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In this paper, we design a series of chaotic systems that can generate one-directional,
two-directional and three-directional multi-scroll chaotic attractors. Then, based upon the
properties of these chaotic systems, we construct appropriate Lyapunov functions and
design simple linear feedback controls to globally exponentially stabilize and synchronize
these chaotic systems. Numerical simulation results are also presented to show the
applicability of the proposed control laws.
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1. Introduction

The study on multi-scroll chaotic attractors has received increasing attention over the past few decades. The first multi-
scroll chaotic attractor can be traced back to Chua’s circuit [1], which displays a double-scroll chaotic attractor. Later,
one-directional n-scroll chaotic attractors were developed [2–9]. Recently the research on multi-scroll chaotic systems
was extended to the study of two-directional and three-directional chaotic attractors [10–12]. Meanwhile, piecewise lin-
ear functions played an important part in the designing of multi-scroll chaotic attractors. Chua’s circuit used piecewise
linear function as the non-linear term [1]. Recent research shows that simple piecewise linear function could be extended
to the multilevel piecewise linear function to generate multi-directional, multi-scroll chaotic attractors [11].

Chaos control and chaos synchronization play a very important role in the study of chaotic systems and have great
significance in the application of chaos. Since chaos is very sensitive to its initial condition, chaos control and chaos syn-
chronization were once believed to be impossible. However, two important discoveries completely changed this situation.
One of them is the OGY method [13] developed in the 1990’s. The other is the concept of chaos synchronization proposed
by Pecora and Garrol [14] in 1990. Up to now, the study of chaos control and chaos synchronization was mostly focused on
classical chaotic systems such as the Lorenz system, Chua circuit, Chen system, Lü system etc. (e.g., see [21–27]). Very few
results have been obtained for chaos control and chaos synchronization of more complicated multi-directional multi-scroll
chaotic attractors.

In this paper, other than applying the traditionally widely used piecewise linear functions, we use hyperbolic function
series in a simple linear system to generate a series of one-directional, two-directional and three-directional multi-scroll
chaotic attractors. The hyperbolic function, as a continuously differentiable function, is easier to analyze chaos control and
chaos synchronization. On the other hand, since hyperbolic tangent function is frequently used to characterize the behavior
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Fig. 1. (a) Sigmoidal hyperbolic function f (x) = tanh(x); (b) piecewise linear “stair” function; (c) hyperbolic tangent function series f (x) =∑1
j=−1 tanh(x + jτ ) with τ = 10; and (d) hyperbolic tangent function series f (x) = ∑2

j=−2 tanh(x + jτ ) with τ = 20, showing the “envelop” tangent

lines to the graph, and the number of intersection points of the line y = 2
τ x with the graph being 4 × 2 + 3 = 11.

of neural networks, such a study may help understand complex dynamical behavior existing in neural networks. Then,
based on the properties of the chaotic system, we design simple feedback controls to globally exponentially stabilize and
synchronize the chaotic systems. Corresponding Lyapunov functions were presented and used to prove the proposed control
laws. Then numerical simulation examples were showed to verify the applicability of the control laws.

The rest of the paper is organized as follows. In Section 2, the hyperbolic tangent function and hyperbolic tangent
function series are defined. Then 1-D-n-scroll, 2-D-m ×n-grid-scroll, 3-D-m ×n × l-grid-scroll chaotic attractors are obtained
in Sections 3, 4 and 5, respectively. Chaos control and chaos synchronization for 1-D-n-scroll, 2-D-m × n-grid-scroll and
3-D-m × n × l-grid-scroll chaotic attractors are studied in Sections 6, 7 and 8, respectively. Conclusion is given Section 9.

2. Definition of hyperbolic tangent function series

The hyperbolic tangent function is described by the following equation:

f (x) = tanh x = sinh x

cosh x
= ex − e−x

ex + e−x
(1)

which, as shown in Fig. 1(a), is monotone increasing for −∞ < x < ∞ and bounded, −1 < tanh(x) < 1. This is a typical
characteristic function in describing many neural networks [15], which can be replaced by piecewise linear functions (see
Fig. 1(b)) particularly used in circuits design. Recently, multilevel piecewise linear functions have been used in CNNs [15].
This multilevel piecewise linear function may be replaced by an infinitely differentiable function, described by the following
so-called hyperbolic tangent function series:

F (x) =
s∑

tanh(x + jτ ), (2)

j=−r



254 F. Xu, P. Yu / J. Math. Anal. Appl. 362 (2010) 252–274
where the parameter τ is a positive real value, while the parameters r and s are non-negative integers. The function F (x)
is depicted in Fig. 1(c), indicating that this function smooths the multilevel piecewise linear function (shown in Fig. 1(b)).

The basic idea in generating multi-scroll chaotic attractors is to add the above hyperbolic tangent function series to a
linear system, given by [11]

ẋ = y,

ẏ = z,

ż = −ax − by − cz, (3)

where a,b and c are constant parameters. It is easy to see that the unique equilibrium point of the linear system (3) is the
origin (x, y, z) = (0,0,0). A linear analysis shows that when

a > 0, c > 0, bc > a,

the equilibrium point is asymptotically stable.

3. Design of 1-D-n-scroll chaotic attractors

Based on (3), our proposed model for 1-D chaos generator is given as follows:

ẋ = y,

ẏ = z,

ż = −ax − by − cz + a
τ

2

[
(r − s) +

s∑
j=−r

tanh(x + jτ )

]
, (4)

where a,b, c and τ are positive real values, while s and r take non-negative integers, determining the maximum number of
chaotic scrolls.

For example, when a = b = c = 0.65, τ = 100, and s = r = 0, a double-scroll chaotic attractor can be obtained, as shown in
Fig. 2(a) and (b). The time history for the x component is depicted in Fig. 2(c). The double-scroll chaotic system (4) has three
equilibrium points, S0 = (0,0,0) and S1,2 = (±50,0,0). The eigenvalues associated with the equilibrium point S0 are λ1 =
2.9036 and λ2,3 = −1.7768 ± 2.7949i, indicating that S0 is a saddle point of index one since the real part of the conjugate
eigenvalues is negative. The eigenvalues associated with the equilibrium points S1,2 are λ1 = −0.8217 and λ2,3 = 0.0858 ±
0.8853i, implying that S1,2 are saddle points of index two since the real part of the conjugate eigenvalues is positive. It
is known that only equilibria of saddle point of index two can generate scrolls [16,17]. Therefore, S1,2, corresponding to
the two equilibria of saddle points of index two, are responsible for the generation of the double scrolls, while S0, on the
other hand, is responsible for the connection of the two chaotic scrolls. Another approach to determine whether a system
is chaotic or not is to compute its Lyapunov exponents. If a system has at least one positive Lyapunov exponent, and all
the trajectories are ultimately bounded, then the system is chaotic [18]. A chaos is called hyperchaos if the system has two
or more positive Lyapunov exponents. For system (4) with the given parameter values, numerical simulation results show
that trajectories are bounded for different initial points. Further, a numerical method [19] has been employed to obtain the
following three Lyapunov exponents:

L1 = 0.1069, L2 = −0.005, L3 = −0.7520.

Hence, L1 > 0 implies that the system is chaotic. The simulation result of the Lyapunov exponents is shown in Fig. 1(d).
When proper coefficients are chosen, system (4) can have (r + s + 1) saddle points of index one (denoted by Γx) and

(r + s + 2) saddle points of index two (denoted by Γ ∗
x ):

Γx ≈ {
sτ , (s − 1)τ , . . . ,−rτ

}
,

Γ ∗
x ≈

{
(2s + 1)

τ

2
, (2s − 1)

τ

2
, . . . ,−(2r + 1)

τ

2

}
, (5)

where the subscript x denotes the non-zero coordinate of the saddle points. Equilibrium points in set Γ ∗
x , which have

corresponding eigenvalues λ1 < 0 and λ2,3 = ξ ±ηi with ξ > 0 and η �= 0, are responsible for the generation of the r + s + 2
scrolls. Equilibrium points in set Γx , which have corresponding eigenvalues λ1 > 0 and λ2,3 = ξ ± ηi with ξ < 0 and η �= 0,
are responsible for the connection of the r + s + 2 scrolls. Thus, system (4) can generate as many as r + s + 2 chaotic scrolls.
For example, when a = b = c = 0.65, τ = 100, s = r = 3, the corresponding hyperbolic tangent function series can produce
8-scroll chaotic attractors, see Fig. 3(a) and (b), and the time history for the x component is shown in Fig. 3(c).

The equilibrium points and their corresponding eigenvalues are listed in Table 1. It is seen from the table that the equi-
librium points of type two, S7,8, S9,10, S11,12, S13,14, are responsible for the generation of the 8 scrolls, while the equilibrium
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Fig. 2. Simulated results for a double-scroll chaotic attractor of system (4) with a = b = c = 0.65, τ = 100, r = s = 0: (a) the phase portrait in the x–y–z
plane; (b) the phase portrait projected on the x–y plane; (c) the time history x(t); and (d) the Lyapunov exponents.

points of type one, S0, S1,2, S3,4, S5,6, are responsible for the connection of the 8 scroll chaotic attractors. The Lyapunov
exponents are found to be

L1 = 0.1337, L2 = −0.004, L3 = −0.7799,

showing that the system is chaotic. The numerical computation result of these Lyapunov exponents is shown in Fig. 3(d).

4. Design of 2-D-m × n-grid-scroll chaotic attractors

The 2-D multi-scroll chaotic attractors can be obtained by adding two hyperbolic tangent function series to system (3)
to obtain the following system:

ẋ = y − τ2

2

[
(r2 − s2) +

s2∑
j=−r2

tanh(y + jτ2)

]
,

ẏ = z,

ż = −ax − by − cz + a
τ1

2

[
(r1 − s1) +

s1∑
j=−r1

tanh(x + jτ1)

]
+ b

τ2

2

[
(r2 − s2) +

s2∑
j=−r2

tanh(y + jτ2)

]
, (6)

where a,b, c, τ1 and τ2 are positive real values, while r1, r2, s1, s2 are non-negative integers. m and n are determined by

m = r1 + s1 + 2,

n = r2 + s2 + 2. (7)



256 F. Xu, P. Yu / J. Math. Anal. Appl. 362 (2010) 252–274
Fig. 3. Simulated results for 1-D 8-scroll chaotic attractor of system (4) with a = b = c = 0.65, τ = 100, r = s = 3: (a) the phase portrait in the x–y–z plane;
(b) the phase portrait projected on the x–y plane; (c) the time history x(t); and (d) the Lyapunov exponents.

Table 1
Equilibrium points and their corresponding eigenvalues for the case of 8 chaotic scrolls (Fig. 3).

Equilibrium points Corresponding eigenvalues Type of equilibrium points

S0 (0,0,0) 2.9037, −1.7768 ± 2.7949i I
S1,2 (±100,0,0) 2.9037, −1.7768 ± 2.7949i I
S3,4 (±200,0,0) 2.9037, −1.7768 ± 2.7949i I
S5,6 (±300,0,0) 2.9037, −1.7768 ± 2.7949i I
S7,8 (±50,0,0) −0.8217, 0.0858 ± 0.8853i II
S9,10 (±150,0,0) −0.8217, 0.0858 ± 0.8853i II
S11,12 (±250,0,0) −0.8217, 0.0858 ± 0.8853i II
S13,14 (±350,0,0) −0.8217, 0.0858 ± 0.8853i II

Define

Γx ≈ {
s1τ1, (s1 − 1)τ1, . . . ,−r1τ1

}
,

Γ ∗
x ≈

{
(2s1 + 1)

τ1

2
, (2s1 − 1)

τ1

2
, . . . ,−(2r1 + 1)

τ1

2

}
,

Γy ≈ {
s2τ2, (s2 − 1)τ2, . . . ,−rτ2

}
,

Γ ∗
y ≈

{
(2s2 + 1)

τ2

2
, (2s2 − 1)

τ2

2
, . . . ,−(2r2 + 1)

τ2

2

}
, (8)

where the subscripts x and y indicate the non-zero coordinates of the saddle points. Then all equilibrium points of sys-
tem (6) can be classified into the following four different sets:
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Fig. 4. Simulated results for 2-D 4×4-scroll chaotic attractor of system (6) with a = b = c = 0.72, τ1 = τ2 = 100, r1 = r2 = s1 = s2 = 1: (a) the phase portrait
in the x–y–z plane; (b) the phase portrait projected on the x–y plane; (c) the time history x(t); and (d) the Lyapunov exponents.

Γ1 = {
(x, y)

∣∣ x ∈ Γ ∗
x , y ∈ Γ ∗

y

}
,

Γ2 = {
(x, y)

∣∣ x ∈ Γ ∗
x , y ∈ Γy

}
,

Γ3 = {
(x, y)

∣∣ x ∈ Γx, y ∈ Γ ∗
y

}
,

Γ4 = {
(x, y)

∣∣ x ∈ Γx, y ∈ Γy
}
.

A direct calculation shows that only the equilibrium points in set Γ1 are saddle points of index two with eigenvalues
satisfying λ1 < 0 and λ2,3 = ξ ± ηi (ξ > 0 and η �= 0). These equilibrium points are responsible for the generation of
(r1 + s1 + 2)× (r2 + s2 + 2) chaotic attractors. For example, setting a = b = c = 0.72, τ1 = τ2 = 100, and r1 = r2 = s1 = s2 = 1
in system (6), we get a 4 × 4-grid-scroll chaotic attractors, as shown in Fig. 4(a) and (b).

The three Lyapunov exponents for this system are

L1 = 0.1384, L2 = 0, L3 = −0.8590,

implying that the system is chaotic.
Note that the divergence of system (6) is

∇V = ∂ ẋ

∂x
+ ∂ ẏ

∂ y
+ ∂ ż

∂z
= −c < 0. (9)

Hence, the dynamical system described by (6) is dissipative, and an exponential contraction of the system (6) is given by

dV

dt
= e−ct . (10)

Therefore, in dynamical system (6), a volume element V 0 is apparently contracted by the flow into a volume element V 0e−ct

in time t . It means that each volume containing the trajectory of this dynamical system shrinks to zero as t → ∞ at an
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exponential rate c. So, all the trajectories of this system are eventually confined by a specific subset that has zero volume,
and the asymptotic motion settles onto an attractor of system (6).

5. Design of 3-D-m × n × l-grid-scroll chaotic attractors

Similarly, we may generate 3-D-m ×n × l-grid-scroll chaotic attractors by adding three hyperbolic tangent function series
to system (3) to obtain the following system:

ẋ = y − τ2

2

[
(r2 − s2) +

s2∑
j=−r2

tanh(y + jτ2)

]
,

ẏ = z − τ3

2

[
(r3 − s3) +

s3∑
j=−r3

tanh(z + jτ3)

]
,

ż = −ax − by − cz + a
τ1

2

[
(r1 − s1) +

s1∑
j=−r1

tanh(x + jτ1)

]
+ b

τ2

2

[
(r2 − s2) +

s2∑
j=−r2

tanh(y + jτ2)

]

+ c
τ3

2

[
(r3 − s3) +

s3∑
j=−r3

tanh(z + jτ3)

]
, (11)

where a,b, c, τ1, τ2 and τ3 are positive real values, whereas r1, r2, r3, s1, s2, s3 are non-negative integers. m, n and l are
determined by

m = r1 + s1 + 2,

n = r2 + s2 + 2,

l = r3 + s3 + 2. (12)

Similarly, define

Γx ≈ {
s1τ1, (s1 − 1)τ1, . . . ,−r1τ1

}
,

Γ ∗
x ≈

{
(2s1 + 1)

τ1

2
, (2s1 − 1)

τ1

2
, . . . ,−(2r1 + 1)

τ1

2

}
,

Γy ≈ {
s2τ2, (s2 − 1)τ2, . . . ,−r2τ2

}
,

Γ ∗
y ≈

{
(2s2 + 1)

τ2

2
, (2s2 − 1)

τ2

2
, . . . ,−(2r2 + 1)

τ2

2

}
,

Γz ≈ {
s3τ3, (s3 − 1)τ3, . . . ,−r3τ3

}
,

Γ ∗
z ≈

{
(2s3 + 1)

τ3

2
, (2s3 − 1)

τ3

2
, . . . ,−(2r3 + 1)

τ3

2

}
. (13)

Then all equilibrium points of system (11) can be classified into the following eight different sets:

Γ1 = {
(x, y, z)

∣∣ x ∈ Γ ∗
x , y ∈ Γ ∗

y , z ∈ Γ ∗
z

}
,

Γ2 = {
(x, y, z)

∣∣ x ∈ Γ ∗
x , y ∈ Γy, z ∈ Γ ∗

z

}
,

Γ3 = {
(x, y, z)

∣∣ x ∈ Γx, y ∈ Γ ∗
y , z ∈ Γ ∗

z

}
,

Γ4 = {
(x, y, z)

∣∣ x ∈ Γx, y ∈ Γy, z ∈ Γ ∗
z

}
,

Γ5 = {
(x, y, z)

∣∣ x ∈ Γ ∗
x , y ∈ Γ ∗

y , z ∈ Γz
}
,

Γ6 = {
(x, y, z)

∣∣ x ∈ Γ ∗
x , y ∈ Γy, z ∈ Γz

}
,

Γ7 = {
(x, y, z)

∣∣ x ∈ Γx, y ∈ Γ ∗
y , z ∈ Γz

}
,

Γ8 = {
(x, y, z)

∣∣ x ∈ Γx, y ∈ Γy, z ∈ Γz
}
.

Calculations show that only the equilibrium points in sets Γ1,Γ4 and Γ6 are saddle points of index two with eigenvalues
satisfying λ1 < 0 and λ2,3 = ξ + ηi (ξ > 0 and η �= 0). These equilibrium points are responsible for the generation of
(r1 + s1 + 2) × (r2 + s2 + 2) × (r3 + s3 + 2) chaotic attractors. For example, choosing a = b = c = 0.8, τ1 = 160, τ2 = 100,
τ3 = 80, and r1 = r2 = r3 = s1 = s2 = s3 = 2 in system (11), we obtain a 6 × 6 × 6-grid-scroll chaotic attractor, as depicted in
Fig. 5. The time history for the x component is shown in Fig. 6(a).
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Fig. 5. Simulated results for 3-D 6 × 6 × 6-scroll chaotic attractor of system (11) with a = b = c = 0.8, τ1 = 160, τ2 = 100, τ3 = 80, and r1 = t2 = r3 = s1 =
s2 = s3 = 2: (a) the phase portrait in the x–y–z plane; (b) the phase portrait projected on the x–y plane; (c) the phase portrait projected on the x–z plane;
(d) and the phase portrait projected on the y–z plane.

Fig. 6. Simulated results for 3-D 6 × 6 × 6-scroll chaotic attractor of system (11) with a = b = c = 0.8, τ1 = 160, τ2 = 100, τ3 = 80, and r1 = r2 = r3 = s1 =
s2 = s3 = 2: (a) the time history x(t); and (b) the Lyapunov exponents.

Numerical computation gives the following three Lyapunov exponents for the system:

L1 = 0.1256, L2 = 0.0005, L3 = −0.6916,

implying that the system generates a hyperchaos. The computation result of these Lyapunov exponents is shown in Fig. 6(b).
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In system (11), letting r1 = s1, r2 = s2 and r3 = s3 yields

ẋ = y − τ2

2

s2∑
j=−r2

tanh(y + jτ2),

ẏ = z − τ3

2

s3∑
j=−r3

tanh(z + jτ3),

ż = −ax − by − cz + a
τ1

2

s1∑
j=−r1

tanh(x + jτ1) + b
τ2

2

s2∑
j=−r2

tanh(y + jτ2) + c
τ3

2

s3∑
j=−r3

tanh(z + jτ3). (14)

Apparently, system (14) is symmetric about the origin, since the system is invariant under the transformation (x, y, z) →
(−x,−y,−z). Therefore, system (14) with the given parameter values is a special case of system (11), as shown in Fig. 5.

6. Synchronization and stabilization of 1-D-n-scroll chaotic attractors

To further study the global and exponential synchronization of two 1-D-n-scroll chaotic attractors, consider system (4)
as a drive system

ẋd = yd,

ẏd = zd,

żd = −axd − byd − czd + a
τ

2

[
(r − s) +

s∑
j=−r

tanh(xd + jτ )

]
, (15)

where the subscript d indicates the “drive.” Then the corresponding driven (or receiving) system is

ẋr = yr + u1(xd − xr, yd − yr, zd − zr),

ẏr = zr + u2(xd − xr, yd − yr, zd − zr),

żr = −axr − byr − czr + a
τ

2

[
(r − s) +

s∑
j=−r

tanh(xr + jτ )

]
+ u3(xd − xr, yd − yr, zd − zr), (16)

where the subscript r indicates the “receive.” Here, ui ’s are the continuous, linear functions of its variables, satisfying
ui(0,0,0) = 0, i = 1,2,3.

Let

ex = xd − xr, e y = yd − yr, ez = zd − zr .

Then the error system is given by

ėx = e y − u1(ex, e y, ez),

ė y = ez − u2(ex, e y, ez),

ėz = −aex − be y − cez + a
τ

2

s∑
j=−r

f ′(ξ)ex − u3(ex, e y, ez), (17)

where by the intermediate value theorem, f ′(ξ)ex = tanh(xd + jτ ) − tanh(xr + jτ ) with min(xr, xd) < ξ < max(xr, xd). We
will use the property (tanh x)′ = 1 − tanh2 x = sech2 x � 1 < +∞ to study the globally exponential synchronization and
globally exponential stability.

Let X∗ = (x∗, y∗, z∗) denote any equilibrium point of system (4). Then, define X̄ = X − X∗ = (x − x∗, y − y∗, z − z∗). Thus
system (17) can be rewritten as

˙̄x = ȳ − u1(x, y, z),

˙̄y = z̄ − u2(x, y, z),

˙̄z = −ax − b y − cz + a
τ

2

s∑
j=−r

f ′(η)x̄ − u3(x, y, z), (18)

where η is a real value between x and x∗ , and f ′(η)x̄ = tanh(x + jτ ) − tanh(x∗ + jτ ).

Next, we will show that possibly the simplest feedback control laws u1, u2 and u3 can be chosen such that the zero solu-
tion of the error system (17) or 18) is globally exponentially stabilized. Thus, systems (15) and (16) are globally exponentially
synchronized, or the equilibrium point X = X∗ is globally exponentially stabilized.
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Definition 1. With properly chosen feedback control laws ui , ∀(xd(0), yd(0), zd(0)) ∈ R3 and corresponding (xr(0), yr(0),

zr(0)) ∈ R3, if the zero solution of (17) is globally exponentially stabilized (globally asymptotically stabilized), then systems
(15) and (16) are said to be globally exponentially synchronized (globally synchronized).

Definition 2. With properly chosen feedback control laws ui , ∀(xd(0), yd(0), zd(0)) ∈ R3 and corresponding (xr(0), yr(0),

zr(0)) ∈ R3, if the zero solution of (18) is globally exponentially stabilized (globally asymptotically stabilized), then the
equilibrium point X = X∗ of system (4) is said to be globally exponentially stabilized (globally stabilized).

For convenience, we define two simple linear feedback control laws as follows:

u1 = δxex, u2 = δye y, u3 = δzez, (19)

and

u1 = δxx̄, u2 = δy ȳ, u3 = δz z̄, (20)

where δa , δy and δz are called control gain coefficients, to be specified in the following theorems and corollaries.

Theorem 1. For system (17), under the control law (19) if one of the following conditions holds:

(1) δx > 1, δy > 1, δz > a + b − c + a τ
2 (s + r + 1);

(2) δx > a + a τ
2 (s + r + 1), δy > b + 1, δz > 1 − c;

then the zero solution of (17) is globally exponentially stabilized, and thus systems (15) and (16) are globally exponentially synchro-
nized.

Proof. Construct positive definite, radially unbounded vector Lyapunov function for system (17):

V = (|ex|, |e y|, |ez|
)T

.

Along the solution of system (17), evaluating the Dini derivative of V yields⎛
⎝ D+|ex|

D+|e y|
D+|ez|

⎞
⎠

(17)

�

⎡
⎣ −δx 1 0

0 −δy 1
a + a τ

2 (s + r + 1) b −c − δz

⎤
⎦

⎛
⎝ |ex|

|e y|
|ez|

⎞
⎠ . (21)

Consider the comparison equation of system (21):⎛
⎝ η̇x

η̇y

η̇z

⎞
⎠ =

⎡
⎣ −δx 1 0

0 −δy 1
a + a τ

2 (s + r + 1) b −c − δz

⎤
⎦

⎛
⎝ ηx

ηy

ηz

⎞
⎠ := A1

⎛
⎝ ηx

ηy

ηz

⎞
⎠ , (22)

which has the solution:⎛
⎝ ηx(t)

ηy(t)

ηz(t)

⎞
⎠ = e A1(t−t0)

⎛
⎝ ηx(t0)

ηy(t0)

ηz(t0)

⎞
⎠ .

If one of the conditions in Theorem 1 is satisfied, A1 is a Hurwitz matrix [20]. Thus, there exist constants M1 � 1, α1 > 0,
satisfying∥∥e A1(t−t0)

∥∥ � M1e−α1(t−t0).

By the comparison principal, we have∥∥∥∥∥∥
⎛
⎝ |ex(t)|

|e y(t)|
|ez(t)|

⎞
⎠

∥∥∥∥∥∥ �

∥∥∥∥∥∥
⎛
⎝ ηx(t)

ηy(t)

ηz(t)

⎞
⎠

∥∥∥∥∥∥ � M1e−α1(t−t0)

∥∥∥∥∥∥
⎛
⎝ ηx(t0)

ηy(t0)

ηz(t0)

⎞
⎠

∥∥∥∥∥∥ . (23)

Eq. (23) shows that the zero solution of system (17) is globally exponentially stabilized, and thus by Definition 1 we know
that systems (15) and (16) are globally exponentially synchronized. �
Remark 1. One of the criteria in the control design is that the control should not alter the basic structure of the system. An
extreme example of such control is the so-called “cancellation” control, which cancels terms on the right-hand side of the
error system (17), or that of the controlled system (16).
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For the control proposed in Theorem 1, substituting the feedback control (19) into Eq. (16) yields the following controlled
system:

ẋr = yr + δx(xd − xr),

ẏr = zr + δy(yd − yr),

żr = −axr − byr − czr + δz(zd − zr) + a
τ

2

[
(r − s) +

s∑
j=−r

tanh(xr + jτ )

]
. (24)

It is obvious that the original terms yr and zr in the first two equations of (24) are not canceled by the control. For the
third equation, since the control gain δz is either great than a + b − c + a τ

2 (s + r + 1) or greater than 1 − c, the control term
−δz zr cannot cancel the original term zr .

Next, we will present an example of “cancellation” control. Take the following linear control law:

u1 = e y + ex, u2 = ez + e y, u3 = −(aex + be y + cez) + ez, (25)

then the linear terms on the right-hand side of the error system (17) are all canceled and the resulting system becomes

ėx = −ex,

ė y = −e y,

ėx = −ez +
s∑

j=−r

a
τ

2
f ′(ξ)ex, (26)

which is globally asymptotically stable. However, substituting this control law into the corresponding system (17) cancel
all the linear terms on the right-hand side of the system. Such control design (25) is not desirable from the view point of
control theory.

Corollary 1. For any given equilibrium point X = X∗ of system (18), choose the linear control law (20). Then if one of the following
conditions is satisfied:

(1) δx > 1, δy > 1, δz > a + b − c + a τ
2 (s + r + 1);

(2) δx > a + a τ
2 (s + r + 1), δy > b + 1, δz > 1 − c;

X∗ = (x∗, y∗, z∗) can be globally exponentially stabilized.

Remark 2. System (4) may have multiple equilibrium points. However, when the feedback control law (20) is applied, which
is related to the equilibrium point X∗ = (x∗, y∗, z∗), all the other equilibrium points disappear. The only remaining one
becomes the equilibrium point to be globally exponentially stabilized.

Theorem 2. Choose the linear feedback control law (19) for system (17). Then under the conditions:

δx >
1

2
+ a

2b
+ aτ

4b
(s + r + 1), δy >

1

2
, δz > −c + aτ

4
(s + r + 1) + a

2
,

the zero solution of the error system (17) is globally exponentially stabilized, and thus systems (15) and (16) are globally exponentially
synchronized.

Proof. Construct positive definite, radially unbounded Lyapunov function for system (17):

V = 1

2

(
e2

x + e2
y + e2

z

b

)
=

⎛
⎝ ex

e y

ez

⎞
⎠

T

P

⎛
⎝ ex

e y

ez

⎞
⎠ .

Let λm(P ) and λM(P ) denote the minimum and maximum eigenvalues of

P =
⎡
⎣ 1

2 0 0
0 1

2 0
0 0 1

2b

⎤
⎦ ,

respectively. Then we have
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dV

dt

∣∣∣∣
(17)

= exėx + e yė y + 1

b
ezėz

�

⎛
⎝ |ex|

|e y|
|ez|

⎞
⎠

T ⎡
⎣ −δx

1
2

a
2b + aτ

4b (r + s + 1)
1
2 −δy 0

a
2b + aτ

4b (r + s + 1) 0 − c+δz
b

⎤
⎦

⎛
⎝ |ex|

|e y|
|ez|

⎞
⎠

:=
⎛
⎝ |ex|

|e y|
|ez|

⎞
⎠

T

A2

⎛
⎝ |ex|

|e y|
|ez|

⎞
⎠

� λM(A2)
(
e2

x + e2
y + e2

z

)
,

where λM(A2) is the maximum eigenvalue of A2. It follows from the conditions in Theorem 2 that λM(A2) < 0. Hence,

dV

dt
� λM(A2)

λM(P )

λM(P )

(
e2

x + e2
y + e2

z

)
� λM(A2)

λM(P )
V ,

which implies that

V
(

X(t)
)
� V

(
X(t0)

)
e

λM (A2)

λM (P )
(t−t0)

.

Hence,

e2
x(t) + e2

y(t) + e2
z (t) � V (X(t))

λm(P )
� V (X(t0))

λm(P )
e

λM (A2)

λM (P )
(t−t0)

. (27)

Eq. (27) shows that the zero solution of (17) is globally exponentially stabilized, and thus systems (15) and (16) are globally
exponentially synchronized. �
Corollary 2. For any given equilibrium point X = X∗ of system (4), choose the feedback control law (20). If

δx >
1

2
+ a

2b
+ aτ

4b
(s + r + 1), δy >

1

2
, δz > −c + aτ

4
(s + r + 1) + a

2
,

then the equilibrium point of system (4), X = X∗ , is globally exponentially stabilized.

The proof of Corollary 2 is similar to that of Theorem 2.

Theorem 3. Choose the linear feedback control law (19) for system (17). When

δx > a + a
τ

2
(r + s + 1), δy = 1 + b, δz = 1 − c,

the zero solution of (17) is globally exponentially stabilized, i.e., the two systems (15) and (16) are globally exponentially synchronized.

Proof. Construct positive definite, radially unbounded Lyapunov function for Eq. (17):

V = |ex| + |e y| + |ez|.
Then we have

D+V |(17) = ėx sign ex + ė y sign e y + ėz sign ez

� |e y| + |ez| − δx|ex| − δy |e y| − δz|ez| − c|ez| + a
τ

2
(r + s + 1)|ex| + a|ex| + b|e y|

�
(

−δx + a + a
τ

2
(r + s + 1)

)
|ex| + (−δy + b + 1)|e y| + (−δz − c + 1)|ez|

=
(

−δx + a + a
τ

2
(r + s + 1)

)
|ex|, (28)

which implies that the zero solution of (17) is globally exponentially stabilized with respect to the partial variable ex .
Next, we consider the coefficient matrix of the linear part of system (17) with the feedback control law given in Theo-

rem 3:

A3 =
⎡
⎣ −δx 1 0

0 −δy 1
−a −b −1

⎤
⎦
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from which we obtain the characteristic polynomial:

det(λI3 − A3) = det

⎡
⎣λ + δx −1 0

0 λ + 1 + b −1

a b λ + 1

⎤
⎦

= λ3 + (b + 2 + δx)λ
2 + [

δx(b + 2) + 2b + 1
]
λ + δx(2b + 1) + a

:= λ3 + pλ2 + qλ + r.

It is well known that the sufficient and necessary condition for A3 to be a Hurwitz matrix is

p > 0, pq > r > 0.

Using a = b, we have

pq = (b + 2 + δx)
[
δx(b + 2) + 2b + 1

]
= (b + 2)(b + 1) + δx(b + 2)2 + b(b + 2) + δx(b + 1) + δ2

x (b + 2) + bδx

> δx(2b + 1) + b

= r > 0, (29)

which implies that A3 is a Hurwitz matrix.
On the other hand, the solution of (17) can be written as⎛

⎝ ex(t)

e y(t)

ez(t)

⎞
⎠ = e A3(t−t0)

⎛
⎝ ex(t0)

e y(t0)

ez(t0)

⎞
⎠ +

t∫
t0

e A3(t−τ )

⎛
⎝ 0

0

a τ
2

∑s
j=−r f ′(ξ)ex(τ )

⎞
⎠ dτ .

Since A3 is a Hurwitz matrix, there exist constants M1 � 1 and α1 > 0 satisfying∥∥e A3(t−t0)
∥∥ � M1e−α1(t−t0).

Thus, ∥∥∥∥∥∥
⎛
⎝ ex(t)

e y(t)

ez(t)

⎞
⎠

∥∥∥∥∥∥ � M1

∥∥∥∥∥∥
⎛
⎝ ex(t0)

e y(t0)

ez(t0)

⎞
⎠

∥∥∥∥∥∥ e−α1(t−t0) +
t∫

t0

M1e−α1(t−τ )a
τ

2
(s + r + 1)

∥∥ex(τ )
∥∥dτ .

With the property limt→∞ ex(t) = 0, we can prove that ∀ε > 0, ∃σ1 > 0, when ‖ex(t0), e y(t0), ez(t0)‖ � σ1,

M1

∥∥∥∥∥∥
⎛
⎝ ex(t0)

e y(t0)

ez(t0)

⎞
⎠

∥∥∥∥∥∥ e−α1(t−t0) <
ε

3
.

Moreover, for any t1 > t0, when ‖ex(t0), e y(t0), ez(t0)‖ � σ1, we have

t1∫
t0

M1e−α1(t−τ )a
τ

2
(s + r + 1)

∥∥ex(τ )
∥∥dτ <

ε

3
,

and

t∫
t1

M1e−α1(t−τ )a
τ

2
(s + r + 1)

∥∥ex(τ )
∥∥dτ <

ε

3
.

Therefore,∥∥∥∥∥∥
⎛
⎝ ex(t)

e y(t)

ez(t)

⎞
⎠

∥∥∥∥∥∥ � M1

∥∥∥∥∥∥
⎛
⎝ ex(t0)

e y(t0)

ez(t0)

⎞
⎠

∥∥∥∥∥∥ e−α1(t−t0) +
t1∫

t0

M1e−α1(t−τ )a
τ

2
(s + r + 1)

∥∥ex(τ )
∥∥dτ

+
t∫

t1

M1e−α1(t−τ )a
τ

2
(s + r + 1)

∥∥ex(τ )
∥∥dτ

<
ε + ε + ε = ε.

3 3 3
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For any (ex(t0), e y(t0), ez(t0)) ∈ R3, it is easy to show that

lim
t→∞ M1

∥∥∥∥∥∥
⎛
⎝ ex(t0)

e y(t0)

ez(t0)

⎞
⎠

∥∥∥∥∥∥ e−α1(t−t0) + lim
t→∞

t∫
t0

M1e−α1(t−τ )a
τ

2
(s + r + 1)

∥∥ex(τ )
∥∥dτ = 0. (30)

Thus, the zero solution of (17) is globally asymptotically stabilized, and so systems (15) and (16) are globally exponentially
synchronized. �
Corollary 3. For any equilibrium point X = X∗ of system (4), choose the linear feedback control law (20). When

δx > a + a
τ

2
(r + s + 1), δy = 1 + b, δz = 1 − c,

X∗ can be globally exponentially stabilized.

7. Synchronization and stabilization of 2-D-m × n-grid-scroll chaotic attractors

In this section, we consider synchronization and stabilization of the 2-D-m ×n-grid-scroll chaotic attractors. Assume that
the drive system is

ẋd = yd − τ2

2

[
(r2 − s2) +

s2∑
j=−r2

tanh(yd + jτ2)

]
,

ẏd = zd,

żd = −axd − byd − czd + aτ1

2

[
(r1 − s1) +

s1∑
j=−r1

tanh(xd + jτ1)

]
+ bτ2

2

[
(r2 − s2) +

s2∑
j=−r2

tanh(yd + jτ2)

]
, (31)

while, the corresponding driven system is given by

ẋr = yr − τ2

2

[
(r2 − s2) +

s2∑
j=−r2

tanh(yr + jτ2)

]
+ u1(ex, e y, ez),

ẏr = zr + u2(ex, e y, ez),

żr = −axr − byr − czr + aτ1

2

[
(r1 − s1) +

s1∑
j=−r1

tanh(xr + jτ1)

]
+ bτ2

2

[
(r2 − s2) +

s2∑
j=−r2

tanh(yr + jτ2)

]

+ u3(ex, e y, ez). (32)

The error system is then obtained as

ėx = e y − τ2

2

s2∑
j=−r2

f ′(ξ)e y − u1(ex, e y, ez),

ė y = ez − u2(ex, e y, ez),

ėz = −aex − be y − cez + aτ1

2

s1∑
j=−r1

f ′(ξ)ex + bτ2

2

s2∑
j=−r2

f ′(ξ)e y − u3(ex, e y, ez). (33)

Theorem 4. In system (33), choose the linear control law (19). If one of the following conditions is satisfied:

(1) δx > 1 + τ2
2 (s2 + r2 + 1), δy > 1, δz > a + aτ1

2 (s1 + r1 + 1) + b + bτ2
2 (s2 + r2 + 1) − c;

(2) δx > a + aτ1
2 (s1 + r1 + 1), δy > 1 + τ2

2 (s2 + r2 + 1) + b + bτ2
2 (s2 + r2 + 1), δz > 1 − c;

then the zero solution of (33) is globally exponentially stabilized, and thus systems (31) and (32) are globally exponentially synchro-
nized.

Proof. We construct positive definite, radially unbounded vector Lyapunov function:

V = (|ex|, |e y|, |ez|
)T

,

and then we have
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D+V |(33) =
⎛
⎝ D+|ex|

D+|e y|
D+|ez|

⎞
⎠

(33)

�

⎡
⎣ −δx 1 + τ2

2 (s2 + r2 + 1) 0
0 −δy 1

a + aτ1
2 (s1 + r1 + 1) b + bτ2

2 (s2 + r2 + 1) −δz − c

⎤
⎦

⎛
⎝ |ex|

|e y|
|ez|

⎞
⎠ := A4

⎛
⎝ |ex|

|e y|
|ez|

⎞
⎠ . (34)

Consider the comparison equation of (34), given by⎛
⎝ η̇x

η̇y

η̇z

⎞
⎠ =

⎡
⎣ −δx 1 + τ2

2 (s2 + r2 + 1) 0
0 −δy 1

a + aτ1
2 (s1 + r1 + 1) b + bτ2

2 (s2 + r2 + 1) −δz − c

⎤
⎦

⎛
⎝ ηx

ηy

ηz

⎞
⎠ := A4

⎛
⎝ ηx

ηy

ηz

⎞
⎠ . (35)

The solution of Eq. (35) can be written as⎛
⎝ ηx(t)

ηy(t)

ηz(t)

⎞
⎠ = e A4(t−t0)

⎛
⎝ ηx(t0)

ηy(t0)

ηz(t0)

⎞
⎠ .

From the conditions of the Theorem 4, we know that A4 is a Hurwitz matrix. Hence, there exist M4 � 1 and α4 > 0 such
that

∥∥e A4(t−t0)
∥∥ � M4e−α4(t−t0).

Further, from the comparison principle we know that

∥∥(∣∣ex(t)
∣∣, ∣∣e y(t)

∣∣, ∣∣ez(t)
∣∣)T ∥∥ �

∥∥(
ηx(t), ηy(t), ηz(t)

)T ∥∥
�

∥∥e A4(t−t0)
∥∥∥∥(

ηx(t0), ηy(t0), ηz(t0)
)T ∥∥

� M4e−α4(t−t0)
∥∥(

ηx(t0), ηy(t0), ηz(t0)
)T ∥∥, (36)

which indicates that the conclusion of Theorem 4 is true. �
Corollary 4. For any given equilibrium point X = X∗ of system (6), if choose the linear feedback control law (20), where the control
gain coefficients δx, δy and δz satisfy the conditions in Theorem 4, the zero solution of the following error system

˙̄x = ȳ − τ2

2

s2∑
j=−r2

f ′(ξ)y − u1(x, y, z),

ẏ = z − u2(x, y, z),

ż = −ax − b y − cz + aτ1

2

s1∑
j=−r1

f ′(ξ)x + bτ2

2

s2∑
j=−r2

f ′(ξ)y − u3(x, y, z) (37)

is globally exponentially stabilized, i.e., the equilibrium point X∗ = (x∗, y∗, z∗) is globally exponentially stabilized.

Theorem 5. In system (33), again choose the linear control law (19). If

δx > 1 + τ2

4
(s2 + r2 + 1) + τ1

4
(s1 + r1 + 1),

δy > 1 + τ2

4
(s2 + r2 + 1) + bτ2

4a
(s2 + r2 + 1) + b

2a
,

and

δz > a + b

2
+ aτ1

4
(r1 + s1 + 1) + bτ2

4
(r2 + s2 + 1) − c,

then the zero solution of (33) is globally exponentially stabilized. Thus, systems (31) and (32) are globally exponentially synchronized.

Proof. Construct the positive definite, radially unbounded Lyapunov function:

V = 1

2

(
e2

x + e2
y + e2

z

a

)
.

Then we have
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dV

dt

∣∣∣∣
(33)

� −δxe2
x + exe y + τ2

2
(s2 + r2 + 1)|ex||e y| + e yez − δye2

y − exez − b

a
e yez − c

a
e2

z − δze2
z

a

+ τ1

2
(s1 + r1 + 1)|ex||ez| + bτ2

2a
(s2 + r2 + 1)|e y||ez|

�

⎛
⎝ |ex|

|e y|
|ez|

⎞
⎠

T

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−δx
1
2 + τ2

4 (s2 + r2 + 1) 1
2 + τ1

4 (s1 + r1 + 1)

1
2 + τ2

4 (s2 + r2 + 1) −δy
1
2 + b

2a

+ bτ2
4a (s2 + r2 + 1)

1
2 + τ1

4 (s1 + r1 + 1) 1
2 + b

2a − c
a − δz

a

+ bτ2
4a (r2 + s2 + 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎝ |ex|

|e y|
|ez|

⎞
⎠

:=
⎛
⎝ |ex|

|e y|
|ez|

⎞
⎠

T

A5

⎛
⎝ |ex|

|e y|
|ez|

⎞
⎠ .

From the proposed conditions we know that A5 is negative definite. Similar to the proof of Theorem 2, it is easy to show
that

e2
x(t) + e2

y(t) + e2
z (t) � V (X(t))

λm(P )
� V (X(t0))

λm(P )
e

λM (A5)

λM (P )
(t−t0)

, (38)

indicating that the conclusion of Theorem 5 is true. �
Corollary 5. For any given equilibrium point X = X∗ of system (31), under the linear control law (20), when the conditions in The-
orem 5 hold, the zero solution of system (37) is globally exponentially stable. Thus the equilibrium point X = X∗ of (31) is globally
exponentially stabilized.

8. Synchronization and stabilization of 3-D-m × n × l-grid-scroll chaotic attractors

In this section, we study synchronization and stabilization of the 3-D-m × n × l-grid-scroll chaotic attractors. For this
case, the drive system is

ẋd = yd − τ2

2

[
(r2 − s2) +

s2∑
j=−r2

tanh(yd + jτ2)

]
,

ẏd = zd − τ3

2

[
(r3 − s3) +

s3∑
j=−r3

tanh(zd + jτ3)

]
,

żd = −axd − byd − czd + aτ1

2

[
(r1 − s1) +

s1∑
j=−r1

tanh(xd + jτ1)

]
+ bτ2

2

[
(r2 − s2) +

s2∑
j=−r2

tanh(yd + jτ2)

]

+ cτ3

2

[
(r3 − s3) +

s2∑
j=−r2

tanh(zd + jτ3)

]
, (39)

while the corresponding driven system with controls is described by

ẋr = yr − τ2

2

[
(r2 − s2) +

s2∑
j=−r2

tanh(yr + jτ2)

]
+ u1(ex, e y, ez),

ẏr = zr − τ3

2

[
(r3 − s3) +

s3∑
j=−r3

tanh(zr + jτ3)

]
+ u2(ex, e y, ez),

żr = −axr − byr − czr + aτ1

2

[
(r1 − s1) +

s1∑
j=−r1

tanh(xr + jτ1)

]
+ bτ2

2

[
(r2 − s2) +

s2∑
j=−r2

tanh(yr + jτ2)

]

+ cτ3

2

[
(r3 − s3) +

s3∑
j=−r3

tanh(zr + jτ3)

]
+ u3(ex, e y, ez). (40)

The error system can then be obtained as
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ėx = e y − τ2

2

s2∑
j=−r2

f ′(ξ)e y − u1(ex, e y, ez),

ė y = ez − τ3

2

s3∑
j=−r3

f ′(ξ)ez − u2(ex, e y, ez),

ėz = −aex − be y − cez + aτ1

2

s1∑
j=−r1

f ′(ξ)ex + bτ2

2

s2∑
j=−r2

f ′(ξ)e y + cτ3

2

s3∑
j=−r3

f ′(ξ)ez − u3(ex, e y, ez). (41)

Theorem 6. In system (41), choose the linear feedback control law (19). If δx � 0, δy � 0 and δz � 0 are properly chosen such that

A6 =
⎡
⎣ −δx 1 + τ2

2 (s2 + r2 + 1) 0
0 −δy 1 + τ3

2 (s3 + r3 + 1)
aτ1

2 (s1 + r1 + 1) + a bτ2
2 (s2 + r2 + 1) + b −δz − c + cτ3

2 (s3 + r3 + 1)

⎤
⎦

is a Hurwitz matrix, then the zero solution of (41) is globally exponentially stable. Thus, systems (39) and (40) are globally exponentially
synchronized.

Proof. Construct positive definite, radially unbounded vector Lyapunov function:

V = (|ex|, |e y|, |ez|
)T

.

Then we have

D+V |(41) =
⎛
⎝ D+|ex|

D+|e y|
D+|ez|

⎞
⎠

�

⎡
⎢⎣

−δx 1 + τ2
2 (s2 + r2 + 1) 0

0 −δy 1 + τ3
2 (s3 + r3 + 1)

aτ1
2 (s1 + r1 + 1) + a bτ2

2 (s2 + r2 + 1) + b −δz − c + cτ3
2 (s3 + r3 + 1)

⎤
⎥⎦

⎛
⎝ |ex|

|e y|
|ez|

⎞
⎠

:= A6

⎛
⎝ |ex|

|e y|
|ez|

⎞
⎠ . (42)

Consider the comparison equation of (42):⎛
⎝ η̇x

η̇y

η̇z

⎞
⎠ =

⎡
⎢⎣

−δx 1 + τ2
2 (s2 + r2 + 1) 0

0 −δy 1 + τ3
2 (s3 + r3 + 1)

aτ1
2 (s1 + r1 + 1) + a bτ2

2 (s2 + r2 + 1) + b −δz − c + cτ3
2 (s3 + r3 + 1)

⎤
⎥⎦

⎛
⎝ ηx

ηy

ηz

⎞
⎠ := A6

⎛
⎝ ηx

ηy

ηz

⎞
⎠ . (43)

Since A6 is a Hurwitz matrix, there exist M6 � 1 and α6 > 0 such that∥∥(|ex|, |e y|, |ez|
)T ∥∥ �

∥∥(ηx, ηy, ηz)
T
∥∥ � M6e−α6(t−t0)

∥∥(
ηx(t0), ηy(t0), ηz(t0)

)T ∥∥,

indicating that the conclusion of Theorem 6 is true. �
Theorem 7. In system (41), choose the same linear control law as that for the proof of Theorem 6. If

A7 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−δx
1
2 + τ2

4 (s2 + r2 + 1) 1
2 + τ1

4 (s1 + r1 + 1)

1
2 + τ2

4 (s2 + r2 + 1) −δy
a+b
2a + τ3

4 (s3 + r3 + 1)

bτ2
4a (s2 + r2 + 1)

1
2 + τ1

4 (s1 + r1 + 1) a+b
2a + τ3

4 (s3 + r3 + 1) − c
a + cτ3

2a (s3 + r3 + 1) − δz
a

bτ2
4a (s2 + r2 + 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

is a Hurwitz matrix, then the zero solution of system (41) is globally exponentially stable. Thus, systems (39) and (40) are globally
exponentially synchronized.

Proof. We use the same Lyapunov function as that in the proof of Theorem 5:

V = 1
(

e2
x + e2

y + e2
z
)

2 a
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and then we obtain

dV

dt

∣∣∣∣
(41)

� |exe y| + τ2

2
(s2 + r2 + 1)|exe y| − δxe2

x + |e yez| + τ3

2
(s3 + r3 + 1)|e yez| − δye2

y + |exez| + b

a
|e yez| − c

a
e2

z

+ τ1

2
(s1 + r1 + 1)|exez| + bτ2

2a
(s2 + r2 + 1)|e yez| + cτ3

2a
(s3 + r3 + 1)e2

z − 1

a
δze2

z

=
⎛
⎝ |ex|

|e y|
|ez|

⎞
⎠

T

A7

⎛
⎝ |ex|

|e y|
|ez|

⎞
⎠ , (44)

implying

(
e2

x(t) + e2
y(t) + e2

z (t)
)
� V (X(t))

λm(P )
� V (X(t0))

λm(P )
e

λM (A7)

λM (P )
(t−t0)

,

where the definitions of λM(P ), λm(P ) and λM(A7) are similar to those used in Theorem 2. Thus, the conclusion is true. �
Corollary 6. If the conditions in Theorems 6 and 7 hold, the zero solution of the following system

˙̄x = −δxx + ȳ − τ2

2

s2∑
j=−r2

f ′(η)y,

ẏ = −δy y − τ3

2

s3∑
j=−r3

f ′(η)z,

ż = −(δz + c)z − ax − b y + aτ1

2

s1∑
j=−r1

f ′(η)x + bτ2

2

s2∑
j=−r2

f ′(η)y + cτ3

2

s3∑
j=−r3

f ′(η)z (45)

is globally exponentially stable. Thus the equilibrium point X = X∗ is globally exponentially stabilized.

9. Numerical simulation examples

In this section, we present some numerical examples to demonstrate the applicability of control laws proposed in the
previous sections. The analytical predictions for the control laws are verified by numerical simulations.

For the synchronization problem, we show three examples for 1-D, 2-D and 3-D multi-scroll chaotic systems using the
control laws given in Theorems 3, 4 and 6, respectively, since the remaining cases are similar. The initial conditions chosen
respectively for 1-D, 2-D and 3-D systems are:

xd(0) = 4, yd(0) = 2, zd(0) = 2, (46)

and

xr(0) = 1, yr(0) = 5, zr(0) = 3 (47)

for the 1-D system;

xd(0) = 10, yd(0) = 5, zd(0) = 5, (48)

and

xr(0) = 15, yr(0) = 8, zr(0) = 2 (49)

for the 2-D system; and

xd(0) = 10, yd(0) = 12, zd(0) = 1, (50)

and

xr(0) = 8, yr(0) = 15, zr(0) = 4 (51)

for the 3-D system. Obviously, the initial conditions chosen here for the drive system and driven system are quite different.
Under the control laws given in Theorems 3, 4 and 6, time histories for the error signals, ex(t), e y(t) and ez(t), obtained

for the three cases are displayed in Figs. 7, 8 and 9, respectively. All the three cases show the exponential convergence of
the errors to zero, as expected.
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Fig. 7. Time history of error system (17) for a = b = c = 0.65, τ = 100, r = s = 3 using the control law given in Theorem 3, with the initial conditions,
xd(0) = 4, yd(0) = 2, zd(0) = 2 and xr(0) = 1, yr(0) = 5, zr(0) = 3, when δx = 250, δy = 1.8 and δz = 0.5.

For the stabilization problem, we show four examples using the control laws given in Corollaries 1, 3 and 4, and the
remaining three cases are similar. The initial conditions chosen for these four cases are respectively given by

x(0) = −80, y(0) = −1, z(0) = 15, (52)

x(0) = 0.2, y(0) = 15, z(0) = 100, (53)

x(0) = −20, y(0) = −1, z(0) = 5, (54)
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Fig. 8. Time history of error system (33) for a = b = c = 0.72, τ1 = τ2 = 100, r1 = r2 = s1 = s2 = 1 using the control law given in Theorem 4(1), with the
initial conditions, xd(0) = 10, yd(0) = 5, zd(0) = 5 and xr(0) = 15, yr(0) = 8, zr(0) = 2, when δx = 160, δy = 1.05 and δz = 250.

and

x(0) = −0.26, y(0) = −0.26, z(0) = −100. (55)

When the control law given in Corollary 1 is applied to system (18), using δx = δy = 1.05 and δz = 33.3, with E = (0,0,0)

as the designed equilibrium point, it is shown (see Fig. 10(a)) that the trajectory converges to E . Similarly, for the other three
cases, numerical simulation results demonstrate that the all solution trajectories converge to the designed equilibrium point
with proper control laws applied (see Figs. 10(b) and 11).
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Fig. 9. Time history of error system (41) for a = b = c = 0.8, τ1 = 160, τ2 = 100, τ3 = 80, r1 = r2 = s1 = s2 = 2 using the control law given in Theorem 6,
with the initial conditions, xd(0) = 10, yd(0) = 12, zd(0) = 1 and xr(0) = 8, yr(0) = 15, zr(0) = 4, when δx = 255, δy = 205 and δz = 690.

10. Conclusion

In this paper, we used hyperbolic tangent function series to develop a method to generate n-, m × n- and m × n × l-
grid-scroll chaotic attractors. Based on the system’s equilibrium points and corresponding eigenvalues, simple mathematical
analysis is given to identify 1-D, 2-D and 3-D multi-grid-scroll chaotic attractors. For each chaotic system, with the aid of
proper chosen Lyapunov functions we designed simple linear feedback control laws to globally exponentially stabilize the
system and synchronize two chaotic systems with same structure. Numerical simulation results are presented to confirm
the analytical predictions.
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Fig. 10. (a) Trajectory of a double-scroll chaotic attractor for system (18) when a = b = c = 0.65, τ = 100, r = s = 0 using the control law given in Corol-
lary 1(1) for δx = δy = 1.05 and δz = 33.3 with the initial condition x(0) = −80, y(0) = −1, z(0) = 15, convergent to the equilibrium point E: (0,0,0);
(b) trajectory of 1-D-8-scroll chaotic attractor for system (18) when a = b = c = 0.65, τ = 100, r = s = 3 using the control law given in Corollary 3 for
δx = 250, δy = 1.8 and δz = 0.5 with the initial condition x(0) = 0.2, y(0) = 15, z(0) = 100, convergent to the equilibrium point E: (0,0,0).

Fig. 11. (a) Trajectory of a 2-D-4 × 4-scroll chaotic attractor for system (37) when a = b = c = 0.72, τ1 = τ2 = 100, r1 = r2 = s1 = s2 = 1 using the control
law given in Corollary 4(1) for δx = 160, δy = 1.05 and δz = 250 with the initial condition x(0) = −20, y(0) = −1, z(0) = 5, convergent to the equilibrium
point E: (0,0,0); (b) trajectory of a 3-D-6 × 6 × 6-scroll chaotic attractor for system (45) when a = b = c = 0.8, τ1 = 160, τ2 = 100, τ3 = 80, and r1 = r2 =
r3 = s1 = s2 = s3 = 2 using the control law given in Corollary 6 for δx = 255, δy = 205 and δz = 690 with the initial condition x(0) = −0.26, y(0) = −0.26,
z(0) = −100, convergent to the equilibrium point E: (0,0,0).
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