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Abstract

In this paper, the problem of implications of time delay feedback control of a two-dimensional supersonic lifting surface

on the flutter boundary and on its character, that is, benign or catastrophic, is addressed. In this context, the structural and

aerodynamic nonlinearities are included in the aeroelastic governing equations. The model and the associated theory are

developed for linear and nonlinear plunging and pitching full-state proportional and velocity feedback controls. Center

manifold reduction and normal form theory are applied to investigate the stability in the post-flutter flight speed regimes.

Numerical simulations are carried out to determine the implications of time delay in the considered controls, but are

restricted to the cases of proportional feedback control and no structural damping.

r 2007 Elsevier Ltd. All rights reserved.

1. Introduction

The study of the aeroelastic behavior of flight vehicles in the pre- and post-flutter regimes is of crucial
importance towards increasing their operational life and the avoidance of catastrophic failures. A nonlinear
model of a wing section of high-speed aircraft incorporating active control has been proposed in Ref. [1] and
further studied recently using linear and nonlinear feedback controls [2]. In Ref. [1], the dynamic behavior of
the system without time delay in the control was studied in the vicinity of an Hopf bifurcation critical point.
Depending on the characteristics of the aeroelastic system, it was shown that with the increase of the flight
speed, stable (or unstable) equilibria and stable (or unstable) limit cycles might exist. Also, the effect of
structural nonlinearities [3,4] on the character of the flutter boundary has been considered. Furthermore, in
Ref. [2], the effect of the time-delayed proportional feedback control on the flutter instability boundary and its
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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character (benign/catastrophic) was discussed. Bifurcations into limit cycles (Hopf bifurcation) were
investigated with respect to system parameters as well as the time delay. Numerical simulations were
employed to verify the analytical predictions. It has been shown that incorporation of a linear feedback
control is always beneficial in controlling both the initiation of Hopf bifurcation and the stability of motions,
regardless whether the time delay is added or not. Introducing a time delay into the feedback control could
have a profound effect on the stability of the bifurcating motions. However, it has been found that larger time
delay is not beneficial in delaying the Hopf bifurcation. When nonlinear feedback control is applied and the
nonlinear control is combined with a larger time delay, the situation becomes even more complicated in the
sense that it may destabilize the bifurcating motions. Therefore, based on the study in Ref. [2], it was suggested
that both linear and nonlinear controls with small time delay should be applied in order to obtain the best
control design. However, further studies are necessary to get better understanding of dynamic behavior of the
model with other controls.

In this paper, we consider the effect of the time delay on proportional and velocity, linear and nonlinear force
and moment feedback controls. The main attention will be focused on Hopf bifurcation with no structural
damping in the system. Hopf bifurcation has been extensively studied using various methods [5,6], for example, via
Lyapunov’s first quantity, see e.g. Refs. [2,7–11]. Also nonlinear systems involving time delay have been studied by
many authors (e.g. see Refs. [12–14]). In the past two decades, there has been rapidly growing interest in
bifurcation control and chaos control (e.g. see Refs. [15,16]), which has a wide variety of promising potential
applications. In general, the aim of bifurcation control is to design a controller such that the bifurcation
characteristics of a nonlinear system undergoing bifurcations can be modified to achieve some desirable dynamical
behaviors, such as changing a subcritical Hopf bifurcation to supercritical, eliminating chaotic motions, etc.

As it clearly appears, within the problem addressed in this paper, two principal issues deserve special
attention: (i) increase, without weight penalties, of the flutter speed, and (ii), possibilities to convert unstable
limit cycles into stable ones. While the achievement of (i) can result in the expansion, of the flight envelope,
that related with (ii) would result in the possibility to operate in close proximity of the flutter boundary
without the danger of encountering the catastrophic flutter instability, but in the worst possible scenario,
crossing the flutter boundary that features a benign character. In contrast to the catastrophic flutter boundary
in which case, the amplitude of oscillations increase exponentially, in the case of benign flutter boundary,
monotonic increase of the oscillation amplitude occurs, and as a result, the failure can occur only by fatigue. It
clearly appears that both issues (i) and (ii) are related to controlling Hopf bifurcations. In particular, issue
(i) implies increase of the stability of an equilibrium and delay of the occurrence of Hopf bifurcations; while
issues (ii) is related to controlling Hopf bifurcations once a periodic vibration has been initiated. Recently, a
new control method for Hopf bifurcation has been proposed, and both issues are discussed [16,17].

The present study primarily deals with the determination and control of the flutter instability and of the
character of the flutter boundary of supersonic/hypersonic lifting surfaces when including time delay in the
control. In contrast to the issue of the determination of the flutter boundary that requires a linearized analysis,
the problem of the determination of the character of the flutter boundary, requires a nonlinear approach. As
has been shown (see e.g. Refs. [1,7–9]) at hypersonic speeds, the aerodynamic nonlinearities [18,19] play a
detrimental role, in the sense that they contribute to conversion of the benign flutter boundary to a
catastrophic one. Therefore, an active control capability enabling one to prevent conversion of the flutter
boundary into a catastrophic one should be implemented.
2. Aeroelastic model

This investigation is based on a geometrical and aerodynamic nonlinear model of a wing section of
high-speed aircraft incorporating an active control capability. The geometry of the model is shown in Fig. 1.

The nonlinear aerodynamic theory considered in this study is based on the third-order approximation of the
Piston Theory Aerodynamics (PTA) given by

pðx; tÞ ¼ p1 1þ k
nz

a1
gþ

kðkþ 1Þ
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nz
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Fig. 1. Geometry of the cross-section of lifting surface.
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where nz ¼ �((qw/qt)+UN(qw/qx))sgn(z) denotes the downward velocity normal to the lifting surface,

a2
1 ¼ kp1=r1, where sgn(z) is a signum function, assuming the value 1 or �1 for z 40 and zo0,

respectively. In addition, w(t) ¼ h(t)+a(t) (x�bx0) denotes the transversal displacement, x0(�xea/b) is the
dimensionless streamwise position of the pitch axis measured from the leading edge, b is the half-chord
length of the airfoil. h(t) and a(t) are, respectively, the plunging and pitching about the elastic axis. pN, rN,
UN and aN are the pressure, the air density, the airflow speed and the speed of sound of the undisturbed

flow, respectively. k is the polytropic gas coefficient, while g ¼M1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2
1 � 1

q
is an aerodynamic correction

factor that enables one to extend the validity of the piston theory aerodynamics to the low supersonic
speed range.

The dimensionless aeroelastic equations of a typical cross-section featuring plunging and pitching degrees of
freedom, accounting for structural nonlinearities in pitching, aerodynamic nonlinearities and linear and
nonlinear time-delayed control, can be written as

m €hðt̂Þ þ Sa €aðt̂Þ þ ch
_hðt̂Þ þ Khhðt̂Þ ¼ Lðt̂Þ � Lcðt̂� t̂Þ;

Sa
€hðt̂Þ þ Ia €aðt̂Þ þ ca _aðt̂Þ þMaðt̂Þ ¼Mðt̂Þ �Mcðt̂� t̂Þ;

(2)

where the dot denotes the differentiation with respect to time t̂, t̂ stands for the time delay. Lðt̂Þ and Mðt̂Þ

denote the aerodynamic force and moment, respectively. Lcðt̂� t̂Þ and Mcðt̂� t̂Þ represent the delayed
nonlinear feedback control force and moment, respectively, while, c/h and c/a denote the structural damping
coefficients in plunging and pitching, respectively. The latter ones will be discarded in the numerical
simulations.

The dimensionless counterpart of Eq. (2) is as follows [2]:

€xðtÞ þ wa €aðtÞ þ
2ō
V

Bh
_xðtÞ þ

ō
V

� �2

xðtÞ ¼ laðtÞ � lcðt� tÞ, (3)

wa
r2a

€xðtÞ þ €aðtÞ þ
2Ba
V
_aðtÞ þ

1

V2
aðtÞ þ

1

V2
dsBa3ðtÞ ¼ maðtÞ �mcðt� tÞ, (4)
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2ō
V

Y3
_x
3
;

mc ¼
1

V 2

� �
C1aþ

1

V 2

� �
C2a3 þ

2

V
C3 _aþ

2

V
C4 _a3;

(5)
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la ¼ �
g

12mM1

12aþ dAM2
1ð1þ kÞg2a3 þ 12 _xþ _aðb� xeaÞ=b

� �� �
,

ma ¼ �
g

12mM1

1

r2ab
12ðb� xeaÞaþ dAM2

1ðb� xeaÞð1þ kÞg2a3
�

þ 4 3ðb� xeaÞ
_xþ _að4b2

� 6bxea þ 3x2
eaÞ=b

� ��
. ð6Þ

Here, we still use the overdot to denote the differentiation with respect to the normalized time t ¼ U1 t̂=b. t is
a dimensionless time delay t ¼ t̂oa, and x ¼ h/b. The meaning of other parameters can be found in Ref. [2].

In the above equations, the tracers ds and dA identify the structural and aerodynamic nonlinearities
considered in this paper. These assume the values 0 or 1 depending on whether the indicated nonlinearities are
accounted for, or discarded, respectively.

3. Formulations

In this paper, we consider an undamped structural model, that is, zh ¼ za ¼ 0, and focus on the proportional
feedback control only, implyingYi ¼ Ci ¼ 0, i ¼ 3,4. In order to capture the effect of the time delay, t, related
to the various feedback gains Yi and Ci(i ¼ 1,2,3,4), let x ¼ x1, a ¼ x2, _x ¼ x3, _a ¼ x4, and xit ¼ xi(t�t), for
i ¼ 1,2,3,4. Then, one can convert Eqs. (3) and (4) to the following system in vector form:

_xðtÞ ¼ A1xðtÞ þ A2xðt� tÞ þ FðxðtÞ; xðt� tÞÞ, (7)

where x, FAR4, A1 and A2 are 4� 4 matrices. A1, A2 and F are given by

A1 ¼

0 0 1 0

0 0 0 1

a1 a2 a3 a4

b1 b2 b3 b4

2
6664

3
7775; A2 ¼

0 0 0 0

0 0 0 0

a5 a6 a7 a8

b5 b6 b7 b8

2
6664

3
7775

and

F ¼

0

0

a9x3
2 þ a10x3

1t þ a11x3
2t þ a12 _x3t þ a13 _x4t

b9x3
2 þ b10x3

1t þ b11x3
2t þ b12 _x3t þ b13 _x4t

0
BBBB@

1
CCCCA, (8)

respectively. The explicit expressions of the coefficients ai and bi can be found in Ref. [2].
As the first step, we analyze the stability of the trivial solution of the linearized system counterpart of

Eq. (7). Its characteristic function can be obtained as: det(lI�A1�A2e
�lg). It can be shown that when

a1b2�a2b1+a2b5�a5b2+a5b6�a6b5+a6b1�a1b6 6¼0, none of the roots of D(l) are zero. Thus, the trivial
equilibrium x ¼ 0 becomes unstable only when the linearized system has at least one pair of purely imaginary
roots [2]. The critical values for a Hopf bifurcation to occur can be found by setting the real and imaginary
parts of D(io) to equal to zero. Usually, one can only use numerical approach to determine the relations
among the system parameters at the critical point.

In order to obtain the explicit analytical expressions for the stability conditions of the Hopf bifurcation
solution, we need to reduce the system given in Eq. (7) to its center manifold. To achieve this, we transform the
infinite dimensional problem, described by the delay equation (Eq. (7)), to an abstract evolution equation on
Banach space H, consisting of continuously differentiable functions u:[�t, 0]-R2 which results in

_x ¼ Axt þ F ðt; xtÞ, (9)

where xt(y) ¼ x(t+y) for �tpyp0, and A is a linear operator for the critical case, expressed by

AuðyÞ ¼
duðyÞ
dy

for y 2 ½�t; 0Þ;

A1uð0Þ þ A2uð�tÞ for y ¼ 0:

8<
: (10)



ARTICLE IN PRESS
P. Yu et al. / Journal of Sound and Vibration 304 (2007) 974–986978
The nonlinear operator F is in the form of

F ¼ ðuÞðyÞ ¼
0 for y 2 ½�t; 0Þ;

F ½uð0Þ; uð�tÞ� for y ¼ 0:

(
(11)

Similarly, we can define the dual/adjoint space H* of continuously differentiable function determine the
stability of solutions, are v: [0, t]-R2 with the dual operator

A�uðsÞ ¼
�
dvðsÞ
ds

for s 2 ½�t; 0Þ;

A�1uð0Þ þ A�2uðtÞ for s ¼ 0:

8<
: (12)

H can be split into two subspaces as H ¼ PL�QL, where PL is a two-dimensional space spanned by the
eigenvectors of the operator A associated with the eigenvalues L, while QL is the complementary space of PL.
Then for uAH and vAH*, we can define a bilinear operator:

u; uh i ¼ ūTð0Þuð0Þ �
Z 0

�t

Z y

0

ūTðx� yÞ½dZðyÞ�uðxÞdx

¼ ūTð0Þuð0Þ þ
Z 0

�t
ūTðxþ yÞA2ðxÞuðxÞdx.

Corresponding to the critical characteristic root io, the complex eigenvector q(y)AH satisfies

dqðyÞ
dy
¼ ioqðyÞ for y 2 ½�t; 0Þ, (13)

A1qð0Þ þ A2qð�tÞ ¼ iwqð0Þ for y ¼ 0: (14)

The general solution of Eqs. (13) and (14) is q(y) ¼ Ceiwy.
From the boundary conditions, given by Eq. (14), we can easily find a real basis for PL denoted as

F(y) ¼ (j1,j2) ¼ (Re[q(y)], Im[(q(y)]). Similarly, one can find a real basis for the dual space QL as
C(s) ¼ (c1,c2) ¼ (Re[q*(s)], Im[q*(s)]). Then, by defining w�(w1, w2)

T
¼ /C, xtS, one can decompose xt

into two parts to obtain

xt ¼ xPL
t þ x

QL
t ¼ FoC; xt4þ x

QL
t ¼ Foþ x

QL
t , (15)

which implies that the projection of xt on the center manifold is Fw. Then, applying Eqs. (9) and (15) results in
the center manifold:

_w ¼
0 o

�o 0

	 

þNðwÞ, (16)

where N(w) represents the nonlinear terms steming from the original system contributing to the center
manifold. The lowest-order nonlinear terms of the center manifold, needed to determine the stability of
solutions, are

N3ðwÞ ¼ CTð0ÞF ðFwÞ ¼
C1

30w3
1 þ C1

21w2
1w2 þ C1

12w1w2
2 þ C1

03w3
2

C2
30w3

1 þ C2
21w2

1w2 þ C2
12w1w2

2 þ C2
03w3

2

 !
.

Therefore, we obtain the normal form up to third order, _r ¼ Lr3; _y ¼ oþ br2, where L is a Lyapunov
coefficient, referred also to as the Lyapunov first quantity (LFQ), given by L ¼ 1

8
ð3C1

30 þ C1
12 þ C2

21 þ 3C2
03Þ.

When Lo0(40), the bifurcating limit cycle is stable (unstable).

4. Results

For a consistent comparison with the findings of Ref. [2], some numerical results are presented to investigate
the stability with respect to the variations of the time delay t and the linear and nonlinear feedback gains C1,
C2, Y1, and Y2. For ease of comparison, the same parameter values used in Ref. [1,2] are considered in the
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numerical simulation. The main parameters chosen to vary are C1, C2, Y1, Y2, V and t. The values of the
parameters given in Eqs. (4) and (5) are selected as

b ¼ 1:5; m ¼ 50; $ ¼ 1; ga ¼ 0:5; wa ¼ 0:25;

g ¼ 1; k ¼ 1:4; dA ¼ 1; B ¼ 1; x0 ¼ 0:5;

oa ¼ 60 rad=s; Bh ¼ 0; Ba ¼ 0:

Here, we will analyze the stability of the aeroelastic system in the vicinity of the flutter boundary; our goal is
to show the implications of the time-delayed feedback control on the stability of flutter boundary. Similar
to the study given in Ref. [2], we consider three typical cases: the system with no delay, a fixed delay, and
varied delays.

4.1. Case 1: no delay (t ¼ 0)
(a)
V
 (

F
lu

tt
e
r 

S
p
e
e
d
)

Fig.

� � �
Vary C1, and set Y1 ¼ Y1 ¼ 0 and C2 ¼ 0: This case was considered in both Refs. [1,2], where it was
shown that the flutter speed increases monotonically with the increase of flight Mach number MN and/or
the control gain C1. In Ref. [2], it was shown that the slopes of the curves are slightly decreasing as C1 is
increasing, and MTR, denoting the Mach number at which the transition from the benign to catastrophic
flutter boundary occurs, is smaller for larger values of C1.
(b)
 Vary C1, and set C2 ¼ 0, Y2 ¼ 0.45: In this case, the results of the flutter velocity with respect to flight
Mach number for different values of C1 and the corresponding Lyapunov coefficients are shown in Figs. 2
and 3, respectively. Two cases: Y1 ¼ 0.05 and 0.5 are given in each of the two figures. The trend of the
flutter speed is similar to that in case (a), in the sense that it increases monotonically with the increase of
flight Mach number MN and/or the control gain C1. For the same value of the flight Mach number and
C1, the flutter speed is smaller than that obtained in case (a), which indicates that feedback control applied
in plunging displacement is not beneficial in increasing the flutter speed (see Fig. 2), and this is especially
the case when Y1 is increasing. Fig. 3 shows that the critical value MTR decreases with the increase of C.
The results also reveal that for the same value of C, the critical value MTR in Fig. 3 again indicates that
incorporation of larger plunging displacement control, Y1, is not beneficial in stabilizing the Hopf-
bifurcation, i.e., it does not make the flutter benign. In particular, larger values of Y1 give rise to worse
situations of instability. In such cases, MTR decreases.
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Fig. 3. Benign and catastrophic flutter boundary, Lyapunov first quantity, corresponding to C2 ¼ 0, t ¼ 0 when C1 ¼ 0.1, 0.2, 0.3, 0.4

and Y1 ¼ 0.05, Y2 ¼ 0.45.
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Fig. 4. Benign and catastrophic flutter boundary, Lyapunov first quantity, corresponding to C2 ¼ 10C1, t ¼ 0 for C1 ¼ 0.1, 0.2, 0.3, 0.4

and Y1 ¼ Y2 ¼ 0.
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(c)
 C2 ¼ 10C1: In this case, the presence of C2 does not change the relation between the flutter velocity and
the Mach number because the flutter speed is only determined by linear terms. The Lyapunov coefficients
for this case, with and without the presence of plunge displacement control, are depicted in Figs. 4 and 5,
respectively. It clearly shows that MTR with plunging displacement control is smaller than that without the
plunging displacement control. In both situations, MTR increases with the increase of C1, and the
nonlinear feedback control is more effective than the linear feedback control in rendering the flutter
boundary a benign one. Note that Fig. 6 is the same as Fig. 2 in Ref. [2].
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and Y1 ¼ 0.05, Y2 ¼ 0.45.
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Fig. 6. Benign and catastrophic flutter boundary, Lyapunov first quantity, corresponding to C2 ¼ 0, t ¼ 1 for C1 ¼ 0.1, 0.2, 0.3, 0.4 and

Y1 ¼ Y2 ¼ 0.
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4.2. Case 2: fixed delay

The time delay t is fixed, but C1 is varied. Note that the time delay given in Eq. (9) is dimensionless, the real
time delay is t̂ ¼ toa. We fix t ¼ 1 and investigate the effects ofC1 andC2 with and without plunging controls
on the flutter stability boundary.

C2 ¼ 0: The changes in flutter speed VF with variation of C1 are shown in Fig. 2. They are similar to the
case without time delay. VF is a monotonically increasing function of C1 and flight Mach number MN. In
addition, when only delayed pitching displacement control is considered, the value of VF for any (C1,MN)
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Fig. 7. Benign and catastrophic flutter boundary, Lyapunov first quantity, corresponding to C2 ¼ 0, t ¼ 1 when C1 ¼ 0.1, 0.2, 0.3, 0.4

and Y2 ¼ 0.45 for (a) Y1 ¼ 0.05; and (b) Y1 ¼ 0.5.
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Fig. 8. Benign and catastrophic flutter boundary, Lyapunov first quantity, corresponding to C2 ¼ 10C1, t ¼ 1 for C1 ¼ 0.1, 0.2, 0.3, 0.4

and Y1 ¼ Y2 ¼ 0.
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experiences an increase, as compared to the case when the time delay is absent. On the other hand, as shown in
Fig. 2, when there is a plunging displacement control in the presence of time delay, VF is smaller than that in
the case of no time delay. This indicates that the time delay is not beneficial in delaying the occurrence of
flutter (Hopf bifurcation) if a plunging displacement control is applied. It can also be observed from Fig. 2
that the combination of using time delay with the plunging displacement control may be acceptable (see Fig. 4)
for a small value of Y1, but becomes worse for a large value of Y1 (Fig. 4), compared with the case of no time
delay (t ¼ 0). Further, it is seen from Fig. 2 that the effect of t becomes more prominent for larger values of
F1. The Lyapunov coefficients with and without plunging displacement in this case are shown in Figs. 6 and 7,
respectively. From Fig. 6 it is easily seen that in the absence of the plunging displacement control, the MTR
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increases when the time delay is present. When a plunging displacement control is applied, the situation is
much more complex, in the sense that the curve of the Lyapunov coefficient crosses the zero line (L ¼ 0) much
earlier when C1 is larger, in particular, if a small plunging displacement control is applied (e.g. Y1 ¼ 0.05, as
shown in Fig. 7(a)). This indicates that time delay is (is not) beneficial to stabilize Hopf bifurcation for small
(large) C1 for this case.

C2 ¼ 10C1: The results obtained in this case are shown in Figs. 8 and 9. The effect of the nonlinear control
combined with the time delay can be clearly observed from these two figures. Again, it is confirmed that the
nonlinear control (C2) is helpful to stabilize the vibrating motion. By comparing results in Figs. 6–9,
respectively, it can be seen that the time delay helps to enhance the character of the flutter boundary, when it is
combined with nonlinear control (C2), if no plunging displacement control exists. Again, it is shown that the
time delay is not beneficial when a large plunging displacement control is used. It is noted that results shown in
Fig. 8 are similar to results in Fig. 5 of Ref. [2].
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4.3. Case 3: varied delay

C1 is fixed, but t 6¼0 is varied. We consider the variation of the time delay t from 0 to 4, and fix C1 ¼ 0.3.
For simplicity, we set C2 ¼ 10C1. First, in the absence of the plunging displacement control, the effect of time
delay on the flutter speed with respect to the variation of the flight Mach number is shown in Fig. 10(a). VF

increases monotonically with the increase of MN and t. It has been reported in Ref. [2] that a jumping in VF

occurs, for tA(2.33, 2.73). The flutter speed increases when the flight Mach number increases until a critical
value, where the flutter speed decreases suddenly to a small value (see Figs. 7–9 in Ref. [2]). The Lyapunov
coefficient presented in Fig. 10(b) reveals that the time delay combined with nonlinear control in C2 is also
beneficial in stabilizing the flutter motion when no plunging displacement control is applied. On the other
hand, when the plunging displacement control is applied, the effect of time delay on the flutter speed with
respect to the variation of the flight Mach number and the Lyapunov coefficient are much more complex, as
shown in Figs. 11 and 12, respectively. It can be seen from Fig. 11(a) and (b) that for a small value of Yl the
trend is still consistent, which is similar to that observed in Fig. 10(a). However, for a larger value of Y1, from
Figs. 11(c) and (d) it can be seen that with the increase of t, VF decreases for the same flight Mach number
when 0oto1.5, and VF increases with the increase of t when t41.5. For the stability of the Hopf bifurcation,
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it is seen from Fig. 12(a) that even for a small value of Y1, the behavior of the system is quite complex in
the sense that the order of the trend with respect to the time delay t changes twice, around the flight Mach
number 2 and 4, respectively. The situation becomes even worse when a large plunging displacement
(Y1 ¼ 0.5) is applied, as shown in Fig. 12(b), from which we observe that the change of the Lyapunov
coefficient is much more complex. For moderate values of t (e.g. t ¼ 1.5), the Lyapunov coefficient is negative
for any flight Mach number, which suggests that a moderate time delay is beneficial, i.e., it helps to stabilize
limit cycle oscillations. A large time delay, usually results in a positive Lyapunov coefficient implying an
unstable limit cycle oscillation. The Lyapunov coefficient is negative only in a small range of the flight Mach
number (see Fig. 13), which shows that a large time delay may change a benign vibration in to a catastrophic
one. Thus, when the aim is to control both the initiation of the Hopf bifurcation and the stability of
bifurcation motion, a large time delay is not beneficial.
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5. Conclusion

In this paper, the aeroelastic instability in the vicinity of the flutter boundary for a two-dimensional
supersonic lifting surface with proportional feedback control was addressed. The effect of time-delayed
feedback control on the flutter instability boundary and its character was investigated. It was shown that when
pitching control is involved, time delay is beneficial in postponing the initiation of a Hopf bifurcation.
However, with plunging displacement control, the effect of time becomes more intricate, in the sense that it
can advance the initiation of the Hopf bifurcation. In both cases, the effect of time delay becomes more
prominent for large linear control gains. Also, when plunging displacement control is applied, time delays may
destabilize bifurcation motions. Thus, based on the study given in this paper, in order to control both the
initiation of Hopf bifurcation and the stability of bifurcation motion, effectively, one should apply both linear
and nonlinear controls with small time delay, and avoid using plunging displacement controls.
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