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This paper is concerned with the practical complexity of the symbolic computation of limit
cycles associated with Hilbert’s 16th problem. In particular, in determining the number of
small-amplitude limit cycles of a non-linear dynamical system, one often faces computing
the focus values of Hopf-type critical points and solving lengthy coupled polynomial equa-
tions. These computations must be carried out through symbolic computation with the aid
of a computer algebra system such as Maple or Mathematica, and thus usually gives rise to
very large algebraic expressions. In this paper, efficient computations for the focus values
and polynomial equations are discussed, showing how to deal with the complexity in the
computation of non-linear dynamical systems.

� 2008 Published by Elsevier B.V.
1. Introduction

Limit cycles are common solutions for almost all non-linear dynamical systems. They model systems that exhibit self-sus-
tained oscillations. Due to the wide occurrence of limit cycles in science and technology, limit cycle theory has also been
extensively studied by physicists, and more recently by chemists, biologists and economists. Limit cycles are generated
through bifurcations (perturbations). From the point of view of dynamical system theory, there are four principal bifurca-
tions in producing limit cycles: (i) Multiple Hopf bifurcations from a center or focus; (ii) Separatrix cycle bifurcations from
homoclinic or heteroclinic orbits; (iii) global center bifurcation from a periodic annuli; and (iv) limit cycle bifurcations from
multiple limit cycles. Limit cycles bifurcated from a focus, center or limit cycles are called local bifurcations of limit cycles or
small limit cycles, which are usually studied by normal form and other local bifurcation theories [1–3]. The limit cycles gen-
erated from separatrix cycles or global period annuli are called global bifurcations of limit cycles, which are usually inves-
tigated by global bifurcation theories, such as the Poincaré–Pontryagin–Andronov theorem or higher order Melnikov
function analysis [4,5].

One well-known problem closely related to limit cycle theory is Hilbert’s 16th problem, which is one of the 23 mathe-
matical problems proposed by D. Hilbert at the Second International Congress of Mathematics in 1900 [6]. Recently, a mod-
ern version of the second part of Hilbert’s 16th problem was formulated by S. Smale, and chosen as one of his 18 most
challenging mathematical problems for the 21st century [7]. To be more specific, consider the following planar system:
y Elsevier B.V.
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_x ¼ Pnðx; yÞ; _y ¼ Qnðx; yÞ; ð1Þ
where the dot denotes differentiation with respect to time t, and Pnðx; yÞ and Q nðx; yÞ represent nth-degree polynomials of x
and y. The second part of Hilbert’s 16th problem is to find an upper bound of the type K ¼ HðnÞ 6 nq on the number of limit
cycles that the system can have, where q is a universal constant. If the problem is restricted to the vicinity of isolated fixed
points, it is equivalent to studying degenerate Hopf bifurcations, and the main tasks become computing the so-called focus
values of the point and determining centre conditions. In the past half-century, many researchers have investigated the local
problem and obtained many results (e.g., see [8–15]). For a quadratic system, it is now known that the maximum number of
small limit cycles is three [8]. However, globally, the problem is unsolved even for quadratic systems. For cubic-order sys-
tems, on the other hand, the best results published so far are twelve limit cycles [1–3,16,17]. In order to find the number of
limit cycles of a system in the neighbourhood of a fixed point (which is a linear center), one must compute the focus values of
the point with the aid of a computer algebra system such as Maple [18], or Mathematica [19]. In fact, many researchers have
recently paid attention to developing efficient computational methods for the computation of focus values (e.g., see [20–26]).
There is another method of finding limit cycles, called the method of stability-changing of homoclinic loops (e.g., see [27–
31]) as well as the reference cited therein.

Symbolic computation plays an important role in the study of limit cycles associated with Hopf critical points. Three main
tasks are involved in determining the number of limit cycles. First of all, one must compute the focus values, and then solve a
system of polynomial equations to determine parameter values such that as many focus values become zero as possible. Fi-
nally, one needs to give appropriate perturbations to prove the existence of the exact number of limit cycles. The first two
tasks must use symbolic computations, while the last task can be carried out with numerical computation. The symbolic
computations usually result in very large expressions for polynomial equations, and one cannot avoid this using a pure
numerical computation. Therefore, efficient computation is essential in the study of multiple limit cycles.

In this paper, we will use Hilbert’s 16th problem, as an example, to demonstrate the efficient computation of limit cycles.
The rest of the paper is organized as follows. In the next section, we shall present some basic concepts and lemmas which are
needed in the following sections. We also discuss some methods for computing focus values. Symbolic computation with
examples are given in Section 3, and finally, the conclusion is drawn in Section 4.

2. Preliminaries

In this section, we first present some basic concepts and lemmas which will be used in the next two sections, and give a
brief discussion on the methods for computing focus values.

Definition 1. A limit cycle is an attracting set to which orbits or trajectories converge and upon which trajectories are
periodic. A stable limit cycle is usually called a periodic attractor.

Definition 2. A singular point of a planar vector field is called elementary if the linearization of the field at this point has at
least one non-zero eigenvalue. A polycycle is called elementary if it contains elementary singular points only.

Definition 3. Hilbert’s 16th problem is to estimate HðnÞ for any n 2 Zþ, where HðnÞ denotes the uniform bound for the num-
ber of limit cycles of (1).

Hilbert’s problem is still open even for n ¼ 2. In fact, so far only a lower bound (4) is known for quadratic systems, i.e.,
Hð2ÞP 4 [32,33]. For more detailed discussion on Hilbert’s 16th problem, the reader is referred to the review articles
[34–36].

Although, it has not been possible to obtain a uniform upper bound for HðnÞ, various efforts have been made in finding the
maximal number of limit cycles and raising the lower bound of Hilbert number HðnÞ for general planar polynomial systems
or for individual degree of systems, through which people hope to get better estimates of the upper bound of HðnÞ. Even just
estimating a good lower bound of HðnÞ is, in general, a very difficult problem.

Since the main attention of this paper is given to studying small-amplitude limit cycles, in the following we give sufficient
conditions for the existence of small limit cycles. We suppose that the normal form of system (1) has been obtained in the
polar coordinates up to the ð2kþ 1Þth order term (interested readers can find the details of normal form computation in
[20]):
_r ¼rðv1 þ v3r2 þ v5r4 þ � � � þ v2kþ1r2kÞ; ð2Þ
_h ¼xþ t3r2 þ t5r4 þ � � � þ t2kþ1r2k; ð3Þ
where r and h denote the amplitude and phase of motion, respectively. Both vk and tk are explicitly expressed in terms of the
original system’s coefficients. v2kþ1 is called the kth-order focus value of the Hopf-type critical point (the origin). Note that
here v1 is the term obtained from linear perturbation.

The basic idea of finding k small limit cycles of system (1) around the origin is as follows: First, find the conditions such
that v3 ¼ v5 ¼ � � � ¼ v2k�1 ¼ 0 (note that v1 ¼ 0 is automatically satisfied at the critical point), but v2kþ1–0, and then perform
appropriate small perturbations to prove the existence of k limit cycles. This indicates that the procedure for finding multiple
limit cycles involves two steps: Computing the focus values (i.e., computing the normal form) and solving the coupled
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non-linear equations: v3 ¼ v5 ¼ . . . ¼ v2k�1 ¼ 0. In the following two lemmas, we give sufficient conditions for the existence
of small limit cycles. (The proofs can be found in [1–3].)

Lemma 1. If the system parameters are chosen such that the focus values v2iþ1 in Eq. (2) satisfy the following conditions:
v2iþ1v2iþ3 < 0 and jv2iþ1j � jv2iþ3j � 1; for i ¼ 0;1;2; . . . ; k� 1;
then the polynomial equation given by _r ¼ 0 in Eq. (2) has k positive real roots of r2, and thus the original system (1) has k limit
cycles in the vicinity of the origin.

However, in many cases, v2jþ1 depends on k parameters:
v2jþ1 ¼ v2jþ1ð�1; �2; . . . ; �kÞ; j ¼ 0;1; . . . ; k: ð4Þ
In this case, the following lemma is more convenient in applications.

Lemma 2. Suppose that condition (4) holds, and further assume that
v2kþ1ð0; . . . ; 0Þ–0;
v2jþ1ð0; . . . ; 0Þ ¼ 0; j ¼ 0;1; . . . ; k� 1;

and det
@ðv1;v3; . . . ;v2k�1Þ
@ð�1; �2; . . . ; �kÞ

ð0; . . . ;0Þ
� �

–0: ð5Þ
Then for any given �0 > 0, there exist �1, �2; . . . ; �k and d > 0 with j�jj < �0; j ¼ 1;2; . . . ; k such that the equation _r ¼ 0 has exactly
k real positive roots r2 (i.e., system (2) has exactly k limit cycles) in a d-ball with the center at the origin.

In this paper, we will consider examples chosen from quadratic and cubic systems to demonstrate computation of small
limit cycles. A general cubic system with a fixed point at the origin can be written as
_x ¼ a10xþ a01yþ a20x2 þ a11xyþ a02y2 þ a30x3 þ a21x2yþ a12xy2 þ a03y3;

_y ¼ b10xþ b01yþ b20x2 þ b11xyþ b02y2 þ b30x3 þ b21x2yþ b12xy2 þ b03y3; ð6Þ
where aij’s and bij’s are real constant coefficients (parameters). It is obvious that the origin ðx; yÞ ¼ ð0; 0Þ is a fixed point. The
system has a total of eighteen parameters. However, not all of them are independent. First, note that we may use a linear
transformation such that system (6) can be rewritten as
_x ¼ axþ byþ a20x2 þ a11xyþ a02y2 þ a30x3 þ a21x2yþ a12xy2 þ a03y3;

_y ¼ �bxþ ayþ b20x2 þ b11xyþ b02y2 þ b30x3 þ b21x2yþ b12xy2 þ b03y3; ð7Þ
where a and b > 0 are used to represent the eigenvalues of the linearized system of (6). Note that the other coefficients in (7)
should be different from that of system (6), but we use the same notation for convenience. Here, when the negative sign is
taken, the origin is a focus point or a centre (if a ¼ 0); otherwise, it is a saddle point or node.

Now, suppose we are interested in the small limit cycles in the neighborhood of the origin. So the negative sign is taken in
(7), and the eigenvalues are now given by k1;2 ¼ a� bi, where i is the imaginary unit, satisfying i2 ¼ �1. Then we can apply a
time scale, s ¼ bt, into system (7) to obtain
dx
ds
¼ axþ yþ a20x2 þ a11xyþ a02y2 þ a30x3 þ a21x2yþ a12xy2 þ a03y3;

dy
ds
¼ �xþ ayþ b20x2 þ b11xyþ b02y2 þ b30x3 þ b21x2yþ b12xy2 þ b03y3; ð8Þ
where again the same notations for the parameters are used. Henceforth, we assume that the leading b has been scaled to 1,
and rename s ¼ t. Now, system (8) has only fifteen parameters. Further, by a rotation we can remove one parameter [8,37]
from system (8), which can be written in the general form:
_x ¼ axþ yþ Ax2 þ ðBþ 2DÞxyþ Cy2 þ Fx3 þ Gx2yþ ðH � 3PÞxy2 þ Ky3;

_y ¼ �xþ ayþ Dx2 þ ðE� 2AÞxy� Dy2 þ Lx3 þ ðM � H � 3FÞx2yþ ðN � GÞxy2 þ Py3: ð9Þ
This form is perhaps the simplest form for cubic systems in the literature [37]. The system has fourteen parameters. How-
ever, since the same order terms on the right-hand side of (9) are homogeneous, we can remove one more parameter. Sup-
pose A–0 (in case A ¼ 0 one may use another non-zero parameter in the scaling), we let
B ¼ bA; C ¼ cA;D ¼ dA; E ¼ eA; F ¼ fA2
;G ¼ gA2

;

H ¼ hA2
;K ¼ kA2

; L ¼ ‘A2
;M ¼ mA2

;N ¼ nA2
; P ¼ pA2

; ð10Þ
and apply a spatial scaling x! x=A, y! y=A to system (9) to obtain
_x ¼ axþ yþ x2 þ ðbþ 2dÞxyþ cy2 þ fx3 þ gx2yþ ðh� 3pÞxy2 þ ky3
;

_y ¼ �xþ ayþ dx2 þ ðe� 2Þxy� dy2 þ ‘x3 þ ðm� h� 3f Þx2yþ ðn� gÞxy2 ¼ py3; ð11Þ
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which has only thirteen independent parameters. It is easy to see that the zeroth-order focus value is v0 ¼ a. Other focus
values are given in terms of the remaining twelve parameters. Let
S ¼ fb; c;d; e; f ; g;h; k; ‘;m;n; pg: ð12Þ
Then, v i ¼ v iðSÞ. In general, the maximum number of small limit cycles which exist in the vicinity of the origin is not greater
than the number of independent parameters. Here, it is 13. In other words, the best possibility one can have is
v i ¼ 0; i ¼ 0;1; . . . ;12; but v13–0:
Then according to the lemmas given above, the maximum number of small limit cycles which can be obtained by appropri-
ate perturbations is 13. Of course, this conclusion is obtained under the assumption that the origin is a linear centre (i.e., the
origin is a Hopf-type critical point). If the origin is a saddle point or a node, then the situation is different, which will be dis-
cussed in Section 3.

In order to find the number of small limit cycles around a focus point, one needs to compute the focus values of the point.
There are a number of methods which can be used to compute the focus values. In this section, we briefly describe two effi-
cient methods for computing the focus values. A perturbation technique based on the normal form theory associated with
Hopf singularity was developed early [20]. The approach can be employed to a general n-dimensional system associated with
Hopf bifurcation to yield the normal form given by Eqs. (2) and (3). Another well-known method, called singular point meth-
od, is to compute the singular point quantities (see [24–26,38] for details). However, this method is only applicable to two-
dimensional systems described on center manifold. We have the following results for the singular point method and the
relation between the focus value and the singular point method [24,25,39],

Theorem 1. For any positive integer m, the following assertion holds:
v2kþ1ð2pÞ ¼ ip lk þ
Xk�1

j¼1

nðjÞm lj

 !
; k ¼ 1;2; . . . ; ð13Þ
where nðjÞm ðj ¼ 1;2; . . . ; k� 1Þ are polynomial functions, and the singular point quantity lk is given by
lm ¼
X2mþ4

kþj¼3

½ðm� kþ 2Þak;j�1 � ðm� jþ 2Þbj;k�1�Cm�kþ2;m�jþ2; ð14Þ
where C11 ¼ 1;C20 ¼ C02 ¼ Ckk ¼ 0; k ¼ 2;3; . . ., and 8ða; bÞ;a–b, m P 1, and
Cab ¼
1

b� a
Xaþbþ2

kþj¼3

½ða� kþ 1Þak;j�1 � ðb� jþ 1Þbj;k�1�Ca�kþ1;b�jþ1; ð15Þ
where akj ¼ bkj ¼ Ckj ¼ 0 for k < 0 or j < 0.

It is clearly seen from Eq. (13) that
l1 ¼ l2 ¼ � � � ¼ lk�1 () v3 ¼ v5 ¼ � � � ¼ v2k�1:
Therefore, when determining the conditions such that v1 ¼ v2 ¼ � � � ¼ vk�1 ¼ 0, one can instead use the equations:
l1 ¼ l2 ¼ � � � ¼ lk�1 ¼ 0. If the lk’s are simpler than the vk’s then this method is better than the method of directly comput-
ing vk. However, in general such lk are not necessarily simpler than vk. We shall see this in the next section.

3. Symbolic computation with examples

The formulas given in the previous section for computing the focus values (normal form) or the singular point quantities
can be coded using a computer algebra system such as Maple or Mathematica. In fact, Maple has been used to code the per-
turbation method (the source code and sample inputs can be found from the website: pyu1.apmaths.uwo.ca/pyu/pub/soft-
ware). The formulas for computing the singular point quantities have been coded using both Maple and Mathematica. Both
methods have been used in computing limit cycles. In this section, we will present a number of examples to demonstrate the
complexity of symbolic computation.

3.1. Three small limit cycles in quadratic systems

We start from the simplest case, namely, consider the limit cycles bifurcating from the origin of quadratic vector fields.
Thus, we take Eq. (11) only up to the second-order terms to obtain the following system:
_x ¼ axþ yþ x2 þ ðbþ 2dÞxyþ cy2 _y ¼ �xþ ayþ dx2 þ ðe� 2Þxy� dy2
; ð16Þ
which has five independent parameters: a; b; c; d; e. It is clear that v1 ¼ a. When one calculates v2kþ1 or lk (k P 1), one sets
a ¼ 0. Therefore, there are only four independent parameters which appear in the focus values or the singular point
quantities.
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To find the focus values of system (16), we apply the Maple program given in [20]. The execution of the program is
straightforward: put Eq. (16) into a Maple input file and give an order, say, n ¼ 9, and then execute the program to produce
an output containing the focus values as well as non-linear transformation. Source codes and guideline can be found from
the website: pyu1.apmaths.uwo.ca/p~yu/pub/software (names: program1 and input1). The focus values are given by
v3 ¼ �
1
8
ðc þ 1Þb;

v5 ¼ �
1

288
ðc þ 1Þ½6deð5c � eþ 5Þ þ bð18þ 3e� 18c þ 19ceþ 34bdþ 5b2 þ 20c2 þ 56d2 � e2Þ�;

v7 ¼ �
1

663552
ðc þ 1Þ�v7ðb; c; d; eÞ;

v9 ¼ �
1

238878720
ðc þ 1Þ�v9ðb; c;d; eÞ;

..

.

ð17Þ
where �v iðb; c; d; eÞ ði ¼ 5;7;9Þ are polynomials of b; c; d; e. It is seen that c ¼ �1 yields a centre [8]. Hence, in order to have
v3 ¼ 0, one must choose b ¼ 0. When b ¼ 0, v5 ¼ � 1

48 deðc þ 1Þð5c � eþ 5Þ, which indicates that one must choose
e ¼ 5ðc þ 1Þ to obtain v5 ¼ 0, under which v7 ¼ � 25

64 dðc þ 1Þ3ðc þ 2c2 þ d2Þ. If we set v7 ¼ 0, then v9 ¼ 0 too. Actually, Bautin
showed that setting v7 zero leads to a centre. Therefore, one can only choose the four parameters such that v3 ¼ v5 ¼ 0, but
v7–0, implying that the maximum number of the small limit cycles surrounding the origin is three.

To prove the existence of exact three small limit cycles, we apply appropriate perturbations such that the perturbed focus
values satisfy the sufficient conditions given in Lemma 1. There are infinitely many choices for the parameter values. Note
that due to the scaling given in (10), the focus values for the original system (9) can be adjusted to any small values using the
free parameter A. Under the critical conditions:
b ¼ 0; e ¼ 5ðc þ 1Þ;
we have v3 ¼ v5 ¼ 0, v7 ¼ � 25
64 dðc þ 1Þ3ðc þ 2c2 þ d2Þ. Since exactly one parameter is used for each of the two focus values,

v3 and v5, the perturbations for the quadratic system is straightforward, as shown below.
For convenience, suppose dðc þ 1Þðc þ 2c2 þ d2Þ > 0, and thus v7 < 0. Further, for definiteness, we may assume that d > 0

and c > 0, since we are not interested in finding all solutions (which we are certainly be able to obtain) but only in the exis-
tence of the three small limit cycles. Then we want to give a perturbation to e ¼ 5ðc þ 1Þ such that v5 > 0 and 0 < v5 � �v7.
By (17), we have the derivative of v5 with respect to e, evaluated at the critical values: dv5

de ¼ 5
48 dðc þ 1Þ2 > 0. So we may select

�1 > 0 such that e ¼ 5ðc þ 1Þ þ �1. Then the perturbed v5 is
v5 ¼
d

48
½5ðc þ 1Þ2�1 � ðc þ 1Þ�2

1� �
5

48
dðc þ 1Þ2�1 > 0;
and thus 0 < v5 � �v7 as long as 0 < �1 � 1.
Next, we want to perturb v3 such that the perturbed values satisfy 0 < �v3 � v5 � �v7. By (17), we have

dv3
db ¼ � 1

8 ðc þ 1Þ < 0, implying that we should perturb b from b ¼ 0 to b ¼ 0þ �2. Thus, the perturbed value of v3 is given
by v3 ¼ � 1

8 ðc þ 1Þ�2, where 0 < �2 � �1 � 1 which guarantees that 0 < �v3 � v5.
Finally, we need a perturbation to v1 ¼ a ¼ 0, which must be positive. Simply let a ¼ �3. Then v1 ¼ �3 with 0 < �3 � �2

yields
0 < v1 � �v3 � v5 � �v7;
provided that 0 < �3 � �2 � �1.
Summarizing the above results gives the following theorem.

Theorem 2. Given the quadratic system (16), suppose c > 0; d > 0, and b ¼ 0, e ¼ 5ðc þ 1Þ. Then, under the perturbations:
e5ðc þ 1Þ þ �1, b ¼ �2 and a ¼ �3, where 0 < �3 � �2 � �1 � 1, the system (16) has exactly three small limit cycles in the
neighborhood of the origin.

As a numerical example, let c ¼ d ¼ 1=2, and exactly choose the perturbations as �1 ¼ 1
10 ; �2 ¼ 1

5000 ; �3 ¼ 1
50000000. Then the

perturbed focus values are given by
v1 ¼
1

50000000
; v3 ¼ �

3
80000

; v5 ¼
56673782999

4800000000000
; v7 ¼ �

1099541240782350199352293
1382400000000000000000000

:

Thus, the normal form given up to term r7 is
_r ¼ r
1

50000000
� 3

80000
r2 þ 56673782999

4800000000000
r4 � 1099541240782350199352293

1382400000000000000000000
r6

� �
;

which yields three positive roots for r: r1 ¼ 0:0258299909; r2 ¼ 0:0595361101; r3 ¼ 0:1031148918, representing the approx-
imate solutions for the amplitudes of the three small limit cycles bifurcating from the origin.
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The perturbed quadratic system is given by
Fig
_x ¼ 0:00000002xþ yþ x2 þ 1:0002xyþ 0:5y2;

_y ¼ �xþ 0:00000002yþ 0:5x2þ 5:6xy� 0:5y2:
The system has two fixed points: C0 ¼ ð0;0Þ, a third-order unstable focus point, and C1 ¼ ð�0:1368474832;�1:7042735041Þ,
a saddle point. The phase portrait for this perturbed system is shown in Fig. 1, where the three limit cycles are shown in the
vicinity of the origin. It should be noted that trajectories of the system near the origin shows behaviour similar to that around
a centre due to the degeneracy of the singular point. Therefore, it is impossible in this fashion to verify the multiple limit
cycles bifurcating from a high order singular point. It can be shown that a quadratic system cannot simultaneously have
two linear centres or two fine focus points, but may have one fine focus point and one saddle point (as in the case depicted
in Fig. 1), or one fine focus point and an unstable focus point [32]. Note that the trajectories shown in this figure are obtained
by solving the above perturbed quadratic equations based on a 4th-order Runge–Kutta method. Figs. 2 and 3 are obtained in
the same way.

If we use the formulas given in (15) and (14) and execute the Maple program, we obtain the following singular point
quantities:
l1 ¼
1
4

iðc þ 1Þb;

l2 ¼�
1

48
iðc þ 1Þ½�2deð5c � eþ 5Þ þ bð15þ 7eþ 20c þ 11ce� 2bdþ 4b2 þ 5c2 þ 6e2Þ�;

..

.

Comparing (17) with the above formulas shows that v3 ¼ 1
2 il1, but v5 and l2 are quite different. Nevertheless, l2 does not

simplify the expression (only reducing one term d2). This also happens to v7 and l3. If set b ¼ 0 (so that v3 ¼ l1 ¼ 0), then
v5 ¼ 1

2 il2. Further, letting e ¼ 5ðc þ 1Þ (so that v5 ¼ l2 ¼ 0) yields v7 ¼ 1
2 il3.

The above example indicates that the two methods described in the previous section have comparable computing
efficiency.

3.2. Twelve small limit cycles in Z2-equivariant cubic systems

In this section, we turn to study the small limit cycles bifurcating from cubic systems. First, we consider the case when the
origin is not a centre, and then investigate the case that the origin is a centre. Since the 1980’s many researchers have studied
the limit cycles of cubic systems, and, in particular, the main attention has been focused on local bifurcations (e.g., see
[37,40–44]). The maximum number of limit cycles obtained so far for cubic systems is twelve [1–3,16,17,25].

When the origin is not a centre, we may consider Z2-equivariant vector fields in order to simplify computation. It has been
proved [17,2,3] that the cubic-order system (9) can have twelve small limit cycles. This system has a saddle point, and two
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. 1. The phase portrait of system (16) having 3 small limit cycles around the origin, for a ¼ 0:00000002, b ¼ 0:0002, c ¼ 0:5, d ¼ 0:5, e ¼ 7:6.
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Fig. 2. The phase portrait of system (21) having 12 limit cycles, when the origin is a node for a ¼ a12 ¼ �b03 ¼ �0:7; b ¼ �a03 ¼ �0:3336019980,
a30 ¼ 4:5658610164, a21 ¼ �5:0539492766; b30 ¼ �1:3447323014; b21 ¼ �0:8333681006; b12 ¼ �4:1028222711.
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Fig. 3. The phase portrait of system (26) having 8 limit cycles around the origin, for k ¼ �0:4� 10�47, a3 ¼ 0:5, a4 ¼ 0:2935258759, a5 ¼ 3:3759641940,
a7 ¼ �2:5483319254, b4 ¼ �0:1454777790, b5 ¼ 0:1� 10�37, b6 ¼ 3:6440555615, b7 ¼ 0:2935258759.
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weak focus points which are symmetric about the origin. Six small limit cycles exist in the neighborhood of each of the two
weak focus points. More generally, consider the following general cubic-order Z2-equivariant vector field [35]:
_z ¼ F2ðz;�zÞ; _�z ¼ �F2ðz;�zÞ; ð18Þ
where F2ðz;�zÞ ¼ Pðw1;w2Þ þ iQðw1;w2Þ, w1 ¼ 1
2 ðzþ �zÞ;w2 ¼ 1

2i ðz� �zÞ, P;Q ;w1 and w2 are all real, and
F2ðz;�zÞ ¼ ðA0 þ A1jzj2Þzþ ðA2 þ A3jzj2Þ�zþ A4z3 þ A5�z3: ð19Þ
Let Aj ¼ aj þ ibj where aj; bj are real. Then we obtain the following real Z2-equivariant vector field:
_w1 ¼ ða0 þ a2Þw1 � ðb0 � b2Þw2 þ ða1 þ a3 þ a4 þ a5Þw3
1 � ðb1 � b3 þ 3b4 � 3b5Þw2

1w2

þ ða1 þ a3 � 3a4 � 3a5Þw1w2
2 � ðb1 � b3 � b4 þ b5Þw3

2;

_w2 ¼ ðb0 þ b2Þw1 þ ða0 � a2Þw2 þ ðb1 þ b3 þ b4 þ b5Þw3
1 þ ða1 � a3 þ 3a4 � 3a5Þw2

1w2

þ ðb1 þ b3 � 3b4 � 3b5Þw1w2
2 þ ða1 � a3 � a4 þ a5Þw3

2: ð20Þ
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The eigenvalues of the Jacobian of system (20) evaluated at the origin are k1;2 ¼ a0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

2 þ b2
2 � b2

0

q
. There are two cases:

(I) when a2
2 þ b2

2 � b2
0 P 0, the origin is either a saddle point or a node; and

(II) when a2
2 þ b2

2 � b2
0 < 0, the origin is either a focus point or a center.

In order to take advantage of the Z2-symmetry, we consider, instead of the origin, two non-zero weak focus points which
are symmetric about the origin. Therefore, if one finds a certain number of limit cycles around one of the focus points, the
total number of limit cycles of the system is doubled. To find the limit cycles around each of the weak focus points, introduce
the following linear transformation ðw1; w2ÞT ¼ Tðx; yÞT , where
T ¼

0 b0 � b3

�b a3

� �
b ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

3 þ b2
3 � b2

0

q� �
for Case ðIÞ;

0 b0 � b3

b a3

� �
b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ða2

3 þ b2
3 � b2

0Þ
q� �

for Case ðIIÞ;

8>>><
>>>:
into system (20) with renamed coefficients gives the normalized equations:
_x ¼ axþ byþ a30x3 þ a21x2yþ a12xy2 þ a03y3;

_y ¼ �bxþ ayþ b30x3 þ b21x2yþ b12xy2 þ b03y3; ð21Þ
where the positive sign is taken for Case (I), the negative sign for Case (II), and a ¼ a0. Without loss of generality, one may
assume that the two weak focus points are located at ð0;�1Þ, which yields a03 ¼ �b; b03 ¼ �a. Further, applying the following

scalings: a; b; a30; a21; b30; b21 ) xa;xb;xa30;xa21;xb30;xb21, with b12 ¼ ð4a2 � 2b2 þx2Þ=ð2bÞ, and the time scaling:
s ¼ xt, together with introducing the following transformation:
x

y

� �
¼

0
�1

� �
þ

2b 0
2a �1

� �
u

v

� �
;

to the above normalized equations yields the following equations for computing the normal form of system (20) associated
with the Hopf critical points ð0;�1Þ:
du
ds
¼ v þ 2�a21u2 þ 4auv � 3

2
v2 þ 4b�a30u3 � 2�a21u2v � 2auv2 þ 1

2
v3;

dv
ds
¼ �u� 4�b21u2 þ 2ð2a2 	 2b2 þ 1Þuv � 8�b30u3 þ 4�b21u2v � ð2a2 	 b2 þ 1Þuv2; ð22Þ
in which

�a21 ¼ a21b� a2;

�a30 ¼ a30bþ a21a;
�b21 ¼ b21b2 � a21ab	 2ab2 þ 2a3 þ a;
�b30 ¼ b30b3 � a30ab2 � a21a2bþ b21ab2 	 a2b2 þ a4 þ 1

2 a2;

ð23Þ
where the ‘�’ sign is for case (I), while the ‘þ’ sign for case (II). It is noted that �a21; �a30;
�b21;

�b30 and a21; a30; b21; b30 are mutually
uniquely determined.

The above normalizing procedure shows that one of the parameters: a; b and b12 can be chosen arbitrarily since the fre-
quency x can be normalized to 1 using a time scaling. Therefore, we may, instead of the time scaling, let b12 ¼ 1þ4a2

2b � b, un-
der which x ¼ 1 and so s ¼ t.

It is clearly seen from Eq. (22) that the normal forms for the two cases (I) and (II) will be in the same formulas. Therefore,
one only needs to consider one case. In the following, we briefly summarize the computation of focus values. For the generic
case, letting v1 ¼ 0 yields the solution for �a30. Then, setting v2 ¼ 0 result in
�b30 ¼ �b30ða; b; �a21;
�b21Þ ¼ �

�bNða; b; �a21;
�b21Þ

6�bDða; b; �a21;
�b21Þ

;

where �bN and �bD are polynomials of a; b; �a21 and �b21. The remaining focus values are then simplified as
v3 ¼
4FF1

9½að8�a21 � 1Þ � 10�b21ða�a21 þ 2a2 � 2a2 þ 1Þ þ 8aða2 � b2Þ�2
;

v4 ¼
FF2

405½að8�a21 � 1Þ � 10�b21ða�a21 þ 2a2 � 2a2 þ 1Þ þ 8aða2 � b2Þ�3
;

v5 ¼
FF3

233280½að8�a21 � 1Þ � 10�b21ða�a21 þ 2a2 � 2a2 þ 1Þ þ 8aða2 � b2Þ�4
;

v6 ¼
FF4

146966400½að8�a21 � 1Þ � 10�b21ða�a21 þ 2a2 � 2b2 þ 1Þ þ 8aða2 � b2Þ�5
; ð24Þ
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where F, is a common factor, and Fi ¼ Fiða; b; �a21;
�b21Þ; i ¼ 1;2;3;4. Since F ¼ 0 leads to centers, we should find solutions from

Fi ¼ 0. Further, note that F1 is linear in �a21, so one can explicitly solve �a21 from F1 ¼ 0 to obtain
�a21 ¼ �a21ða; b; �b21Þ ¼
��a21Nða; b; �b21Þ
20�a21Dða; b; �b21Þ

:

Then, substituting the above �a21 into Fi’s yields three polynomial equations:
F2 ¼ �
672ð10�b21 � aþ 3bÞ2ð10�b21 � a� 3bÞ2½5�b21ð4�b21 � 4a3 þ 4ab2 � 5aÞ þ a2ð8a2 � 8b2 þ 5Þ�2

25½280�b4
21 � 112a�b3

21 þ 6ð11a2 � b2Þ�b2
21 � 2að5a2 � 3b2Þ�b21 þ a4 � 9a2b2�2

F
2 ¼ 0;

F3 ¼ �
21504ð3125�b21 � aþ 3bÞ3ð10�b21 � a� 3bÞ3½5�b21ð4�b21 � 4a3 þ 4ab2 � 5aÞ þ a2ð8a2 � 8b2 þ 5Þ�3

25½280�b4
21 � 112a�b3

21 þ 6ð11a2 � b2Þ�b2
21 � 2að5a2 � 3b2Þ�b21 þ a4 � 9a2b2�5

F
3 ¼ 0;

F4 ¼ �
2016ð78125�b21 � aþ 3bÞ4ð10�b21 � a� 3bÞ4½5�b21ð4�b21 � 4a3 þ 4ab2 � 5aÞ þ a2ð8a2 � 8b2 þ 5Þ�4

25½280�b4
21 � 112a�b3

21 þ 6ð11a2 � b2Þ�b2
21 � 2að5a2 � 3b2Þ�b21 þ a4 � 9a2b2�8

F
4 ¼ 0;
where F
i ¼ F
i ða; b; �b21Þ ¼ 0; i ¼ 2;3;4. These three polynomial equations are coupled and have to be solved simultaneously.
Similarly, we need to eliminate one of the coefficients a; b and �b21 from the three equations. Eliminating b from the first two
equations (using the Maple resultant command), F2 ¼ 0 and F3 ¼ 0, yields the resultant equation:
F5 ¼ 160�b3
21 þ 140a�b2

21 � 40a2�b21 þ a3: ð25Þ
Similarly, eliminating b from another two equations, F2 ¼ 0 and F4 ¼ 0, yields another resultant equation: F6 ¼ 0, where F6 is
a lengthy expression, omitted here. We must solve F5 ¼ F6 ¼ 0 for a and �b21, which may yield possible solutions such that
v i ¼ 0; i ¼ 1;2; . . . ;6. It should be pointed out that the above non-linear, variable elimination process does not miss any pos-
sible solutions, but as is well-known, it introduce extra, spurious, solutions, and thus one has to verify all solutions using the
original expressions of v i.

Finally, eliminating �b21 from the two equations, F5 ¼ F6 ¼ 0, results in the final equation:
F7 ¼ ð11278332390406413903678327394304a12 þ 9439268357932268111521578554849280a10

þ 15955549149699417710133152016699200a8 þ 7806733831958566794606224301855600a6

þ 2689670124233149942096312307701500a4 þ 1317907196524296813182912146670625a2

þ 248225087542552407942139964497500Þa ¼ 0:
It is obvious that the above equation has only one real solution a ¼ 0. But if a ¼ 0, then �b21 ¼ 0 resulting in �a21 ¼
�b30 ¼ �a30 ¼ 0, which can be shown to give a center. Thus, a must be non-zero. This implies that one cannot find possible
non-zero values of a and �b21 such that F5 ¼ F6 ¼ 0, indicating that there is no solution for F2 ¼ F3 ¼ F4 ¼ 0. Therefore, there
do not exist possible non-trivial solutions for a; b; �a21;

�b21; �a30 and �b30 such that v i ¼ 0; i ¼ 1;2; . . . ;6. Hence, fourteen small
limit cycles are not possible for a cubic system with Z2 symmetry.

Since there is one free parameter (i.e., a), we have infinitely many solutions. All parametric solutions can be found as fol-
lows. Finding these solutions only requires F2 ¼ F3 ¼ 0 (F4–0). Numerically solving these equations for �b21 in terms of a
yields three solutions: �b21 ¼ 0:2033343806a;�1:1061229255a and 0:2778854492a. Then, for each of the above solutions,

solving Eq. (25) gives two solutions for b2. By checking the equations F2 ¼ F3 ¼ 0, four solutions are obtained: two for the
case when the origin is a saddle point and two for the case when the origin is a node. In the following, we consider one
of the two cases when the origin is a node. Let the critical values be denoted by
b
 ¼ 0:4765747114a;

�b
21 ¼ 0:2033343806a;

�a
21 ¼ 0:7000000000þ 1:0149654014a2;

�b
30 ¼
a2ð0:0481488581þ 65:9546167690a2 � 9379:2591506305a4Þ

0:0008286738� 0:1076372236a2 ;

�a
30 ¼ �ð0:8202076319þ 2:4368685248a2Þ:
Then, we have the following theorem for the generic case.

Theorem 3. Given the cubic system (21) which is assumed to have a saddle point or a node at the origin and a pair of symmetric
fine focus points at ðx; yÞ ¼ ð0;1Þ and ð0;�1Þ. Further suppose a12 ¼ �b03 ¼ a; a03 ¼ �b; b12 ¼ 1þ4a2

2b � b. Then, for an arbitrarily
given a–0, if b; �b21; �a21ðb; �b21Þ; �b30ðb; �a21;

�b21Þ and �a30ðb; �a21;
�b21Þ are perturbed as
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b ¼ b
 þ �1;

�b21 ¼ �b
21 þ �2;

�a21 ¼ �a21ðb
 þ �1;
�b
21 þ �2Þ þ �3;

�b30 ¼ �b30ðb
 þ �1;
�b
21 þ �2; �a21ðb
 þ �1;

�b
21 þ �2Þ þ �3Þ þ �4;

�a30 ¼ �a30ðb
 þ �1;
�b
21 þ �2; �a21ðb
 þ �1;

�b
21 þ �2Þ þ �3Þ þ �5;

a12 ¼ aþ �6;
where 0 < j�6j � j�5j � j�4j � j�3j � ðj�2j; j�1jÞ � 1, system (21) has exactly twelve small limit cycles. The notation ðj�2j; j�1jÞ
means that �2 and �1 are in the same order, with �2 ¼ ðdþ ��Þ�1 for some d > 0 and some small �� > 0. (Note that here the pertur-
bations, �i ’s, can take positive or negative values since here a is not specified.)

To end with a case in which the origin is not a centre, we present a numerical example for the case when the origin is a
node. We choose a ¼ �0:7, and then b
 ¼ �0:3336022980; �b
21 ¼ �0:1423340664; �a
21 ¼ 1:1973330467; �b
30 ¼ 0:0744658372;
�a
30 ¼ 2:0142732091, for which b12 ¼ �4:1028179815. Further, we take the following perturbations: �1 ¼ 0:3� 10�6;

�2 ¼ �0:4� 10�3; �3 ¼ �0:7� 10�7; �4 ¼ 0:2� 10�11; �5 ¼ 0:1� 10�14; �6 ¼ 0:3� 10�19; under which the system has five real
fixed points: C0 ¼ ð0;0Þ; C1;2 ¼ ð0;�1Þ and C3;4 ¼ ð�0:2398840466,	0:1797759006Þ. A linear analysis shows that C0 is a sta-
ble node, C1;2 are two weakly unstable focus points, and C3;4 are saddle points. Computing the focus values for the perturbed
system finally yields the six amplitudes for the small limit cycles: r ¼ 0:0072744336;0:0100774933;0:0150111942;
0:0824725838;0:2066015944; 0:3591142108. The phase portrait for the above perturbed system is shown in Fig. 2, where
the two boxes contain the twelve small limit cycles near the focus points ð0;�1Þ. The stabilities of these limit cycles can be
easily determined from the signs of the focus values.

3.3. Eight small limit cycles in a simple cubic system

In the previous subsection we have shown that a cubic system with Z2 symmetry exhibits twelve small limit cycles, but
distributed in the neighborhood of two fine focus points. Now we turn to the case that the origin is a centre and want to
investigate the small limit cycles around the origin. Many results have been obtained [44] showed six limit cycles bifurcating
from one critical point. Another such an example can be found in [37]. Later, seven limit cycles were found (e.g., see [40,42]).
In [42], eight limit cycles were obtained. All the results were based on the symbolic computation of focus values. Recently, it
was claimed that a cubic system can have eleven limit cycles around one critical point [43], which, however, does not pro-
vide detailed computation of focus values.

In the remaining of the section, we will first show that the simplest cubic system given in [42] which has seven limit cy-
cles can actually have eight limit cycles, and then present a cubic system which has nine limit cycles around the origin. These
new results are based on symbolic computation with the aid of Maple.

First, consider the simple cubic system given in [42]:
_x ¼ kxþ yþ a3x2 þ a4x3 þ a5x2y� 3b7xy2 þ a7y3;

_y ¼ �xþ kyþ ðb4 � a7Þx3 þ ðb5 � 3a4Þx2yþ ðb6 � a5Þxy2 þ b7y3: ð26Þ
In [42], an extra condition 3a5 ¼ �ð10a2
3 þ 11a7Þ is imposed in order to simplify computation. In fact, lifting this restriction

leads to eight limit cycles, as we will see. First, choose a3–0 as a scaling parameter and apply the following scalings:
ai ! Aia2
i ; bi ! Bia2

i ; x! x=a3; y! y=a3; ð27Þ
into system (26) to obtain
_x ¼ kxþ yþ x2 þ A4x3 þ A5x2y� 3B7xy2 þ A7y3;

_y ¼ �xþ kyþ ðB4 � A7Þx3 þ ðB5 � 3A4Þx2yþ ðB6 � A5Þxy2 þ B7y3: ð28Þ
Executing the Maple program [20] yields (with k ¼ 0) v3 ¼ 1
8 B5. Setting v3 ¼ 0 gives B5 ¼ 0. Then computing v5 results in
v5 ¼ �
1
8

B6ðA4 � B7Þ:
There are two choices satisfying v5 ¼ 0: either B6 ¼ 0 or B7 ¼ A4. Setting B6 ¼ 0 leads to v5 ¼ v7 ¼ � � � ¼ 0, a centre. So let
B7 ¼ A4, under which v7 is to be
v7 ¼ �
1

192
A4B6ð�35þ 3B6 þ 15B4Þ:
For the same reason, we must choose B4 ¼ 1
15 ð35� 3B6Þ, in order to have v7 ¼ 0.
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Continuing the calculation shows that
v9 ¼
A4B6

9600
½5A7ð18B6 � 385Þ � 1750� 525A5 � 140B6 � 6B2

6 þ 30A5B6Þ�;
from which we obtain A7 ¼ 1750þ525A5þ140B6þ6B2
6�30A5B6

5ð18B6�385Þ .

Having determined the values of four parameters: B5; B7; B4 and A7, executing the Maple program gives v11 from which
one solves for A2

4 to obtain
A2
4 ¼ �

1
150
f6912B5

6 � 1131660B4
6 þ 13935075B3

6 � 269206875B2
6 þ 5571820625B6 þ 6458046875

þ 50A5½A5ð864B3
6 � 114660B2

6 þ 3557400B6 � 32413500Þ � 864B4
6 þ 115470B3

6 � 3149265B2
6

þ 27878550B6 � 62811875�g ð29Þ
under which v11 ¼ 0, and then v13 and v15 are simplified. Now eliminating A5 from v13 ¼ 0 and v15 ¼ 0 results in a solution
for A5:
^
7

A5 :¼ 1=10 
 ð28661513482345328640 
 B6^18� 38320168058532606394368 
 B6^17

þ 9435318117168421171902240 
 B6^16� 570016902679901015264786700 
 B6^15

þ 25535041487348308966276655625 
 B6^14� 3061280078738836259886367093125 
 B6^13

þ 195822583392525794901711704896875 
 B6^12� 7590055826170845204286658264296875 
 B6^11

þ 181175551207640845515359092043437500 
 B6^10

� 2422011567548536504083848850989062500 
 B6^9

þ 17883086326968346104050209283888671875 
 B6^8

� 14996908722289355090789513814423828125 
 B6^7

� 6559231385063219885796682916555419921875 
 B6^6

þ 157184152514218295700964005625140380859375 
 B6^5

� 993493711663950435880818698896791992187500 
 B6^4

� 4978147766604270349385821736934973144531250 
 B6^3

þ 79567813193066507771413909776845092773437500 
 B6^2

� 360337535737356645696184571732116699218750000 
 B6

þ 820789504625676670359487993542480468750000000Þ=ð9051638614483322880 
 B6^17

� 7309116792568853830656 
 B6^16þ 1311473686075172842327920 
 B6^15

� 75973658751819234396739350 
 B6^14þ 3508914547776203728170167250 
 B6^13

� 386896482462029995940545935000 
 B6^12þ 25558623031202229428250392896875 
 B6^11

� 872156830211624861821600079906250 
 B6^10þ 14877380678999812057647542808281250 
 B6^9

� 66004804107627327503321507824218750 
 B6^8� 1862922015663352341947357102654296875 
 B6

þ 44774678952795365665845906717714843750 
 B6^6

� 840132373908594158651942944233984375000 
 B6^5

þ 10168568180578114687669746792439453125000 
 B6^4

þ 22206624603189962191843382697719726562500 
 B6^3

� 1761489758224309026033012358605712890625000 
 B6^2

þ 13345336332385462657759104223828125000000000 
 B6

� 23671656393010267601340973388671875000000000Þ : ð30Þ
and a resultant equation:
F ¼ ð18B6 � 385Þð8B6 � 735ÞF1ðB6Þ; ð31Þ
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where F1 is a 25th-degree polynomial of B6, given by
F1 :¼ 25517942739795723889201643520 
 B6^25� 15961557129783711309683786317824 
 B6^24
þ 192625552310827002440803128023040 
 B6^23
þ 195550386732260521210324495097798400 
 B6^22
� 28158815198433584833713402047338176000 
 B6^21
þ 1033734722674616222724983132524050525000 
 B6^20
� 59379935935449378171276843185977097343750 
 B6^19
þ 9590292320511086071943531542881338566546875 
 B6^18
� 451193899934739158581843476544588721670937500 
 B6^17
þ 11207826884672338273965968245267373870987109375 
 B6^16
� 135696149188209357581589508528862248038023437500 
 B6^15
� 2513618748935572240155021795318134123658105468750 
 B6^14
þ 66289843074171791813769089263414112799266015625000 
 B6^13
þ 977604060330518550753995048095833893466941894531250 
 B6^12
� 24802878891314023830241132965042843004940749511718750 
 B6^11
þ 135355422329906288642447252991195213905651605224609375 
 B6^10
� 6332203795984067960375159713574273013757487915039062500 
 B6^9
þ 53780987949344129764991805868491683170968479461669921875 
 B6^8
þ 1353866539349998679702350808860664326424912896728515625000 
 B6^7
� 13860624815869973501744680650905940025539405349731445312500 
 B6^6
þ 27031619976231087198815226613734972443015888824462890625000 
 B6^5
� 535003645332341656553005034190528839048580353927612304687500 
 B6^4
þ 2764135604231277672299533748358798801483962497711181640625000 
 B6^3
� 1449744782642143940578968415021056130318871974945068359375000 
 B6^2
þ 11864665612169188008349245976691483162651824951171875000000000 
 B6
� 64739758475649691824510366041125989647941589355468750000000000 : ð32Þ
Now, we can employ a numerical approach to solve the single variable polynomial F1. For example, we may use the Maple
built-in solver fsolve to find all the real roots of the polynomial. The first two real solutions: B6 ¼ 385=18 and B6 ¼ 735=8
yield two centres. The remaining given by F1 ¼ 0 have seven real roots. To verify these roots, for each solution B6, in backing
order, first use Eq. (30) to obtain A5, and then A4. Substituting the three solutions to verify v11, v13 and v15 while
v i ¼ 0; i ¼ 1;3;5;7;9 are automatically satisfied since they are solved one by one using one parameter at each step. Back
to the original system (26), these two solutions are given by (say, up to 50 decimal places):
a4 ¼ 11:72677636147392252103108673156625861130540134632217a2
3;

a5 ¼ �96:28308723695332837277347016717443395057677635891191a2
3;

a7 ¼ 23:87070969364661297334553081391162008758996623623660a2
3;

b4 ¼ 32:30434891349705952261668588556605555819029249428315a2
3;

b5 ¼ 0;

b6 ¼ �149:85507790081863094641676276116361112428479580474909a2
3;

b7 ¼ 11:72677636147392252103108673156625861130540134632217a2
3; ð33Þ
and
a4 ¼ 1:16364223535095645608539458464523114309856393525890a2
3;

a5 ¼ 13:51273677593795918678747785044498166551946137068013a2
3;

a7 ¼ �10:18920587951907640059427939895810711880480806331355a2
3;

b4 ¼ �0:58111111583561668080376402285512367825820241344231a2
3;

b5 ¼ 0;

b6 ¼ 14:57222224584475007068548678094228505795767873387819a2
3;

b7 ¼ 1:16364223535095645608539458464523114309856393525890a2
3: ð34Þ
Using the above second group of parameter values yields the following focus values v i � 0; i ¼ 3;5; . . . ;15, and
v17 ¼ �3860:66413547116908775589728360466124422760155003742678a16
3 :
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One can choose an appropriate value of a3 to make v17 smaller. For example, choosing a3 ¼ 1=2 gives
v17 ¼ �0:05890905968431349316033778814094026556743776779231:
Thus, system (26) can at most have eight small limit cycles around the origin. Further, we may apply Lemma 2 to prove that
the system indeed has eight limit cycles. Since the five parameters A4;A7; B4; B7 and B5 can be used one by one to perturb the
focus values: v11;v9;v7;v5 and v3, we only need to verify the Jacobian matrix obtained from the equations v13 and v15. Eval-
uating this Jacobian matrix at the second group of parameter values results in
detðJcÞ ¼ det 374:61334770404070439946a10
3 �151:19857162131752129186a10

3
6805:71872946034421955644a12

3 �2775:84271190336979973928a12
3

� �
¼ �10852:78025513242068667926a22

3 –0 ðbecause a3–0Þ: ð35Þ
This shows that for the given second group of parameter values with proper perturbations, system (26) has exactly eight
limit cycles.

Summarizing the above results gives the following theorem.

Theorem 4. For the cubic system (26), when the system parameters are properly perturbed to the critical values: k ¼ 0, b5 ¼ 0,

b7 ¼ a4, b4 ¼ 1
15 ð35a2

3 � 3b6Þ, a7 ¼
1750a4

3þ525a5a2
3þ140b6a2

3þ6b2
6�30a5b6

5ð18b6�385a2
3Þ

, a4 and a5 are given by (29) and (30), respectively, through the

back scaling (27), and B6 ¼ b6=a2
3 is one of the two real roots of the polynomial equation F1 ¼ 0 (see Eq. (32)) satisfying the

Jacobian condition (35), then system (26) has exactly eight small limit cycles around the origin.

Before moving on to the next case, we present a numerical example with the second group of critical values given in Eq.
(34) at a3 ¼ 1=2. We take the following perturbations:
�1 ¼ 0:222� 10�2; �2 ¼ 0:1� 10�2; �3 ¼ 0:1� 10�10; �4 ¼ 0:1� 10�15;

�5 ¼ 0:1� 10�22; �6 ¼ 0:2� 10�30; �7 ¼ 0:1� 10�37; �8 ¼ 0:4� 10�47;
under which the perturbed focus values are: v0 ¼ �0:4� 10�47, v1 ¼ 0:125� 10�38, v2 ¼ �0:9110138803� 10�31, v3 ¼
0:8356442057� 10�24, v4 ¼ �0:1707886684� 10�17, v5 ¼ 0:5055921200� 10�12, v6 ¼ �0:2408082000� 10�7, v7 ¼
0:1707722232� 10�3, v8 ¼ �0:5829996790� 10�1, which results in the eight positive roots of r for the amplitudes of the
small limit cycles:
r1 ¼ 0:0000694069; r2 ¼ 0:0001028080; r3 ¼ 0:0003639564; r4 ¼ 0:0006441196;
r5 ¼ 0:0018656976; r6 ¼ 0:0045431825; r7 ¼ 0:0110759988; r8 ¼ 0:0527431270:
The perturbed system has three fixed points: C0 ¼ ð0;0Þ; C1 ¼ ð1:4993481472;�0:6020762119Þ and C3 ¼ ð�1:7265198511;
0:6436456497Þ. A linear analysis shows that C0 is a fine stable focus point, while C1 and C3 are saddle points. The phase por-
trait of this example is shown in Fig. 3. It should be noted that since the origin is a high order focus point, the dynamical
behaviour of the system in the vicinity of the origin is similar to that of a center. The limit cycles shown in this figure are
not exact trajectories, but used to demonstrate what it may look like.

3.4. Nine small limit cycles in a cubic system

So far, in the literature, the maximum number of limit cycles in the neighborhood of one singular point obtained using
symbolic computation is eight [42]. Although it was shown eleven small limit cycles might exist around one singular point
[43], the result has not been verified by computation. The difficulty in computing higher order focus values are obvious. Also,
solving coupled higher degree multivariate polynomials is difficult.

In the remaining part of this section, we present a cubic system which exhibits nine small limit cycles around one critical
point. Consider the general normalized cubic system (11). For convenience, we rewrite it here:
_x ¼axþ yþ x2 þ ðbþ 2dÞxyþ cy2 þ fx3 þ gx2yþ ðh� 3pÞxy2 þ ky3
;

_y ¼� xþ ayþ dx2 þ ðe� 2Þxy� dy2 þ ‘x3 þ ðm� h� 3f Þx2yþ ðn� gÞxy2 þ py3:
The system has thirteen independent parameters. It is easy to see that v1 ¼ a, and other focus values are given in terms of the
remaining twelve parameters. It has been shown that the origin is a centre if a ¼ b ¼ e ¼ h ¼ n ¼ m ¼ 0. We let
a ¼ d ¼ e ¼ h ¼ 0; ð36Þ
and then compute the focus values. Here, we use the recursion formulas to compute the singular point quantities. The first-
order quantity is given by l1 ¼ 1

4 i½bðc þ 1Þ �m�. setting l1 ¼ 0 results in
m ¼ bðc þ 1Þ: ð37Þ
For simplicity, letting b ¼ 0, and so m ¼ 0. Therefore, n must be non-zero, otherwise it is a centre. Thus, 7 free parameters are
remained: c; f ; g; k; ‘;n; p.
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Under the above choices of parameters, the second-order singular point quantity becomes l2 ¼ � 1
4 inðp� f Þ. In order to

have l2 ¼ 0, the only choice is
p ¼ f ; ð38Þ
since n–0. Then l3 ¼ 1
96 ifnð45� 30c � 35c2 þ 15‘þ 15kþ 3nÞ. One can choose n to set l3 ¼ 0, yielding
n ¼ 1
3
ð35c2 þ 30c � 15‘� 15k� 45Þ: ð39Þ
The next singular point quantity can be found as
ð40Þl4 ¼
1

192
ifn½gð7c2 þ 30c þ 6kþ 6‘� 45Þ � 648þ 162c � 81k� 72‘þ 30k‘� 60c‘� 54ckþ 24k2 þ 6‘2 þ 516c2

� 56c2‘� 21c2kþ 434c3 þ 168c4�;
from which we obtain
g ¼ ð648� 162c þ 81kþ 72‘� 30k‘þ 60c‘þ 54ck� 24k2 � 6‘2 � 516c2 þ 56c2‘þ 21c2k� 434c3

� 168c4Þ=ð7c2 þ 30c þ 6kþ 6‘� 45Þ: ð40Þ
Then l5 is given by l5 ¼ �
ifn

10368ð30cþ7c2þ6kþ6‘�45Þ2
�l5ðf ; c; k; ‘Þ, where �l5 is a polynomial of f ; c; k; ‘, from which we can solve for

f 2 to obtain (here f2 ¼ f 2)
f2 :¼ �ð�54584604 
 c 
 l� 39188124 
 c 
 k� 27032049 
 c^2 
 lþ 48200751 
 c^2 
 k� 110968380 
 c
þ 19497105 
 kþ 59650425 
 lþ 1029976236 
 c^4� 15231726 
 k^2� 21311586 
 l^2
þ 159042042 
 c^3� 850276440 
 c^2� 37330632 
 l 
 k� 843453 
 l^2 
 kþ 6160698 
 c^2 
 k^2
þ 47523483 
 l 
 c^4� 13941396 
 c 
 l^2� 9106668 
 c 
 k^2þ 88773246 
 l 
 c^3
þ 173490822 
 k 
 c^3� 3849120 
 c 
 l^3þ 2978208 
 c 
 k^3� 2719710 
 c^2 
 l^3
� 6922962 
 c^2 
 k^3þ 34758558 
 c^4 
 k^2þ 31216050 
 c^4 
 l^2� 132783063 
 l 
 c^6
� 85492743 
 k 
 c^6þ 477900 
 k 
 l^3þ 538164 
 k^3 
 lþ 11818224 
 c^3 
 k^2þ 44393184 
 c^3 
 l^2
� 46656 
 k^3 
 l^2� 46656 
 k^2 
 l^3� 15552 
 k^4 
 l� 15552 
 l^4 
 kþ 2024946 
 c^6 
 l^2
þ 19211742 
 c^2 
 l^2þ 1234197 
 k^2 
 l� 84526605 
 k 
 c^4þ 42444 
 c^2 
 k^4
þ 83592 
 c^2 
 l^4� 9672012 
 l 
 c^8� 2526636 
 k 
 c^8� 284445 
 l^3 
 c^4� 34587 
 k^3 
 c^4
þ 23328 
 c 
 k^4þ 127656 
 c 
 l^4� 802656 
 l^3 
 c^3� 3672000 
 k^3 
 c^3þ 957420 
 k^2 
 l^2
þ 29794716 
 c^5 
 k^2� 195603336 
 k 
 c^5� 105820344 
 l 
 c^5þ 11002068 
 c^5 
 l^2
� 58934442 
 l 
 c^7þ 754029 
 k^3þ 44388 
 k^4þ 14256 
 l^4� 522775800 
 c^6
� 1323621 
 l^3þ 57931686 
 c^5þ 38574144 
 c^5 
 k 
 lþ 145800 
 c 
 l^3 
 k
� 68040 
 c 
 l^2 
 k^2� 62856 
 c 
 l 
 k^3� 7236864 
 l^2 
 c^3 
 k� 10106208 
 l 
 c^3 
 k^2
þ 7135128 
 c^6 
 k 
 l� 1242675 
 k^2 
 c^4 
 l� 1492533 
 k 
 c^4 
 l^2� 10692 
 c^2 
 l^3 
 k
� 229716 
 c^2 
 k^2 
 l^2� 92988 
 c^2 
 k^3 
 lþ 68219928 
 c^4 
 k 
 lþ 707616 
 c 
 k^2 
 l
� 6119712 
 c 
 k 
 l^2þ 59710608 
 c^3 
 k 
 l� 13159746 
 c^2 
 k^2 
 l� 8956494 
 c^2 
 k 
 l^2
þ 21873240 
 c^2 
 l 
 k� 21473424 
 c 
 l 
 k� 105232554 
 c^7þ 154411628 
 c^8
þ 12910520 
 c^10þ 84322630 
 c^9� 18758754 
 k 
 c^7þ 5851062 
 c^6 
 k^2þ 239345280Þ=
ð24 
 kþ 24 
 l� 495þ 330 
 cþ 385 
 c^2Þ=ð30 
 cþ 7 
 c^2þ 6 
 kþ 6 
 l� 45Þ^2=18 : ð41Þ
Then the next three singular point quantities are
l6 ¼ l6ðc; k; ‘Þ; l7 ¼ l7ðc; k; ‘Þ; l8 ¼ l8ðc; k; ‘Þ;
which are polynomials of c; k and ‘, with leading (combined) degrees of 14, 22 and 26 for l6, l7 and l8, respectively. The
Maple output files for the three polynomial equations have roughly 100, 315 and 588 lines, respectively. The three singular
point quantities are coupled, we thus have to simultaneously solve the three polynomial equations: l6 ¼ l7 ¼ l8 ¼ 0. To
find the solutions of these equations, we might first eliminate one parameter from the three equations to obtain two resul-
tant equations, and then further eliminate one more parameter from the two equation to get a final resultant equation which
is a univariate polynomial and thus we could find all possible solutions. This elimination method has been used in our other
publications (e.g., [1–3]). The method may increase the degree of the final resultant polynomial substantially.

In this paper, we use a numerical approach to simultaneously solve the three equations. The solution of the system of
equations may be approached in several ways. A simple numerical approach, using solve in Maple directly, is successful
in many cases. By examining its source code, we find that this routine uses a variant of damped multivariate Newton
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iteration (there appears to be no published paper describing the routine), and by judicious choices of our initial guess we
obtained a result (with f2 > 0) after only two tries.

In general, this in not completely satisfactory, because we would like to find all real positive roots. Advanced techniques
such as those described in [45] will be pursued for extensions of the work described in this paper.

Finally, for system (11), by taking a ¼ 0:3, we have used the numerical method to obtain the critical parameter values
(results from computer output using Maple up to 1000 digits, but list only 50 digits):
b ¼ d ¼ e ¼ h ¼ 0;
m
 ¼ 0;
p
 ¼ f 
 ¼ 0:57205513738312947531208972107913988960903196760780;
n
 ¼ 1:55873662344968337059579107151819084101404714441598;
g
 ¼ 0:32875002652319114041354789797311142571533487466423;
f 
 ¼ 0:57205513738312947531208972107913988960903196760780;
‘
 ¼ �0:28703189754662589381676063046084638581078384981160;
c
 ¼ �0:52179929787663453432829806398960426486646485537068;
k
 ¼ 0:02751217774798897933976121289219741452562430620627: ð42Þ
Under the above critical parameter values and conditions, we execute the Maple program (Yu, 1998) to find the following
focus values (again up to 1000 decimal digits, but v9 is only given up to 50 digits here): v1 ¼ 0;v3 ¼ 0:1� 10�999;

v5 ¼�0:5� 10�1000;v7 ¼�0:23� 10�1000;v9 ¼ 0:62� 10�999;v11 ¼�0:405� 10�999;v13 ¼ 0:135� 10�998;v15 ¼ 0:14� 10�998;

v17 ¼ 0:9� 10�999, and
v19 ¼ �0:0014315972268236725754647008537844355295621179315106:
The above result indeed indicates that an excellent approximate solution has been obtained, and the values of
v i; i ¼ 1;3; . . . ;17 can be considered as being very close to a true real zero. Thus, the maximum number of small limit cycles
which can be obtained in the vicinity of the origin of system (11) is nine. In order to prove that the nine small limit cycles
indeed exist, we need to check the Jacobian matrix obtained from the three equations:
v13ð‘; c; kÞ ¼ v15ð‘; c; kÞ ¼ v17ð‘; c; kÞ ¼ 0;
with respect to ‘; c and k, since the other singular point quantities, l5;l4;l3;l2 and l1 can be perturbed one after another by
the parameters, f ; g;n; p and m (or b). Further, it can be shown that due to the relation between v2kþ1 and lk (given in Eq.
(13)), the determinant of the Jacobian evaluated at the critical point, based on the li formulas is equivalent to that based
on v i expressions. In other words, the determinant of the Jacobian based on the former is non-zero if and only if that based
on the latter is non-zero. Thus, we can use the following real equations:
il6ð‘; c; kÞ ¼ il7ð‘; c; kÞ ¼ il8ð‘; c; kÞ ¼ 0;
to compute the determinant, where i ¼
ffiffiffiffiffiffiffi
�1
p

. It should be noted that the values of these two determinants are not equal since
the constant coefficients between the relations are ignored, which does not change the non-zero property of the determi-
nant. Therefore,
detðJcÞ ¼ det

@il6
@‘

@il6
@c

@il6
@k

@il7
@‘

@il7
@c

@il7
@k

@il8
@‘

@il8
@c

@il8
@k

2
64

3
75
ð‘;c;kÞ¼ð‘
 ;c
 ;k
Þ

¼ det
0:0451319561 0:2439914595 0:0220645269
0:1223727073 �0:0022077660 0:1580040454
0:0055179038 0:6737398583 �0:0271869307

2
4

3
5

¼ �0:0019578515–0: ð43Þ
Then, according to Lemma 2 we know that nine small-amplitude limit cycles bifurcating from the origin of system (11) can
be obtained by properly perturbing the critical values given in Eq. (42). The above results are summarized in the following
theorem:

Theorem 5. For the cubic system (11), suppose b ¼ d ¼ e ¼ h ¼ 0. When the remaining parameters are properly perturbed to the
critical values: a ¼ 0, m
 ¼ 0, p
 ¼ f , n
 ¼ 1

3 ð35c2 þ 30c � 15‘� 15k� 45Þ, g
, f 
2 is given by (41), while ‘
, c
 and k
 are given in
(42) satisfying the Jacobian condition (43), then the system (11) has exactly nine small limit cycles around the origin.
4. Conclusion

In this paper, we have considered the existence of small-amplitude limit cycles of nonlinear dynamical systems. Particular
attention is given to planar quadratic and cubic systems, associated with Hilbert’s 16th problem. Up to now, all the studies of
small limit cycles in Hilbert’s 16th problem are almost based on computations of focus values and solving of polynomial
equations. This paper presents a computational method which are used to obtain some new results about small limit cycles.
Several cases are studied to show that efficient symbolic computation is crucial in finding the limit cycles of dynamical
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systems. All the results presented in this paper were obtained using Maple. This may help motivate developing new methods
for the research in limit cycles of Hilbert’s 16th problem. On the other hand, we see in this problem a potentially interesting
avenue for application of accurate real solving of large systems of multivariate polynomial equations. This may stimulate
research interest in developing more efficient symbolic computational methods for solving polynomial equations.
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