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Analytical Solutions for a Family
of Gaussian Impinging Jets
Various types of impinging jet flows are analytically modeled using inviscid free Gaussian
jet solutions superimposed with experimentally fitted boundary layer models. Improved
(more robust) and simplified solutions to existing models are defined. Velocity profiles,
surface pressure distributions, and streamline plots are calculated for circular, plane, and
annular impinging jets. The models show excellent agreement with existing experimental
results in both laminar and turbulent conditions and for different Reynolds numbers.
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Introduction

Impinging jets have extensive practical applications ranging
rom industrial processing, such as mixing, heating/cooling, or
rying, to environmental flows related to ventilation or the simu-
ation of downburst winds. The mathematical modeling of the
ow field has therefore both fundamental and practical impor-

ance.
A three region modeling method for round impinging jets was

ut forward and the flow field of the wall jet region was broadly
nvestigated �1–3�. The normalized radial velocity profile derived
y Glauert �1� and verified by Bakke �2� is often cited in many
eferences. However, it cannot be used to predict the flow field in
he impinging jet region.

Yih �4� obtained a solution of steady rotational flow equations
f an inviscid fluid describing rapidly varying flows such as flows
rom a two-dimensional channel or a circular tube toward a sink.

similar solution for an impinging jet was found by Phares et al.
5�. They derived a double layer summarized infinite series solu-
ion that includes surface integrals to be computed numerically.
he solution can be considered as an analytical-numerical mixed
olution.

In 1998, Lee et al. �6� derived a pure analytical solution for a
imple Gaussian impinging jet and applied the solution to the flow
eld research for helicopter vanes.
Herein, we improve the analytical model of Lee et al. and ex-

end it to the general case of a family of Gaussian impinging jets.
he extended solution is more adequate for modeling an extended
et of engineering problems involving round impinging jets �7�. A
irect solution for the steady rotational flow equations subject to
he inhomogeneous boundary conditions is obtained. An approxi-

ate method for computing the oscillatory series of the solution is
roposed and proved suitable for general oscillatory series. Based
n this, a complete flow field of the Gaussian impinging jets can
e readily computed. The approximate solution for the oscillatory
eries accelerates convergence and adds robustness to the model
hen compared to previous ones.
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2 Formulation

2.1 Governing Equations and Boundary Conditions. In ac-
cordance with the formulation of Lee et al. �6�, all lengths are
nondimensionalized with jet radius R* �or half-width of the slot
B0

* for the plane jet� and all velocities are nondimensionalized
with the maximum influx velocity wm. Flow field pressures are
nondimensionalized by the maximum dynamic pressure at the jet
centerline. To simplify notations, the dimensional variables are
marked with *. The dimensionless variables are given as

r =
r*

R* z =
z*

R* for round jets and

�1�

x =
x*

B0
* z =

z*

B0
* for plane jets

u =
u*

wm
w =

w*

wm
p =

2p*

�wm
2 �2�

The governing equations written in stream function and vortic-
ity form are

�2�

�z2 +
�2�

�r2 −
1

r

��

�r
= − r2��r,z� �3�

��

�r
= rw

��

�z
= − ru �4�

� =
1

r
� �u

�z
−

�w

�r
� �5�

in cylindrical-polar coordinates for the round jet case and

�2�

�z2 +
�2�

�x2 = − ��x,z� �6�

��

�x
= w

��

�z
= − u �7�

� = � �u
−

�w� �8�

�z �x
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n Cartesian coordinates for the plane jet case.
The boundary conditions can be approximately expressed ac-

ording to a finite domain �5,6�, but here, precise expressions can
e used for an infinite domain:

� =�
o

r

rw�dr at z = � �9�

� = 0 at z = 0 �10�

� = 0 at r = 0 �11�

��

�r
= 0 at r = � �12�

or the round jet case and

� =�
o

x

w�dx at z = � �13�

� = 0 at z = 0 and at x = 0 �14�

��

�x
= 0 or � =�

o

z

− u�dz at x = � �15�

or the plane jet case.

2.2 Influx Velocity Profiles. Several empirical expressions
re available to describe the jet influx velocity profile as a func-
ion of the nozzle shape, the spacing between the jet outlet and the
mpinging surface, and the flow state. The following Gaussian jet
rofile:

− w� = e−r2/k �16�

s chosen because Eq. �9� has an exact solution with this influx
elocity profile and the spacing distance �H*� can be related to the
nal solution as well.
Firstly, in order to find a relation between Gaussian jets and a

et from a round pipe, their flow rates can be compared as follows.
Considering an influx flowing out from a pipe with r=1 and the

niform velocity distribution �step profile, w�=−1 for r�1, w�

0 elsewhere�:

Q0 =�
0

1

− 2�rdr = − � �17�

Using the influx profile of Eq. �16� and integrating from r=0 to
, the flow rate corresponding to the Gaussian jet is obtained:

Q =�
0

�

w�2�rdr =�
0

�

− e−r2/k2�rdr = − k� �18�

Obviously, the Gaussian influx velocity profile �16� provides k
imes the unit flow rate �kQ0�.

Secondly, a turbulent jet produces flow entrainment into the
hear layer, hence increasing its flow rate as it moves downward.
n order to take into account the entrainment effects into the in-
iscid model, the relation between the flow rate multiplier �k� and
he distance from the jet to the impinging plate �H*� should be
pecified.

According to Abramovich’s experiments for a free round turbu-
ent jet �Ref. �8�, pp. 20–26� the parameter k and the distance from
he jet outlet to a downstream flow station �H*� can be related by

k =
Q

Q0
= 2.2�a1

H*

R* + b1� �19�

here a1 is a jet shape coefficient, typically taking a1
*
0.06–0.08; b1 is an empirical constant chosen as b1=0.294; H

21019-2 / Vol. 75, MARCH 2008
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is the axial distance from the jet exit.
Hence, in order to include the entrainment effects, a flow rate Q

�=kQ0� can be used as the influx. The parameter k can be regarded
as a linkage between the infinite and finite domains and intro-
duced into the model.

For the same reason, the following influx profile is chosen for
the plane jet case:

− w� = �1 + 2x/k�e−2x/k �20�

and an empirical expression for k is given by �Ref. �8�, pp. 27–28�

k =
Q

Q0
= 1.2�a2H*

B0
* + b2 �21�

where a2 is the jet shape coefficient, a2=0.10–0.11; b2 is an em-
pirical constant, b2=0.41.

2.3 Analytical Solutions for a Family of Gaussian Imping-
ing Jets. An infinite series solution is obtained for the steady
axial-symmetric flow �Eq. �3�� given the inhomogeneous mixed
boundary conditions �Eqs. �9�–�12�� with the influx velocity pro-
file �Eq. �16��.

�a� The stream function is

� = −
k

2
�1 − e−r2/k� + r2e−r2/k	

n=1

�

cnLn
1�2r2

k
�e−�8n/kz �22�

with

cn =

�
0

�

�k/2��1 − e−r2/k�Ln
1�2r2/k�e−r2/krdr

�
0

�

r2e−2r2/k�Ln
1�2r2/k��2rdr

=
�− 1�n

n � n!
�23�

where Ln
1�x� are associated Laguerre polynomials.

As r and z are small, the solution shows that �
zr2.
The velocity solutions are as follows:
�b� The radial velocity is

u�r,z� = re−r2/k	
n=1

�

cnLn
1�2r2

k
��8n/ke−�8n/kz �24�

�c� The axial velocity is

w�r,z� = − e−r2/k + 2�1 −
r2

k
�e−r2/k	

n=1

�

cnLn
1�2r2

k
�e−�8n/kz

+ re−r2/k	
n=2

�

cne−�8n/kz�Ln
1�2r2/k�

�r
�25�

For the particular cases of the plate surface �z=0� and the jet
centerline �r=0�, the associated velocities are obtained as

u�r,0� = re−r2/k	
n=1

�

cnLn
1�2r2

k
��8n

k
�26�

w�0,z� = − 1 + 2	
n=1

�

�− 1�n−1e−�8n/kz �27�

Lee et al. �6� provided a derivation for their solution of a simple
Gaussian jet �k=1 in Eq. �16�� impinging onto a plate. In the
following, we extend the result to the general case �k chosen
arbitrarily�.

Derivation. First, using Eq. �16� as the influx condition at z

=�, the influx stream function can be expressed by
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�� =�
0

r

r�− e−r2/k�dr = −
k

2
�1 − e−r2/k� �28�

The initial azimuthal vorticity distribution is defined by Eq. �5�
s

� = �� = −
1

r

�w�

�r
= −

2

k
e−r2/k �29�

The conservation laws for axial-symmetric flow require � to be
onstant on streamlines �6�, so that

� = H��� �30�

The stream function � still satisfies Eq. �3� but now takes the
pecial form

�2�

�z2 +
�2�

�r2 −
1

r

��

�r
= − r2H��� �31�

The azimuthal vorticity in the undisturbed jet at upstream infin-
ty is given by Eq. �29�. Making use of Eqs. �28� and �30�, we
ave

H���� = −
4

k2��� +
k

2
� �32�

H���� is invariant throughout the flow field. Hence, Eq. �31�
implifies to a linear partial differential equation:

�2�

�z2 +
�2�

�r2 −
1

r

��

�r
=

4r2

k2 �� +
k

2
� �33�

Letting �=�+k /2, Eq. �33� yields

�2�

�z2 +
�2�

�r2 −
1

r

��

�r
=

4r2

k2 � �34�

A particular solution of this equation for � is given by Eq. �28�.
he homogeneous equation can be solved by the method of sepa-

ation of variables.
Letting �=F�r� ·G�z�, then

F
�2G

�z2 + G
�2F

�r2 −
G

r

�F

�r
−

4r2

k2 FG = 0 �35�

The above equation can be rewritten into

1

F

�2F

�r2 −
1

rF

�F

�r
−

4r2

k2 = −
1

G

�2G

�z2 = 	 �36�

This leads to the following group equations:

G� + 	G = 0 �37�

F� −
1

r
F� − �4r2

k2 + 	�F = 0 �38�

Letting t=2r2 /k and 	=−8n /k in Eq. �38�, we have

tFt� + �n −
t

4
�Ft = 0 �39�

Further, let Ft=Et�t /2�e−t/2. Then Eq. �39� becomes

tE� + �2 − t�E� + �n − 1�E = 0 �40�
Equation �40� is a standard Laguerre associated differential

quation. The solutions of Eq. �40� are given by the associated
aguerre polynomials �Ref. �10�, pp. 155–156�. By means of
ackward substitutions, we obtain

Fn = Ln
1�2r2

k
� r2

k
e−r2/k for 	 = −

8n

k
n = 1,2,3, . . . �41�

Substituting this into Eq. �37� yields

−�8n/kz �8n/kz
Gn = ane + bne �42�

ournal of Applied Mechanics
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Gn must be a bounded function so that bn is equal to zero.
Combining Eqs. �28�, �41�, and �42�, a complete solution in the
form of a series of associated Laguerre polynomials Eq. �22� is
obtained �in that equation, cn=an /k�.

Boundary conditions �9�, �11�, and �12� are satisfied automati-
cally. For the wall boundary condition �Eq. �10��, setting z=0 in
Eq. �22�, multiplying by e−r2/kLm

1 �2r2 /k�, then integrating from r
=0 to �, the orthogonality of Laguerre polynomials leads to a set
of equations and yields the coefficients cn �Eq. �23��.

Finally, substituting Eq. �22� into Eq. �4� yields the radial and
axial velocities �Eqs. �24� and �25��, as we claimed.

Setting k=1, Eq. �22� becomes the simple Gaussian impinging
jet solution obtained by Lee et al. �6�, which is a particular case in
the solution family. Note that their expression for coefficients cn
= �−1�n / �n+1� is not correct �most likely a print error�, conducting
to a divergent solution.

2.4 Analytical Solutions for Plane Impinging Jets. For the
plane impinging jets, a solution similar to Eq. �22� exists as well.
A simpler analytical solution is found and presented herein:

�a� Stream function:

� =
1

k
�k − �k + x�e−2x/k���k + z�e−2z/k − k� �43�

It is easy to see that �
xz as x and z are small.
�b� Velocity in the x direction:

u�x,z� = �1 − �1 +
x

k
�e−2x/k��1 +

2z

k
�e−2z/k �44�

�c� Velocity in the z direction:

w�x,z� = ��1 +
z

k
�e−2z/k − 1��1 +

2x

k
�e−2x/k �45�

For the particular cases of the impinging plate surface and the
jet centerline, we have the associated velocities expressed as

u�x,0� = 1 − �1 +
x

k
�e−2x/k �46�

w�0,z� = �1 +
z

k
�e−2z/k − 1 �47�

Derivation. Let �=CX�x� ·Z�z�. Then integrating Eq. �20� from
0 to x, we obtain

X�x� = Xz=� =�
0

x

wdx = k − �k + x�e−2x/k �48�

Due to symmetry,

Z�z� = Zx=� = −�
0

z

udz = �k + z�e−2z/k − k �49�

Substituting the above results into the stream function, we ob-
tain

� = C�k − �k + x�e−2x/k���k + z�e−2z/k − k� �50�
Note that the velocity at the infinite centerline should reach

unity, i.e.,

− w�z = �,x = 0� = 1 �51�

This leads to C=1 /k, and Eq. �43� is obtained.
The above solution can be verified to satisfy both the differen-

tial equations �6�–�8� and the boundary conditions �13�–�15� by

direct substitution.
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Implementation for Round Impinging Jets
It is necessary to develop a method to obtain a stable conver-

ent result for the flow field parameters from Eqs. �22�, �24�, and
25�, because all of the parameters are expressed by oscillatory
eries. A front n term averaged method is put forward and found
fficient for the flow field computations. The method is based on
he following theorem.

THEOREM. For a given convergent oscillatory series, the average
alues of the first n terms constitute a series that will converge to
he same value as that of the original series and the first n term
verage value series has a faster convergence speed.

The detailed proof of the above theorem is given in the Appen-
ix.

Lee et al. �6� showed that the solution of a simple Gaussian
mpinging jet converges with terms decaying as n−1/4. The present
ethod produces a much faster converging rate of n−1. For ex-

mple, if we search for solutions of accuracy of 1%, we need 108

erms in the original series while we need 100 terms only in the
ront n term average series. Moreover, as it will be demonstrated
ater, even if the original series is not convergent, the average
alue series can still provide a “convergent value.”

Figure 1 illustrates this method with a comparison between the
riginal velocity series solution and its front n term average value
olution. Accordingly, the maximum relative error of the front n
erm average value series is less than 1 /n.

Fortunately, all parameters, including the average value series,
an be expressed by recurrence formulas, which allow us to obtain
he desired accuracy. Here are the recurrence formulas used in the
mplementation �Eq. �53� can be found in a mathematical hand-
ook, see Ref. �9�, p. 156�:

cn+1 = − cn
n

�n + 1�2 �52�

L1
1 = − 1 L2

1 = 2�2r2

k
− 2�

Ln
1 =

n

n − 1

�2�n − 1� −

2r2

k
�Ln−1

1 − �n − 1�2Ln−2
1 � n = 3,4,…

�53�

�L1
1

= 0
�L2

1

=
8r

Fig. 1 Comparison of fron
�r �r k

21019-4 / Vol. 75, MARCH 2008
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�Ln
1

�r
=

n

n − 1

�2�n − 1� −

2r2

k
� �Ln−1

1

�r
− �n − 1�2�Ln−2

1

�r
�

−
4nr

�n − 1�k
Ln−1

1 n = 3,4, . . . �54�

The origin O�0,0� is a singular point for Eq. �3�. The solution
displays this feature from Eq. �27�, since the axial velocity is not
convergent at the origin:

w�0, 0� = − 1 + 2 − 2 + ¯ , i.e., w1�0, 0� = 1 w2�0, 0�

= − 1, . . . wn�0, 0� = �− 1�n−1 �55�

With the aid of the front n term averaged method, a convergent
value w�0,0�=0 is obtained, which is its physical velocity value.

For any other points in the domain, stable convergent flow field
parameters can be obtained using the above method.

4 Boundary Layer Approximation
Comparing the solution of plane stagnation point flow and that

of axial-symmetric stagnation flow �Ref. �10�, pp. 152–159�, one
can see that the boundary layer thickness of a plane stagnation
flow is 1.2 times of that of the axial symmetric:


plane
* = 1.2
asym

* �56�
The above expression can be used to determine the boundary

layer depth for plane jet impingement as long as the boundary
layer depth for the round jet case has been determined or vice
versa.

Based on impinging jet experiments �7�, the following empiri-
cal expressions were obtained to describe the dimensionless
boundary layer depth for the round impinging jet:


 =
4.5

�Rej

� r

us
for local Rel � 2.5 � 104 �57�

�r
�


= − 1.95 ln� �

0.16R* +
278

Rejusr�

� for Rel 
 2.5 � 105

�58�

where Rej is the jet Reynolds number, Rej =wjet
* R* /2�; Rel is the

local Reynolds number, Rel=us
*r* /�; � is the roughness height

�in m�; � is the kinematical viscosity �in m2 /s�; us
* is the inviscid

term average value series
surface velocity �in m/s�.
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Note that r, 
, and us above are dimensionless variables.
Figure 2 shows a comparison of the empirical expressions �57�

nd �58� with the boundary layer depth experimental data. When
he Reynolds number is less than a critical value �Rej �2.5

104�, the flow is Reynolds number dependent. Above one order
f the critical value, an asymptotic state is reached where the
oundary layer increases with the surface roughness.

The displacement depths can be estimated by �Ref. �11�, pp.
0–36�


disp = 
/3 for a laminar flat plate boundary layer �59�

nd


disp = 
/7 for a turbulent flat plate boundary layer �60�
The radial velocity profiles of the impinging jet for the com-

ined model �inviscid solution plus the boundary layer approxi-
ation� are presented in the following two subsections.

4.1 Laminar Boundary Layer Case. We divide the z domain
nto three regions ��0

�, �

4
 /3�, and �4
 /3
��� and obtain
he combined velocity profiles by the following steps:

�a� We displace the inviscid velocity profile up a distance of

disp from the ground surface.

�b� In the outer region, we use the displaced inviscid velocity
profile:

u�r,z� ⇐ u�r,z − 
/3� for z � 4
/3 �61�
�c� In the region of z= �

4
 /3�, we use a parabolic equation

to smooth the curve to the maximum value of u. The para-
bolic equation is subjected to the following three con-
straints:

u�r, 4
/3� ⇐ u�r, 
� �u/�z�r, 4
/3� ⇐ �u/�z�r, 
�

�u/�z�r, 
� = 0 �62�
This yields

u�r,z� = A1z2 + B1z + C1 �63�

with

A1 =
3uz��r, 
�

2

B1 = − 3uz��r, 
�

C1 = u�r,
� +
4

3

uz��r, 
� �64�

ig. 2 Comparison of the impinging jet boundary layer depths
etween empirical models and roughness test data „� is the
oughness height of the sandpaper…
and the maximum velocity

ournal of Applied Mechanics
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umax�r,
� = u�r,
� −
1

6

uz��r,
� �

1

2
�u�r,

2

3

� + u�r,
��

�65�

where

uz��r,z� = − re−r2/k	
n=1

�

cn

8n

k
Ln

1�2r2

k
�e−��8n/k�z �66�

�d� Within the boundary layer �z�
�, we use the polynomial
approximation of Homman’s boundary layer velocity pro-
file �data from Ref. �10�, p. 156, Tables 3–4�:

u�r,�� = �− 1.43�4 + 5.39�3 − 7.45�2

+ 4.49��umax�r,
� for � � 1 �67�

Fig. 3 Streamlines of a plane impinging jet model: „a… present
model „−� corresponds to Rubel’s � value…; „b… calculated by
Rubel and Phares et al., cited from Ref. †5‡
where �=z /
.
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4.2 Turbulent Boundary Layer Case. Similar to the laminar
ase, we divide the z domain into three parts ��0

�, �

8
 /7� and �8
 /7
��� and obtain the radial velocity profiles by

he following steps:

�a� We displace the inviscid velocity profile up a distance of

disp from the ground surface.

�b� In the outer region, z= �8
 /7
��, we use the displaced
inviscid velocity profile:

u�r,z� ⇐ u�r,z − 
/7� for 8
/7 � z �68�
�c� In the region of z= �

8
 /7�, we use a parabolic equa-

tion to smooth the curve to the maximum value of u. The
parabolic equation is subjected to the following three
constraints:

u�r, 8
/7� ⇐ u�r,
� �u/�z�r, 8
/7� ⇐ �u/�z�r,
�

�u/�z�r,
� = 0 �69�
This yields

u�r,z� = A2z2 + B2z + C2 �70�
with

A2 = 7uz��r,
�/2
 B2 = − 7uz��r,
�

C2 = u�r,
� +
24

7

uz��r,
� �71�

and the maximum velocity

umax�r,
� = u�r,
� −
1

14

uz��r,
� �

1

2
�u�r,

6

7

� + u�r,
��

�72�
�d� Within the boundary layer �z�
�, we use Eq. �67� or any

similar expressions for turbulent boundary layers.

Results and Comparisons
Example 1. Plane impinging jets. Equation �27� can be used to

alculate the values of stream functions with different k. Figure
�a� is an example of the mapped streamlines in a 5�5 domain
set k=1.16�, which matches the numerical and analytical-
umerical mixed results, see Fig. 3�b�, cited from Ref. �5�.

According to the definition �see Eq. �2��, the normalized pres-
ures on the surface of the impinging jet plate can be determined

ig. 4 Comparison of surface pressure distribution „the error
ar is for the experiments…
rom Bernoulli’s equation, i.e.,
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p�x, 0� = 1 − u2�x, 0� �73�

where u�x ,0� is the surface radial velocity from the inviscid
model.

Phares et al. �5� compared the surface pressure distribution for
a plane impinging jet with previous experiments including these

Fig. 5 Laminar circular impinging jet streamlines „−� is used…

Fig. 6 An axis symmetric impinging jet combined model with
updraft and downdraft: „a… influx profile; „b… contours of stream

function
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y Kumada and Mabuchi �12�, and Beltaos and Rajaratnam �13�.
he present model shows improved fitting of the experimental
ata �see Fig. 4�. In Fig. 4, k=1.55 is chosen for the present model
ccording to the fully developed jet condition of H* /B0

*=12.
Example 2. Axis symmetric impinging jets.
�a� Streamlines for a laminar axis symmetric impinging jet. For
laminar flow in a circular pipe �Hagen-Poiseuille flow�, the ve-

ocity profile is parabolic about the centerline, and the average
elocity is equal to half of the centerline velocity �Ref. �11�, p.
16�:

ū =
1

2
umax �74�

here umax is the centerline velocity. Hence, k=1 /2 is chosen to
odel the laminar impinging jet, i.e., the influx velocity into the

omain at z=� is

w� = − e−2r2
and �� = −

1
�1 − e−2r2

� �75�

Fig. 7 Velocity comparison „model:
†17‡…: „a… radial velocity profiles; „b…
4
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Figure 5 shows the streamlines of the laminar impinging Gauss-
ian jet based on the analytical model.

�b� Vortex trace for a turbulent axis symmetric impinging jet.
The trace of vortices in the mixing layer of a turbulent impinging
jet is determined using the analytical model. In order to generate a
vortex trace using this inviscid model, a mixed influx velocity
profile is used with both down flow and up flow in conjunction
with the inviscid model. The boundary between the two opposite
direction velocities can be considered the trace of the ring vorti-
ces. The following influx velocity function has the mixed shape
with a velocity value of 0 at r�1:

w� = − 2e−2r2
+ e−4r2/3 �76�

This combined influx velocity profile, shown in Fig. 6�a�, cor-
responds to twice a downdraft of k=0.5 and an updraft of k
=0.75.

The stream function is now expressed by 2��0.5�−��0.75�,
where ��k� is defined by Eq. �22�. The corresponding streamlines

2.05; test: H* /D*=4, cited from Ref.
al velocity profiles
k=
are shown in Fig. 6�b�.
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�c� Velocity field of experimental axis symmetric impinging jets.
n order to compare the combined model with experiments, the
arameter k is determined according to the particular test condi-
ions. Landreth and Adrian �14� presented the velocity profiles of

turbulent circular jet based on PIV measurements �D*

26.9 mm, H* /D*=4, Rej =6564, fluid: water�. Substituting
* /R*=2H* /D*=8 into Eq. �15�, the parameter k is obtained as

k = 2.2�0.08 � 8 + 0.294� = 2.05 �77�

herefore, the flow parameters of a Gaussian impinging jet of k
2.05 are computed and compared with Landreth and Adrian’s
xperiments.

Figure 7�a� compares the radial velocity profiles for the
* /D*=4 case. The inviscid model is modified with a laminar
oundary layer approximation described in Sec. 4.1. It is shown
hat the model compares well against the experiments. Figure 7�b�
ompares the axial velocity profiles for the same case. It can be
bserved that for r* /D* in �0.8, 1.4�, the model and experimental
rofiles are consistent. For r* /D*
1.6, some negative axial ve-
ocity values are observed in the near surface experimental results

Fig. 8 Radial velocity comparisons
Rej=23000, H* /D*=2; „b… Rej=190000
hat are not reproduced by the model.
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Figure 8�a� compares the radial velocity profiles for another
case. The experimental results are from measurements taken with
a boundary layer probe in a small impinging jet facility �7� and
correspond to H* /D*=2 and Rej =23,000. Again, the inviscid
model is modified with a laminar boundary layer approximation
and shows good agreement with the experiments.

Figure 8�b� compares the radial velocity profiles from a larger
jet facility test for H* /D*=2 and Rej =190,000 �7�. Here, the
inviscid model is modified with a turbulent boundary layer ap-
proximation described in Sec. 4.2. While, overall, the model
agreement with the test data is fair, note the difficulty in repro-
ducing the thinner surface layer at this higher Reynolds number,
see also Fig. 2.

�d� Surface pressures of turbulent axis symmetric impinging
jets. For axis symmetric impinging jet cases, the normalized pres-
sures on the surface of the impinging jet plate can be expressed by

p�r, 0� = 1 − u2�r, 0� �78�

where u�r ,0� is the surface radial velocity from the inviscid

turbulent circular impinging jets: „a…
* /D*=2.
for
model.
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Pressure tests were carried out with a small impinging jet facil-
ty �D*=38 mm, Rej =23,000� �7� and compared here with the

odel predictions in Fig. 9. While the model shows a more pro-
ounced sensitivity to H* /D* compared to the experiments, the
verall agreement with the experiments is quite good.

Example 3: Annular influx impinging jets. In order to model an
nnular jet impingement, the influx velocity profile can be ex-
ressed by multiple Gaussian jet equations, namely, by

− w� = a3e−r2/K1 − b3e−r2/K2 �79�
For a certain influx velocity profile, the radius corresponding to

he maximum velocity �rm� and the maximum deficit velocity

w=w��rm�−w��0�� are usually specified. Subject to the con-
trains of w��rm�=−1 and �dw� /dr�r=rm=0, the parameters in Eq.
79� can be found by solving the following iterations:

K1 = trm K2 = trm/2

t =
rm

ln�2b3/a3�
a3 =

1 − 
w − e2rm/t

1 − erm/t b3 = a3 + 
w − 1 �80�

For example, if 
w=0.8 and rm=0.65 are set, the following
xpression based on Eqs. �79� and �80� is found:

Fig. 9 Comparison of the plate surface pressure distribution
Fig. 10 Particular influx velocity profile of an annular jet
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Fig. 11 Annular impinging jet „rm=0.35, �w=0.16…: „a… stream-
lines by present model „−� is used…; „b… numerical solution by
Fig. 12 Streamlines for an annular impinging jet with the in-

flux profile shown in Fig. 10 „rm=0.65, �w=0.8…
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− w� = 3.79e−r2/0.661 − 3.59e−r2/0.330 �81�
his particular expression provides reasonable agreement with the
xperimental data by Sheen et al. �15�, see Fig. 10.

The two terms of Eq. �81� are used to form two Gaussian im-
inging jet stream functions �K1=0.661, K2=0.33�, which, when
dded together, provide the stream function

� = 3.59��0.33� − 3.79��0.661� �82�

here ��k� is expressed by Eq. �22�.
�a� Comparison with previous numerical and mixed models.

he present model is in good agreement with the numerical flow
eld simulated by Rubel �16� for rm=0.35, 
w=0.16, and ��0�
0. In this case, no flow recirculation zone appears, see Fig. 11.
he recirculation zone is predicted by Rubel’s numerical model
nly when a nonzero value of ��0� is specified �16�. The present
odel can also predict a recirculation zone when 
w exceeds 0.2

even up to the maximum 1�, in which case, Rubel’s method be-
omes divergent.

Figure 12 shows the contours of the stream function of the
nnular impinging jet for rm=0.65 and 
w=0.8, which are in good
greement with the analytical-numerical mixed solution by Phares
t al. �5�. For this case, Rubel’s model �16� has no convergent
olution.

�b� Comparison with the experiment by Donaldson and Snede-
er. Figure 13�a� shows another influx profile estimated from the

ig. 13 An annular impinging jet with a large recirculation
ing: „a… influx velocity profile estimated from the surface pres-
ure values of Ref. †8‡; „b… Streamlines „−� is used…
ernoulli equation using the experimental impinging plate surface
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pressures by Donaldson and Snedeker �17�. Figure 13�b� shows
the streamlines generated by the present model using the esti-
mated influx profile. The model predicts a stagnation bubble with
the radius comparable to the experiments.

6 Concluding Remarks
An inviscid solution for a family of Gaussian orthogonal im-

pinging jets is derived and it constitutes a base for analytical mod-
eling of the flow field of various real impinging jets. The solution
is robust and extends the analytical model by Lee et al. �6�. A first
n term averaged method is put forward to speed up the conver-
gence of the oscillatory series, thus simplifying the flow field
computations. A new and simpler solution of the plane impinging
jets is also obtained.

The inviscid solutions are then combined with laminar and tur-
bulent boundary layer solutions to model real impinging jets. This
family of combined inviscid-boundary layer solutions compare
well in terms of flow field �streamlines, ring vortex trace, and
velocities� and surface pressure field with experiments for both
laminar and turbulent boundary layers and different Reynolds
numbers. Moreover, an expression for an annular jet profile is
derived. The solutions of several annular impinging jets show
good agreement with numerical, mixed models, and experimental
results.
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Nomenclature
a1, a2 � jet shape coefficients
b1, b2 � empirical constants

B0
* � half-width of plane jet slot, m

D* � diameter of round jet, m
H* � distance between jet outlet and impinging

plate, m
k � flow rate multiplier

p* � pressure, Pa
p � dimensionless pressure, p=2p* /�wm

2

Q � dimensionless flow rate
R* � radius of round jet, m

Rej � Reynolds number of jet flow based on jet di-
ameter D* and jet velocity wm

Rel � local Reynolds number based on radial dis-
tance r* and surface velocity us

*

r*, z* � radial and axial coordinates, m
r, z � dimensionless radial and axial coordinates; r

=r* /R*, z=z* /R*

u*, w* � radial and axial velocities, m/s
us

* � inviscid velocity on impinging plate surface,
m/s

u, w � dimensionless radial and axial velocities, u
=u* /wm, w=w* /wm

rm � radius corresponding to maximum velocity
wm � maximum axial velocities at jet center line,

m/s

w � maximum deficit velocity
x, z � dimensionless plane coordinates; x=x* /B0

*, z
=z* /B0

*

Greek Symbols
� � fluid density, kg /m3

� � kinematical viscosity, m2 /s

� � roughness height of sand paper grain, m
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* � thickness of viscous boundary layer, m

 � dimensionless thickness of viscous boundary

layer

disp

* � displacement thickness of viscous boundary
layer, m


disp � dimensionless displacement thickness
� � stream function
� � vorticity function

ppendix: Proof of Convergence of the Front n Term
verage Value Series

Given a series 	i=1
� ai, let the partial summation of the series be

sequence:

Sn = 	
i=1

n

ai n = 1,2, . . . �A1�

Then take the average of Sn as a new sequence:

S̄n =
1

n	
i=1

n

Si n = 1,2, . . . �A2�

We want to prove that

�i� if limn→� Sn=S, then limn→� S̄n=S;
�ii� if further SiSi+1�0, i=1,2 , . . ., then cov S̄n
cov Sn.

Here, cov denotes the rate of convergence.�
Proof. To prove �i�, we need to show that

For any �
0, there exists an integer N� such that �S̄n−S�
�∀n
N�.
From limn→� Sn=S, we know that the sequence is bounded, i.e.,

�Sn − S� � M ∀ n = 1,2, . . . ,�M 
 0� �A3�

lso, since limn→� Sn=S, for any chosen �
0, we can find an
nteger N such that

�Sn − S� �
1

2
� ∀ n 
 N �A4�

hen, for n
N,

�S̄n − S� = � 1

n	
i=1

n

Si − S�
=

1

n
�S1 + S2 + ¯ + Sn − nS�

=
1

n
��S1 − S� + �S2 − S� + ¯ + �Sn − S��

�
1

n
��S1 − S� + �S2 − S� + ¯ + �Sn − S��

=
1

n
��S1 − S� + �S2 − S� + ¯ + �SN − S� + �SN+1 − S�

+ ¯ + �Sn − S��

�
1

n
�NM +

1

2
�n − N��� �Eqs.�A3� and �A4� are used�

=
NM

n
+

n − N

2n
� �

NM

n
+

1

2
� �A5�
ow, let
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N� = �2NM

�
� + 1 �A6�

where the notation � � represents the largest integer �2NM /�.
Then, it follows from Eq. �A5� that for n
N�,

�S̄n − S� �
NM

n
+

1

2
� �

NM

N�
+

1

2
� �

NM

2NM/�
=

1

2
� +

1

2
� = �

�A7�
This proves Part �i�.

Note that for Part �i�, the reverse is not true, i.e., if limn→� S̄n
=S, it is not necessary to have limn→� Sn=S. For example, con-
sider the sequence of S1=−0.1, Sn=0.4+ �−1�n for n�2:
−0.1,1.4,−0.6,1.4, . . . ,0.4+ �−1�n , . . .. It is easy to see that

S̄n =
1

n	
i=1

n

Si = 0.4 �
1

2n
→ 0.4 as n → �

However, Sn is not convergent.
The above counterexample implies that the rate of convergence

of the sequence S̄n is greater than that of the sequence Sn if Sn is
randomly alternating between +M1 and −M2 �M1, M2 are positive
bounded numbers�. It also shows that, conservatively, the rate of

convergence of the sequence S̄n is proportional to n−1 �the above
counter example is the worst case whose terms reach the two
bounded numbers for all n�2�. However, it is not easy to prove
this in general. In the following, we prove Part �ii� under the
assumption that Sn is an alternative sequence about its limit, i. e.,
�Sn−S��Sn+1−S��0.

Without loss of generality, suppose Sn changes sign from n=1

and �Sn−S� is decreasing. Then, it is easy to prove that S̄n is also
an alternative sequence. Further, suppose Sn−S
0 and Sn+1−S

�0. Similarly, we have S̄n−S
0, and S̄n+1−S�0. Assume that
S
0 �if S�0, we can consider the sequence −Sn and the same
argument applies�. Then,

�Sn − S� − �Sn+1 − S� = Sn + Sn+1 − 2S 
 0 ⇒ Sn + Sn+1 
 0

�A8�
and

�S̄n − S� − �S̄n+1 − S� = S̄n + S̄n+1 − 2S 
 0 ⇒ S̄n + S̄n+1 
 0

�A9�

We want to prove that there exists N̄ such that

F�S̄n, S̄n+1,S� � �S̄n − S� − �S̄n+1 − S� � �Sn − S� − �Sn+1 − S�

� F�Sn,Sn+1,S� �A10�
A direct calculation shows that

F�S̄n, S̄n+1,S�

= �S̄n − S� − �S̄n+1 − S� = S̄n − S + S̄n+1 − S

=
1

n
�S1 + S2 + ¯ + Sn� − S

+
1

n + 1
�S1 + S2 + ¯ + Sn + Sn+1� − S

=
1

n
��S1 − S� + �S2 − S� + ¯ + �Sn−1 − S�� +

1

n
�Sn − S�

+
1

n + 1
��S1 − S� + �S2 − S� + ¯ + �Sn−1 − S��

+
Sn + Sn+1 − 2S

�A11�

n + 1
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There are two cases.

�a� When n is even, �S1−S�+ �S2−S�+ ¯ + �Sn−1−S��0, we
have

F�S̄n, S̄n+1,S� �
Sn − S

n
+

Sn + Sn+1 − 2S

n + 1

� Sn + Sn+1 − 2S for n 
 N̄

= �Sn − S� − �Sn+1 − S� = F�Sn,Sn+1,S�
�A12�

where N̄ is an integer, satisfying

�SN̄ − S� + �SN̄+1 − S� +
SN̄+1 − S

N̄ − 2

 0 �A13�

which can be reached since Sn, S are bounded, and �SN̄

−S�+ �SN̄+1−S�
0 for all n.
�b� When n is odd, �S2−S�+ ¯ + �Sn−1−S��0, we have

�S̄n, S̄n+1,S� �
2n + 1

n�n + 1�
�S1 − S� +

Sn − S

n
+

Sn + Sn+1 − 2S

n + 1

�
2n + 2

n�n + 1�
�S1 − S� +

Sn − S

n
+

Sn + Sn+1 − 2S

n + 1

=
2

n
�S1 − S� +

Sn − S

n
+

Sn + Sn+1 − 2S

n + 1

� Sn + Sn+1 − 2S for n 
 N̄

= �Sn − S� − �Sn+1 − S�

= F�Sn,Sn+1,S� �A14�

here N̄ is an integer, satisfying
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�SN̄ − S� + �SN̄+1 − S� +
SN̄+1 − 2S1 + S

N̄ − 2

 0 �A15�

which is possible since Sn, S are bounded, and �SN̄−S�+ �SN̄+1
−S�
0 for all n. This finishes the proof for Part �ii�.
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