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a b s t r a c t

In this paper, we consider dynamics and bifurcations in two HIV models with cell-
to-cell interaction. The difference between the two models lies in the inclusion or
omission of the effect of involvement. Particular attention is focused on the effects
due to the cell-to-cell transmission and the effect of the involvement. We investigate
the local and global stability of equilibria of the two models and give a comparison.
We derive the existence condition for Hopf bifurcation and prove no Bogdanov-
Takens bifurcation in this system. In particular, we show that the system exhibits
the recurrence phenomenon, yielding complex dynamical behavior. It is also shown
that the effect of the involvement is the main cause of the periodic symptoms
in HIV or malaria disease. Moreover, it is shown that the increase of cell-to-cell
interaction may be the main factor causing Hopf bifurcation to disappear, and
thus eliminating oscillation behavior. Finally, numerical simulations are present to
demonstrate our theoretical results.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Many mathematical models have been developed for modeling HIV diseases in order to find the method for
efficient medical treatments. In general, there are two fundamental modes of viral infection and transmission,
one is the classical virus-to-cell infection and the other is direct cell-to-cell transmission. In the classical
mode, viral particles that are released from infected cells arbitrarily move around to discover a new target
cell to infect. For the direct cell-to-cell transmission, on the other hand, HIV infection can occur through
moving viruses with the direct contact between infected cells and uninfected cells via some structures, such as
membrane nanotubes [1]. Recently, HIV infection models which involve different infection modes, such as the
classical virus-to-cell infection [2–7], the direct cell-to-cell transmission [8–10], and both virus-to-cell infection
and cell-to-cell transmission [9,11–19], have been extensively studied by many scholars. However, recent
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studies have also revealed that the cell-to-cell (infected source and a susceptible target cell) interaction is vital
to the spread of virus, which is even more effective than that of the virus-to-cell mechanism. For example,
the results in [20,21] show that the cell-to-cell spread is a much more important mode of infection than the
virus-to-cell spread. The data reported in [22] indicate that the cell-to-cell spread of HIV is the predominant
route of viral spread since viral replication in a system with rapid cell turnover kinetics depends on the
cell-to-cell transfer of virus. In the process of cell-to-cell interaction, viral particles can be simultaneously
transferred from infected CD4+T cells to uninfected ones by virological synapses. Thus, there is no doubt
that the cell-to-cell infection affects the mechanism of HIV transmission. When pathogens get into blood,
the B cells are activated and secrete antibody, and then the immune system removes pathogens from blood
with the aid of antibody. Uninfected cells can be reduced when immune complexes are combined into the
model, because uninfected cells can be involved in the immune response to pathogens. We call it the effect of
involvement. For example, in malaria infection, the effect of the “involvement” is regarded as one of the causes
of anaemia [23]. However, it has been noticed that most of the publications mainly focus on the virus-to-cell
infection and the cell-to-cell transmission. To the best of our knowledge, only few papers have investigated
the effect of the involvement in HIV models [23,24], especially the interaction between the cell-to-cell spread
and the effect of the involvement.

In this paper, we will study both the cell-to-cell infection and the effect of the involvement in HIV models
and find their relations, by investigating the dynamics and bifurcations of the equilibria or steady states in
two mathematical systems which describe virus-immune dynamics of HIV models. One important object in
the study of biological systems is to identify the conditions under which the solutions of the system eventually
approach a steady state or a periodic oscillation. As we all know, if a positive equilibrium of the model is
stable, then the disease will persist and approach a steady state. Alternatively, Hopf bifurcation may occur,
leading to the disease oscillating periodically.

Let us start from a simple HIV model, which ignores the loss of pathogens due to absorption, described
by the following ordinary differential equations [25]:

Ṫ = s − d1T − β1TV,

İ = β1TV − δI,

V̇ = kI − d2V,

(1)

where T, I and V respectively represent the densities of the uninfected CD4+T cells, the infected CD4+T cells
and the immunodeficiency virus (HIV) in blood. The β1TV term measures the effect due to the virus-to-cell
transmission. Uninfected cells are recruited at a constant rate s from the source within the body, just like
bone marrow, with the natural life expectancy of 1/d1 (days). Cells are infected by contact with pathogens,
and turned to become infected cells at rate β1V . Infected cells die at rate δ, resulting in the release of k/δ

pathogens per infected cell, and these pathogens have a life-expectancy 1/d2 (days) in the blood. Pathogens
will either die or affect healthy cells. The parameters s, d1, β1, δ, k and d2 are all positive.

As we know, the humoral immunity is the aspect of immunity that is mediated by macromolecules found
in extracellular fluids such as secreted antibodies, complement proteins, and certain antimicrobial peptides,
which is often called antibody-mediated immunity. It plays an important role in adaptive immune response
in HIV infection processes [1], especially it is more effective than cell-mediated immunity in malaria infection.
Thus, the effect of humoral immunity was introduced into model (1), yielding the following model [24]:

Ṫ = s − d1T − β1TV,

İ = β1TV − δI,

V̇ = kI − d2V − pAV,

Ȧ = qAV − d3A,

(2)
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where A represents the density of pathogens-specific lymphocytes, p is the killing rate, and d3 is the
death rate of pathogens-specific lymphocytes. The term pAV is the loss rate of virus under the attack of
pathogens-specific lymphocytes, and the pathogens are removed at rate pA by the immune system. The
pathogens-specific lymphocytes proliferate at rate qV by contact with the pathogens and die at rate d3.
Note that this model considers the humoral immunity instead of cell-mediated immunity.

As discussed above, the effects of both the humoral immunity and the cell-to-cell interaction should be
included in a model for a more realistic study, we consider the following model:

Ṫ = s − d1T − β1TV − β2TI,

İ = β1TV + β2TI − δI,

V̇ = kI − d2V − pAV,

Ȧ = qAV − d3A,

(3)

where the β2TI term represents the effect due to the cell-to-cell interaction and β2 ⩾ 0. The rest of
parameters are the same as those in model (2). Local and global stability, bifurcation of its equilibria,
including the role of the cell-to-cell interaction, will be investigated by using linearization, Lyapunov function
and fluctuation lemma in this paper.

Suppose that the density of the immune complex is proportional to the product of the densities of the
pathogens and the pathogens-specific lymphocytes [24]. Then, the uninfected cells are reduced at the rate
proportional to the product of the densities of the uninfected cells and the immune complex. Murase et al.
[24] have incorporated the effect of involvement into system (2), by introducing the −γTV A term in the
first equation of (2), to obtain the following system:

Ṫ = s − d1T − β1TV − γTV A,

İ = β1TV − δI,

V̇ = kI − d2V − pAV,

Ȧ = qAV − d3A,

(4)

and studied the stability of its equilibria and the existence of Hopf bifurcation.
From the above discussions we also know that both the cell-to-cell transmission and the effect of cells

involving immune response are very important in establishing and analyzing HIV models. Thus, in this
paper, we will further consider the combination of the interaction between the cell-to-cell transmission and
the effect of involvement, yielding the following model:

Ṫ = s − d1T − β1TV − β2TI − γTV A,

İ = β1TV + β2TI − δI,

V̇ = kI − d2V − pAV,

Ȧ = qAV − d3A.

(5)

Stability and bifurcations related to both the cell-to-cell transmission and the effect of the involvement will
be studied in detail in this paper, including the occurrence of Hopf bifurcation and the feature of bifurcating
limit cycles.

In order to have a comparison, in this paper, we will consider the role of the cell-to-cell transmission
and the humoral immune response in the two HIV models (3) and (5), with the effect of involvement
included. Stability and bifurcation analysis are carried out to study the two models with respect to the basic
reproduction number R0. It will be shown that model (3) can have only transcritical bifurcations between
equilibria, while model (5) can exhibit not only transcritical bifurcations, but also Hopf and generalized
Hopf bifurcations. In fact, it will be shown that both systems (3) and (5) have three equilibrium solutions
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Table 1
Description of the parameters in models (3) and (5).

Parameter Description Value Unit Reference

s Recruitment rate of uninfected CD4+T cells 1 µl−1 day−1 [24,26,27]
d1 Natural death rate of CD4+T cells 0.00833 day−1 [24,26,27]
β1 Infection coefficient 0.1 µl day−1 [24,26]
β2 The infection rate of productively infected CD4+T cells 0.0064 µl day−1 [17,24]
δ Death rate of infected cells 0.5 day−1 [24,26]
k Product of the number of free virus particles and δ 8 day−1 [24,26]
d2 Clearance rate of virus particles 72 day−1 [24,26]
p Killing rate of pathogens 0.1 µl day−1 [24,26]
q Growth rate of humoral immune response (µl day−1) Bifurcation parameter [24,26]
d3 Death rate of lymphocytes 0.05 day−1 [24,26]
γ Proportional death rate of T, V and A 0.05 µl2 day−1 [24]

Ek (k = 1, 2, 3) and Êk (k = 1, 2, 3) with Êk = Ek, k = 1, 2. For system (3) there only exist transcritical
bifurcations between E1 and E2, as well as between E2 and E3; while for system (5), besides these two
transcritical bifurcations, there is also a Hopf bifurcation which occurs from the equilibrium Ê3 at a critical
point. This shows that the cell involvement in immune system can cause complex dynamics, and shows how
it affects the system’s behavior as well as what is the implication of biological importance.

The typical parameter values used in the literature for models (3) and (5) are listed in Table 1. In our
simulations, these parameter values will be used to demonstrate more realistic theoretical results obtained
in this paper.

To simplify the analysis in the following sections, we introduce the changes of state variables and the time
rescaling:

T = d2
3

kβ1
x1, I = d2

3
kβ1

x2, V = d3

β1
x3, A = qd3

pβ1
x4, τ = d3 t, (6)

into models (3) and (5) to obtain the following dimensionless systems:

ẋ1 = S − D1x1 − D2x1x2 − x1x3,

ẋ2 = D2x1x2 + x1x3 − D4x2,

ẋ3 = x2 − D5x3 − D6x3x4,

ẋ4 = D6x3x4 − x4.

(7)

and

ẋ1 = S − D1x1 − D2x1x2 − x1x3 − D3x1x3x4,

ẋ2 = D2x1x2 + x1x3 − D4x2,

ẋ3 = x2 − D5x3 − D6x3x4,

ẋ4 = D6x3x4 − x4.

(8)

respectively, where for convenience the dot is still used for differentiation with respect to the new scaled time
τ , and the new parameters are defined as

S = skβ1

(d3)3 , D1 = d1

d3
, D2 = β2d3

kβ1
, D3 = γqd3

p(β1)2 , D4 = δ

d3
, D5 = d2

d3
, D6 = q

β1
. (9)

According to Table 1, the typical values of the above new parameters are given by

D1 = d1
d3

= 0.1666, D2 = β2d3
β1k = 0.0004, D3 = d3qγ

p(β1)2 = 2.5q = 1.25,

D4 = δ
d3

= 10, D5 = d2
d3

= 1440, S = β1ks
(d3)3 = 6400, D6 = q

β1
= 10,

(10)

where D6 or q is treated as the primary bifurcation parameter.
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It is seen from (7) and (8) that simply setting D3 = 0 in system (8) results in system (7), showing the
direct relation between these two models.

The rest of the paper is organized as follows. In Section 2, a complete bifurcation analysis is given for
model (7) (or the original model (3)), and then bifurcation analysis on model (8) (or the original model (5))
is presented in Section 3. Detailed Hopf bifurcation on model (8) is given in Section 4. Moreover, it is shown
that no Bogdanov-Takens bifurcation can exist for this model. Forward bifurcation is discussed in Section 5,
and finally conclusion and discussion are drawn in Section 6.

2. The effect of cell-to-cell interaction in model (7)

In this section, we consider model (7) and pay attention to the immune response against pathogens, with
only humoral immunity involved. First, we show the well-posedness of solutions of system (7), as stated in
the following theorem.

Theorem 2.1. All solutions of system (7) are non-negative if the initial conditions are non-negative.
Moreover, they are bounded.

Proving the positivity of solutions needs the following lemma.

Lemma 2.2 (Proposition 1.1 in [28]). The cone R+
n is invariant for the flow generated by the differential

equation, dx
dt = f(x), if and only if the function f(x) is quasi-positive, i.e., for every i = 1, 2, . . . , n, the

function fi(x1, . . . , 0, . . . , xn) ⩾ 0, where 0 stands at the ith position and xj ⩾ 0 for j ̸= i.

Proof. It is straightforward to verify that system (7) satisfies the conditions given in Lemma 2.2 and
thus the first statement in Theorem 2.1 is proved. To prove the boundness of the solutions, we construct
a Lyapunov function V1(x) = x1 + x2 + D4

2 (x3 + x4), which satisfies V1 > 0 for x > 0 and V1(0) = 0.
Here, x = (x1, x2, x3, x4)T and x > 0 means that xi > 0, i = 1, 2, 3, 4. Note that x4 = 0 is invariant. Then,
differentiating V1 with respect to τ , and using system (7), we obtain

dV1

dτ

⏐⏐⏐⏐
(7)

= S − D1x1 − D4

2 x2 − D4D5

2 x3 − D4

2 x4.

Thus,
dV1

dτ

⏐⏐⏐⏐
(7)

< 0, for
{

x
⏐⏐⏐ D1x1 + D4

2 x2 + D4D5

2 x3 + D4

2 x4 − S ≡ Π1 > 0
}

;

and dV1
dτ |(7)= 0 on the plane Π1 = 0.

Obviously, the plane Π1 = 0 intersects the xi-axis (i = 1, 2, 3, 4) at S
D1

, 2S
D4

, 2S
D4D5

and 2S
D4

, respectively.
Similarly, the plane V1 = C intersects the xi-axis (i = 1, 2, 3, 4) at C, C, 2C

D4
and 2C

D4
, respectively, where

C is an arbitrary positive constant. In order to guarantee that the plane Π1 = 0 is inside the plane V1 = C

(which implies that the region bounded by the plane V1 = C and the three coordinate planes is attractive),
we define the plane,

Π =
{

x
⏐⏐⏐ x1 + x2 + D4

2 (x3 + x4) − C̄ = 0
}

,

where C̄ = S max{ 1
D1

, 2
D4

, 1
D5

, 1}, so that in the cone R4
+, all solutions of system (7) are attracted into the

trapping region Ω bounded by the four coordinate planes and the plane Π . □
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It is easy to show that system (7) has three equilibria:

Infection-free equilibrium E1 :
(

S
D1

, 0, 0, 0
)

,

Infectious equilibrium E2 :
(

D4D5
1+D2D5

, 1
D4

(
S − D1D4D5

1+D2D5

)
, 1

D4D5

(
S − D1D4D5

1+D2D5

)
, 0

)
,

Positive equilibrium E3 :
(

S−D4x̃2
D1

, x̃2, 1
D6

, x̃2 − D5
D6

)
,

(11)

where x̃2 is determined from the quadratic equation:

D2D4D6x̃2
2 −

[
SD2D6 − D4(1 + D1D6)

]
x̃2 − S = 0, (12)

and so

x̃2 = 1
2D2D4D6

{
SD2D6 − D4(1 + D1D6) +

√
[SD2D6 − D4(1 + D1D6)]2 + 4SD2D4D6

}
. (13)

Note in the above expression that only positive sign is taken for the square root, since the negative root
yields x̃2 < 0.

The equilibrium E2 indicates that the pathogens are present while the lymphocytes are absent. It is easy
to see that E2 exists for S ⩾ D1D4D5

1+D2D5
.

The third equilibrium E3 is an interior positive solution, implying that both the pathogens and the
lymphocytes are present. To find the existence condition of E3, note that the solution x̃2 given in (13)
is positive, we only need to consider the condition x̃2 ⩾ D5

D6
(see E3 in (11)), which is equivalent to

S ⩾ D1D4D5
1+D2D5

+ D4D5
D6

, as shown below. First note that

x̃2 ⩾
D5

D6

⇐⇒
√

[SD2D6 − D4(1 + D1D6)]2 + 4SD2D4D6 −
[
D4(1 + D1D6 + 2D2D5) − SD2D6

]
> 0.

If S ⩾ D4(1+D1D6+2D2D5)
D2D6

, E3 exists. If S < D4(1+D1D6+2D2D5)
D2D6

, then a direct calculation shows that the
above inequality is equivalent to

S ⩾
D1D4D5

1 + D2D5
+ D4D5

D6
. (14)

Noticing that D1D4D5
1+D2D5

+ D4D5
D6

< D4(1+D1D6+2D2D5)
D2D6

, we know that E3 exists if the condition (14) is satisfied.
Summarizing the above results shows that the equilibrium E1 exists for any positive parameter values,

E2 exists for S ⩾ D1D4D5
1+D2D5

and E3 exists for S ⩾ D1D4D5
1+D2D5

+ D4D5
D6

. Next, we turn to consider stability of these
equilibria, on the basis of the Jacobian matrix J(Ek), k = 1, 2, 3 of (7), given by

J(Ek) =

⎡⎢⎢⎣
−D1 − D2x2 − x3 −D2x1 −x1 0

D2x2 + x3 D2x1 − D4 x1 0
0 1 −D5 − D6x4 −D6x3
0 0 D6x4 D6x3 − 1

⎤⎥⎥⎦ . (15)

Theorem 2.3. The infection-free equilibrium E1 of system (7) is asymptotically stable if S < D1D4D5
1+D2D5

;
when S > D1D4D5

1+D2D5
, E1 is unstable, implying that pathogens may persist.

Proof. Evaluating the Jacobian matrix (15) at the infection-free equilibrium E1 results in the characteristic
polynomial,

P1(λ) = det
[
λI − J(E1)

]
= (λ + 1)(λ + D1)

[
λ2 +

(
D4 + D5 − D2

D1
S

)
λ + D4D5 − (1+D2D5)S

D1

]
.

Hence, E1 is asymptotically stable if S < D1
D2

(D4 + D5) and S < D1D4D5
1+D2D5

. Note that the second inequality
S < D1D4D5

1+D2D5
implies S < D1

D2
(D4 + D5). Thus, E1 is asymptotically stable for S < D1D4D5

1+D2D5
, and unstable for

S > D1D4D5
1+D2D5

. □
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From the above stability condition of the infection-free equilibrium E1, we can see that HIV becomes
effective at S = D1D4D5

1+D2D5
or S(1+D2D5)

D1D4D5
= 1. Thus, we may define the basic reproduction number [29] for

system (7) as

R0 = S(1 + D2D5)
D1D4D5

. (16)

Thus,

R0 ≶ 1 ⇐⇒ S ≶
D1D4D5

1 + D2D5
,

and we will alternatively use them in the following analysis for convenience.
In the following we prove that E1 is also globally asymptotically stable if R0 ⩽ 1. It should be noted here

that the global stability means that all trajectories converge to E1 as long as the initial points are located
in the cone R4

+. This applies to all the global stability in the rest of the paper.

Theorem 2.4. The infection-free equilibrium E1 of system (7) is globally asymptotically stable if R0 ⩽ 1.

Proof. Consider the following Lyapunov function,

V2(x) = x1 − S

D1
− S

D1
ln

(D1

S
x1

)
+ x2 + S

D1D5

(
x3 + x4

)
,

which satisfies V2(E1) = 0. Differentiating V2 with respect to τ and using system (7) yields

dV2

dτ

⏐⏐⏐⏐
(7)

=
(

1 − S

D1x1

)
ẋ1 + ẋ2 + S

D1D5
(ẋ3 + ẋ4)

=
(

1 − S

D1x1

)
(S − D1x1 − D2x1x2 − x1x3) + D2x1x2 + x1x3 − D4x2

+ S

D1D5
(x2 − D5x3 − x4)

= − D1x1

(
1 − S

D1x1

)2
− S

D1D5
x4 −

[
D4 − (1 + D2D5)S

D1D5

]
x2.

Obviously, when S < D1D4D5
1+D2D5

, i.e., R0 < 1, we have dV2
dτ

⏐⏐
(7) < 0 as long as (x1, x2, x4) ̸= ( S

D1
, 0, 0), and

dV2
dτ

⏐⏐
(7) = 0 if and only if (x1, x2, x4) = ( S

D1
, 0, 0). However, when (x1, x2, x4) = ( S

D1
, 0, 0), the third equation

in (7) implies x3 → 0 as τ → ∞. Thus, by the LaSalle invariance principle, we have shown that E1 is
globally asymptotically stable for R0 < 1. When R0 = 1, the last term in the square bracket in the above
derivative dV2

dτ

⏐⏐
(7) becomes zero. Thus, dV2

dτ

⏐⏐
(7) < 0 as long as (x1, x4) ̸= ( S

D1
, 0), and dV2

dτ

⏐⏐
(7) = 0 if and only if

(x1, x4) = ( S
D1

, 0). However, when (x1, x4) = ( S
D1

, 0), the first equation in (7) becomes ẋ1 = − S
D1

(D2x2+x3),
which implies that x1 → 0 as τ → ∞, which is not possible. Hence, x2 → 0 and x3 → 0 as τ → ∞.
Thus, by the LaSalle invariance principle, we can also conclude that E1 is globally asymptotically stable for
R0 = 1. □

Next, consider the stability of E2. Note that E2 does not biologically exist for R0 < 1 and emerges to
exist for R0 ⩾ 1 when E1 becomes unstable.

Theorem 2.5. The infectious equilibrium E2 of system (7) is asymptotically stable if D1D4D5
1+D2D5

< S <
D1D4D5
1+D2D5

+ D4D5
D6

, or equivalently, 1 < R0 < R1, where R1 := 1 + 1+D2D5
D1D6

.
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Proof. Similarly, evaluating the Jacobian matrix (15) at E2 yields the characteristic polynomial, P2(λ) =[
λ + 1 + D1D6

1+D2D5
− D6S

D4D5

](
λ3 + a1λ2 + a2λ + a3

)
, where

a1 = (1+D2D5)S
D4D5

+ D5 + D4
1+D2D5

,

a2 =
[ (1 + D2D5)S

D4D5
− D1

]
(D4 + D5) + D1

(
D5 + D4

1+D2D5

)
,

a3 = S(1 + D2D5) − D1D4D5.

Thus, by the Hurwitz criterion, E2 is asymptotically stable if

a1 > 0, a3 > 0, a1a2 − a3 > 0, and 1 + D1D6

1 + D2D5
− D6S

D4D5
> 0, i.e., S <

D1D4D5

1 + D2D5
+ D4D5

D6
.

A direct computation shows that a1a2 − a3 > 0 is equivalent to (in the sense that the following expression
and a1a2 − a3 differs only by a positive factor)[

S(1 + D2D5) − D1D4D5
]2(1 + D2D5)2(D4 + D5) + D4D5

{ [
S(1 + D2D5) − D1D4D5

]
× (1 + D2D5)

[
(D5 + 2D1)

(
D4 + D5(1 + D2D5)

)
+ D4(D4 + D1D2D5)

]
+ D1D4D5(D4 + D5 + D2D2

5)
[
D4 + (D1 + D5)(1 + D2D5)

] }
> 0,

which is true if S(1 + D2D5) − D1D4D5 > 0 (i.e. R0 > 1). Hence, E2 is asymptotically stable if

D1D2D5

1 + D2D5
< S <

D1D2D5

1 + D2D5
+ D4D5

D6
(or 1 < R0 < R1). (17)

The proof is complete. □

Theorem 2.6. The infectious equilibrium E2 of system (7) is globally asymptotically stable if 1 < R0 ⩽ R1

(namely, D1D2D5
1+D2D5

< S ⩽ D1D2D5
1+D2D5

+ D4D5
D6

).

Proof. Again, by constructing a Lyapunov function and applying LaSalle invariance principle, we can
show that E2 is globally asymptotically stable. To achieve this, consider the following Lyapunov function
(E2 = (x∗

1, x∗
2, x∗

3, x∗
4) is used for simplicity),

V3(x) = x1 − x∗
1 − x∗

1 ln x1

x∗
1

+ x2 − x∗
2 − x∗

2 ln x2

x∗
2

+ x∗
1x∗

3
x∗

2

(
x3 − x∗

3 − x∗
3 ln x3

x∗
3

)
+ x∗

1x∗
3

x∗
2

x4. (18)

The derivative of V3 with respect to τ along the trajectory of system (7) is given by

dV3

dτ

⏐⏐⏐
(7)

=
(

1 − x∗
1

x1

)
ẋ1 +

(
1 − x∗

2
x2

)
ẋ2 + x∗

1x∗
3

x∗
2

(
1 − x∗

3
x3

)
ẋ3 + x∗

1x∗
3

x∗
2

ẋ4

=
(

1 − x∗
1

x1

)(
D1x∗

1 + D2x∗
1x∗

2 + x∗
1x∗

3 − D1x1 − D2x1x2 − x1x3
)

+
(

1 − x∗
2

x2

)[
D2x1x2 + x1x3 − x2

x∗
2

(D2x∗
1x∗

2 + x∗
1x∗

3)
]

+ x∗
1x∗

3
x∗

2

(
1 − x∗

3
x3

)(
x2 − D5x3 − D6x3x4

)
+ x∗

1x∗
3

x∗
2

(
D6x3x4 − x4

)
,

where
S = D1x∗

1 + D2x∗
1x∗

2 + x∗
1x∗

3, and D4 = D2x∗
1x∗

2 + x∗
1x∗

3
x∗

2
,
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have been used. Noticing x∗
2 = D5x∗

3, we obtain

dV3

dτ

⏐⏐⏐
(7)

= D1x∗
1 + D2x∗

1x∗
2 + x∗

1x∗
3 − D1x1 − D2x1x2 − x1x3 − D1

x∗
1

2

x1
− D2

x∗
1

2x∗
2

x1
− x∗

1
2x∗

3
x1

+ D1x∗
1

+ D2x∗
1x2 + x∗

1x3 + D2x1x2 + x1x3 − D1x∗
1x2 − x∗

1x∗
3

x∗
2

x2 − D2x∗
2x1 − x∗

2x1x3

x2
+ D2x∗

1x∗
2

+ x∗
1x∗

3 + x∗
1x∗

3
x∗

2
(D6x3x4 − x4) + x∗

1x∗
3

x∗
2

[
x2 − D5x3 − D6x3x4 − x∗

3x2

x3
+ D5x∗

3 + D6x∗
3x4

]
= 2D1x∗

1 − D1x1 − D1
x∗

1
2

x1
+ 2D2x∗

1x∗
2 − D2x∗

2x1 − D2
x∗

1
2x∗

2
x1

+ 2x∗
1x∗

3 + D5
x∗

1x∗
3

2

x∗
2

− x∗
1

2x∗
3

x1
− x∗

2x1x3

x2
− x∗

1x∗
3

2x2

x∗
2x3

= x∗
1(D1 + D2x∗

2)
(
2 − x1

x∗
1

− x∗
1

x1

)
+ x∗

1x∗
3

x∗
2

(D6x∗
3 − 1)x4 + x∗

1x∗
3

(
3 − x∗

1
x1

− x∗
2x1x3

x∗
1x∗

3x2
− x∗

3x2

x∗
2x3

)
⩽ 0,

because that 2 − x∗
1

x1
− x1

x∗
1

⩽ 0 for x1, x∗
1 > 0, and it equals 0 if and only if x1 = x∗

1. Similarly,

3 − x∗
1

x1
− x∗

2x1x3
x∗

1x∗
3Ix2

− x∗
3x2

x∗
2x3

⩽ 0 for all x1, x∗
1, x2, x∗

2, x3, x∗
3 > 0, and it equals 0 if and only if x1 = x∗

1, x2 =
x∗

2, x3 = x∗
3. Moreover, one can show that D6x∗

3 − 1 ⩽ 0, which is equivalent to R0 ⩽ R1. Therefore, when
R0 ∈ (1, R1), dV3

dτ |(7) < 0 and dV3
dτ |(7) = 0 if and only if (x1, x2, x3, x4) = E2. This shows that E2 is globally

asymptotically stable for R0 ∈ (1, R1). For R0 = R1, we can similarly follow the proof for Theorem 2.4 and
apply the LaSalle invariance principle to conclude that E2 is also globally asymptotically stable. □

Now suppose R0 > R1, i.e., S > D1D4D5
1+D2D5

+ D4D5
D6

, for which the infectious equilibrium E2 becomes
unstable, and the interior equilibrium E3 emerges to exist. To find stability of E3, we calculate the Jacobian
matrix (15) at E3 to obtain the characteristic polynomial: P3(λ) = λ4 + a1λ3 + a2λ2 + a3λ + a4, where

a1 = 1
D6(1+D2D6x̃2)

{ [
D2(D6x̃2 − D5) + 1 + D2D5

]2 + D2D6(D6x̃2)2

+(D6x̃2 − D5)D6(1 + D1D2) + D6
[
D1(1 + D2D5) + D4 + D5

] }
,

a2 = 1
D6(1+D2D6x̃2)

{
(D6x̃2 − D5)

[
(D2x̃2 − D5) + 1 + D2D5

]2

+(D4 + D5)(1 + D2D6x̃2)2 + D1D2D6(D6x̃2)2 + D2D6(D2x̃2 − D5)2

+D6(D6x̃2)(D1 + 1 + D2D5) + D1D6(D4 + D5)
}

,

a3 = 1
D6(1+D2D6x̃2)

{ [
(1 + D4)(D6x̃2 − D5) + D4D5

][
D2(D6x̃2 − D5) + 1 + D2D5

]2

+D2D2D6(D6x̃2 − D5)2 + D6
[
D4 + D1(1 + D2D5)

]
(D6x̃2 − D5)

}
,

a4 = D4
D6(1+D2D6x̃2) (D6x̃2 − D5)

{
D1D6 +

[
D2(D6x̃2 − D5) + 1 + D2D5

]2
}

.

Since D6x̃2 − D5 ⩾ 0, we have ai > 0, i = 1, 2, 3, 4. This shows that at the critical point determined by
D6x̃2 − D5 = 0, i.e. S = D1D4D5

1+D2D5
+ D4D5

D6
, or R0 = R1, there exists a transcritical bifurcation between E2

and E3. The equilibrium E3 is asymptotically stable if

ai > 0, i = 1, 2, 3, 4, ∆2 = a1a2 − a3 > 0 and ∆3 = a3∆2 − a2
1a4 > 0.

It can be shown by a direct computation that ∆2 > 0 and ∆3 > 0 for R0 > R1. Thus, the only bifurcation
arising from the equilibrium E3 is the transcritical bifurcation between E2 and E3. In particular, there is no
Hopf bifurcation or Bogdanov-Takens bifurcation which may arise from E3. Next, we prove that E3 is also
globally asymptotically stable for R0 > R1.
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Theorem 2.7. The positive equilibrium E3 of system (7) is globally asymptotically stable for R0 > R1, or
S > D1D4D5

1+D2D5
+ D4D5

D6
.

Proof. As usual, for simplicity let E3 = (x̂1, x̂2, x̂3, x̂4). Then we construct the following Lyapunov function:

V4(x) = x1 − x̂1 − x̂1 ln x1

x̂1
+ x2 − x̂2 − x̂2 ln x2

x̂2
+ x̂1x̂3

x̂2

(
x3 − x̂3 − x̂3 ln x3

x̂3

)
+ x̂2x̂3

x̂2

(
x4 − x̂4 − x̂4 ln x4

x̂4

)
.

Differentiating V4 with respect to τ and evaluating it along the trajectory of system (7) yields

dV4

dτ

⏐⏐⏐
(7)

=
(

1 − x̂1

x1

)
ẋ1 +

(
1 − x̂2

x2

)
ẋ2 + x̂1x̂3

x̂2

(
1 − x̂3

x3

)
ẋ3 + x̂1x̂3

x̂2

(
1 − x̂4

x4

)
ẋ4

=
(

1 − x̂1

x1

)(
S − D1x1 − D2x1x2 − x1x3

)
+

(
1 − x̂2x2

)(
D2x1x2 + x1x3 − D4x2

)
+ x̂1x̂3

x̂2

(
1 − x̂3

x3

)(
x2 − D5x3 − D6x3x4

)
+ x̂1x̂3

x̂2

(
1 − x̂4

x4

)(
D6x3x4 − x4

)
.

In view of the expression of the equilibrium E3 we use the following expressions,

S = D1x̂1 + D2x̂1x̂2 + x̂1x̂3, D4 = D2x̂1x̂2 + x̂1x̂3

x̂2
, and x̂3 = 1

D6
.

and follow the same procedure in the proof for Theorem 2.6 to obtain

dV4

dτ

⏐⏐⏐
(7)

=
(

1 − x̂1
x1

)[
D1x̂1 + D2x̂1x̂2 + x̂1x̂3 − D1x1 − D2x1x2 − x1x3

]
+

(
1 − x̂2

x2

)[
D2x̂1x̂2 + x̂1x̂3 − x2

x̂2
(D2x̂1x̂2 + x̂1x̂3)

]
+ x̂1x̂3

x̂2

[(
1 − x̂3

x3

)(
x2 − D5x3 − D6x3x4

)(
1 − x̂4

x4

)(
D6x3x4 − x4

)]
= 2D1x̂1 − D1x1 − D1

x̂2
1

x1
+ 2D2x̂1x̂2 − D2x̂2x1 − D2

x̂2
1x̂2
x1

+ 2x̂1x̂3 + x̂1x̂3
x̂2

(D5x̂3 + x̂4)

− x̂2
1x̂3
x1

− x̂2x1x3
x2

− x̂1x̂2
3x2

x̂2x3
+ x̂1

x̂2

[
x̂2 + x̂3(−D5 − D6x̂4)

]
x3 + x̂1x̂3

x̂2
(D6x̂3 − 1) x4.

Since
x̂1x̂3

x̂2
(D5x̂3 + x̂4) = x̂1x̂3

x̂2

(
D5
D6

+ x̂2 − D5
D6

)
= x̂1x̂3,

x̂2 + x̂3(−D5 − D6x̂4) = x̂2 − D5
D6

− x̂2 + D5
D6

= 0,

D6x̂3 − 1 = 0,

the above derivative dV4
dτ | |(7) can be rewritten as

dV4

dτ

⏐⏐⏐
(7)

= x̂1(D1 + D2x̂2)
(

2 − x1

x̂1
− x̂1

x1

)
+ x̂1x̂3

(
3 − x̂1

x1
− x̂2x1x3

x̂1x̂3x2
− x̂3x2

x̂2x3

)
< 0,

for (x1, x2, x3) ̸= (x̂1, x̂2, x̂3), and dV4
dτ |(7) = 0 if and only if (x1, x2, x3) = (x̂1, x̂2, x̂3). When (x1, x2, x3) =

(x̂1, x̂2, x̂3), the third equation in (7) yields x4 = x̂4. Hence, by the LaSalle invariance principle, we have
shown that the positive equilibrium E3 of system (7) is globally asymptotically stable for R0 > R1. □

Summarizing the results obtained in this section, we have shown that the disease-free equilibrium E1
exists for R0 > 0 and is globally asymptotically stable for 0 < R0 ⩽ 1 and becomes unstable for R0 > 1;
the equilibrium E2 exists for R0 ⩾ 1, and is GAS (globally asymptotically stable) for 1 < R0 ⩽ R1, and
becomes unstable for R0 > R1; the equilibrium E3 exists for R0 ⩾ R1 and is GAS. Note that E2 = E1
at R0 = 1, and E3 = E2 at R0 = R1. Moreover, at R0 = 1, E1 loses its stability and E2 emerges to
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Fig. 1. Bifurcation diagram for system (7) showing the equilibrium solutions E1, E2 and E3, where solid and dotted lines/curves
represent stable and unstable equilibrium solutions, respectively.

be a stable equilibrium. Thus a transcritical bifurcation occurs between E1 and E2 at the critical point
R0 = 1. Similarly, a transcritical bifurcation happens between E2 and E3 at the critical point R0 = R1. The
bifurcation diagram for the dynamics of three equilibria of system (7) with R0 as the bifurcation parameter
is shown in Fig. 1.

Remark 1. The results obtained in this section clearly indicate that the model (7) does not exhibit
any complex dynamical behavior such as oscillation for any combination of the positive parameter values,
but all the system solutions eventually converge to one of the three equilibria, depending on the value of
R0 = S(1+D2D5)

D1D4D5
= sd3(kβ1+d2β2)

d1d2δ . Let us consider the situation as the parameter S (a similar discussion can
be carried out using the original parameter s) is varied, with other parameters fixed, and study how the
parameter S plays an important role in the infection process. Based on R0 = 1 and R0 = R1 we have two
critical values for S: called S1 = D1D4D5

1+D2D5
and S2 = S1 + D4D5

D6
such that when S < S1 the virus-infected

cells produce on average less infected cells and so the virus cannot survive and eventually die out, leading
to infected cells to recover and the virus is cleaned up. This is a health stage. When S is increased to cross
the critical value S1, health cells get more infected and virus can survive via contact of the infected cells.
Moreover, if S is not too large, satisfying S1 < S < S2, then the immune system is not activated and
lymphocytes are not released to kill the virus. During this stage, health cells, infected cells and virus are in
a constant balance and none of the infected cells and virus can be eliminated. When S is further increased
to cross the critical value S2 (S > S2), then the immune system is activated and lymphocytes are released
to kill the virus. Nevertheless, the immune system cannot clean up the virus, and thus the health cells,
infected cells, virus and lymphocytes are in a constant balance. We can similarly discuss the effect of other
parameters. For example, considering D1 shows an opposite direction in the variation since it appears on
the denominator of R0. But it should be noted that the parameters are implicitly related, so realistically
more parameters should be considered in variation. Thus, the basic reproduction number R0 represents a
hypersurface in the 5-dimensional parameter space (or in the 8-dimensional parameter space if the original
parameters are used). Then R0 = 1 and R0 = R1 denote two critical planes in the parameter space, which
is more realistically describing the combined effect of the parameters.

The model (7) shows the existence of only equilibrium solutions might miss certain realistic situation such
as oscillations. This may be because we only consider cell-to-cell interaction in model (7). In reality, it is
quite possible to have the components of the equilibrium E3 not a constant but a stable periodic oscillation.
In the next section, we will explore such dynamical behaviors by adding the effect of the involvement to
model (7), leading to the unified model (8).
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3. The effect of the involvement in model (8)

In this section, besides the effect of cell-to-cell interaction, we also consider the effect of the involvement
in the unified model (8). It will be shown that the effect of the involvement will change the stability of
equilibria, yielding Hopf bifurcation and oscillating behavior.

Note that the basic reproduction number R0 for system (8) is the same as that for system (7), i.e.,

R0 = S(1 + D2D5)
D1D4D5

,

since the infection-free equilibrium of system (8) is the same as that of system (7) and their stability is
also identical. System (8) also has three equilibria, Ē1, Ē2 and Ē3, among which Ē1 and Ē2 are boundary
equilibria, while Ē3 is a positive (interior) equilibrium. When the component x4 in their equilibria of systems
(7) and (8) is zero, implying that the pathogens-specific lymphocytes are absent, the two boundary equilibria
are exactly the same since x4 = 0, i.e.,

Ē1 = E1, Ē2 = E2.

This indicates that the perturbation term −D3x1x3x4 (or −γTV A in the original model (5)) has no effect
on these two equilibria.

The third equilibrium is given by

Ē3 = (x̂1, x̂2, x̂3, x̂4) =
( D4D6x̂2

1 + D2D6x̂2
, x̂2,

1
D6

, x̂2 − D5

D6

)
.

Note here that we use the same notation (x̂1, x̂2, x̂3, x̂4) to denote the equilibrium E3 of system (7) and Ē3
of system (8), but now for system (8),

x̂2 = 1
2D4D6(D3+D2D6)

{
SD2D2

6 + D4
[
D3D5 − D6(1 + D1D6)

]
+

√[
SD2D2

6 + D4
(
D3D5 − D6(1 + D1D6)

)]2 + 4SD4D2
6(D3 + D2D6)

}
,

(19)

where only positive sign is taken for the square root, since the negative root yields x̂2 < 0. The existence
condition of Ē3 requires x̂2 ⩾ D5

D6
, or D6x̂2 − D5 ⩾ 0. Similar to the discussion for the existence of E3 for

model (7), we can show that Ē3 exists for

S ⩾
D1D2D5

1 + D2D5
+ D4D5

D6
, i.e., R0 ⩾ R1,

which is exactly the same as that for the existence condition for the equilibrium E3 of model (7). This shows
that although the perturbation term −D3x1x3x4 changes the solution of the equilibrium Ē3, it does not
change its existence condition. However, we will see in the following that this term does change the stability
of Ē3.

Similar to Theorems 2.1 and 2.3, we have the following two theorems for system (8).

Theorem 3.1. All solutions of system (8) are non-negative if the initial conditions are non-negative.
Moreover, they are ultimately bounded.

Proof. The proof follows that for proving Theorem 2.1. First note that system (8) satisfies the conditions
in Lemma 2.2, and so all solutions of system (8) are non-negative provided that the initial conditions
are chosen non-negative. Secondly, to prove the boundness of the solutions, we can still use the function
V1(x) = x1 + x2 + D4

2 (x3 + x4), which yields

dV1

dτ

⏐⏐⏐⏐
(8)

= S − D1x1 − D4

2 (x2 + x4) − D4D5

2 x3 − D3 x1x3x4 ≡ −Π1 − D3 x1x3x4,
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which implies that in the cone R4
+, the surface defined by −Π1 − D3 x1x3x4 = 0 is inside the place Π1 = 0.

Hence, we can still use the planes Π1 = 0 and V1 = C, and the same argument applied for system (7) to
prove the boundness of the solutions of system (8). □

Theorem 3.2. The infection-free equilibrium Ē1 of system (8) is asymptotically stable if R0 < 1 and
unstable for R0 > 1.

Proof. The proof is simply based on the Jacobian matrix of (8), given by

J(Ēk) =

⎡⎢⎢⎣
−D1 − D2x2 − x3 − D3x3x4 −D2x1 −x1 − D3x1x4 −D3x1x3

D1x2 + x3 D2x1 − D4 x1 0
0 1 −D5 − D6x4 −D6x3
0 0 D6x4 D6x3 − 1

⎤⎥⎥⎦ ,

which obviously yields J(Ē1) = J(E1) since x2 = x3 = x4 = 0 in E1, implying that the characteristic
polynomial of J(Ē1) is exactly the same as the P1(λ) of system (7), and so the conclusion in Theorem 3.2
is true. □

However, proving the global stability of Ē1 and Ē2 now becomes difficult due to the involvement of
the third order term −D3x1x3x4. We shall, instead of using Lyapunov function method, apply a different
approach to prove their global stability. We will use the fluctuation lemma [30] to prove the global stability
of Ē1 when R0 < 1.

First, we introduce some basic notations. For a continuous and bounded function f : [0, +∞) → R, let

f∞ = lim
τ→∞

inf f(τ), f∞ = lim
τ→∞

sup f(τ).

By Theorem 3.1, we know that limτ→∞ inf and limτ→∞ sup exist for all the functions on the right-hand side
of (8). According to the fluctuation lemma [30], there is a sequence τn with τn → ∞ as n → ∞ satisfying

lim
n→∞

xk(τn) = x∞
k and lim

n→∞
ẋk(τn) = 0, k = 1, 2, 3, 4, as n → ∞.

Thus, it follows from the first equation in (8) that

ẋ1(τn) + D1x1(τn) + D2x1(τn)x2(τn) + x1(τn)x3(τn) + D3x1(τn)x3(τn)x4(τn) = S.

Taking n → ∞ in the above equation, and noticing that all variables xi are non-negative, yields the following
inequality,

D1x∞
1 ⩽

(
D1 + D2x2∞ + x3∞ + D3x3∞x4∞

)
x∞

1 ⩽ S, i.e., x∞
1 ⩽

S

D1
.

By a similar argument, the second and third equations in (8) yield

D4x∞
2 ⩽ x∞

1
(
D2x∞

2 + x∞
3

)
⩽ S

D1
(D2x∞

2 + x∞
3 ) and D5x∞

3 ≤ x∞
3

(
D5 + D6x4∞

)
⩽ x∞

2 ,

respectively, where x∞
1 ⩽ S

D1
has been used. Combining the above two inequalities, we obtain

D4x∞
2 ⩽

S

D1

(
D2 + 1

D5

)
x∞

2 , i.e., x∞
2

[
1 − S(1 + D2D5)

D1D4D5

]
⩽ 0 or x∞

2 (1 − R0) ⩽ 0,

implying that x∞
2 = 0 due to x∞

2 ⩾ 0 and R0 < 1, which in turn yields x∞
3 = 0 and x∞

4 = 0. Since
0 ⩽ x2∞ ⩽ x∞

2 , we have x2∞ = x∞
2 = 0, yielding x2(τ) → 0 as τ → ∞. Similarly, we can conclude that

x3(τ) → 0 and x4(τ) → 0 as τ → ∞. Thus, the first equation in system (8) becomes an asymptotically
autonomous equation with the limiting equation, ẋ1 = S − D1x1, which has the solution,

x1(τ) = c

D1
e−D1τ + S

D1
=⇒ lim

τ→+∞
x1(τ) = S

D1
.

Hence, we have the following theorem.
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Theorem 3.3. The infection-free equilibrium Ē1 of system (8) is globally asymptotically stable (GAS) for
R0 < 1.

Similarly, we can prove the following result.

Theorem 3.4. The infectious equilibrium Ē2 of system (8) is asymptotically stable for 1 < R0 < R1 and
GAS if 1 < R0 < R1, where R1 is the same as that for system (7): R1 = 1 + 1+D2D5

D1D6
.

Proof. The local asymptotic stability of Ē2 can be obtained from the Jacobian matrix of (8), and the proof
is almost exactly the same as that for proving Theorem 2.6. So the proof is omitted here for brevity.

For the global stability of Ē2, we have found that it is difficult to apply a Lyapunov function due
to the existence of the third order term −D3x1x2x3 in the first equation of (8). Since Ē2 is locally
asymptotically stable for 1 < R0 < R1, it suffices to prove that Ē2 is globally attractive when R0 ∈
(1, R1), i.e., for any non-negative solutions (x1(τ), x2(τ), x3(τ), x4(τ)) of system (8), we need to show that
limτ→∞(x1(τ), x2(τ), x3(τ), x4(τ)) = (x∗

1, x∗
2, x∗

3, 0) under the condition 1 < R0 < R1. First, we again apply
the fluctuation lemma [30] to show that limτ→∞ x4(τ) = 0, and then consider the limiting system.

By the fluctuation lemma we have the following inequalities derived from (8),

D1x∞
1 + D2x∞

1 x∞
2 + x∞

1 x∞
3 + D3x∞

1 x∞
3 x4∞ ⩽ S,
D4x∞

2 ⩽ (D2x∞
2 + x∞

3 )x∞
1 ,

D5x∞
3 + D6x∞

3 x4∞ ⩽ x∞
2 ,

x∞
4 ⩽ D6x∞

3 x∞
4 .

(20)

We prove x∞
4 = 0 by contradiction. Since x∞

4 ⩾ 0, suppose x∞
4 > 0. Then, the fourth inequality in (20) gives

x∞
3 ⩾

1
D6

> 0. (21)

It follows from the first inequality in (20) that

D1x∞
1 + D2x∞

1 x∞
2 + x∞

1
1

D6
≤ D1x∞

1 + D2x∞
1 x∞

2 + x∞
1 x∞

3 + D3x∞
1 x∞

3 x4∞ ⩽ S,

which leads to
x∞

1

[
D1 + 1

D6
+ D2x∞

2

]
⩽ S. (22)

The third inequality in (20) gives

x∞
2 ⩾ D5x∞

3 ⩾
D5

D6
, due to x4∞ ⩾ 0 and x∞

3 ⩾
1

D6
. (23)

Now it follows from (22) into (23) that

x∞
1 D1

[
1 + 1 + D2D5

D1D6

]
= x∞

1

(
D1 + 1

D6
+ D2D5

D6

)
⩽ x∞

1

(
D1 + 1

D6
+ D2x∞

2

)
⩽ S,

that is,
x∞

1 D1 R1 ⩽ S = R0
D1D4D5

1 + D2D5
, or x∞

1
1 + D2D5

D4D5
R1 ⩽ R0.

If x∞
1

1+D2D5
D4D5

⩾ 1, then we have R0 ⩾> R1, a contradiction with the given condition 1 < R0 < R1.
We claim that x∞

1
1+D2D5

D4D5
⩾ 1 is true under the assumption x∞

4 > 0. The inequality x∞
1

1+D2D5
D4D5

⩾ 1 is
equivalent to x∞

1 ⩾ D4D5
1+D2D5

. On the other hand, it follows from the second inequality in (20) that

D4x∞
2 ⩽ (D2x∞

2 + x∞
3 ) x∞

1 ⇐⇒ x∞
1 ⩾

D4x∞
2

D2x∞
2 + x∞

3
> 0 (since x∞

2 > 0, x∞
3 > 0).
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Fig. 2. Bifurcation diagram for system (8) showing the equilibrium solutions Ē1, Ē2 and Ē3, where H1 and H2 denote the Hopf
bifurcation points, solid and dotted lines/curves represent stable and unstable equilibrium solutions, respectively.

Further, it follows from the inequality x∞
2 ⩾ D5x∞

3 that

x∞
2 ⩾ D5x∞

3 ⇐⇒ x∞
2 + D2D5x∞

2 ⩾ D5D2x∞
2 + D5x∞

3 ⇐⇒ D4x∞
2

D2x∞
2 + x∞

3
⩾

D4D5

1 + D2D5
,

and so combining the above two inequalities we obtain x∞
1 ⩾ D4D5

1+D2D5
, yielding R0 ⩾ R1. This contradiction

implies that assuming x∞
4 > 0 is not true. Hence, x∞

4 = 0 for 1 < R0 < R1. Since 0 ⩽ x4∞ ⩽ x∞
4 , we also

have x4∞ = 0. Thus, limτ→∞ x4(τ) = 0.
Finally, having proved limτ→∞ x4(τ) = 0, we consider the following limiting system,

ẋ1 = S − D1x1 − D2x1x2 − x1x3,

ẋ2 = D2x1x2 + x1x3 − D4x2,

ẋ3 = x2 − D5x3.

This system has an equilibrium (x∗
1, x∗

2, x∗
3) and it is easy to use a Lyapunov function to prove that it is

globally asymptotically stable if R0 ∈ (1, R1) [15]. That is to say, limτ→∞(x1(τ), x2(τ), x3(τ), x4(τ)) =
(x∗

1, x∗
2, x∗

3, 0) if R0 ∈ (1, R1). □

It should be noted that the fluctuation lemma can also be used to prove the global stability of the equilibria
Ei, i = 1, 2, 3 of system (7). We present both methods to show different approaches in proving global stability
of equilibria.

Summarizing the results obtained in this section, we can conclude that the disease-free equilibrium Ē1
is GAS for R0 < 1, and becomes unstable for R0 > 1, for which the equilibrium Ē2 exists and is GAS for
1 < R0 < R1. For R0 > R1, the equilibrium Ē3 exists, however it may lose its stability at a critical point
R0 = RH > R1 at which Hopf bifurcation occurs. The bifurcation diagram for system (8) with R0 as the
bifurcation parameter is depicted in Fig. 2. But as the strength of the cell-to-cell interaction increases, the
Hopf bifurcation may disappear, and the positive equilibrium becomes stable. Further, the interaction of the
effect of the involvement and the humoral immune response also plays an important role, and may generate
Hopf bifurcation if the humoral immune response reaches certain critical values. To demonstrate the effect
of the cell-to-cell interaction in terms of D2 (i.e., with respect to the original parameter β2), we show a
2-parameter bifurcation (D2, R0) diagram for Hopf bifurcation, as depicted in Fig. 3, where for definite,
instead of the general R0, we use S. It is seen from this figure that the model (8) always has two Hopf
bifurcation points for D2 ⩾ 0 (i.e., β2 ⩾ 0), with the smaller one being almost a constant with respect to
S when D2 is increasing, while the larger one being decreasing with respect to S when D2 is increasing. In
other words, as D2 (or β2) increases, the interval S ∈ (H1, H2) is decreasing, implying that the equilibrium
Ê3 becomes more stable.
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Fig. 3. Two-parameter (D2, S) Hopf bifurcation diagram for system (8) for D6 = 12, with the vertex of the curve at (S, D2) =
(4070.22, 6.920 × 10−4).

Remark 2. Since the models (7) and (8) have the same basic reproduction number R0 (which does not
involve D3 or γ) and the same equilibria E1 and E2, the stability and bifurcations of E1 and E2 for these two
models are identical, regardless the value of D3 or γ, implying that the effect of involvement has no impact at
all on these two equilibrium solutions and their stability. In other words, the involvement becomes effective
only if R0 reaches the critical value R1 for which the immune system is activated and the lymphocytes are
released to kill the virus. In the next section, we will show that when the “involvement” term −γTV A is
added, the positive equilibrium Ē3 may become unstable, leading to Hopf bifurcation. This indicates that
the effect of the involvement can yield oscillating dynamical behavior, which may be more appropriate to
describe the real situation. However, it is noted that when D3 = 0 (or γ = 0), the systems (7) and (8) (or
(3) and (5)) are identical and thus Ē3 = E3 is GAS. This implies that the model (8) is essentially the same
as the model (7) if the effect of the involvement (measured by the parameter D3 or γ) is small. Moreover,
when oscillations occur due to Hopf bifurcation, with the increase, for example, of D2 or β2 (indicating the
strength of cell-to-cell interaction), increasing the effect of involvement can suppress the oscillations. From
the viewpoint of biology, this means that releasing more lymphocytes will kill more virus and suppress the
oscillating behavior, but not completely clean virus. In order to further illustrate the relation between the
parameters D2 and D3, we plot another 2-parameter (D2, D3) bifurcation diagram, as shown in Fig. 4. It
is seen from this figure that there does not exist Hopf bifurcation for D3 = 0, as expected. It is also seen
that for small values of D3 (e.g., D3 < 2), the Hopf bifurcation curve monotonically increases very rapidly
as D2 increases; but for non-small values of D3 (e.g., D3 > 2), the Hopf bifurcation cure is almost saturated
with respect to D2. This implies that the model (8) always has oscillations with the increase of D3 when
D2 ⩽ 5 × 10−4, but no oscillation at all for D2 > 5 × 10−4.

4. Hopf bifurcation in system (8)

Now we turn to consider Hopf bifurcation in system (8) from the positive equilibrium Ē3. First, we need
the following lemma to determine the critical point for Hopf bifurcation.

Lemma 4.1 (Theorem 2 in [31]). The necessary and sufficient condition for a general nonlinear differential
system to have a Hopf bifurcation at a fixed point of the system: ẋ = f(x, µ), x ∈ Rn, µ ∈ R, is ∆n−1 = 0,
with other Hurwitz conditions to be held, i.e., ∆i > 0 for i = 1, 2, . . . , n − 2 and bn > 0, leading to that all
the remaining eigenvalues of the Jacobian have negative real parts.
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Fig. 4. Two-parameter (D2, D3) Hopf bifurcation diagram for system (8) for D6 = 12.

Thus, we suppose the characteristic polynomial for the equilibrium Ē3 is P3(λ) = λ4+b1λ3+b2λ2+b3λ+b4,
then

∆1 = b1, ∆2 = b1b2 − b3, ∆3 = b3∆2 − b2
1b4, ∆4 = b4∆3. (24)

It is well known from the Hurwitz criterion that Ē3 is asymptotically stable if ∆i > 0, i = 1, 2, 3, 4. When
b4 = 0, (b1 > 0, b3 > 0, ∆2 > 0), there exists a transcritical bifurcation between Ē2 and Ē3. When b4 = 0,
there are several possibilities that Ē3 may lose its stability. If ∆3 = 0, (b1 > 0, b4 > 0, ∆2 > 0), then by
Lemma 4.1, we know that system (8) has a Hopf bifurcation from Ē3. If b4 = b3 = 0, (b1 > 0, b2 > 0),
then Bogdanov-Takens bifurcation associated with a double-zero eigenvalue occurs. When b4 = b3 = b2 =
0, (b1 > 0), even more complex bifurcation associated with a triple-zero eigenvalue happens. In practical
problems, Hopf and Bogdanov–Takens bifurcations are the two most popular bifurcations to generate
complex dynamics such as bifurcation of limit cycles and homoclinic loops. However, in the following, we
will show that from the equilibrium Ē3 of system (8) the only possible bifurcation is Hopf bifurcation.

Theorem 4.2. For system (8) with positive parameter values, there exists a transcritical bifurcation between
Ē2 and Ē3, at which Ē2 loses its stability and Ē3 emerges to exist. Then the only possible bifurcation which
may occur from Ē3 is Hopf bifurcation, and Bogdanov-Takens bifurcation is not possible.

Proof. We first summarize the results obtained in previous section as follows. Here, instead of R0, we use
S as the bifurcation parameter for convenience.

Ē1 exists for any positive parameter values, GAS for S ∈
(
0, D1D4D5

1+D2D5

)
Ē2 exists for S ⩾ D1D4D5

1+D2D5
, GAS for S ∈

(
D1D4D5
1+D2D5

, D1D4D5
1+D2D5

+ D4D5
D6

)
Ē3 exists for S ⩾ D1D4D5

1+D2D5
+ D4D5

D6
.

(25)

It is easy to see that a transcritical bifurcation occurs between Ē1 and Ē2 when S = D1D4D5
1+D2D5

at which
Ē2 = Ē1 =

(
D4D5

1+D2D5
, 0, 0, 0

)
. In the following we will show that another transcritical bifurcation occurs

between Ē2 and Ē3 when S = D1D4D5
1+D2D5

+ D4D5
D6

at x̂2 = D5
D6

and Ē3 = Ē2 =
(

D4D5
1+D2D5

, D5
D6

, 1
D6

, 0
)
. Therefore,

there are no Hopf bifurcation or any other kind of bifurcations which can occur from the boundary equilibria
Ē1 and Ē2.
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To find possible Hopf bifurcation arising from Ē3, we compute the characteristic polynomial for Ē3 to
obtain P3(λ) = λ4 + b1λ3 + b2λ2 + b3λ + b4, where

b1 = 1
D2

6(1+D2D6x̂2)

{
D2(D6x̂2 − D5)2(D2

6 + D2D6 + D3) + (D6x̂2 − D5)
[

(D3 + 2D2D6)(1 + D2D5)

+D2
6(1 + D1D2 + 2D2D5)

]
+D6

[
(1 + D2D5)2 + D6(D1 + D5)(1 + D2D5) + D4D6

] }
,

b2 = 1
D2

6(1+D2D6x̂2)

{
D2(D6x̂2 − D5)3(D2D6 + D3)

+(D6x̂2 − D5)2[
(D3 + 2D2D6)(1 + D2D5) + D2D6

(
D6(1 + D1) + D2(D4 + D5)

)
+ D2D3D5

]
+(D6x̂2 − D5)

[ (
D6(D6D1 + 1 + D6 + 2D2D4 + 3D2D5) + D3D5

)
(1 + D2D5)

+D3D4 + D1D2D5D2
6

]
+D6

[
D1D6(D4 + D5 + D2D2

5) + (1 + D2D5)2(D4 + D5)
] }

,

b3 = 1
D2

6(1+D2D6x̂2)

{
D2(D6x̂2 − D5)3(1 + D4)(D3 + D2D6)

+(D6x̂2 − D5)2[
(1 + D4)(1 + D2D5)(D3 + 2D2D6) + D2

(
D4D5(D3 + D2D6) + D1D2

6
)]

+(D6x̂2 − D5)
[

D2
6
(
D4 + D1(1 + D2D5)

)
+ (1 + D2D5)

(
D6(1 + D2D5

+3D2D4D5 + D4) + D3D4D5
)]

+D4D5D6(1 + D2D5)2
}

,

b4 = D4 (D6x̂2−D5)
D2

6(1+D2D6x̂2)

{
D2(D6x̂2 − D5)2(D3 + D2D6)

+2(D6x̂2 − D5)(1 + D2D5)(D3 + D2D6) +
[
D6(1 + D2D5) + D3D5

]
(1 + D2D5) + D1D2

6

}
,

where x̂2 is determined from (19). Since the equilibrium Ē3 exists for D6x̂2 − D5 ⩾ 0, we have bi > 0, i =
1, 2, 3, and b4 ⩾ 0.

The equilibrium Ē3 is asymptotically stable if the following conditions hold: ∆i > 0, i = 1, 2, 3, 4. At the
critical point defined by b4 = 0, i.e., S = D1D2D5

1+D2D5
+ D4D5

D6
, Ē2 loses its stability at x̂2 = D5

D6
, and Ē3 emerges

to exist in the cone R4
+, showing that a transcritical bifurcation may occur between the equilibria Ē2 and

Ē3. We need to verify if other stability conditions still hold at b4 = 0. It is easy to see that b1 > 0, b3 > 0
at b4 = 0. Since ∆3 = b3∆2 at b4 = 0, we only need to verify ∆2 > 0. A simple calculation shows that at
b4 = 0, i.e., x̂2 = D5

D6
, we have

∆2|b4=0

= 1
D2

6(1+D2D5)2

{
D6

[
(1 + D2D5)2 + D1D6

]
D2

4

+(1 + D2D5)
[
(1 + D2D5)3 + D6(1 + D2D5)

(
2D1 + D5(1 + D1D2)

)
+ D1D2

6(D1 + 2D5)
]
D4

+D5(1 + D2D5)2(D1D6 + 1 + D2D5)
[
1 + D2D5 + D6(D1 + D5)

] }
> 0.

The above results indeed show that a transcritical bifurcation occurs between Ē2 and Ē3 at the critical point
S = D1D2D5

1+D2D5
+ D4D5

D6
.

Next, we want to investigate what kind of bifurcations can occur from the equilibrium Ē3 for S >
D1D2D5
1+D2D5

+ D4D5
D6

, under which b4 > 0. Now all bi > 0, i = 1, 2, 3, 4, we only need to consider ∆2 and

∆3. It is easy to obtain from ∆3 = b3∆2 − b2
1b4 that ∆3

b3
= ∆2 − b2

1b4
b3

< ∆2, which implies that when S is
increasing from the critical point S = D1D2D5

1+D2D5
+ D4D5

D6
. ∆3 will cross zero before ∆2 does. This means that

the only possible condition under which Ē3 loses its stability is ∆3 = 0 at which Hopf bifurcation occurs.
Moreover, a simple computation shows that

b3|b4=0 = D4D5(1 + D2D5)
D6

> 0,

which implies that no feasible parameter values exist for the model (8) to have Bogdanov-Takens bifurcation
from the equilibrium Ē3.
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In order to find the parameter values under which Hopf bifurcation does occur from the equilibrium Ē3
of system (8). So substituting bi’s into ∆3 = b3(b1b2 − b3) − b2

1b4 and using the quadratic equation (19) to
eliminate higher order powers of x̂2 yields an equation, B1x̂2 + B0 = 0, where B1 and B0 are polynomials
in system parameters, which in turn gives{

2D4D6(D3 + D2D5)B0 +
[
SD2D2

6 + D4
[
D3D5 − D6(1 + D1D6)

]]
B1

}2

− B2
1
{[

SD2D2
6 + D4

(
D3D5 − D6(1 + D1D6)

)]2 + 4SD4D2
6(D3 + D2D6)

}
= 0,

from which we can obtain a very lengthy multivariate polynomial F (S, Di) = 0. This multivariate
polynomial can be used to determine the Hopf critical point.

Even with the explicit function F (S, Di), in general it is still very difficult to prove the existence of the
Hopf critical point due to the very complex expression of the function and multiple parameters involved.
However, when some parameters are fixed (as shown in the following examples), it is possible to use the
function F (S, Di) to obtain the critical parameter values in terms of other remaining parameters. Thus, the
Hopf bifurcation indeed exists for various feasible parameter values. □

Now we consider the stability of the equilibrium Ē3 of model (8), compared with the original model (5).
Note that if we take β2 = 0 in system (5) (or D2 = 0 in system (8)), i.e., the cell-to-cell interaction is not
considered (which changes the basic reproduction number R0), then the reduced system has been studied
in [24], where the parameter values given in Table 1 are used, showing the existence of Hopf bifurcations at
the critical parameter values: q1 = 0.6493 and q2 = 74.2520.

Next, consider β2 > 0. Since system (8) exhibits Hopf bifurcation for β2 = 0, it is expected that the
system also undergoes Hopf bifurcation for small values of β2. For example, choosing β2 = 0.0107, we can
show that system (5) has Hopf bifurcations at the critical values: q1 = 2.8738 and q2 = 8.3010. As the value
of β2 is increasing, the gap between the two critical values q1 and q2 becomes smaller and smaller, until
q1 and q2 coincide at a critical point at which Hopf bifurcation disappears. Then, all the equilibria become
asymptotically stable for corresponding parameter values.

To demonstrate the dynamical behavior of system (8) (or system (5)) with respect to parameters, in the
following, we present bifurcation diagrams for several combinations of parameters. We use the parameter
values used in [16,17,32], as given in Table 1 and the above function F (S, Di) to consider Hopf bifurcation.
The used parameter values in decimal point format are transformed to rational numbers for the convenience
in symbolic computation, as given below:

s = 1, β1 = p = 1
10 , β2 = 4

625 , d1 = 833
100000 , δ = 1

2 , d2 = 72, γ = d3 = 1
20 , k = 8.

We choose D6 (originally q) as the primary bifurcation parameter with the second bifurcation parameter D2
(originally β2), or D3 (originally γ), or S (originally s) to present two-parameter bifurcation diagrams.

First, consider the (D6, D2)-bifurcation diagram, which can be obtained from plotting the polynomial
equation F (D6, D2) = 0 on the D2-D6 plane, which has also been verified by AUTO07P [33], as shown
in Fig. 5(a). Moreover, besides the blue curve representing the Hopf bifurcation, four Hopf critical points
are shown at D2 = 0 and D2 = 0.0004 (see the red dotted line), marked by the black circles. Note that
according to the typical parameter values given in Table 1, the dimensionless parameter D2 has a typical
value D2 = β2d3

kβ1
= 0.0064×0.05

8×0.1 = 0.0004. Therefore, taking small values for D2 is biologically meaningful.
These four critical Hopf critical points are solved from the equation F (S, Di) = F (6400, D6) = 0, given by

D2 = 0 : D1
6H1

= 6.5055, D1
6H2

= 58.9276;
D2 = 0.0004 : D2

6H1
= 10.4228, D2

6H2
= 35.4659.

(26)

When D6 is increased from D1
6H1

, the two complex eigenvalues of Jacobian matrix of system (8), evaluated
at the stationary point, move into the right half of the complex plane. So the solutions along the stationary
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Fig. 5. (a) Two-parameter (D2, D6) Hopf bifurcation diagram of system (8), where the horizontal red line is D2 = 0.0004; (b)
Bifurcation diagram of system (8) for D2 = 0 with a zoomed area at the lower left corner, where H1 and H2 denote Hopf bifurcation
points, and TC denotes a transcritical bifurcation point, with the solid and dotted curves to denote stable and unstable solutions,
respectively; (c) Bifurcation diagram of system (8) for D2 = 0.0004, where H1 and H2 denote Hopf bifurcation points, and TC denotes
a transcritical bifurcation point, with the solid and dotted curves to denote stable and unstable solutions, respectively; and (d) The
period of bifurcating limit cycles of system (8) vs. D6 when D2 = 0. The red curves in (b) and (c) indicate the periodic solutions,
while the black curves denote the equilibrium solution. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

branch become unstable. At the right Hopf bifurcation point D1
6H2

the eigenvalues move back into the left half
of the complex plane if D6 is further increased from D1

6H2
, and the solutions along the branch of stationary

solutions regain stability. So, according to Hopf bifurcation theorem, a family of small-amplitude periodic
solutions emanates from the bifurcation point D1

6H1
or D1

6H2
. To see the bifurcation property more clearly,

we plot the one-parameter (D6) bifurcation diagrams for D2 = 0 and D6 = 0.0004, which are given in
Fig. 5(b) and (c), respectively, where the L2-norm is the Euclidean norm defined as

√
x2

1 + x2
2 + x2

3 + x2
4.

The bifurcation diagrams include one transcritical bifurcation point TC and two Hopf bifurcation points H1

and H2. It is seen from Fig. 5(a) that two stable limit cycles are born from the two Hopf critical points and
a family of periodic solutions occurs, showing that the periodic bifurcation branches are connected when
D6 is varied. Here, the stability of the limit cycles is determined numerically. Theoretically, we may apply
normal form theory to calculate the first Lyapunov constant (or the first-order focus value) to determine
the stability of bifurcating limit cycles. Since for our system, determining the Hopf critical point is already
very complex, computing the normal form for the 4-dimensional system will become extremely difficult (even
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Fig. 6. Simulated time history of x3 of system (8), with the initial point (x1, x2, x3, x4) = (14 400, 160, 0, 40), showing the recurrence
phenomenon for S = 6400, D1 = 0.1666, D4 = 10, D5 = 1440: (a) when D2 = 0, D3 = 1.25, D6 = 9; and (b) when D2 = 0.0004,
D3 = 6, D6 = 12.

combining symbolic and numerical approaches), and so we do not pursue further on the analytic stability
of limit cycles. However, it should be noted that the branch of periodic orbits born from two different Hopf
bifurcation points may not be always connected as unstable limit cycles can occur from Hopf bifurcation,
see, for example, [34]. Here, it is seen from Fig. 5(b) and (c) that oscillating motion emanating from the
left Hopf bifurcation point H1 persists until the right Hopf bifurcation point H2 is reached. The period of
the oscillations for D2 = 0 along the branch of periodic solutions is given in Fig. 5(d). When D2 ̸= 0
(i.e., β2 ̸= 0), system (8) undergoes Hopf bifurcation when D2 increases from 0 to 5.2242 × 10−4, and the
two Hopf bifurcations coincide at D2 = 5.2242 × 10−4, and then disappear for D2 > 5.2242 × 10−4. In other
words, as shown in Fig. 5(c), the distance between the two Hopf bifurcation points becomes smaller and
smaller when D2 is increasing, and reaches zero at D2 = 5.2242 × 10−4.

Further, it is seen from Fig. 5(b) that there exists a window between the two Hopf critical points for which
all equilibria are unstable, and the amplitude of the oscillation grows very fast when the Hopf critical point
is crossed. The simulated time history for D2 = 0, D3 = 1.25 and D6 = 9 (and other parameter values are
given in (10)) is given in Fig. 6(a), showing a special oscillation behavior, called recurrence. This interesting
phenomenon, characterized by short episodes of high viral reproduction, separated by long periods of relative
quiescence, is often observed in many persistent infections, including the “viral blips” observed during chronic
infection with the human immunodeficiency virus (HIV). This special oscillation appears for most of the
interval D6 ∈ (D6H1 , D6H2) (see Fig. 5(b) and (c)). Note that the phenomenon disappears as D2 reaches
D2 = 5.2242×10−4 since the two Hopf critical points coincide and Hopf bifurcation vanishes. It is easy to see
from Fig. 6(a) that the time history of x3 (which is the density of the dimensionless virus) has a very “flat”
bottom, implying that the HIV level keeps almost zero for a period of about τ = 6 unit. Transforming it back
to the original time tperiod = τ

d3
= 6

0.05 = 120 days, which indeed clearly indicates a recurrence behavior.
Although these blips have been the focus of much recent research, their etiology is still not well-understood.
Recently, Zhang et al. [35,36] applied dynamical system theory to study the recurrence phenomenon using
simple ODE models, and developed an efficient approach to identify this phenomenon.

Next, consider (D6, D3)-bifurcation diagram, which can be similarly obtained, as shown in Fig. 7(a),
where D2 is taken as D2 = 0.0004. As we have seen that when D3 = 0 (i.e., γ = 0), model (8) is reduced
to model (7) which does not have Hopf bifurcation. However, increasing D3 from zero would bring the Hopf
bifurcation back at a critical value. It is seen from Fig. 5(a) that no Hopf bifurcation exists for D2 = 0.0004
and D6 < 10.4228. We choose D6 = 12 and then increase D3 (i.e., γ) from zero. It can be seen from
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Fig. 7. (a) Two parameter (D6, D3) Hopf bifurcation diagram of system (8) for D2 = 0.0004; with the dotted curve representing
the unstable equilibrium solution; (b) one-parameter bifurcation diagram for system (8) with D6 = 12, where H denotes the Hopf
bifurcation point, and the red curve denotes the amplitude of periodic orbits, with the solid and dotted curves representing the stable
and unstable equilibrium solutions, respectively; (c) the period of bifurcating limit cycles of system (8) vs. D3 when D6 = 12; and
(d) two parameter (D2, D3) Hopf bifurcation diagram of system (8) when D6 = 12. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Figs. 7(b) and 8 that the components x1, x2 and x4 have a similar trend – decrease monotonically, while
x3 ≈ 0.0551 – a constant until a supercritical Hopf bifurcation occurs, yielding stable limit cycles. It is
interesting to note that the period of the bifurcating limit cycles, as shown in Fig. 7(c), almost becomes a
constant for large values of D3. This implies that even if the density of the HIV in blood (in terms of V ) keeps
unchanged, the oscillation behavior can be induced by the effect of the involvement. Biologically speaking,
once a patient is infected by the HIV, although the density of the HIV in blood is kept at a constant level,
the patient may go through a sudden occurrence of HIV, and then continue to keep the density of the HIV
in blood a constant, yielding the recurrence phenomenon [35,36]. An example for D2 = 0.0004, D3 = 6 and
D6 = 12 (and other parameter values are given in (10)) is shown in Fig. 6(b). It should be noted that unlike
the case D2 = 0, for this case (D2 ̸= 0) the system can always have blips as D3 increases from D3 = 0.4745,
though the relaxation does not have so “flat” bottom like that shown in Fig. 6(a) when D2 = 0. Similarly,
the period is about tperiod = τ

d3
= 3

0.05 = 60 days. Further, it is seen from Fig. 7(a) that Hopf bifurcation
starts at the critical point D3 = 0.4745, and no Hopf bifurcation can happen if D3 is below this critical
value. Moreover, there exists only one Hopf bifurcation point for every fixed value of the parameter D6.
If we take the parameter D6 as the primary bifurcation parameter and fix D2 = 0.0004, then we obtain
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Fig. 8. One-parameter bifurcation (D3) diagrams for system (8) with D6 = 12, projected on (a) the D3-x1 plane, (b) the D3-x2
plane, (c) the D3-x3 plane, and (d) the D3-x4 plane, where H denotes the Hopf bifurcation point, the red curve denotes the periodic
orbit branch. The solid/dotted lines/curves represent, respectively, stable and unstable equilibrium solutions.

the one-parameter bifurcation diagrams, shown in Fig. 9(a)–(d) for different projections with respect to the
variables x1, x2, x3 and x4, corresponding to the dimensionless densities of the uninfected CD4+T cells, the
infected CD4+T cells, the immunodeficiency virus (HIV), and pathogens-specific lymphocytes, respectively.
It is seen from these bifurcation diagrams that the densities of the uninfected cells and the pathogens-specific
lymphocytes have a similar trend in changes, and that of the infected cells and the pathogens in blood also
have a similar trend in changes. It should be pointed out here that the bifurcation comparison (with D6 as the
bifurcation parameter and fixed D2 = 0.0004) is between the four components xk, showing the similarity of
dynamics between the different components, is different from that as shown in Fig. 5 where the bifurcation
comparison is considered for two different values D2 = 0 and D2 = 0.0004 (with D6 as the bifurcation
parameter), but for general L2-norm (which denotes the average amplitude of motions).

Finally, we consider (D6, S)-bifurcation diagram of system (8), which is shown in Fig. 10, displaying two
saddle–node bifurcation (SN) points at (D6, S) = (1.2805×102, 1.7627×103) and (D6, S) = (9.2899, 5.2411×
103), and a Generalized Hopf bifurcation (GH) or Bautin bifurcation at the point (D6, S) = (1.1027 ×
102, 2.0077 × 103) at which the first Lyapunov coefficient vanishes and the second Lyapunov coefficient is
obtained as −2.2130 × 10−9. This implies that two limit cycles exist via appropriate perturbations on D6

and S, with outer limit cycle stable and inner one unstable.



24 Y. Xu, Y. Yang, F. Meng et al. / Nonlinear Analysis: Real World Applications 54 (2020) 103109

Fig. 9. One-parameter bifurcation (D6) diagrams for system (8), projected on (a) the D6-x1 plane, (b) the D6-x2 plane, (c) the
D6-x3 plane, and (d) the D6-x4 plane.

Fig. 10. Two-parameter (S, D6) bifurcation diagram of system (8) with D2 = 0.0004, where H denotes Hopf bifurcation branch (a
closed cycle), TC denotes the transcritical bifurcation branch, SN and GH denote the saddle–node bifurcation point and generalized
Hopf bifurcation point, respectively, with (D6, S)SN1 = (9.2899, 5.2411 × 103), (D6, S)SN2 = (1.2805 × 102, 1.7627 × 103) and
(D6, S)GH = (1.1027 × 102, 2.0077 × 103).

Remark 3. Multiple Hopf bifurcations occurring from a same equilibrium is a quite common phenomenon

in disease systems (or more generally in biological systems), e.g. see the HIV model in [36]. This implies that
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disease oscillation only happens for certain average parameter values. For model (8), for example, choosing
D6 (or q) as the bifurcation parameter and fix other parameter values, the oscillating behavior only occurs for
D6 ∈ (D6H1 , D6H2), and the oscillations become equilibrium Ē3 for D6 < D6H1 or D6 > D6H2 . Biologically,
this shows that when the immune system starts to activate to release the lymphocytes (whose strength is
measured by the parameter q) to kill the virus, the system stays at the equilibrium Ē3 at the beginning; when
the lymphocytes are increasing to reach certain critical value, oscillations are trigged which continue till the
lymphocytes reach another larger critical value at which the oscillations are suppressed and the equilibrium
Ē3 is resumed. This suggests that a good control strategy should not let the immune system over activated,
but keep at a suitable level such that the system can stay at the equilibrium Ē3 rather than oscillations.

5. Existence of forward transcritical bifurcation

In this section, we analyze forward bifurcations which occur at the transcritical bifurcation points by
applying center manifold theory [36]. Since the analysis for system (7) is similar to system (8), we will only
give a detailed analysis for system (8).

Suppose R0 = 1, then the stability condition of Ē1 for system (8) becomes D1D4D5 − S(1 + D2D5) = 0,
showing that the characteristic equation has one simple zero eigenvalue and three negative eigenvalues:
−1, −D1 and − S+D1D2

5
D1D5

.
There is a right eigenvector associated with the zero eigenvalue, given by w = (w1, w2, w3, w4)T =

(− (1+D2D5)S

D2
1

x3, D5x3, x3, 0)T . The left eigenvector is v = (v1, v2, v3, v4) = (0, D1D5
S y3, y3, 0). Upon using

the orthogonal condition ⟨v, w⟩ = 1, we obtain

x3y3 = S

D1D2
5 + S

.

It follows from R0 = 1 that D2 = D∗
2 = S−D1D4D5

D5S . Thus, model (8) can be rewritten as dx
dt = f , with

x = (x1, x2, x3, x4)T and f = (f1, f2, f3, f4)T , where

f1 = S − D1x1 − D2x1x2 − x1x3 − D3x1x3x4,

f2 = D2x1x2 + x1x3 − D4x2,

f3 = x2 − D5x3 − D6x3x4,

f4 = D6x3x4 − x4.

(27)

The bifurcation coefficients in this compartmental model at Ē1 are given as follows:

a =
4∑

i,j,k=1
viwjwk

∂2fi

∂xj∂xk
(Ē1, D∗

2), b =
4∑

i,j=1
viwj

∂2fi

∂xj∂D2
(Ē1, D∗

2).

Since v1 = v4 = 0, we only need to consider the cross derivatives of f2 and f3 in system (27) at the equilibrium
Ē1, yielding the following non-zero terms:

∂2f2

∂x1∂x2
= ∂2f2

∂x2∂x1
= D2,

∂2f2

∂x1∂x3
= ∂2f2

∂x3∂x1
= 1,

∂2f3

∂x3∂x4
= ∂2f3

∂x4∂x3
= −D6,

∂2f2

∂D2∂x2
= ∂2f2

∂x2∂D2
= x∗

1 = S

D1
.

In order to determine whether the transcritical bifurcation is forward or backward, we consider the
direction of the transcritical bifurcation by computing the following values (e.g., using the formulas in [36]):

a = v2

4∑
i,j=1

wjwk
∂2f2

∂xj∂xk
(Ē1, D∗

2) + v3

4∑
i,j=1

wjwk
∂2f3

∂xj∂xk
(Ē1, D∗

2) = − 2D5
(1 + D∗

2D5)2

D1
x2

3y3,
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and

b = v2

4∑
j=1

wj
∂2f2

∂xj∂D2
(Ē1, D∗

2) + v3

4∑
j=1

wj
∂2f3

∂xj∂D2
(Ē1, D∗

2) = 2D2
5x3y3.

Without loss of generality, we take x3 > 0 and y3 > 0, which gives b > 0. According to [36], the local
dynamics of the system near the equilibrium Ē1 depends upon the signs of a and b. Since all the parameters
in system (8) are positive, we obtain a < 0 and b > 0. This indicates that the transcritical bifurcation from
the equilibrium Ē1 is a forward bifurcation.

Remark 4. It has been shown that the parameter D3 in the term D3x1x3x4 of system (8) has no effect on
the bifurcation between the equilibria Ē1 and Ē2, and the infection-free equilibrium Ē1 is exactly the same
as E1 of system (7), we know that the transcritical bifurcation in system (7) from the equilibrium E1 is also
a forward bifurcation.

6. Conclusion and discussion

In this paper, we have studied the effect of cell-to-cell interaction in two HIV models. The difference
between the two models lies in the inclusion or omission of the effect of the involvement. Both the two
models have three equilibria: the infection-free equilibrium, the infectious equilibrium with specific immune
cells absent, and the positive equilibrium which includes immune cells. Their local and global stability are
fully analyzed to show that

(1) When the basic reproduction number R0 ⩽ 1, the disease-free equilibrium is GAS (globally asymptot-
ically stable).

(2) When R0 > 1, the disease-free equilibrium becomes unstable and the infectious equilibrium exists,
which is GAS for 1 < R0 ⩽ R1.

(3) When R0 > R1, the infectious equilibrium becomes unstable and the positive equilibrium appears,
which is GAS for system (7) or the original model (3).

(4) For system (8) or the original model (5), when R0 > R1, the positive equilibrium loses its stability and
two Hopf bifurcations occur. However, with the increasing of cell-to-cell interaction, the gap between
the two Hopf bifurcation points decreases to zero at which the two Hopf bifurcation points coincide.

(5) Forward bifurcation appears in the two models at the transcritical bifurcation points.
(6) The cell-to-cell interaction considered in model (3), which is ignored in model (2), does not affect the

stability of equilibria in model (3). However, the effect of the involvement in model (5), which is ignored
in model (3), generates the recurrence phenomenon.

Moreover, we have presented a detailed analysis to identify Hopf critical points and performed various
parameter studies related to Hopf bifurcations. For stability analysis, instead of the Lyapunov function
which is not easy to be found due to the cubic term γTV A, we have applied fluctuation lemma to prove
the global stability of the infection-free equilibrium and the infectious equilibrium. One-parameter and two-
parameter bifurcation diagrams are used to display two families of limit cycles bifurcating from the two Hopf
bifurcation points. It has been shown that even for small effect of involvement, the stability of the equilibria
is significantly affected, which is usually destabilized. However, with the increasing of cell-to-cell interaction,
the instability caused by the effect of the involvement can be balanced. Furthermore, if the coefficient of
the cell-to-cell interaction is fixed, then the effect of the involvement will always lead to the occurrence of
Hopf bifurcation when the humoral immune response reaches a critical value. From the viewpoint of biology,
our study has indicated that although the disease considered in our models is recrudescent, the situation of
patients may be improved by taking some medicine to increase the level of humoral immunity, and then the
densities of infected cells and pathogens of patients would decrease until a critical value is reached at which
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Hopf bifurcation occurs. It has been known that the effect of the involvement can also affect the stability
of the positive equilibrium in the model of malaria infection [23], which even incorporated cell-mediated
immunity. Thus, we may speculate that the sustained oscillations generated from Hopf bifurcation may
disappear if the intensity of humoral immune response is increased. It is well known that many infectious
diseases exhibit periodic symptoms, which may be explained by the oscillation due to Hopf bifurcation.
Therefore, based on the study of the models (7) and (8), we may conclude that the effect of the involvement
could be one of the main causes to generate the periodic behavior in HIV and malaria diseases. In particular,
we find that the HIV carriers may go through a sudden occurrence (or recurrence) of HIV even the density
of human immunodeficiency virus keep unchanged. In addition, we have shown the existence of generalized
Hopf bifurcation (Bautin bifurcation), which may explain more complex behavior in disease models or other
biological systems. This is out of the scope of this paper and will be investigated in future study.
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