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Abstract

In this paper, we consider the bifurcations of local and global isolated periodic traveling waves in a single 
species population model described by a reaction-diffusion equation. Based on the singular point quantity 
algorithm of conjugate symmetric complex systems, we investigate Hopf bifurcation from all equilibrium 
points for the corresponding planar traveling wave system. We obtain all center conditions and construct 
one perturbed Hamiltonian system to study Poincaré bifurcation. Further, using the Chebyshev criterion, 
we develop a utilized approach to prove the existence of at most two limit cycles in a piecewise continuous 
parameter interval. Finally, the existence of double isolated periodic traveling waves for the model is estab-
lished, and the results are illustrated by numerical simulation. It is shown that in a population model with 
density-dependent migrations and Allee effect, two large amplitude oscillations (isolated periodic traveling 
waves) can exist simultaneously.
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1. Introduction

In recent years, increasing attention has been paid to practical problems described by reaction-
diffusion equations arising from engineering, physical and biochemical fields. To understand 
the nonlinear phenomenon arising from population invasion, many researchers have utilized 
reaction-diffusion models to study the population dynamics, such as survival range, patterns of 
spread, oscillating motion and traveling front propagation [6,12,26].

One of the earliest single species models was introduced by Malthus in 1798, with the con-
sideration of limited resources and environmental constraints in modifying the simple growth 
model dU(T )

dT
= αU, α > 0, leading to the following model,

dU(T )
dT

= f (U)U, (1.1)

where the per capita growth rate f should be a decreasing function in U when the carrying 
capacity K < U , yielding the simplest form f = α(K − U), called logistic population model. 
However, in the reality the per capita growth rate is not always monotonically decreasing in U . 
In fact, when the Allee effect is introduced, the function f becomes

f = α(U − U0)(K − U), (1.2)

which establishes a relation between the per capita growth rate and the population density. The 
Allee effect is strong when 0 < U0 < K , and weak when −K < U0 < 0, while no Allee effect 
exists when U0 < −K [17]. Obviously, the single species model with the strong Allee effect 
has rich and complex dynamics compared with the logistic model. In particular, the population 
experiences extinction when the population density U falls below the Allee threshold U0 [3], but 
the Allee effect guarantees the growth of the biological invasion when the per capita growth rate 
is larger than the threshold U0, i.e. if U ∈ (U0, K), see [5,16,17,25] and reference therein.

Other mechanisms related to U with time are associated with the redistribution of the popu-
lation in space due to the motion of its individuals. Usually, the population flux through the area 
boundary is described by Fick’s law [2]. In general case, the motion of the individuals can be 
regarded as random, with the flux described by the equation J = −D∇U(R, T ), where R is the 
position in space, D is the diffusivity [2,13,17]. However, except random motion, another widely 
observed dynamics is advection or migration when the individuals exhibit a correlated motion 
toward a certain direction. Later, in order to study biological invasion problem, particularly the 
interplay between these two types of motions regarding species invasion, Petrovskii and Li [24]
introduced the correlated motion into the equation by combining the random motion, resulting in

J = A(U)U(R, T ) − D ∇U(R, T ), (1.3)

where A(U) is the average speed of all the individuals at a given position, implying that the 
migration is density dependent. Considering the migrations and diffusion restricted to the one-
dimensional case, the spatiotemporal dynamics of a given population is then described by the 
following equation:

∂U(X,T )
∂T

= −div(J) + f (U)U

= − ∂[A(U)U ] ∂U + D ∂2U + αU(U − U )(K − U).
(1.4)
∂U ∂X ∂X2 0
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In [24], the A(U) was assumed as A0 +A1U , in which A0 is the speed of advection due to 
the impact of wind or water current, and A1U is the speed of the migration due to biological 
mechanisms. However, in reality the speed of the migration is not necessarily proportional to 
the density. It is often observed that higher density can damp the directional movement in the 
population migration, such as crowding and trampling. This indicates that the per capita migra-
tion speed A1 should be modified as a decreasing function in U when the population density 
U is greater than certain critical value, similar to deriving the logistic population model. There-
fore, we add a nonlinear term A2U

2 to the migration speed, yielding the following more realistic 
model, which will be studied in this paper:

∂U(X,T )
∂T

+ (A0 + 2A1U + 3A2U
2) ∂U

∂X
= D ∂2U

∂X2 + αU(U − U0)(K − U). (1.5)

To simplify the analysis on the model (1.5), we introduce the transformation and time rescal-
ing: X = x

(
D

αK2

)1/2, U = Ku, T = t
αK2 , to obtain the following dimensionless model:

ut + (a0 + a1u + a2u
2)ux = uxx − βu + (1 + β)u2 − u3, (1.6)

where the new parameters are defined as

β = U0K
−1, a0 = A0K

−1(αD)−1/2, a1 = 2A1(αD)−1/2, a2 = 3A2K(αD)−1/2.

When A2 = 0, model (1.5) has been studied in [24] using an appropriate ansatz, namely 
a reasonable substitution of variables to obtain an exact solution, and then to investigate the 
properties of the solution with the method of parameter variation, revealing the impacts from 
environmental and biological mechanisms such as wind or water current, population density, 
and the Allee effect. Thus, the interplay between the diffusion and different factors is shown 
thoroughly, and the direction of described propagation of traveling population fronts, e.g. either 
species invasion or species retreat is determined. Numerical simulation was given in [1] to verify 
the theoretical result for the case A2 = 0.

The aim of this paper is to investigate traveling wave solutions in the model (1.6). Thus, 
assume the solution is given in the form of

u(x, t) = v(ξ), ξ = x − ct, (1.7)

where c is the propagation speed of a wave. Then substituting (1.7) into (1.6) yields

v′′(ξ) = (a0 − c + a1v(ξ) + a2v
2(ξ))v′(ξ) + βv(ξ) − (1 + β)v2(ξ) + v3(ξ), (1.8)

which is a second order ordinary differential equation. Hence, by applying bifurcation theory 
of planar dynamical systems, we can examine periodic oscillations on the density of invasion 
population to reveal certain patterns of the species invasion propagation. Further, letting y =
v′(ξ) in (1.8) yields the following planar dynamic system,

dv
dξ

= y,

dy = (a0 − c + a1v + a2v
2)y + βv − (1 + β)v2 + v3.

(1.9)

dξ
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If system (1.9) is integrable, then some exact traveling wave solutions of the original equation 
(1.5), such as periodic wave solution, solitary wave solution and monotone kink solitary wave 
solution can be easily obtained [18,19].

If system (1.9) is not integrable, then in general studying the traveling wave solutions of the 
model is not easy. One may apply Hopf bifurcation and Poincaré bifurcation theory to deter-
mine the existence of isolated periodic wave solutions for the original system (1.5). In particular, 
through Hopf bifurcation, small-amplitude periodic traveling waves of reaction-diffusion equa-
tion have been extensively studied, see [14,15,22,28]. In [30], the authors considered the case 
A2 = 0, (that is, a2 = 0 in system (1.9)), and applied the method of computing singular point 
quantify to study Hopf bifurcation, and proved the existence of one stable limit cycle. This im-
plies that an isolated periodic traveling wave solution in the original model (1.5) exists, revealing 
a particular pattern of population fronts in real biological world.

As for the bifurcation of isolated periodic traveling wave solutions via Poincaré bifurcation, 
some results can be found in [29,31,32]. Especially, Sun et al. [29] studied model (1.5) for the 
case A2 = 0, by examining the monotonicity of the ratio of the related Abelian integrals, and 
applying global bifurcation theory to prove that there exists maximal one periodic solution which 
can be reached in a large feasible parameter regime, implying the existence of one global isolated 
periodic wave solution.

In this paper, we will investigate isolated periodic wave solutions for model (1.5). Firstly, ap-
plying the same algorithm as used in [30], we determine center conditions and Hopf cyclicity of 
the auxiliary planar system (1.9) and then find the local isolated periodic traveling wave solu-
tions of (1.5). Then based on one center condition, we construct a near-Hamiltonian system of 
(1.9), and choose the center of the Hamiltonian system to investigate the zeros of corresponding 
Abelian integral inside the saddle loop, namely perturbing an elliptic Hamiltonian of degree four. 
It is worth mentioning that for this case the detailed discussion has been given in [7], and shown 
that the maximum number of zeros is two by proving that a planar convex curve has a non-zero 
curvature everywhere. However, in this paper we use the method of Chebyshev criterion [9,23], 
with pure symbolic computation to determine the interval of the parameter β for the existence of 
at most two zeros, leading to the existence of double global isolated periodic traveling waves for 
model (1.5). Usually, in application of Chebyshev criterion, one can obtain a continuous param-
eter interval for the existence of bifurcating limit cycles. However, for the model studied in this 
paper, such a continuous interval is difficult to obtain. To overcome this difficulty, we develop a 
utilized approach to obtain a piecewise continuous interval.

The paper is organized as follows. In Section 2, we first compute the singular point quantities 
for three equilibria, and then determine center conditions and the cyclicity of Hopf bifurcation 
for the corresponding planar dynamical system. In Section 3, we introduce some preliminary 
results which are needed to determine the number of zeros of Abelian integrals, and give the 
main results associated with the equilibrium point (1, 0) of system (1.9). In Section 4, we prove 
our main theorem for certain parameter regime. In Section 5, the existence of two global limit 
cycles via Poincaré bifurcation is proved, and a concrete example with simulation is given to 
illustrate the existence of two isolated traveling periodic waves, which implies the co-existence 
of two large-amplitude oscillations (isolated periodic traveling waves). This is a new interesting 
phenomenon discovered in single species models.
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2. Center conditions and Hopf bifurcation for system (1.9)

In this section, we first briefly introduce the method of computing singular point quantities, 
which is needed to investigate the integrability and Hopf bifurcation of real dynamical systems 
(more details can be found in [4,20,21]). Consider the following real polynomial system,

dx
dt

= −y +
∞∑

k+j=2
Akjx

kyj = X(x,y),

dy
dt

= x +
∞∑

k+j=2
Bkjx

kyj = Y(x, y),

(2.1)

where x, y, t, Akj , Bkj ∈R; k, j ∈ N . By introducing the transformation,

z = x + iy, w = x − iy, T = i t, i = √−1,

we obtain the conjugate complex system with symmetry as follows:

dz
dT

= z +
∞∑

k+j=2
akj z

kwj = Z(z,w),

dw
dT

= −w −
∞∑

k+j=2
bkjw

kzj = −W(z,w),

(2.2)

where z, w, T , akj , bkj ∈C; k, j ∈ N .

Lemma 2.1 ([4,21]). For system (2.2), with c11 = 1, c20 = c02 = 0, ckk = 0, k = 2, 3, · · · , the 
following formal series,

F(z,w) = zw +
∞∑

p+q=2

cpqzpwq,

can be obtained, satisfying

dF

dT
=

∞∑
m=1

μm(zw)m+1.

When p �= q , cpq is determined from the following recursive formula:

cpq = 1

q − p

∞∑
k+j=3

[
(p − k + 1)ak,j−1 − (q − j + 1)bj,k−1

]
cp−k+1,q−j+1,

and for any positive integer m, μm is determined from the following recursive formula:

μm =
∞∑ [

(m − k + 2)ak,j−1 − (m − j + 2)bj,k−1
]
cm−k+2,m−j+2.
k+j=3
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When p = q > 0 or p < 0 or q < 0, cpq = 0.

Remark 2.1. The coefficient μm, m = 1, 2, · · · , given in Lemma 2.1 is called the mth singular 
point quantity at the origin of the system. Note that for the mth focal value v2m+1 and μm, the 
following relation holds [20]:

v3(2π) = iπμ1,

and if v2k+1 = μk = 0 for k = 1, 2, · · · , m − 1, then

v2m+1 = iπμm, m = 2, 3, · · · .

Thus, the stability and integrability for the origin of system (2.1) can be directly determined by 
computing the singular point quantities of the origin of system (2.2).

Clearly, system (1.9) has three singular points located at (v, y) = (0, 0), (1, 0) and (β, 0), 
denoted by O , O1 and O2 respectively. Let DX(v∗, 0) represent the differential matrix at the 
singular point (v∗, 0) and

Spec(DX(v∗,0)) = γv∗ ± √
�v∗

2

denote the characteristic roots of DX(v∗, 0), where γv∗ = a0 − c + a1v
∗ + a2v

∗2 and

�v∗ = γ 2
v∗ + 4(β − 2v∗ − 2βv∗ + 3v∗2).

By the qualitative theory of ordinary differential equations, under the condition: γv∗ = 0 and 
�v∗ < 0, i.e. 4(β − 2v∗ − 2βv∗ + 3v∗2) < 0, it is easy to show that the singular point (v∗, 0)

is a center-focus. Next, we consider Hopf bifurcation from the three singular points O(0, 0), 
O1(1, 0) and O2(β, 0).

Case (i): for O(0, 0), namely v∗ = 0. When c = a0 and β<0, it is a center-focus. We introduce 
the transformation: z = y + i

√−β v, w = y − i
√−β v, T = i

√−β ξ , i = √−1 into system (1.9)
to obtain the following system in the form of (2.2),

dz
dT

= z + Z2 + Z3,
dw
dT

= −w − W2 − W3, (2.3)

in which

Z2 = 1
4(−β)3/2 (w − z)

[
z
(
a1

√−β + i (1 + β)
) + w

(
a1

√−β − i (1 + β)
)]

,

Z3 = 1
8β2 (w − z)2

[
z
(
1 + ia2

√−β
) − w

(
1 − ia2

√−β
)]

,

W2 = Z̄2, W3 = Z̄3,

where Z̄k is the complex conjugate of Zk, k = 2, 3.
Case (ii): for O1(1, 0), namely v∗ = 1. When c = a0 + a1 + a2 and 1 − β < 0, it is a center-

focus. We use the transformation: z = y + i
√

β − 1 (v + 1), w = y − i
√

β − 1 (v + 1), T =
i
√

β − 1 ξ , i = √−1 to make system (1.9) become
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dz
dT

= z + Z2 + Z3,
dw
dT

= −w − W2 − W3, (2.4)

where

Z2 = 1
4(β−1)3/2 (w − z)

[
z
(
(a1 + 2a2)

√
β − 1 + i (β − 2)

)

+w
(
(a1 + 2a2)

√
β − 1 − i (β − 2)

)]
,

Z3 = 1
8(β−1)2 (w − z)2

[
z
(
1 + ia2

√
β − 1

) − w
(
1 − ia2

√
β − 1

)]
,

W2 = Z̄2, W3 = Z̄3.

Case (iii): for O2(β, 0), namely v∗ = β . When c = a0 + a1β + a2β
2 and β2 − β < 0, it is a 

center-focus. Similarly, we apply the transformation: z = y + i ρ(v + β), w = y − i ρ(v + β), 
T = i ρξ , i = √−1 with ρ = √

β − β2, to transform system (1.9) to obtain

dz
dT

= z + Z2 + Z3,
dw
dT

= −w − W2 − W3, (2.5)

where

Z2 = 1
4(β−β2)3/2 (w − z)(a11z + b11w),

Z3 = 1
8(β−β2)2 (w − z)2

[
z
(
1 + ia2

√
β − β2

) − w
(
1 − ia2

√
β − β2

)]
,

a11 = (a1 + a2 + a2 |2β − 1|)√β − β2 − i |2β − 1| , b11 = ā11,

W2 = Z̄2, W3 = Z̄3.

Obviously, it is impossible to have all the three singular points being center-focus simultaneously 
due to the restriction on the parameter β . Applying the recursive formulas in Lemma 2.1 with the 
help of Mathematica, we obtain the first 10 singular point quantities for system (2.3)) as follows:

μ1 = i(a1(β+1)+a2β)

4(−β)5/2 ,

μ2 = 5ia1(β+1)

24(−β)9/2 ,

μ3 = μ4 = · · · = μ10 = 0,

(2.6)

in which μk−1 = 0 has been used in computing μk, k = 2, · · · , 10. Similarly, for system (2.4), 
we obtain that

μ1 = i(a1(β−2)+a2(β−3))

4(β−1)5/2 ,

μ2 = − 5ia1(β−2)

24(β−3)(β−1)7/2 ,

μ3 = μ4 = · · · = μ10 = 0.

(2.7)

For system (2.5), we get that

μ1 = − i(a1(1−2β)+a2(β−1)(3β−2))

4(β−β2)5/2 ,

μ2 = − 5ia1β(2β−1)

24(3β−2)(β−β2)9/2 ,

μ = μ = · · · = μ = 0.

(2.8)
3 4 10

65



Q. Wang, Y. Xiong, W. Huang et al. Journal of Differential Equations 311 (2022) 59–80
For the above three cases, it is easy to find the conditions such that μ1 = μ2 = 0, yielding the 
center conditions. We have the following result.

Theorem 2.1. (i) With c = a0, the origin of system (2.3) or system (1.9) is a center if and only if 
a2 = a1 = 0, β < 0 or a2 = 0, β = −1.

(ii) With c = a0 + a1 + a2, the origin of system (2.4) or the point O1(1, 0) of system (1.9) is a 
center if and only if a2 = a1 = 0, β > 1 or a2 = 0, β = 2.

(iii) With c = a0 + a1β + a2β
2, the origin of system (2.5) or the point O2(β, 0) of system (1.9)

is a center if and only if a2 = a1 = 0, β(β − 1) < 0 or a2 = 0, β = 1
2 .

Proof. The necessity directly follows the expressions of the first 10 singular point quantities 
given in (2.6), (2.7) and (2.8). To prove sufficiency, we consider two cases.

(I) when a1 = a2 = 0, c = a0, for all the three cases. System (1.9) is reduced to

dv
dξ

= y,
dy
dξ

= v(v − 1)(v − β), (2.9)

which is obviously an integrable system, with the first integral,

H0(v, y) = y2

2 − 1
12v2(3v2 − 4v − 4βv + 6β). (2.10)

(II) when a2 = 0, a1 �= 0, under the conditions respectively for the three cases: c = a0, β =
−1; c = a0 + a1, β = 2 and c = a0 + a1

2 , β = 1
2 , system (1.9) respectively becomes

dv
dξ

= y,
dy
dξ

= v(v2 + a1y − 1) = Y1,

dv
dξ

= y,
dy
dξ

= (v − 1)(v2 − 2v + a1y) = Y2,

dv
dξ

= y,
dy
dξ

= (v − 1
2 )(v2 − v + a1y) = Y3

(2.11)

which are integrable with the integrating factors:

M(v,y) = h

2
κ2 −1

i , i = 1, 2, 3, (2.12)

where h1 = v2 + κy − 1, h2 = v2 − 2v + κy, h3 = v2 − v + κy and κ = 1
2 (a1 ±

√
a2

1 + 8). �
Further, according to Theorem 2.1, it is straightforward to obtain the conditions that μ1 = 0, 

μ2 �= 0, yielding 2nd-order weak focus. We have the following theorem.

Theorem 2.2. The three equilibria of system (1.9): (0, 0), (1, 0) and (β, 0) can be respectively at 
most a 2nd-order weak focus, and there exist at most two limit cycles bifurcating from the three 
equilibria via Hopf bifurcation.

3. The zeros of the Abelian integral around (1, 0) of system (1.9)

For practical problems, population density u in the model (1.5) is often nonnegative. Thus 
we only need to study the dynamics of system (1.9) in the right-half of the v-y plane. That is, 
we only need to disscuss Poincaré bifurcation from the period annulus around one center inside 
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Fig. 1. The phase portraits of system (1.9) for three cases with c = a0, a1 = a2 = 0 for (i) 1 < β < 2; (ii) β = 2; and (iii) 
β > 2.

either the two heteroclinic orbits or one homoclinic orbit. According to Theorem 2.1, we only 
need to consider the center O1(1, 0) for β > 1 or O2(β, 0) for 0 < β < 1. In this paper, we 
consider the center (1, 0) for β > 1 and c = a0 +a1 +a2, with concentration on the general case, 
a1 = a2 = 0, while leaving the case β = 2, a2 = 0 (which has a very complex Abelian integral) 
for future study.

Now, under the conditions: β > 1, a1 = a2 = 0, c = a0, we know from the first integral (2.10)
that O1(1, 0) is a center, O(0, 0) and O1(β, 0) are two saddles, which yields three types of phase 
portraits for different values of β , as shown in Fig. 1.

In order to consider Poincaré bifurcation around the equilibrium point (1, 0) of system (1.9), 
we take some appropriate perturbations on the coefficients, by assuming 0 < |a0 − c |	1 and 
0 <|a1|, |a2|	1, and thus introduce the rescaling: c = a0 − εb0, a1 = εb1, a2 = εb2 into system 
(1.9) to obtain the following perturbed Hamiltonian system,

dv
dξ

= y,

dy
dξ

= β v − (1 + β)v2 + v3 + ε(b0 + b1v + b2v
2)y.

(3.1)

To apply the Chebyshev criterion in determining the number of zeros of the Abelian integral 
(see [9,23]), we need to perform a translation: v 
→ v + 1 to bring the center (1, 0) to the origin, 
for which system (3.1) becomes

dv
dξ

= y,

dy
dξ

= (v + 1)v(v + 1 − β) + εf (v)y,
(3.2)

where

f (v) = b0 + b1(v + 1) + b2(v + 1)2 = d0 + d1v + d2v
2, (3.3)

with d0 = b0 + b1 + b2, d1 = b1 + 2b2, d2 = b2. Obviously, the unperturbed system (3.2)ε=0 has 
the Hamiltonian function,

H(v,y) = y2

2 − 1
12v2(6 − 6β + 8v − 4βv + 3v2). (3.4)

It can be seen from the phase portraits shown in Fig. 1 that the cases (iii) and (i) are symmetric. 
In fact, under the transformation v 
→ β − (β − 1)v, y 
→ (β − 1)2y and time rescaling ξ 
→

ξ
2 , system (3.1) with ε = 0 is changed to
(β−1)
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Fig. 2. The phase portrait of system (3.2)ε=0 for the case (i) shown in Fig. 1 via the translation v 
→ v + 1.

dv
dξ

= y,
dy
dξ

= v(v − 1)
(
v − β

β−1

)
.

If β > 2, then 1 < β
β−1 < 2, namely case (iii) becomes (i). So we only consider the case (i). The 

translated phase portrait of system (3.2)ε=0 for case (i) is shown in Fig. 2.
The closed orbits depicted in Fig. 2 are defined by the following function:

�h : H(v,y) = h, h ∈ (0, h0), (3.5)

where h0 = 1
12 (β −1)3(β +1) with 1 < β < 2. The period annulus �h around the origin (the cen-

ter) is inside the homoclinic loop, passing through the hyperbolic saddle (β − 1, 0), intersecting 
the v-axis at (v−

0 , v+
0 ), where

v−
0 = − 1

3 (1 + β +
√

4 + 2β − 2β2), v+
0 = β − 1. (3.6)

Moreover, we rewrite the Hamiltonian function (3.4) of the unperturbed system (3.2)ε=0 as

H(v,y) = A(v) + B(v)y2, (3.7)

where A(v) = − 1
12v2(6 − 6β + 8v − 4βv + 3v2) and B(v) = 1

2 . Thus, the Melnikov function 
(Abelian integral) corresponding to system (3.2) can be written as

I (h) = ∮
�h

f (v)ydv = ∮
�h

(d0 + d1v + d2v
2)ydv

= d0Ĩ0(h) + d1Ĩ1(h) + d2Ĩ2(h),
(3.8)

where Ĩi (h) = ∮
�h

viydv, i = 0, 1, 2. The number of zeros of I (h) corresponds to the number of 
limit cycles bifurcating in system (3.2). Before giving a detailed analysis on the problem, in the 
following we present some relevant definitions and lemmas, more details can be found in [9,23].

Definition 3.1. Assume that {f0(x), f1(x), · · · , fn−1(x)} is an ordered set of analytic functions 
on an open interval L in R. This set is called an extended complete Chebyshev system (ECT-
system) if, for all i = 1, 2, · · · , n, any nontrivial linear combination,
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k0f0(x) + k1f1(x) + · · · + ki−1fi−1(x),

has at most i − 1 isolated zeros on L counted multiplicities.

Lemma 3.1. [9] {f0(x), f1(x), · · · , fn−1(x)} is an ECT-system on L if and only if, for each 
i = 1, 2, · · ·, n, the Wronskian W

[
f0(x), f1(x), · · · , fi−1(x)

] �= 0 for all x ∈ L.

Thus, if we can prove that Ĩ0, Ĩ1 and Ĩ2 in (3.8) form an ECT-system, we could conclude that 
at most two isolated zeros with respect to h exist in L = (0, h0), where h0 = 1

12 (β − 1)3(β + 1). 
To prove this conclusion, we need the following lemmas.

Lemma 3.2. [9] Let �h be an oval inside the level curve {A(v) + 1
2y2 = h} and a function F

such that F/A′ is analytic at v = 0. Then, for any k ∈ N ,

∮
�h

F (v)yk−2dv = ∮
�h

G(v)ykdv,

where G(v) = 1
k

(
F
A′

)′
(v).

Lemma 3.3. [9] Consider the Abelian integrals,

Ii(h) = ∮
�h

fi(v)y2s−1dv, i = 0, 1, · · · , n − 1,

where, for each h ∈L, �h is the oval surrounding the origin inside the level curve {A(v) + 1
2y2 =

h}. Let σ be the involution associated to A(v) and define

�i(v) := fi(v)
A′(v)

− fi(σ (v))
A′(σ (v))

.

Then {I0, I1, I2, · · · , In−1} is an ECT-system on L if s > n − 2 and {�0, �1, · · · , �n−1} is a CT-
system on (0, v+

0 ).

The following lemma will be used to prove our main result.

Lemma 3.4. [8] Set � =R and let

Gβ(x) = gn(β)xn + gn−1(β)xn−1 + · · · + g1(β)x + g0(β)

be a family of real polynomials depending also polynomially on a real parameter β . Assume that 
there exists an open interval L ⊂R such that: (i) There exists some β0 ∈ L such that Gβ0(x) > 0
on �. (ii) For all β ∈ L, the discriminant of Gβ with respect to x is not equal to zero. (iii) For 
all β ∈ L, gn(β) �= 0. Then, for all β ∈ L, Gβ(x) > 0 on �.

Our main result is given in the following theorem. Its lengthy proof will be given in the next 
two sections.

Theorem 3.1. For the perturbed system (3.2), there exists an interval L ⊂ (1, 2) such that for 
all β ∈ L, the number of zeros of the Abelian integral (3.8) is at most two and can be reached, 
accounting multiplicity.
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4. Proof of Theorem 3.1

In this section, we divide five steps to prove Theorem 3.1. Firstly, it is easy to get

Ĩi (h) = ∮
�h

viydv = 1
h

∮
�h

(A(v) + 1
2y2)viydv

= 1
h

∮
�h

A(v)viydv + 1
2h

∮
�h

viy3dv, i = 0, 1, 2.
(4.1)

Then we apply Lemma 3.2 to obtain

∮
�h

A(v)viydv = 1
3

∮
�h

(
Avi

A′
)′
y3dv.

Rewriting Ĩ0(h) = 1
h
I0(h), Ĩ1(h) = 1

h
I1(h), Ĩ2(h) = 1

h
I2(h) with

I0(h) = ∮
�h

f0(v)y3dv, I1(h) = ∮
�h

f1(v)y3dv, I2(h) = ∮
�h

f2(v)y3dv,

we obtain f0(v), f1(v) and f2(v), expressed in the following forms:

fi(v) = − vi−1(2vAA′′−2iAA′−5vA′2)

6A′2 , i = 0, 1, 2. (4.2)

Further, applying Lemma 3.3 yields

�i(v) = fi(v)
A′(v)

− fi (σ (v))
A′(σ (v))

, i = 0, 1, 2,

where σ(v) is the involution associated with A(v). Actually σ(v) and v together serve as the 
abscissae of the two intersection points of the period annulus �h with the v-axis. Moreover, 
letting σ(v) = ϕ yields H(v, y) = H(ϕ, y) or A(v) − A(ϕ) = 0, namely

A(v) − A(ϕ) = − 1
12 (v − ϕ)g(v,ϕ) = 0, (4.3)

where

g(v,ϕ) = 3(v2 + ϕ2)(v + ϕ) − 4(β − 2)(v2 + vϕ + ϕ2) − 6(β − 1)(v + ϕ). (4.4)

Due to vϕ < 0, we have v−ϕ �= 0, and thus ϕ = σ(v) is an implicit function defined by g(v, ϕ) =
0.

Next, a direct calculation yields the following Wronskians:

W [�1(v)] = �1(v) = �1(v,ϕ,β),

W [�1(v), �2(v)] = �2(v,ϕ,β),

W [�1(v), �2(v), �0(v)] = �3(v,ϕ,β),

(4.5)

where �1, �2 and �3 are rational functions in v, ϕ and β . Thus, by investigating the nonex-
istence of zeros for �1, �2 and �3 with respect to v ∈ (0, β − 1) in certain intervals of β , 
we determine that {I0, I1, I2} is an ECT-system on (0, β − 1). In the following, we present the 
detailed proof in four steps.
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Step 1. We first compute the resultants of �1, �2 and �3 respectively with g(v, ϕ) to obtain

Resultant[�1, g,ϕ] = R1(v,β),

Resultant[�2, g,ϕ] = R2(v,β),

Resultant[�3, g,ϕ] = R3(v,β),

where R1, R2 and R3 are rational functions in v and β . It is easy to verify that there exist some 
specific values of β such that R1R2R3 �= 0 for v ∈ (0, β − 1) under the condition g(v, ϕ) = 0. 
We have the following result.

Lemma 4.1. There exist some specific values of β = β0 = 11
10 , 3

2 , such that {I1, I2, I0} is an ECT-
system on (0, β − 1).

However, we cannot claim the existence of certain interval of β for which {I1, I2, I0} is an
ECT-system. Therefore, further analysis is needed.

Step 2. Substituting v = t2

t2+1
(β − 1) ∈ (0, β − 1) where t ∈ (−∞, +∞), into R1, R2 and R3, 

we obtain

R1(v,β) = (β−2)t2(1+t2)7h11
3888(β−1)3(1+βt2)9(d11)

3(d12)
3 := r1(t, β),

R2(v,β) = (β−2)t6(1+t2)13h21
1889568(β−1)4(1+βt2)15(d21)(d11)

6(d12)
6 := r2(t, β),

R3(v,β) = (β−2)(β+1)(2β−1)(1+t2)30h31
4251528(β−1)16t12(1+βt2)20(d21)

6(d11)
10(d12)

10 := r3(t, β),

where h11, h21 and h31 are polynomials in t and β , with degrees 44, 80 and 136 in t , respectively, 
and

d11 = 1 + β + 4t2 + 4βt2 + 6βt4,

d12 = 1 − 2β + 4t2 − 10βt2 + 4β2t2 − 2βt4 + β2t4,

d21 = 6 + 4t2 + 4βt2 + t4 + βt4.

It is not difficult to verify that d11 > 0, d12 < 0 and d21 < 0 for β ∈ (1, 2). Thus, we only need to 
find certain intervals of β such that the hi1 in ri(t, β) is always positive or negative with respect 
to t ∈ R, i = 1, 2, 3, yielding an interval such that all Ri’s (or �i ’s) do not vanish.

Step 3. Compute the discriminants of h11, h21 and h31 respectively with respect to t . For 
convenience, we use “Discriminant[P, t]” to denote the discriminant of a polynomial P(t) =
ant

n + · · · + a1t + a0, that is,

Discriminant[P, t] = (−1)
n(n−1)

2
1
an

Resultant[P(t),P ′(t), t],

where Resultant[P, P ′, t] is the resultant of P and P ′ with respect to t . Then we have

Discriminant[h11, t] = δ1(β),

Discriminant[h21, t] = δ2(β),

Discriminant[h , t] = δ (β)
31 3
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where δ1(β), δ2(β) and δ3(β) are polynomials in β .
Next, we try to obtain certain intervals of β such that δi(β) �= 0 by determining the roots of 

δi(β), i = 1, 2, 3. With the help of Mathematica, for β ∈ (1, 2), we identify one real root, β11, 
for δ1(β); 5 real roots β2i , i = 1, 2, · · · , 5, for δ2(β), satisfying β21 < β22 < · · · < β25; and 7
real roots β3i , i = 1, 2, · · · , 7, for δ3(β), satisfying β31 < β32 < · · · < β37. By applying Sturm’s 
theorem, we can also verify the existence of these roots with a determined existence interval. For 
example,

β11 ∈ (1.108 · · ·441, 1.108 · · ·442︸ ︷︷ ︸
10−50

),

β31 ∈ (1.496 · · ·720, 1.496 · · ·721︸ ︷︷ ︸
10−50

),

β32 ∈ (1.747 · · ·957, 1.747 · · ·572︸ ︷︷ ︸
10−50

).

Further, we use Lemma 3.4 to find some values of β such that the condition (i) holds. Firstly, 
for h11, we find some values, for example β0 = 11

10 , 3
2 , which are not equal to β11 and satisfying 

h11(t , β0) > 0, ∀t ∈ R, i.e.

h11(t,
11
10 ) = 13265280000000000+269110195200000000t2+···+29115938088468t44

1000000000000002187 > 0,

h11(t,
3
2 ) = 43130880000+903536640000t2+···+88573500t44

16384 > 0.

Then, according to Lemma 3.4, we conclude that when β ∈ L1 = (1, β11) ∪ (β11, 2), h11(t, β) >
0 for all t ∈ R.

Next, for h31, we can also verify that the values β0 = 11
10 , 3

2 are not equal to β3i , i =
1, 2, · · · , 7, satisfying h31(t, β0) > 0, ∀t ∈R, i.e.

h31(t,
11
10 ) = 68630377364883(2475963176294809600000000000000000000000000000+··· +s0t

136)
62500000000000000000000000000000000000000 >0,

h31(t,
3
2 ) = 179504811717705282355200000000000+···+576440890438474757812500000t136

274877906944 > 0,

where s0 = 21624980641055812753537766898291269412960. Then by Lemma 3.4, we can 
conclude that when β ∈ L3 = (1, β31) ∪ (β31, β32), h31(t, β) > 0 for all t ∈ R. Therefore, we can 
choose L13 = L1 ∩L3 = (1, β11) ∪(β11, β31) ∪(β31, β32) to have h11(t, β) �= 0 and h31(t, β) �= 0
for all t ∈R as long as β ∈ L13. The above results give the following lemma.

Lemma 4.2. There exists an interval L13 = (1, β11) ∪ (β11, β31) ∪ (β31, β32) such that �1 �= 0
and �3 �= 0 for β ∈ L13 and all v ∈ (0, β − 1).

Note that the interval L13 given in Lemma (4.2) is a pretty large subinterval in (1, 2). However, 
unfortunately we cannot use the above approach to find a value of β ∈ (1, 2) such that h21 is 
always positive or negative, that is, we cannot determine an interval for β in which h21 �= 0. 
Hence, we need to develop an alternative for the remaining proof.

Step 4. Compute the discriminant of f21 with respect to t , which is generated in (4.9) and repre-
sents the derivative of function φ2 with respect to β , with φ2 determined from (4.5) such that
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�2 = (v−ϕ)3φ2
d20

, (4.6)

where φ2 is a polynomial in v, ϕ and β , and

d20 = 1296(1 + v)5(1 − β + v)5(β − 1 − ϕ)5(1 + ϕ)5

×(6 − 6β + 8ϕ − 4βϕ + 3ϕ2 + 16ϕ − 8bϕ + 6vϕ + 9ϕ2).

Then, we have

dφ2(v,ϕ,β)
dβ

:= dβ(v,ϕ,β),

Resultant[dβ, g,ϕ] = R21(v,β),

Resultant[d20, g,ϕ] = R22(v,β),

(4.7)

where R21 and R22 are polynomials in v and β .

Similarly, substituting v = t2

t2+1
(β − 1) with t ∈ (−∞, +∞), into R21 and R22 gives

R22(v,β) = 313456656384
(1+t2)66 (β − 1)27(1 + βt2)20(d11)

6(d12)
6d21, (4.8)

and

R21(v,β) = 72
(1+t2)42 (β − 1)14(1 + βt2)2f21 := r21(t, β),

Discriminant[f21, t] = δ4(β),
(4.9)

where f21 is a polynomial in t and β with degree 76 of t , and δ4(β) is a polynomial in β .
Then, we again try to find certain intervals of β such that δ4 �= 0. To achieve this, letting δ4 = 0

yields 15 real roots β4i ∈ (1, 2) with β41 < β42 < · · · < β415. For example,

β41 ∈ (1.501 · · ·050, 1.501 · · ·051︸ ︷︷ ︸
10−50

).

Moreover, we can verify that the two values β0 = 11
10 , 3

2 are not equal to β4i satisfying 
f21(t, β0) > 0, ∀t ∈R, i.e.

f21(t,
11
10 ) = 1594323(3555860412501196800000000000000000+··· +s1t

76)
50000000000000000000000000 > 0,

f21(t,
3
2 ) = 75357260680035041280000+···+926572879928542500t76

33554432 > 0,

where s1 = 174741133897900845319596327468. Then by Lemma 3.4, we obtain that when 
β ∈ L4 = (1, β41), f21(t, β) > 0 for all t ∈R, which gives the following lemma.

Lemma 4.3. There exists an interval L40 = [β0, β41) such that when β ∈ L40, φ2 > 0 for all 
v ∈ (0, β0 − 1), where β0 ∈ L4, yielding φ2(v, ϕ, β0) > 0 for all v ∈ (0, β0 − 1), with β0 = 11

10
or 3 .
2
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Proof. It has been shown in the above that when β ∈ L4 = 1, β41), f21(t, β) > 0 for all t ∈ R. 
Thus, the Resultant R21 in (4.9) between dβ and g(v, ϕ) with respect to ϕ, does not vanish, 
implying that dβ �= 0 in (4.7) always holds. Moreover, it can be verified that dβ > 0 for v ∈
(0, β − 1), meaning that φ2(v, ϕ, β) in (4.6) is monotonically increasing with respect to β .

Since ϕ = σ(v) is a continuous function in v, φ2(v, ϕ, β) is also a continuous function with 
respect to v and β in the domain:

D = { (v,β)|0 ≤ v ≤ β − 1, 1 ≤ β ≤ 2}.

Thus, when β > β0, φ2(v, ϕ, β) > φ2(v, ϕ, β0) for any v ∈ (0, β0 − 1). On the other hand, we 
know that φ2(v, ϕ, β0) > 0, and so φ2(v, ϕ, β) > 0 for any v ∈ (0, β0 − 1). In fact, according 
to Lemma 4.1, there exist β0 = 11

10 , 3
2 such that �2(v, ϕ, β0) �= 0 always holds, and so it can be 

verified that φ2(v, ϕ, β0) > 0 when v ∈ (0, β0 − 1). �
Step 5. Compute the discriminant of g21 with respect to t , which is generated in (4.11) and 

represents the derivative of function φ2 defined in (4.6) with respect to v. We have

dφ2(v,ϕ,β)
dv

:= dv(v,ϕ,β),

Resultant[dv, g,ϕ] = R23(v,β),
(4.10)

where R23 is a polynomial in v and β . Similarly, substituting

v = t2

t2+1
(β − β0) + β0 − 1, β0 = 3

2 , t ∈ (−∞,+∞)

into R23 we have

R23(v,β) = 3(β−2)(2β−3)

2147483648(t2+1)41d23
(2βt2 + 3)(2βt2 − 2t2 + 1g21 := r23(t, β)

and

Discriminant[g21, t] = δ5(β),

Discriminant[d23, t] = δ6(β)
(4.11)

where

d23= (4β2t4 + 16β2t2 − 4βt2 + 32β − 4t4 − 20t2 − 43)

×(4β2t4 + 16β2t2 − 8βt4 − 44βt2 + 24t2 − 3)

×(24β2t4 + 16β2t2 + 4β2 − 24βt4 + 16βt2 + 4β − 24t2 + 3),

δ6(β)= −113755476875026872166594815941782079061589407540707328

×(β−2)5(β−1)18β18(β+1)5(2β−3)60(2β−1)4(32β−43)(4β2+4β+3),

and g21 is a polynomial in t and β with degree 88 of t , and δ6(β) is a polynomial in β .
Then, it can be verified that when β ∈ (β0, 2) = ( 3

2 , 2), δ6 �= 0. Thus we only need try to find 
certain intervals of β such that δ5 �= 0. To do this, setting δ5 = 0 yields 6 real roots β5i ∈ ( 3

2 , 2)

with β51 < β52 < · · · < β56. For example,
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Fig. 3. The interval [β0, β∗1) = [ 11
10 , β61) or [ 3

2 , β41) satisfying φ2>0 in (4.6) for β ∈ [β0, β∗1).

β51 ∈ (1.515 · · ·596, 1.515 · · ·597︸ ︷︷ ︸
10−50

), β52 ∈ (1.562 · · ·032, 1.562 · · ·033︸ ︷︷ ︸
10−50

).

Moreover, we can verify that the two values β∗ = 151
100 , 155

100 are not equal to β6i satisfying 
g21(t, β∗) < 0, ∀t ∈ R, i.e.

g21(t,
151
100 ) = 908166180608 ··· 00000+···+83655 ···9882t88

4547473508864 ··· 0000 < 0,

g21(t,
155
100 ) = − 3486784401(95582750 ··· 00000+···+14611···5242t88)

8000 ···0000 < 0.

At the same time, we can get d23(t, β∗) < 0, ∀t ∈ R. Then by Lemma 3.4, we obtain that 
when β ∈ L5 = ( 3

2 , β51) ∪ (β51, β52), g21(t, β) < 0 and d23(t, β) < 0 for all t ∈ R, yielding 
dv(v, ϕ, β) > 0 in (4.10) for all v ∈ (β0 − 1, β − 1) = ( 1

2 , β − 1).
Furthermore, when β0 = 11

10 , using the above process, we get an interval L6 = ( 11
10 , β61) with 

β61 ≈ 1.11316496347, such that when β ∈ L6, dv(v, ϕ, β) > 0 in (4.10) for all v ∈ (β0 − 1, β −
1) = ( 1

10 , β − 1).
Summarizing the above discussions in Step 5 yields the following lemma.

Lemma 4.4. When β ∈ L50 = [ 11
10 , β61) ∪ [ 3

2 , β41), �2 �= 0 for all v ∈ (0, β − 1).

Proof. First, one can see that the factor (v − ϕ) in (4.6) does not vanish for v ∈ (0, β − 1). 
Moreover, it follows from d11d12d21 �= 0 that the Resultant of ϕ and R22 in (4.8) cannot equal 
zero, which implies that d20 �= 0 in (4.6) for v ∈ (0, β − 1).

Next, we prove that φ2 > 0 in (4.6) for v ∈ (0, β − 1). According to Lemma 4.3, we have 
obtained that when β ∈ L40 = [β0, β41), φ2 > 0 for all v ∈ (0, β0 − 1) with β0 = 11

10 or 3
2 , as 

shown in Fig. 3. Moreover, in the Step 5, it has been verified that dv(v, ϕ, β) > 0 in (4.10) for all 
v ∈ (β0 − 1, β − 1), meaning that φ2(v, ϕ, β) in (4.6) is monotonically increasing with respect 
to v. Thus, when β − 1 > v > v0 > β0 − 1, φ2(v, ϕ, β) > φ2(v0, ϕ(v0), β) for any β ∈ L5 ∪ L5∗.

Since φ2(v, ϕ, β) is a continuous function with respect to v and β in the domain: D =
{ (v,β)|0 ≤ v ≤ β − 1, 1 ≤ β ≤ 2}, moreover when β = β0 and v0=β0 − 1, φ2(v0, ϕ(v0), β0) =
0, we have dβ(v, ϕ, β) >0 in (4.7) which implies that φ2(v0, ϕ(v0), β) > 0 for any β ∈ (β0, β41). 
Applying the local invariance of signs for the continuous functions in two variables, we have that 
when v∈[β0 − 1, β − 1), φ2(v, ϕ, β) >φ2(v0, ϕ(v0), β) >0 for any β ∈ (L5 ∪ L5∗) ∩ (β0, β41), 
as shown in Fig. 3.
75



Q. Wang, Y. Xiong, W. Huang et al. Journal of Differential Equations 311 (2022) 59–80
Thus, for β ∈ L50 = [ 11
10 , β61) ∪ [ 3

2 , β41), we have φ2(v, ϕ, β) > 0 for any v ∈ (0, β − 1), and 
so �2 in (4.5) does not vanish. �
Remark 4.1. As a matter of fact, for the β0 considered in the above process, except for 11

10 and 3
2 , 

there exist many other such values β0∈L4 with the corresponding intervals L∗=[β0, β∗1) such 
that when β ∈ L∗, �2 �= 0 in (4.5) for any v∈(0, β − 1). However, it is not easy to identify all 
such values.

Combining all the results obtained above, we let L = L50 ∩ L13 = [ 11
10 , β11) ∪ [ 3

2 , β41). Then 
according to Lemma 3.3, we combine Lemmas 4.2 and 4.4, to obtain that for β∈L, �1, �2 and 
�3 in (4.5) do not vanish for all v ∈ (0, β − 1). This proves that {I1, I2, I3} is an ECT-system on 
(0, h0), implying that the maximum number of zeros of the Abelian integral (3.8) is at most two 
for β ∈ L. The second part of Theorem 3.1 that the number two can be reached will be proved in 
the next section.

5. Double isolated periodic traveling waves and simulations

An isolated closed orbit in system (1.9) corresponds to an isolated periodic traveling wave in 
the original model (1.5). According to Theorem 2.2, there exist at most two small-amplitude limit 
cycles in the neighborhood of the three equilibria of system (1.9) arising from Hopf bifurcation. 
In this section, we show that these two limit cycles can be obtained by appropriate parameter per-
turbations. Further, according to Theorem 3.1, we also know that at most two global limit cycles 
exist which surround the equilibrium (1, 0) of system (3.1) via Poincaré bifurcation. In partic-
ular, we give a concrete example to achieve the two global limit cycles. We have the following 
result.

Proposition 5.1. For the perturbed system (3.1), under the condition: β = β0 ∈ L, with β0 =
11
10 , 3

2 , there exist two and at most two limit cycles bifurcating from the equilibrium point (1, 0)

via Poincaré bifurcation.

Proof. By applying the method of asymptotic expansion of the Abelian integral I (h) (or the 
first Melnikov function, see [10,11,27]), we can search the zeros, via the asymptotic expansion at 
h = 0 to match the Hopf bifurcation values, and the asymptotic expansion at h = h0 = 1

12 (β0 −
1)3(β0 + 1) for the homoclinic bifurcation.

Based on (3.8) and (4.2), an alternative is to consider

I (h) = d0Ĩ0(h) + d1Ĩ1(h) + d2Ĩ2(h) = 1
h
(d0I0 + d1I1 + d2I2), (5.1)

where Ii = Ii(h) = ∮
�h

fi(v)ydv, i = 0, 1, 2. Without loss of generality, setting d0 = 1 and 
choosing two arbitrarily different values h∗

1, h
∗
2 ∈ (0, h0), yield two equations:

d1I1(h
∗
1) + d2I2(h

∗
1) = −I0(h

∗
1),

d1I1(h
∗
2) + d2I2(h

∗
2) = −I0(h

∗
2).

(5.2)

According to Lemmas 4.2 and 4.3, {I1, I2} is an ECT-system on (0, h0). Thus, it follows from 
Theorem B and Lemma 2.3 in [9] that all discrete Wronskians of {I1, I2} are not equal to zero. 
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On the other hand, it is seen that the determinant of the coefficient matrix on the left-hand side of 
(5.2) is exactly the Wronskian of {I1, I2}, which is thus not equal to zero on (h∗

1, h
∗
2), implying 

that (5.2) has a unique solution {d∗
1 , d∗

2 }. Let d = (d∗
1 , d∗

2 , 1). Then, h∗
1 and h∗

2 are naturally two 
different zeros of the Abelian integral I (h, d) in (3.8). Moreover, it is noted that the number of 
zeros is at most two, and so no more zeros exist. Correspondingly, there exist some parameter 
values such that system (3.2) or (3.1) has two large-amplitude limit cycles which bifurcate from 
an period annulus surrounding the origin.

The proof is complete. �
By Proposition 5.1, the second part of Theorem 3.1 is proved, that is, for β ∈ L, the maximum 

number of zeros of the Abelian integral (3.8) can reach two.
To demonstrate the theoretical result, we give a concrete example to simulate the two large-

amplitude limit cycles. We choose β = 3
2 , h1 = 1

100 and h2 = 1
40 to obtain

I0(h1) ≈ 0.045632, I1(h1) ≈ 0.000531, I2(h1) ≈ 0.000493,

I0(h2) ≈ 0.122854, I1(h2) ≈ 0.005536, I2(h2) ≈ 0.004248.

Then, it follows from (5.2) that d0ε = a0 +a1 +a2 −c, d1ε = a1 +2a2, d2ε = a2. Further, setting 
ε = 0.002 yields

a0 ≈ c − 1.35695, a1 ≈ 2.15294, a2 ≈ −0.79399. (5.3)

The oscillating time histories for the above parameter values with three different initial points are 
depicted in Fig. 4(a), (b) and (c), respectively. In addition, the phase portrait given in Fig. 4(d) 
clearly shows two limit cycles with the inner one stable and the outer one unstable. Moreover, 
for the above example, we provide the simulation in Fig. 5 to illustrate the existence of the two 
global isolated periodic traveling waves.

Based on Theorem 2.2 and Proposition 5.1, we have the following result.

Proposition 5.2. In the single species model (1.5), at most two local isolated periodic traveling
waves can bifurcate from u(x, t) = 0 or u(x, t) = 1 or u(x, t) = β via Hopf bifurcation; and 
double global isolated periodic traveling waves can bifurcate from u(x, t) = 1 via Pioncaré 
bifurcation when the parameter β is chosen from some appropriate subinterval L of (1, 2).

Remark 5.1. It should be noted that a0 corresponds to the speed of advection A0, while a1 and 
a2 correspond to the speed coefficients of migration A1 and A2, the latter is due to the biological 
mechanisms while the former is responsible for the impacts of wind and water current, etc. The 
parameter β = U0K

−1 depends on the Allee effect and species carrying capacity. Therefore, the 
above influential factors can appear in reality, implying that double isolated periodic traveling
waves can coexist, revealing special pattern of spread in population dynamics.

6. Conclusion

In this paper, isolated periodic traveling waves have been studied for a class of modified sin-
gle species population model and particular attention is focused on the real pattern of spread for 
population dynamics. Based on the Chebyshev criterion, we have developed a utilized approach 
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Fig. 4. Time histories of system (3.2) under the condition (5.3) and β = 3/2 for v(ξ) and y(ξ) with the initial points: (a) 
(v, y) = (0.15, 0); (b) (v, y) = (0.4, 0); and (c) (v, y) = (0.45, 0); and (d) the phase portrait showing two limit cycles 
with the inner one stable and the outer one unstable.

Fig. 5. Two global isolated periodic traveling waves of system (3.2) with the condition (5.3) and β = 3
2 , bifurcating from 

u(x, t) = 0 for (a) h1 = 1
100 , and (b) h2 = 1

40 .

to determine a piecewise continuous interval of the parameter β for the existence of the corre-
sponding two zeros of the Abelian integral and thus to prove the existence of limit cycles. It is 
shown that double global isolated periodic traveling waves, with one stable and one unstable, 
can bifurcate from u(x, t) =1 via Pioncaré bifurcation. It has also shown that when the species 
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carrying capacity K , together with the measure of the Allee effect U0 (yielding β = U0K
−1) 

satisfies appropriate conditions, with the population density and the rate of its change taking the 
corresponding initial values, the density of population keeps oscillating, or approaches a periodic 
oscillation, or diverges from an equilibrium to infinity. This may explain the complex behavior 
in real population models.
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