

k = 20 a128 = − 9
8 (a2

214 + 2a215a213)

k = 26 a1210 = − 9
8 (a2

215 + 2a216a214)

k = 27 a1211 = − 9
4 (a217a214 + a216a215)

k = 33 a1213 = − 9
4 (a218a215 + a217a216)

k = 34 a1214 = − 9
8 (a2

217 + 2a219a215 + 2a218a216)

11 LC: k = 7m

m = 1–5 a21m = 0

where ‘· · · ’ represents the omitted lengthy expressions for brevity. In addition, in Table 1, the 
green and red colors1 denote the solutions and center conditions corresponding to the 10 and 11
small limit cycle, respectively.

1 For interpretation of the colors in this table, the reader is referred to the web version of this article.
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Table 1
Bifurcation of limit cycles for generic Case (A).

k (Sm
k

,Wm
k

) No. of LC Condition for Center

1, 2 (S8
k
,W8

k
) 9 S8

kc

3 (S9
3 ,W9

3 ) 10 S9
3c

4, 5 (S8
k
,W8

k
) 9 S8

kc

6 (S9
6 ,W9

6 ) 10 S9
6c

7 (S10
7 ,W10

7 ) 11 S10
7c

8–11 (S8
k
,W8

k
) 9 S8

kc

12, 13 (S9
k
,W9

k
) 10 S9

kc

14 (S10
14 ,W10

14 ) 11 S10
14c

15–18 (S8
k
,W8

k
) 9 S8

kc

19, 20 (S8
k
,W9

k
) 10 S9

kc

21 (S10
21 ,W10

21 ) 11 S10
21c

22–25 (S8
k
,W8

k
) 9 S8

kc

26, 27 (S9
k
,W9

k
) 10 S9

kc

28 (S10
28 ,W10

28 ) 11 S10
28c

29–32 (S8
k
,W8

k
) 9 S8

kc

33, 34 (S9
k
,W9

k
) 10 S9

kc

35 (S10
35 ,W10

35 ) 11 S10
35c

3.5. Higher-order analysis for Case (B)

We now turn to Case (B) for which we choose a122 = 0 at ε6 order. Thus, the results starting 
from ε6 order are different from those given in Table 1. Now under the condition a122 = 0, 
together with the conditions obtained in previous orders, the equilibrium E0 becomes a center up 
to ε6 order. Then for ε7-order focus values we solve W 8

7 = 0 to obtain S8
7 and then

V97 = G1 A037, V107 = G2 A037, V117 = G3 A037, det87 = F1,

where

A037 = a037 + 35
768a211

[
a(a2 − 4)a123a

3
211 + 16a124a

2
211 + 16a123(4a123 + 3a212a211)

]
,

which shows that for Case (B) only 9 small limit cycles can be obtained from ε7-order. Then, 
solving A037 = 0 gives a unique solution for a037, under which, together with the conditions 
obtained in the previous orders as well as S8

7 and b017, the equilibrium E0 becomes a center up 
to ε7 order.

Next, the ε8-order analysis shows that 10 limit cycles can be obtained by solving W 9
8 = 0 to 

have the solution S9
8 , under which higher-order focus values become

V108 = 9G4a
2 a2 , V118 = 9G5a

2 a2 , V128 = 9G6a
2 a2 , det9 = F2. (53)
8 211 123 8 211 123 8 211 123 8
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Table 2
Bifurcation of limit cycles for generic Case (B).

k (Sm
k

,Wm
k

) LC Condition for Center

7 (S8
7 ,W8

7 ) 9 S8
7c

8 (S9
8 ,W9

8 ) 10 S9
8c

9 (S8
9 ,W8

9 ) 9 S8
9c

10–12 (S9
k
,W9

k
) 10 S9

kc

13 (S10
13 ,W10

13 ) 11 S10
13c

14–19 (S8
k
,W8

k
) 9 S8

kc

20–25 (S9
k
,W9

k
) 10 S9

kc

26 (S10
26 ,W10

26 ) 11 S10
26c

27–32 (S8
k
,W8

k
) 9 S8

kc

33–38 (S9
k
,W9

k
) 10 S9

kc

39 (S10
39 ,W10

39 ) 11 S10
39c

This clearly indicates that either a211 = 0 or a123 = 0, together with b018, leads to the equilibrium 
E0 being a center up to ε8 order. If taking a211 = 0, then we again obtain 10 small limit cycles 
from ε9 order by solving W 9

9 = 0 to obtain the solution S9
9 and

V109 = G4 a3
123, V119 = G5 a3

123, V129 = G6 a3
123, det99 = F2.

Thus, for the equilibrium E0 being a center up to ε9 order, a123 must be taken zero (with b019), 
yielding the same result as that generated from Case (A) at order 9 (and so the result at order 8
also becomes same). In other words, choosing the non-generic solution a211 = 0 at order 8 makes 
the higher-order solutions (k ≥ 9) follow the generic pattern of Case (A).

Now we consider the choice a123 = 0 at ε8 order. It can be shown that under this condition 
only 9 limit cycles exist for ε9 order. Then for the ε10 order, we solve W 9

10 = 0 to obtain the 
solution S9

10 and then get

V1010 = 9
8 G4 a2

211

(
a2

124 − 5
16a4

211a124 + 429
40960a8

211

)
,

V1110 = 9
8 G5 a2

211

(
a2

124 − 5
16a4

211a124 + 429
40960a8

211

)
,

V1210 = 9
8 G6 a2

211

(
a2

124 − 5
16a4

211a124 + 429
40960a8

211

)
, det910 = F2,

(54)

which gives two solutions leading to a center at E0, one of them is a211 = 0, which yields the 
same solution as that obtained in Case (A) at order 10. Thus, choosing the non-generic solution 
a211 = 0 at this order leads to the generic pattern of Case (A) starting from ε11 order (i.e., for 
k ≥ 11). The second solution, given by

a124 = 1
64

(
10 ± 1

10

√
5710

)
a4

211, (55)

is a generic solution for Case (B), different from the generic pattern of Case (A). Then, following 
a similar computation procedure as that used in Case (A), we obtain the generic solutions up to 
ε39 order. The results are given in Table 2, showing a 96–106–111 generic pattern, starting from 
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order 14. The notations used in this table are the same as that used in Table 1. For each k, the key 
coefficient used to obtain the center condition is give below.

9 LC: k = 7 a037 = − 35
768a211

[
64a2

123 − a211(15a123a
2
211

−16a124a211 − 48a123a212)
]

k = 9 a039 = · · ·
k = 14 a0314 = − 35

48a3
212a128

k = 15 a0315 = − 35
48a2

212(a129a212 + 3a128a213)

k = 16 a0316 = − 35
768a212

[
48a2

213a128 + a212(16a1210a212

+48a129a213 + 48a128a214 − 15a128a
2
212)

]
k = 17–19 a03k = · · ·
k = 27–32 a03k = · · ·

10 LC: k = 8 a123 = 0

k = 10 a124 = 100±√
5710

640 a4
211

k = 11 a125 = 100±√
5710

10240 a3
211

[
64a212 + a(a2 − 4)a2

211

]
k = 12 a126 = · · ·
k = 20 a128 = 100±√

5710
640 a4

212

k = 21 a129 = 100±√
5710

160 a3
212a213

k = 22–25 a12(k−12) = · · ·
k = 33 a1215 = − 100±√

5710
10240 a213

[
a2

213(15a2
213 − 64a216)

−64a214(a
2
214 + 3a213a215)

]
k = 34–38 a12(k−18) = · · ·

11 LC: k = 13m

m = 1,2,3 a21m = 0

3.6. Non-generic solutions

Couple of non-generic solutions have been discussed in Case (B) (see Section 3.5), showing 
that setting a211 = 0 at order 8 or 10 (see Eqns. (53) and (54)) leads to the 94–102–111 generic 
pattern of Case (A) for orders greater than 10 or 11. These two examples give a route from 
Case (B) to Case (A). In this section, we present several more non-generic solutions to show 
other possibilities that they eventually return to either the 94–102–111 generic pattern of Case 
(A) or 96–106–111 generic pattern of Case (B). Other cases can be similarly discussed. Since the 
discussions for different cases are similar, we will not give the details but list the cases below and 
summarize the results in Table 3.

(A1) In Case (A), at order 13: a212 = 0, leading to Case (A).
(A2) In Case (A), at order 12: a124 = 0, leading to Case (B).
(B1) In Case (B), at order 11: a211 = 0, leading to Case (B).
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Table 3
Non-generic solutions.

Case k (Sm
k

,Wm
k

) LC Condition for Center

(A1) 13, 15 (S9
k
,W9

k
) 10 S9

kc

14, 16, 17 (S8
k
,W8

k
) 9 S8

kc

18 (S9
18,W9

18) 10 S9
18c =⇒ generic Case (A)

(B1) 11, 14, 16 (S9
k
,W9

k
) 10 S9

kc

12, 13, 15, 17 (S8
k
,W8

k
) 9 S8

kc

18 (S9
18,W9

18) 10 S9
18c =⇒ generic Case (B)

(A2) 12, 14, 16 (S9
k
,W9

k
) 10 S9

kc

13, 15, 17 (S8
k
,W8

k
) 9 S8

kc

18 (S9
18,W9

18) 10 S9
18c =⇒ generic Case (B)

For each k, the key coefficient used to obtain the center condition is given below.

Case (A1) k = 13 a212 = 0

k = 14 a0314 = − 35a125
48

[
4a125a214 + a213(8a126 + a2

213)
]

k = 16 a0316 = − 35
48

[
a127a213(8a126 + a2

213)

+a126a214(4a126 + 3a2
213)

]
k = 17 a0317 = − 35

48a128a213(a
2
213 + 8a126)

− 35
48a127(4a213a127 + 8a214a126 + 3a214a

2
213)

− 35
48a126(3a2

214a213 + 4a126a215 + 3a215a
2
213)

k = 15 a125 = 0

k = 18 a126 = − 9
8 a2

213

Case (B1) k = 11 a211 = 0

k = 12 a0312 = − 35
48a212(a126a

2
212 + 3a125a212a213 + 4a2

125)

k = 13,15,17 a03k = · · ·
k = 14,16,18 a12(k/2−2) = 0

Case (A2) k = 13 a0313 = − 35
48a212

[
a127a

2
212 + a126(3a213a212 + 8a125)

]
+ 35

768a125(15a4
212 − 48a2

212a214

−48a212a
2
213 − 64a125a213)

k = 15,17 a03k = · · ·
k = 12,14,16,18 a12(k/2−2) = 0

Therefore, there are four possible routes for the non-generic solutions: from Case (A) to 
Case (A) or Case (B); and from Case (B) to Case (A) or Case (B).
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3.7. Summary of this section

Summarizing the results obtained in sections 3.4, 3.5 and 3.6, we have the following theorem.

Theorem 8. For system (11), based on the higher-order focus values, there exist two generic 
patterns: One is 94–102–111 pattern starting from order 8 with four consecutive 9 limit cycles, 
followed by two consecutive 10 limit cycles, and then one 11 limit cycles up to ε35 order; and the 
other is 96–106–111 pattern, starting from order 14 with six consecutive 9 limit cycles, followed 
by six consecutive 10 limit cycles, and then one 11 limit cycles up to ε39 order. Other non-generic 
solutions deviate from the current pattern for certain orders and eventually return to either the 
94–102–111 pattern or the 96–106–111 pattern.

Finally, we propose a conjecture on the number of limit cycles around E0 for system (11).

Conjecture. For the perturbed system (11), the maximal number of small limit cycles which can 
bifurcate from the equilibrium E0 is 11.

4. Conclusion

In this paper, we have applied high-order focus value computation to prove that system (11)
can have 11 limit cycles around the equilibrium of (11), obtained by perturbing at least ε7-order 
focus values. Moreover, no more than 11 limit cycles can be found up to ε39-order analysis. It is 
believed that system (11) can have maximal 11 small limit cycles around the equilibrium.
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Appendix A

The coefficients Ci ’s in (31), (35) and (38) are given below.

C1 = − 3
16 (3a4 + 4a2 + 44) C2 = − a

48 (3a4 + 12a2 + 116)

C3 = − 1
8 (a4 + 2a2 + 5) C4 = − 1

16 (9a4 − 20a2 + 172)

C5 = − 3 a
8 (3a2 − 8) C6 = − a

12 (a2 − 120)

C7 = − 1
8 (3a2 − 80) C8 = 3

128a(7a4 + 68a2 − 900)

C9 = 1
64 (3a6 + 40a4 − 860a2 − 1600) C10 = − a

576 (303a4 + 1596a2 + 8096)

C11 = − a
64 (55a2 − 256) C12 = − 1

384 (569a4 − 1660a2 + 1420)

C13 = 1
192 (21a6 + 80a4 − 2996a2 − 9040) C14 = 3

64 (7a4 + 8a2 + 160)

C15 = a
128 (49a4 + 220a2 − 380) C16 = a

32 (9a4 + 36a2 − 172)

C17 = 3 (15a4 + 28a2 − 916) C18 = − 1 (3a4 + 4a2 + 340)
64 16
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C19 = − 3a
8 (a2 − 16) C20 = a

96 (45a4 + 266a2 − 644)

C21 = a
32 (41a2 + 72) C22 = 1

192 (303a4 + 1728a2 − 3620)

C23 = − 9
512a(a4 + 12a2 + 200) C24 = − 9

256 (a4 + 160)

C25 = − 1
512 (70a6 − 471a4 + 128a2 − 300) C26 = − 9

512a(a4 − 108a2 + 696)

C27 = 3
256 (21a4 + 58a2 − 1880) C28 = a125a212 + a124a213

C29 = a215a212 + a214a213 C30 = 3a213a
2
212

Appendix B

The coefficients si ’s involved in H2 (see Eq. (36)) and ti ’s involved in H3 (see Eq. (39)) are 
given as follows.

s1 = 1
3072a6(3a2 + 16)(10 + 4y + 4x2 + 3x4) − 1

192 (2850 + 1824a2 − 85a4)

+ a
18 (6a2 − 319)x − 1

288 (5902 + 1568a2 + 45a4)y − a
9 (53 + 10x2)xy + 13

6 y2

− 1
72a2(3a2 + 4)y(y − x2) − 1

96 (1074 + 200a2 + 45a4)x2 − 29
18x2y − 2

9y3

+ a
36 (12 − 4a2 + 3a4)x3 − 1

1152 (6746 + 3140a2 + 91a4 + 3a6)x4 + 2
3x2y2

s2 = 1
128a2(24 − 10a2 + 5a4) − 1

64 (1120 − 24a2 + 2a4 − a6)(y + x2) − 1
2x2y

+ a
16 (4 + 5a2)x − 25

4 x2 − a
256 (a2 − 4)x[32(y − x2) − 3a3x3] − 1

8 (73 − 2a2)x4

s3 = 1
384a(−4716 + 376a2 + 25a4 + 15a6) − 1

96 (2260 − 164a2 − 15a4)x

+ 1
192a5(5 + 3a2)(y + x2) − 1

12a(a2 − 4)y(y − x2) − 2
3xy2 + 2x3y

− 1
48 [a(1151 + 10a2)y − a(1511 + 40a2)x2 + (100 − 4a2 − 3a4)xy

+ (140 − 76a2 + 11a4)x3] − 1
768a(10216 + 100a2 − 2a4 − 9a6)x4

s4 = 1
9216a(96656 + 17952a2 + 3640a4 + 24a6 + 9a8)

− 5
4608 (2256 + 7272a2 − 56a4 + 6a6 + 9a8)x − 5

72a(224 + 8a2 + 3a4)y

− 5
144a(642 − 8a2 − 3a4)x2 − 5

1152 (368 − 1628a2 − 92a4 + 3a6)xy

− 5
2ay2 + 5

1152 (5272 + 86a4 + 2964a2 − 3a6)x3 − 275
36 ax2y

+ 5
288 (372 + 4a2 + 3a4)xy2 − 5

144a(140 + 12a2 + 3a4)x4

− 5
288 (268 + 3a4 + 4a2)x3y − 5

18xy3 − 25
18ax4y + 5

6x3y2

s5 = 1
256a(−16a2 − 8a4 + a6 + 1120) + 5

256 (560 + 9a4 − 2a6 − 4a2)x

− 5
64a(20 − 11a2)x2 − 5

128a2(3a2 + 4)x(y + x2) + 175
8 xy + 265

16 x3

+ 5
32a(a2 − 4)x2(y − x2) − 5

8x3y

s6 = 1
768a2(540a2 + 3904 − 8a4 + 3a6) − 5

1536a(484 − 100a2 − 23a4 + 12a6)x

− 5
12a2(a2 − 1)y − 35

384 (244 − 4a2 − 7a4)x2 + 5
768a(5132 + 84a2 − 13a4)xy

− 5 a(−3756 − 76a2 + 13a4)x3 + 5 (380 + 3a4 + 4a2)x2y
768 192
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+ 5
48a(a3 − 4)xy(y − x2) − 5

192 (11a4 + 20a2 + 12)x4 − 5
6x2y2 + 5

2x4y.

t1 = 1
384a(−4716 + 376a2 + 25a4 + 15a6) − 1

96 (2260 − 164a2 − 15a4)x

+ 1
192a5(5 + 3a2)(y + x2) − 1

48a(1151 + 10a2)y − 2
3xy2 + 2x3y

− 1
48a(1511 + 40a2)x2 + 1

48 (100 − 4a2 − 3a4)xy − 1
12a(a2 − 4)y(y − x2)

+ 1
48 (140 − 76a2 + 11a4)x3 + 1

768a(−100a2 − 10216 + 9a6 + 2a4)x4

t2 = 1
64a2(24 − 10a2 + 5a4) − 1

32 (1120 − 24a2 + 2a4 − a6)(y + x2)

+ 1
8a(5a2 + 4)x − 25

2 x2 − 1
4a(a2 − 4)x(y − x2) − x2y

− 1
128 (2336 − 64a2 + 12a4 − 3a6)x4

t3 = − 1
2048a5(20 + a4)(5 + 2y + 2x2 + 2x4) − 1

128a(550 − 343a2)

− 1
256 (6800 − 24a2 − 10a4 + 5a6)x − 3

64a(25a2 + 34)y − 1
32a(45a2 + 61)x2

− 1
1024a4(2 − a2)x(8y − 8x2 + 3ax3) − 3

16 (50 − a2)xy + 3
16 (80 − a2)x3

+ 1
32a(a2 − 4)x2y − 1

64a(197 − 2a2)x4 + 1
4x3y

t4 = 1
768a2(3904 + 540a2 − 8a4 + 3a6) − 5

1536a(484 − 100a2 − 23a4 + 12a6)x

− 5
12a2(a2 − 1)y − 35

384 (244 − 7a4 − 4a2)x2

− 5
768a(−5132 − 84a2 + 13a4)xy − 5

768a(−3756 − 76a2 + 13a4)x3

+ 5
192 (380 + 4a2 + 3a4)x2y + 5

48a(a2 − 4)xy(y − x2)

− 5
192 (12 + 20a2 + 11a4)x4 − 5

6x2y2 + 5
2x4y

t5 = 1
128a(1120 − 16a2 − 8a4 + a6) + 5

128 (560 − 4a2 + 9a4 − 2a6)x

+ 5
32a(11a2 − 20)x2 − 5

64a2(4 + 3a2)x(y + x2) + 175
4 xy

+ 265
8 x3 + 5

16a(a2 − 4)x2(y − x2) − 5
4x3y

t6 = − 1
2048a2(2544 − 2336a2 + 8a4 + 3a6) − 5

2048a(2632 + 276a2 + 3a4 − 8a6)x

+ 5
512 (1240 − 4a2 − 41a4 + 4a6)x2 + 5

1024a(−1832 + 892a2 + a4)xy

+ 5
1024a(−1368 + 696a2 + a4)x3 − 5

256a2(3a2 + 4)x2(y − x2)

+ 375
32 x2y − 65

16x4 − 5
128a(a2 − 4)x3y + 5

16x4y
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[25] P. Yu, M. Han, A study on Żołądek’s example, J. Appl. Anal. Comput. 1 (2011) 143–153.
[26] Y. Tian, P. Yu, Bifurcation of ten small-amplitude limit cycles by perturbing a quadratic Hamiltonian system with 

cubic polynomials, J. Differential Equations 260 (2016) 971–990.
[27] Yu. Bondar’, A. Sadovskii, On a theorem of Żołądek, Differ. Equ. 44 (2008) 274–277.
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