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Abstract Based on Rabinovich system, a 4D Rabi-
novich system is generalized to study hidden attrac-
tors, multiple limit cycles and boundedness of motion.
In the sense of coexisting attractors, the remarkable
finding is that the proposed system has hidden hyper-
chaotic attractors around a unique stable equilibrium.
To understand the complex dynamics of the system,
some basic properties, such as Lyapunov exponents,
and the way of producing hidden hyperchaos are ana-
lyzedwith numerical simulation.Moreover, it is proved
that there exist four small-amplitude limit cycles bifur-
cating from the unique equilibrium via Hopf bifur-
cation. Finally, boundedness of motion of the hyper-
chaotic attractors is rigorously proved.
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1 Introduction

It is well known that nonlinear dynamical systems with
at least three (autonomous) or two (driven) degrees of
freedom can exhibit irregular, noise-like behavior [1].
A great number of nonlinear systems exhibit compli-
cated types of attractors for certain parameter values.
It turns out that some real dynamical systems are basi-
cally nonlinear and have multiple attractors, depend-
ing on the choice of the initial conditions or system
parameter values [2]. Although a chaotic attractor is
often a global attracting set, the coexistence of struc-
turally different chaotic attractors is not totally impossi-
ble, especially if some complex nonlinearity is present
[3–6].

Moreover, due to recent theoretical development
and practical applications in relevant fields, such as
in secure communications, lasers, nonlinear circuits,
neural networks, generation, control and synchroniza-
tion [7–11], hyperchaos has also become a hot topic.
Therefore, it is necessary to determine the nature or the
type of chaos observed in experiments or in simulation,
or even proved analytically. Aswe all know, horseshoe-
type or Shilnikov chaos is one of the analytic criteria for
proving chaos in autonomous systems with homoclinic
orbit or heteroclinic loop [12]. We may roughly clas-
sify four kinds of chaos: homoclinic chaos, heteroclinic
chaos, a combination of homoclinic and heteroclinic
chaos, and chaos without homoclinic orbits and hete-
roclinic orbits [13]. From computational point of view,
this allows one to use numerical method toidentify the
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trajectories that start from the unstable manifold near
the equilibrium and finally reach an attractor.

Recently, there has discovered another type of attrac-
tors called hidden attractor by Leonov et al. [14–16],
whose attracting basin does not contain neighborhoods
of equilibria and so it can not be simulated with the
help of classical methods. Therefore, increasing atten-
tion has led to develop some unusual examples, such
as 3D autonomous quadratic systems which may have
no equilibria [17,18], or stable equilibria [19–22] or
coexisting attractors [23], as well as 4D autonomous
quadratic system with no equilibria [24–27].

The investigation of hyperchaos is still in its early
stage, and the dynamics of hyperchaotic systems are not
well understood by researchers. During resent years,
reports about hyperchaos are mostly focused on the
generation of hyperchaos [28–31]. As far as we know,
there is very little known on the coexistence of hyper-
chaotic attractor in 4D autonomous systems with only
stable equilibria. This opens an interestingfield to study
the existence of chaotic (hyperchaotic) attractors, in
particular hidden attractors in systems with only stable
equilibria. As amatter of fact, important questions have
been raised such as how to identify integrable dynami-
cal systems and how to determine the basin of chaos in
phase space. Therefore, it is interesting to ask whether
similar 4D autonomous systems with only stable equi-
libria can have non-Shilnikov hyperchaos. The present
paper will report a modified hyperchaotic Rabinovich
system, which shows the seemingly impossible phe-
nomenon.

In addition, interesting bifurcations, such as Hopf,
double zero, Hopf zero and double Hopf, may also
occur in chaotic systems or hyperchaotic systems
[32,33]. Detailed study for some types of these bifur-
cations can be found in [34–39] by applying normal
form theory, and in [40,41] by averaging theory. In
this paper, we will investigate the maximum number of
limit cycles which can bifurcate from the equilibrium
in modified hyperchaotic Rabinovich system, due to
Hopf bifurcation.

The rest of this paper is organized as follows. In
Sect. 2, the new hyperchaotic system is introduced and
the influence of the initial condition on the dynamics
of system is analyzed. The way of producing hidden
hyperchaos is present in Sect. 3. In Sect. 4, by using
the normal form theory and symbolic computation, we
obtain four small-amplitude limit cycles bifurcating
from the unique equilibrium via Hopf bifurcation. In

Sect. 5, boundedness of motion for the hyperchaotic
system is discussed. Finally, conclusions are drawn in
Sect. 6.

2 The proposed system and hidden hyperchaos

2.1 Formulation of the system

In this section, we first present the Rabinovich system
given by Pikovsky et al. [42]
⎧
⎨

⎩

ẋ = hy − ax + yz,
ẏ = hx − by − xz,
ż = −cz + xy,

(1)

where (x, y, z) ∈ R3 is the state vector and (h, a, b, c)
∈ R4 is the parameter vector. One can easily use
simulation to show that system (1) is chaotic when
h = 0.04, a = 1.5, b = −0.3, c = 1.67 [42,43].

In contrast to the study of 3D dynamical sys-
tems, dynamical behaviors (such as bifurcation) of 4D
hyperchaotic systems have not yet been well studied.
Recently, a 4D hyperchaotic Rabinovich system is gen-
erated from system (1) as follows:
⎧
⎪⎪⎨

⎪⎪⎩

ẋ = hy − ax + yz,
ẏ = hx − by − xz + w,

ż = −cz + xy,
ẇ = −ky,

(2)

where k is a positive parameter. When (a, b, c, h, k) =
(4, 1, 1, 6.75, 2), system (2) has a unique unstable equi-
librium and exhibits a hyperchaotic attractor [44–47].

It isworth noting that the proposednewhyperchaotic
system should satisfy two of the criteria introduced by
Sprott [48]: The system should be a realistic model for
some important unsolved problem in nature and shed
insight on that problem, and the system should exhibit
some behavior previously unobserved. Therefore, we
propose a new system which can have hidden hyper-
chaos:
⎧
⎪⎪⎨

⎪⎪⎩

ẋ = my − ax + syz,
ẏ = −by − xz + w,

ż = −cz + xy − n,

ẇ = −ky,

(3)

where (m, a, b, c, n, k, s) ∈ R7 is the parameter vector.
Under the coordinate transform,

(x, y, z, w) →
(
x, y, z − n

c
, w

)
,
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system (3) becomes
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ =
(
m − n

c
s
)
y − ax + syz,

ẏ = n

c
x − xz − by + w,

ż = −cz + xy,
ẇ = −ky,

(4)

which contains system (2) as a special casewhen setting
s = 1, n = hc and m = 2h.

2.2 Hidden hyperchaotic attractors in system (3) with
a unique stable equilibrium

In the following, we focus on some behavior previ-
ously unobserved in 4D systems: hyperchaotic hidden
attractors associated with a unique stable equilibrium:
The basin of the attractors does not intersect with small
neighborhood of the equilibrium.

Under the parameter values, m = 35, a = 35, s =
35, b = −17, c = 0.8, n = 4 and k = 12, and the
choice of the initial condition: (0.2, 0, 1, 1), system (3)
has a unique equilibrium (x, y, z, w) = (0, 0,−5, 0),
whose characteristic eigenvalues are λ1 = −0.8, λ2 =
−10.7510, λ3,4 = −3.6245 ± 5.0921i . In this case,
system (3) has no homoclinic or heteroclinic orbits, but
a hyperchaotic attractor (see Fig. 1). The correspond-
ing Lyapunov exponents [49,50] are given by L1 =
1.3012, L2 = 0.2825, L3 = 0.0 and L4 = −20.3892.
The Kaplan–Yorke dimension [51] is defined by

DL = j + 1

|L j+1|
j∑

i=1

Li ,

where j is the largest integer satisfying
∑ j

i=1 Li ≥
0 and

∑ j+1
i=1 Li < 0. For the hyperchaotic attrac-

tor shown in Fig. 1, the Kaplan–Yorke dimension is
DL = 3.0777, indicating that the Lyapunov dimen-
sion of the hyperchaotic attractor is fractional. Exis-
tence of the hyperchaotic attractor can be seen via plot-
ting Poincaré maps on different sections. In Fig. 2, the
Poincare image on the plane y = w has no regular
limbs, further indicating that the system has extremely
rich dynamics, different from that of normal hyper-
chaotic systems with one or more unstable equilibria.
Such a system belongs to a newly discovered category
of chaotic systems with hidden attractors.

To further study the properties of hyperchaos of sys-
tem (3), we introduce the following definition.
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Fig. 1 Hidden hyperchaotic attractor for the 4D chaoticsystem
(3) with the initial condition (0.2, 0, 1, 1) for the parameter values
m = 35, a = 35, s = 35, b = −17, c = 0.8, n = 4 and k = 12

Definition 2.1 [52]. Let f (x) and g(x) be vector fields
on Rn , and

ẋ = f (x), x ∈ Rn (5)

ẏ = f (y), y ∈ Rn, (6)

are two systems of differential equations on Rn . If there
exists a diffeomorphism h on Rn such that

f (x) = M−1(x)g(h(x)),

where M(x) is the Jacobian of h at the point x , then
(5) and (6) are said to be smoothly equivalent (or dif-
feomorphic).

Remark 2.2 If systems (5) and (6) are smoothly equiv-
alent, and suppose that x0 and y0 = h(x0) are their
corresponding equilibria, A(x0) and B(y0) are the Jaco-
bians of f (x) and g(x), respectively; then, A(x0) and
B(y0) are similar, i.e., their characteristic polynomials
and eigenvalues are identical.

Remark 2.3 Based on the concept and techniques of
the equilibrium and resultant elimination, it is easy to
verify that the existing horseshoe chaos is not smoothly
equivalent to hidden hyperchaos for system (3) with
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Fig. 2 Poincaré maps of the hyperchaotic attractor of system (3)
with parameter values m = 35, a = 35, s = 35, b = −17, c =
0.8, n = 4 and k = 12. (a) projected on the section y = 0, (b)
projected on the section x = 0

only one stable equilibrium. Therefore, system (3) and
the previously reported hyperchaotic systems are dif-
ferent and, in fact, nonequivalent in topological struc-
tures.

In addition, system (3) cannot have chaotic solutions
for certain parameter values. More precisely, we have
the following result.

Theorem 2.4 Assume that one of the following condi-
tions holds:

(1) m = 0, s = 0 and a �= 0;
(2) n = 0, c = 0 and a �= 0;
(3) n = 0,m = 0 and asc < 0;
(4) s = 0, c = 0 and mna < 0,

and then, system (3) does not have bounded chaotic
solutions or hyperchaotic solutions.

Proof It is obvious that system (3) does not have
bounded chaotic solutions or hyperchaotic solutions if
case (1) holds. Furthermore, using the first and third
equations of system (3) with integration yields

− x2

2
+ sz2

2
+ mz

=
∫ t

0

[
ax2 − scz2 − (mc + sn)z − mn

]
dt. (7)

Under assumption (2–4), the expression of the right-
hand side of (7) is monotonic. Thus, the polynomial
− x2

2 + sz2
2 +mz, as a function of time, has a limit L ∈ R

as t tends to infinity. If L is finite, then any attractor for
system (3) lies on the surface − x2

2 + sz2
2 + mz and is

not chaotic. If L = ±∞, then at least one of the two
variables is not bounded and cannot be chaotic. The
proof is complete. ��

2.3 Initial conditions and coexisting attractors in
system (3)

Now, we investigate the influence of initial conditions
on the dynamics of system (3). A small change in the
initial condition of the system can cause wide differ-
ence in trajectories. Here, we give the two groups of
parameters for coexisting attractors:
Case I. (m, a, s, b, c, n, k) = (35, 35, 35,−17, 0.8,
4, 20)

(IA) For the initial condition (0, 1,−0.5, 0), the
Lyapunov exponents of system (3) are found to be L1 =
1.2908, L2 = 0.2086, L3 = 0.0andL4 = −20.2994.
A hidden hyperchaotic attractor exists with the unique
equilibrium.

(IB) For the initial condition (0,1,-1,0), trajectories
converge to the stable equilibrium, with the Lyapunov
exponents L1 = −0.7997, L2 = −2.2035, L3 =
−2.2479andL4 = −13.5489. There do not exist
chaotic attractors.
Case II. (m, a, s, b, c, n, k) = (35, 35, 32,−17, 0.8,
4, 20)

(IIA) For the initial condition (1, 1, 5, 0), the Lya-
punov exponents of the system are L1 = 1.3115, L2 =
0.1402, L3 = 0.0andL4 = −20.2517. A hyper-
chaotic attractor is obtained.

(IIB) For the initial condition (0.1, 0, 0, 1), the Lya-
punov exponents of the system are L1 = 1.2438, L2 =
0.0003, L3 = −0.0433andL4 = −20.0008. A
chaotic attractor is found.
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Study of hidden attractors, multiple limit cycles from Hopf bifurcation 135

Slightly changing the initial values can cause large
variations in dynamical behavior of system (3). For
different initial conditions, trajectories may go to dif-
ferent attractors. When attractors occur in a system,
researchers are usually interested in obtaining the
basins of attractors, defined as the set of initial points
whose trajectories finally reach the attractor. It is noted
that the attraction not only depends on the parameter
values but also the initial conditions.

3 Generation of hidden attractors

Hartman–Grobman theorem tells us that the dynami-
cal behavior of an autonomous system in the neigh-
borhood of a hyperbolic equilibrium is qualitatively
the same as (or topologically equivalent to) that of
its linearized system near this equilibrium. Therefore,
we can find the hidden attractors by amplitude con-
trol.

It is worth noting that coexisting attractors and thus
the fractal basin may not be observed in a controlled
experiment where system parameters are smoothly var-
ied. In such instances, the initial condition and coordi-
nate transformation for each parameter value are the
final conditions (or state) for the previous parameter
and the trajectories are thus locked on only one of the
attracting sets.

Under the following linear transformation

x2 = x, y2 = y, z2 = z

μ
,w2 = w,

system (3) becomes

⎧
⎪⎪⎨

⎪⎪⎩

ẋ2 = my2 − ax2 + sμy2z2,
ẏ2 = −by2 − μx2z2 + w2,

ż2 = −cz2 + 2
μ
x2y2 − n

μ
,

ẇ2 = −ky2,

(8)

where μ is a real parameter (μ �= 0).
No matter how μ changes, the characteristic equa-

tions of system (8) and system (3) are identical at the
corresponding equilibrium, meaning that system (8) is
topologically equivalent to system (3). Although sys-
tem (3) has only one hyperbolic stable equilibrium, the
transformed system is still chaotic for certain values of
the parameter μ.

Considering m = 35, s = 35, a = 35, b =
−17, c = 0.8, n = 4, k = 12 and the initial condi-
tion (0.2, 0,−5, 1), when the parameter μ is arbitrar-
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Fig. 3 Lyapunov exponents of system (9) with only one stable
equilibrium for the parameter values m = 35, a = 35, s =
35, b = −17, c = 0.8, n = 4, k = 12, and μ ∈ in [−5,−0.01]

ily changing (μ �= 0), the equilibrium of system (8)
is stable. We can still obtain the coexistence of hidden
hyperchaotic attractors and the unique equilibrium for
μ ∈ [−5,−0.01], confirmed by computing the Lya-
punov exponents as shown in Fig. 3.

4 Local bifurcation in the generalized
hyperchaotic Rabinovich system

4.1 Equilibrium and stability

Firstly, it is easy to see that under the coordinate trans-
formation,

S : (x, y, z, w) → (−x,−y, z,−w),

system (3) is invariant.
When c = 0, there is no equilibrium. When c �= 0,

system (3) has a unique equilibrium E0 (0, 0,− n
c , 0).
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By liberalization around E0, the Jacobian matrix of
system (3) is given by

J (E0) =

⎛

⎜
⎜
⎝

−a m + sz sy 0
−z −b −x 1
y x −c 0
0 −k 0 0

⎞

⎟
⎟
⎠ . (9)

The characteristic equation evaluated at E0 is given by

det (λI − J (E0)) = (λ + c)
[

ak +
(

ab + k − mn

c
+ n2s

c2

)

λ + (a + b)λ2 + λ3
]

= 0.

(10)

According to theRouth–Hurwitz criterion [38], the real
parts of all the roots of the polynomial are negative if
and only if

c > 0,�1 = a + b > 0,

�2 =
∣
∣
∣
∣
∣

a + b 1

ab + k − mn
c + n2s

c2
ak

∣
∣
∣
∣
∣
> 0,

�3 = ak�2 > 0.

Therefore, E0 is asymptotically stable if and only if the
following conditions

a + b > 0, c > 0, ak > 0 (11)

and

s > −c
(
a2bc + ab2c + bck − amn − bmn

)

(a + b)n2
(12)

hold.

4.2 Hopf bifurcation

It has been shown in [32] that for general n-dimensional
dynamical systems, the necessary condition for the sys-
tem to have a Hopf bifurcation is �n−1 = 0. For our
system, this condition leads to

s = −c
(
a2bc + ab2c + bck − amn − bmn

)

(a + b)n2
.

In this section, wewant to investigate generalized Hopf
bifurcations which may occur from the unique equilib-
rium, and in particular, we are interested in studying
how many limit cycles which can bifurcate from this
critical point.

Themethod for studyingHopf and generalizedHopf
bifurcations is mainly based on center manifold theory
and normal form theory, which can be found in many
textbooks (e.g., see [34]), and the computation of find-
ing the normal forms associated with Hopf bifurcation
can be found, for example, in [35]. Roughly speaking,
for a general system

ẋ = f (x, μ), x ∈ Rn, ξ ∈ R, (13)

where x is n-dimensional vector and ξ is a parameter.
Suppose x = 0 is an equilibrium solution of the system
for any real values of ξ . (When the equilibrium is not
at the origin, one can apply a simple shift to make it
zero.) Further, assuming the Jacobian matrix of system
(13), J (ξ) = Dx f (0, ξ) has a purely pair of imagi-
nary, λ1,2 = ±i ωc (ωc > 0) at a critical point ξ = ξc,
and other eigenvalues have nonzero real part. Thus, we
consider perturbation to the critical point and assume
ξ = ξc + μ. Then, the purely imaginary pair becomes
a complex conjugate λ1,2 = α(ξ) ± i ω(ξ), satisfying
α(ξc) = 0 and ω(ξc) = ωc. Further, if

dα(ξ)
dξ |ξ=ξc �= 0,

then Hopf bifurcation appears, giving rise to bifurcat-
ing of a family of limit cycles. In order to study the
stability of bifurcating limit cycles, we may apply cen-
ter manifold theory and normal form theory to obtain
the normal form associated with Hopf bifurcation as
dr

dt
= r

(
v0μ + v1r

2 + v2r
4 + · · ·

)
,

dθ

dt
= ωc + t0μ + t1r

2 + t2r
4 + · · · , (14)

where r and θ represent the amplitude and phase
of periodic solutions, respectively; v0 and t0 can be
obtained from a linear analysis, while computing vi and
ti needs a nonlinear analysis such as normal form com-
putation (e.g., see [36]); vi is called the i th-order focus
value.When v1 �= 0, it is calledHopf bifurcation; when
vi = 0, i = 1, 2, . . . , k (k ≥ 1), it is called a gener-
alized Hopf bifurcation. v1 �= 0 will usually give one
isolated limit cycle. To obtainmore limit cycles, we use
system parameters to set vi = 0, i = 0, 1, . . . , k − 1,
but vk �= 0, and obtain at most k limit cycles near
the equilibrium around the critical point. Next, proper
perturbations on these critical values will yield k limit
cycles.

For our system (3), in order to simplify the com-
putation of normal forms, we first use scaling to sim-
plify system. To achieve this, introduce the time scaling
τ = ct and the following state and parameter scaling:

x = cX, y = n

c
Y, x = n

c
Z , w = nW,
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Study of hidden attractors, multiple limit cycles from Hopf bifurcation 137

and

m = c3

n
M, a = cA, s = c4

n2
S, b = cB, k = c2K ,

where M, A, S, B and K are scaled parameters. With-
out loss of generality, we assume c > 0 and n > 0,
which keeps the sign of all new state variables and new
parameters unchanged. Under the above scaling, we
obtain the following new system,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX

dτ
= MY − AX + SY Z ,

dY

dτ
= −BY − X Z + W,

dZ

dτ
= −Z + XY − 1,

dW

dτ
= −KY,

(15)

and so the new equilibrium is given by X = Y = W =
0, Z = −1, and the Hopf critical point becomes

S = Sc = M − AB − BK

A + B
. (16)

Note that the number of parameters has been reduced
from seven to five. In order to apply the Maple pro-
grams [36] to compute the normal form coefficients
(or the focus values), we first need to transform system
(15) such that the linear part of the resulting system is
in Jordan canonical form. Therefore, introducing the
following transformation
⎛

⎜
⎜
⎝

X
Y
Z
W

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

0
0

−1
0

⎞

⎟
⎟
⎠ + T

⎛

⎜
⎜
⎝

x1
x2
x3
x4

⎞

⎟
⎟
⎠ , (17)

where the linear transformation T is given by

T =

⎡

⎢
⎢
⎢
⎢
⎣

− B
A+B − B

K

√
AK
A+B 0 − 1

K [A(A + B) + K ]
0 − 1

K

√
AK
A+B 0 A+B

K

0 0 1 0
1 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

(18)

into the scaled system (16), we obtain

dx1
dτ

=
√

AK
A+B x2 + f1(x, β),

dx2
dτ

= −
√

AK
A+B x1 + f2(x, β),

dx3
dτ

= −x3 + f3(x, β),

dx4
dτ

= −(A + B) x3 + f4(x, β),

(19)

where x is a 4D state vector, x = (x1, x2, x3, x4)T ,
and β is a parameter vector, β = (M, A, B, K )T . It
is now seen that the linear part of the above system is
in Jordan canonical form, consisting of a purely pair

of imaginary ±i
√

AK
A+B and two real eigenvalues −1

and −(A+ B). To ensure that the equilibrium is stable
before the Hopf bifurcation, we assume A + B > 0.

Now we apply the Maple programs [36] to obtain
the normal form (14) with

v1 = − BK 2(A + B)2

2(A + B + 4AK )[(A + B)3 + AK ]3{
4AB(4A + 4B − 1) K 2 + (A + B)

[
4A2B(4A + 4B − 1) + 6B(A + B)

−
(
4(A + B)(2A − 1) + 2B − 1

)
M
]
K

+ 3(A + B)3(2AB − M)
}
,

v2 = · · ·
v3 = · · ·
v4 = · · ·

(20)

where the lengthy expressions of v2, v3 and v4 are
omitted for brevity. The focus values vi are functions
of the four free parameters: M, A, B, K . Note that we
have restrictions on these parameters: (A+B) > 0 and
AK > 0. Without these restrictions, the best result we
can obtain is five small-amplitude limit cycles bifur-
cating from the Hopf critical point, that is, we may
find the critical values of the four parameters such that
v1 = v2 = v3 = v4 = 0, but v5 �= 0. (Note that the
parameter S has been used to set v0 = 0.)

Since v1 is linear with respect to M , we can solve M
from v1 = 0, and then, vi , i = 2, 3, 4 becomes func-
tions of three parameters A, B, K . But they are non-
linear polynomial functions. Applying the approaches
used in, we can show that there do not exist solutions
such that v2 = v3 = v4 = 0 satisfying A + B > 0
and AK > 0. Therefore, the best choice we can have
is v2 = v3 = 0 but v4 �= 0, leaving one parameter
free. This way, we can have infinitely many solutions
for which there may exist four small-amplitude limit
cycles. One solution is given below:

A = 3, B = −2.5087446615 · · · ,

K = 2.1605267634 · · · , M = −54.8827664176 · · ·
(21)

and the Hopf critical point is defined by

Sc = −36.3231460051 · · · .
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For these critical values, the focus values become
v0 = v1 = v2 = v3 = 0 and v4 = 0.0000387891 · · · .
Further, we can show that

∂(v2, v3)

∂(A, K )
= −0.7404608381 · · · × 1031 �= 0, (22)

implying that there exist four small-amplitude limit
cycles which can bifurcate from the equilibrium from
the Hopf critical point.

Remark 4.1 Based on precise symbolic computation
of singular point quantities, we discuss the center focus
problem for the system (3) restricted to the center man-
ifold, which closely relates to the maximum number of
limit cycles bifurcating from the equilibrium. Thework
can be applied to general differential systems associ-
ated with Hopf bifurcation. It is expected that more
newdetailed theory and results about characters of limit
cycles for the system (3).

5 Boundedness of motion for the hyperchaotic
system

In this section, we will discuss the boundedness of
motion for the hyperchaotic systems (3).

Theorem 5.1 Denote Ωφ = {
(x, y, z, w)|x2 + (s +

φ)y2 + φ(z − m

φ
)2 + s + φ

k
w2 ≤ R2

}
, where

R2 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(cm + nφ)2

c2φ
, c < min{2a, 2b}

(cm + nφ)2

4aφ(c − a)
, c ≥ 2a

(cm + nφ)2

4bφ(c − b)
, c ≥ 2b.

(23)

If m > 0, a > 0, b > 0, c > 0, s > 0, k > 0 and
φ > 0, then all orbits of system (3), including hidden
hyperchaotic attractors, are trapped into a bounded
region, and so the hyperellipsoid Ωφ is an ultimate
bound and positively invariant set for system (3).

Proof First, we define the following generalized posi-
tive definite and radially unboundedLyapunov function

Vp(x, y, z, w) = x2 + (s + φ)y2

+φ

(

z − m

φ

)2

+ s + φ

k
w2,

where φ > 0, s > 0, k > 0. Computing the deriv-
ative of Vp(x, y, z, w) with respect to time t along a

trajectory of (3), we have

1

2

Vp(x, y, z, w)

dt

∣
∣
∣
∣
(3)

= −ax2 − b(s + φ)y2 − cφz2

+ (cm − nφ)z + mn.

That is to say, for a > 0, b > 0, c > 0, φ > 0, the
surface, defined by

Γ =
{
(x, y, z, w)

∣
∣
∣
∣ax

2 + b(s + φ)y2

+cφ

(

z − cm − nφ

2cφ

)2

= mn + (cm − nφ)2

4cφ

}
,

is an ellipsoid in 4D space for certain values of a, b,

c, m, n, φ and k. Outside Γ ,
Vp(x, y, z, w)

dt

∣
∣
∣
∣
(3)

< 0,

attracting the trajectories outside Γ to move toward Γ .
The ultimate bound for system (3) can only be reached
on Γ .

Next, we further use the Lagrangemultipliermethod
to obtain the optimal value of V on Γ . Define

F = x2 + (s + φ)y2 + φ

(

z − m

φ

)2

+ s + φ

k
w2

+ τ
{
ax2 + b(s + φ)y2 + cφ

(

z − cm − nφ

2cφ

)2

−mn − (cm − nφ)2

4cφ

}
,

and let
1

2
F

′
x = x + axτ = 0,

1

2
F

′
y = y(1 + bτ)(s + φ) = 0,

1

2
F

′
z = −

(
1 + cτ

2

)(
m + nφ

c

)

+
(
z + n

c

)
(1 + cτ) = 0,

1

2
F

′
w = w(s + φ)

k
= 0,

F
′
τ = ax2 + b(s + φ)y2 + cφ

(

z − cm − nφ

2cφ

)2

−mn − (cm − nφ)2

4cφ
= 0.

Thus,

(1) when τ = −2

c
, τ �= −1

a
, τ �= −1

b
, we have

(x, y, z, w) =
(
0, 0,−n

c
, 0
)

,
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and Vp(x, y, z, w)max = (cm + nφ)2

c2φ
.

(2) when τ = −1

a
, τ �= −2

c
, τ �= −1

b
and c ≥ 2a,

we have

(x, y, z, w)

=
(

±
√
c − 2a(cm + nq)

2(a − c)
√
aφ

, 0,

2am − cm + nφ

2φ(a − c)
, 0

)

,

and Vp(x, y, z, w)max = (cm + nφ)2

4aφ(c − a)
.

(3) when τ = −1

b
, τ �= −2

c
, τ �= −1

a
and c ≥ 2b,

we have

(x, y, z, w)

=
(

0,±
√
c− 2b(cm+ nφ)

2(b− c)
√
bφ(s+ φ)

,
2bm − cm + nφ

2φ(b− c)
, 0

)

,

and Vp(x, y, z, w)max = (cm + nφ)2

4bφ(c − b)
.

Figure 4 shows the hyperchaos and the correspond-
ing ultimate bound and positively invariant set for
a = 4,m = 10, s = 1, b = 0.5, n = 10, k = 2, c = 1
andφ = 1.According to (11) and (12), the unique equi-
librium E0 is stable. However, for the initial condition
(0.2, 0, 4, 10), the Lyapunov exponents of system (3)
are found to be L1 = 0.3156, L2 = 0.0831, L3 =
0.0andL4 = −5.8988. Therefore, the hidden hyper-
chaotic attractor can be obtained and is in the domain
bounded by

Ωφ =
{
(x, y, z, w)|x2+2y2+(z − 10)2+w2≤400

}
,

and thus, the estimation of the bounds given in Theo-
rem 5.1 is feasible. ��

6 Conclusion

In this paper, a generalized hyperchaotic Rabinovich
system has been investigated. The hyperchaotic attrac-
tors can coexistwith only one stable equilibrium,which
is different from that of the existing 4D chaotic sys-
tems. An amplitude control provides a tool for identi-
fying hidden attractors with fixed initial conditions and
parameter values. The existence of hidden attractors
that may render the system’s behavior unpredictable

Fig. 4 The bound estimated for the hyperchaotic attractor of
system (3) for m = 10, a = 4, s = 1, b = 0.5, n = 10, k =
2, c = 1 and φ = 1. (a) projected in the (x, y, w) space on the
section z = 10, (b) projected in the (x, z, w) space on the section
y = 0

is not only due to variation of the system parame-
ters but also due to change of the initial conditions.
Some basic properties of the new system have been
investigated in terms of chaotic motions, Lyapunov
exponent spectrum, bifurcation diagram and associ-
ated Poincaré maps. Four limit cycles bifurcating from
the unique equilibrium are obtained via Hopf bifur-
cation. The analysis of finding the ultimate bound of
the chaotic attractors in the 4D dynamical system is
given.

The results are not only identical with and comple-
mentary to the previous work on Hopf bifurcation in
4D Rabinovich system, but also helpful to compare the
related hyperchaotic systems. There are still abundant
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and complex dynamical behaviors, and the topological
structure of the new system should be completely and
thoroughly investigated and exploited.
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