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small-amplitude limit cycles of a non-linear dynamical system, one often faces computing

the focus values of Hopf-type critical points and solving lengthy coupled polynomial equa-

tions. These computations must be carried out through symbolic computation with the aid
- of a computer algebra system such as Maple or Mathematica, and thus usually gives rise to

gggsd,Hq very large algebraic expressions. In this paper, efficient computations for the focus values

02.30.0z and polynomial equations are discussed, showing how to deal with the complexity in the

computation of non-linear dynamical systems.
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1. Introduction

Limit cycles are common solutions for almost all non-linear dynamical systems. They model systems that exhibit self-sus-
tained oscillations. Due to the wide occurrence of limit cycles in science and technology, limit cycle theory has also been
extensively studied by physicists, and more recently by chemists, biologists and economists. Limit cycles are generated
through bifurcations (perturbations). From the point of view of dynamical system theory, there are four principal bifurca-
tions in producing limit cycles: (i) Multiple Hopf bifurcations from a center or focus; (ii) Separatrix cycle bifurcations from
homoclinic or heteroclinic orbits; (iii) global center bifurcation from a periodic annuli; and (iv) limit cycle bifurcations from
multiple limit cycles. Limit cycles bifurcated from a focus, center or limit cycles are called local bifurcations of limit cycles or
small limit cycles, which are usually studied by normal form and other local bifurcation theories [1-3]. The limit cycles gen-
erated from separatrix cycles or global period annuli are called global bifurcations of limit cycles, which are usually inves-
tigated by global bifurcation theories, such as the Poincaré-Pontryagin-Andronov theorem or higher order Melnikov
function analysis [4,5].

One well-known problem closely related to limit cycle theory is Hilbert’s 16th problem, which is one of the 23 mathe-
matical problems proposed by D. Hilbert at the Second International Congress of Mathematics in 1900 [6]. Recently, a mod-
ern version of the second part of Hilbert’s 16th problem was formulated by S. Smale, and chosen as one of his 18 most
challenging mathematical problems for the 21st century [7]. To be more specific, consider the following planar system:
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X:P,,(x,y), y:Qn(Xuy)v (1)

where the dot denotes differentiation with respect to time t, and P, (x,y) and Q,(x,y) represent nth-degree polynomials of x
and y. The second part of Hilbert’s 16th problem is to find an upper bound of the type K = H(n) < n? on the number of limit
cycles that the system can have, where ¢ is a universal constant. If the problem is restricted to the vicinity of isolated fixed
points, it is equivalent to studying degenerate Hopf bifurcations, and the main tasks become computing the so-called focus
values of the point and determining centre conditions. In the past half-century, many researchers have investigated the local
problem and obtained many results (e.g., see [8-15]). For a quadratic system, it is now known that the maximum number of
small limit cycles is three [8]. However, globally, the problem is unsolved even for quadratic systems. For cubic-order sys-
tems, on the other hand, the best results published so far are twelve limit cycles [1-3,16,17]. In order to find the number of
limit cycles of a system in the neighbourhood of a fixed point (which is a linear center), one must compute the focus values of
the point with the aid of a computer algebra system such as Maple [18], or Mathematica [19]. In fact, many researchers have
recently paid attention to developing efficient computational methods for the computation of focus values (e.g., see [20-26]).
There is another method of finding limit cycles, called the method of stability-changing of homoclinic loops (e.g., see [27-
31]) as well as the reference cited therein.

Symbolic computation plays an important role in the study of limit cycles associated with Hopf critical points. Three main
tasks are involved in determining the number of limit cycles. First of all, one must compute the focus values, and then solve a
system of polynomial equations to determine parameter values such that as many focus values become zero as possible. Fi-
nally, one needs to give appropriate perturbations to prove the existence of the exact number of limit cycles. The first two
tasks must use symbolic computations, while the last task can be carried out with numerical computation. The symbolic
computations usually result in very large expressions for polynomial equations, and one cannot avoid this using a pure
numerical computation. Therefore, efficient computation is essential in the study of multiple limit cycles.

In this paper, we will use Hilbert’s 16th problem, as an example, to demonstrate the efficient computation of limit cycles.
The rest of the paper is organized as follows. In the next section, we shall present some basic concepts and lemmas which are
needed in the following sections. We also discuss some methods for computing focus values. Symbolic computation with
examples are given in Section 3, and finally, the conclusion is drawn in Section 4.

2. Preliminaries

In this section, we first present some basic concepts and lemmas which will be used in the next two sections, and give a
brief discussion on the methods for computing focus values.

Definition 1. A limit cycle is an attracting set to which orbits or trajectories converge and upon which trajectories are
periodic. A stable limit cycle is usually called a periodic attractor.

Definition 2. A singular point of a planar vector field is called elementary if the linearization of the field at this point has at
least one non-zero eigenvalue. A polycycle is called elementary if it contains elementary singular points only.

Definition 3. Hilbert’s 16th problem is to estimate H(n) for any n € Z,, where H(n) denotes the uniform bound for the num-
ber of limit cycles of (1).

Hilbert’s problem is still open even for n = 2. In fact, so far only a lower bound (4) is known for quadratic systems, i.e.,
H(2) > 4 [32,33]. For more detailed discussion on Hilbert’s 16th problem, the reader is referred to the review articles
[34-36].

Although, it has not been possible to obtain a uniform upper bound for H(n), various efforts have been made in finding the
maximal number of limit cycles and raising the lower bound of Hilbert number H(n) for general planar polynomial systems
or for individual degree of systems, through which people hope to get better estimates of the upper bound of H(n). Even just
estimating a good lower bound of H(n) is, in general, a very difficult problem.

Since the main attention of this paper is given to studying small-amplitude limit cycles, in the following we give sufficient
conditions for the existence of small limit cycles. We suppose that the normal form of system (1) has been obtained in the
polar coordinates up to the (2k + 1)th order term (interested readers can find the details of normal form computation in
[20]):

F=r(vy + vt + vst* 4 - 4 vy 1), ()
0=+ t312 + t57* + - - + a7, 3)

where r and 0 denote the amplitude and phase of motion, respectively. Both #; and t, are explicitly expressed in terms of the
original system’s coefficients. vy, is called the kth-order focus value of the Hopf-type critical point (the origin). Note that
here v, is the term obtained from linear perturbation.

The basic idea of finding k small limit cycles of system (1) around the origin is as follows: First, find the conditions such
that 3 = vs = --- = vy_; = 0 (note that »; = 0 is automatically satisfied at the critical point), but z,,,;+0, and then perform
appropriate small perturbations to prove the existence of k limit cycles. This indicates that the procedure for finding multiple
limit cycles involves two steps: Computing the focus values (i.e., computing the normal form) and solving the coupled
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non-linear equations: 3 = vs = ... = vy, = 0. In the following two lemmas, we give sufficient conditions for the existence
of small limit cycles. (The proofs can be found in [1-3].)

Lemma 1. If the system parameters are chosen such that the focus values v;,, in Eq. (2) satisfy the following conditions:
Vyi1tais <0 and  |voiq| < |23l <1, for i=0,1,2,..., k-1,
then the polynomial equation given by i = 0 in Eq. (2) has k positive real roots of r?, and thus the original system (1) has k limit
cycles in the vicinity of the origin.
However, in many cases, v,,; depends on k parameters:
Vsji1 = Vo1 (€1,€2,...,6), Jj=0,1,... k. 4)
In this case, the following lemma is more convenient in applications.
Lemma 2. Suppose that condition (4) holds, and further assume that
vo11(0, ..., 0)7#0,
v3i41(0,...,0)=0, j=0,1,..., k-1,

O(V1,V3,..., V1)
and det | ———""="7(0,...,0)|0. 5
(€1, €2,...,€) © ) )

Then for any given € > 0O, there exist €1, €5, ..., €, and 6 > 0 with |¢j| < €y, j=1,2,..., k such that the equation i = 0 has exactly
k real positive roots r? (i.e., system (2) has exactly k limit cycles) in a 5-ball with the center at the origin.

In this paper, we will consider examples chosen from quadratic and cubic systems to demonstrate computation of small
limit cycles. A general cubic system with a fixed point at the origin can be written as

X = (10X + o1y + G20X” + A11XY + Ao2)? + A30X> + A1 X°Y + A12XY* + dozy?,

¥ = b1oX + bo1y + baoX* + b11Xy + bo2y® + b3ox® + b21 X’y + b12Xy® + bosy?, (6)
where a;’s and by’s are real constant coefficients (parameters). It is obvious that the origin (x,y) = (0,0) is a fixed point. The
system has a total of eighteen parameters. However, not all of them are independent. First, note that we may use a linear
transformation such that system (6) can be rewritten as

X = 0X + BY + G20X* + A11XY + A2Y? + A30X> + A21X°Y + A12XY* + Aoz,

j/ = :t[)’x + oy + b20X2 + b]]Xy + b()zy2 + b30X3 + b21X2y + buxyz + b03y3, (7)
where « and 8 > 0 are used to represent the eigenvalues of the linearized system of (6). Note that the other coefficients in (7)
should be different from that of system (6), but we use the same notation for convenience. Here, when the negative sign is
taken, the origin is a focus point or a centre (if o = 0); otherwise, it is a saddle point or node.

Now, suppose we are interested in the small limit cycles in the neighborhood of the origin. So the negative sign is taken in

(7), and the eigenvalues are now given by 1;, = « + fi, where i is the imaginary unit, satisfying i# = —1. Then we can apply a
time scale, T = ft, into system (7) to obtain

@focm— + az0X% + A11XY + A2y + A30X° + A1 X2Y + A12XY* + Go3)°

dr Yy + Qo 11Xy + o2y 30 21Xy 12Xy 03y,

d

% = —X + 0y + baox? + by1xy + booy? + b3ox® + ba1x%y + b12Xy? + bosy?, (8)

where again the same notations for the parameters are used. Henceforth, we assume that the leading  has been scaled to 1,
and rename 7 = t. Now, system (8) has only fifteen parameters. Further, by a rotation we can remove one parameter [8,37]
from system (8), which can be written in the general form:

X=o0X+y+Ax* + (B+2D)xy + Cy* + FX® + Gx°y + (H — 3P)xy? + K>,
y = —x+ oy + DxX* + (E — 2A)xy — Dy* + Lx® + (M — H — 3F)x*y + (N — G)xy*> + Py°. (9)

This form is perhaps the simplest form for cubic systems in the literature [37]. The system has fourteen parameters. How-
ever, since the same order terms on the right-hand side of (9) are homogeneous, we can remove one more parameter. Sup-
pose A0 (in case A = 0 one may use another non-zero parameter in the scaling), we let

B=bA,C=cAD=dAE=¢eAF=fA>G=gA’

H =hA* K = kA%, L = (A*>,M = mA%,N = nA?,P = pA®, (10)
and apply a spatial scaling x — x/A, y — y/A to system (9) to obtain

X=ox+y+x*+ (b+2d)xy+cy® + fi’ + g%y + (h = 3p)xy* + ky’,

y=—x+ay+dx+ (e —2)xy — dy* + &% + (m — h — 3f)x%y + (n — g)xy* = py>, (11)
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which has only thirteen independent parameters. It is easy to see that the zeroth-order focus value is vy = o. Other focus
values are given in terms of the remaining twelve parameters. Let

9 ={b,c,d,e.f,g,h k¢, mn p}. (12)

Then, »; = v;(%). In general, the maximum number of small limit cycles which exist in the vicinity of the origin is not greater
than the number of independent parameters. Here, it is 13. In other words, the best possibility one can have is

v;i=0, i=0,1,...,12, but wv;3#0.

Then according to the lemmas given above, the maximum number of small limit cycles which can be obtained by appropri-
ate perturbations is 13. Of course, this conclusion is obtained under the assumption that the origin is a linear centre (i.e., the
origin is a Hopf-type critical point). If the origin is a saddle point or a node, then the situation is different, which will be dis-
cussed in Section 3.

In order to find the number of small limit cycles around a focus point, one needs to compute the focus values of the point.
There are a number of methods which can be used to compute the focus values. In this section, we briefly describe two effi-
cient methods for computing the focus values. A perturbation technique based on the normal form theory associated with
Hopf singularity was developed early [20]. The approach can be employed to a general n-dimensional system associated with
Hopf bifurcation to yield the normal form given by Egs. (2) and (3). Another well-known method, called singular point meth-
od, is to compute the singular point quantities (see [24-26,38] for details). However, this method is only applicable to two-
dimensional systems described on center manifold. We have the following results for the singular point method and the
relation between the focus value and the singular point method [24,25,39],

Theorem 1. For any positive integer m, the following assertion holds:

k=1
02,(+1(2n)in<ﬂk+25%)ﬂj), k=1,2,..., (13)
=
where ¢9 (j=1,2,...,k—1) are polynomial functions, and the singular point quantity p, is given by
2m+4
Uy = Z [(m —k+ 2)ak.j—l - (m _j + Z)bj,k—l]cm—k+2,m—j+2~, (14)
k+j=3

where C11 =1,C =Copp = Cie =0,k =2,3, ..., and V(o B),a#p, m = 1, and

1 o+p+2

Cop = Fa ol —k+ a1 — (B—J+ Dbja]Cokirpjin, (15)
k=3

where ayj = by = C;; =0 for k <0 or j < 0.

It is clearly seen from Eq. (13) that

W=ly==l = UV3=0Vs=-=Uy.
Therefore, when determining the conditions such that »; =7, =--- = 7,1 =0, one can instead use the equations:
W =Wy ==, = 0.1f the w,’s are simpler than the »,’s then this method is better than the method of directly comput-

ing vx. However, in general such g, are not necessarily simpler than »,. We shall see this in the next section.

3. Symbolic computation with examples

The formulas given in the previous section for computing the focus values (normal form) or the singular point quantities
can be coded using a computer algebra system such as Maple or Mathematica. In fact, Maple has been used to code the per-
turbation method (the source code and sample inputs can be found from the website: pyul.apmaths.uwo.ca/pyu/pub/soft-
ware). The formulas for computing the singular point quantities have been coded using both Maple and Mathematica. Both
methods have been used in computing limit cycles. In this section, we will present a number of examples to demonstrate the
complexity of symbolic computation.

3.1. Three small limit cycles in quadratic systems

We start from the simplest case, namely, consider the limit cycles bifurcating from the origin of quadratic vector fields.
Thus, we take Eq. (11) only up to the second-order terms to obtain the following system:

X=ox+y+x*+ (b+2d)xy+cy* y=-x+oay+dx’ + (e—2)xy— dy’, (16)

which has five independent parameters: o, b, c,d, e. It is clear that ; = o. When one calculates .4 or u, (k > 1), one sets
o = 0. Therefore, there are only four independent parameters which appear in the focus values or the singular point
quantities.
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To find the focus values of system (16), we apply the Maple program given in [20]. The execution of the program is
straightforward: put Eq. (16) into a Maple input file and give an order, say, n = 9, and then execute the program to produce
an output containing the focus values as well as non-linear transformation. Source codes and guideline can be found from
the website: pyul.apmaths.uwo.ca/p~yu/pub/software (names: program1 and input1). The focus values are given by

1
03:—§(C+1)b,
Us = — 288(c+1)[6de(5c—e+5)+b(18+3e—18c+19ce+34bd+5b2+20¢: +56d° — e?)),
1 _

N 17

V1 = —geze5 (€T Dn(b.c de), (17)
1 _

Y =~ 38878720 T DPelb.c.de),

where 7;(b,c,d,e) (i=5,7,9) are polynomials of b, c,d,e. lt is seen that ¢ = —1 yields a centre [8]. Hence, in order to have
v3 =0, one must choose b=0. When b=0, o5 = de(c +1)(5¢ —e+5), which indicates that one must choose
e =5(c+ 1) to obtain »5 = 0, under which v; = — ﬁd(c + 1) (c+2c2 + d*). If we set v; = 0, then vo = 0 too. Actually, Bautin
showed that setting v, zero leads to a centre. Therefore, one can only choose the four parameters such that 73 = v5 = 0, but
v,#0, implying that the maximum number of the small limit cycles surrounding the origin is three.

To prove the existence of exact three small limit cycles, we apply appropriate perturbations such that the perturbed focus
values satisfy the sufficient conditions given in Lemma 1. There are infinitely many choices for the parameter values. Note
that due to the scaling given in (10), the focus values for the original system (9) can be adjusted to any small values using the
free parameter A. Under the critical conditions:

b=0, e=5(c+1),

we have v3 = v5 =0, v; = —2d(c+ 1)3(C +2c2 + dz). Since exactly one parameter is used for each of the two focus values,
v3 and vs, the perturbations for the quadratic system is straightforward, as shown below.

For convenience, suppose d(c + 1)(c + 2c? + d*) > 0, and thus v, < 0. Further, for definiteness, we may assume that d > 0
and c > 0, since we are not interested in finding all solutions (which we are certainly be able to obtain) but only in the exis-
tence of the three small limit cycles. Then we want to give a perturbation to e = 5(c + 1) such that s > 0and 0 < vs < —v5.
By (17), we have the derivative of vs with respect to e, evaluated at the critical values: d”5 =2d(c+ 1)? > 0. So we may select
€1 > 0 such that e = 5(c + 1) + €;. Then the perturbed »s is

%[S(C +1%6 - (c+ 1) ~ %d(c +1)% >0,
and thus 0 < s < —v7 aslong as 0 < €; < 1.

Next, we want to perturb »3 such that the perturbed values satisfy 0 < —v3 < v5 < —v7. By (17), we have
‘% = —1(c+1) <0, implying that we should perturb b from b =0 to b = 0 + €,. Thus, the perturbed value of v; is given
by v3 = —L(c+ 1)e;, where 0 < €; < €; < 1 which guarantees that 0 < —v; < vs.

Finally, we need a perturbation to v; = o = 0, which must be positive. Simply let « = €3. Then v; = €3 with 0 < €3 K €;

yields

Vs =

O< v <K —13<K 15 < —0y,

provided that 0 < €3 < €; < €.
Summarizing the above results gives the following theorem.

Theorem 2. Given the quadratic system (16), suppose ¢ >0, d >0, and b =0, e = 5(c + 1). Then, under the perturbations:
es(c+1)+€, b=¢€; and o= €3, where 0 < €3 < €; < €1 < 1, the system (16) has exactly three small limit cycles in the
neighborhood of the origin.

As a numerical example, let c = d = 1/2, and exactly choose the perturbations as €; = 15, €2 = =355, €3 = sg500005- 10en the
perturbed focus values are given by
1 3 56673782999 1099541240782350199352293
Vi = gaapaass, Us = — U5 = v =

50000000 ° 80000’ 4800000000000° ~’ ~ ~ 1382400000000000000000000

Thus, the normal form given up to term r7 is

P 1 3 ? 56673782999 e 1099541240782350199352293
~ \50000000 80000 4300000000000 _ 1382400000000000000000000

which yields three positive roots for r: r; = 0.0258299909, r, = 0.0595361101,r3 = 0.1031148918, representing the approx-
imate solutions for the amplitudes of the three small limit cycles bifurcating from the origin.
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The perturbed quadratic system is given by

% = 0.00000002x + y + X2 + 1.0002xy + 0.5y2,
¥ = —x+0.00000002y + 0.5x2 + 5.6xy — 0.5y2.

The system has two fixed points: Co = (0, 0), a third-order unstable focus point, and C; = (—0.1368474832, —1.7042735041),
a saddle point. The phase portrait for this perturbed system is shown in Fig. 1, where the three limit cycles are shown in the
vicinity of the origin. It should be noted that trajectories of the system near the origin shows behaviour similar to that around
a centre due to the degeneracy of the singular point. Therefore, it is impossible in this fashion to verify the multiple limit
cycles bifurcating from a high order singular point. It can be shown that a quadratic system cannot simultaneously have
two linear centres or two fine focus points, but may have one fine focus point and one saddle point (as in the case depicted
in Fig. 1), or one fine focus point and an unstable focus point [32]. Note that the trajectories shown in this figure are obtained
by solving the above perturbed quadratic equations based on a 4th-order Runge-Kutta method. Figs. 2 and 3 are obtained in
the same way.

If we use the formulas given in (15) and (14) and execute the Maple program, we obtain the following singular point
quantities:

1.
= gic+ Db,
Uy = 74]—8i(c+ 1)[—2de(5c — e+ 5) + b(15 + 7e + 20c + 11ce — 2bd + 4b* + 5¢2 + 6€2)],

Comparing (17) with the above formulas shows that »; = Jiu,, but vs and p, are quite different. Nevertheless, i, does not
simplify the expression (only reducing one term d?). This also happens to v; and Us. If set b =0 (so that v3 = p; = 0), then
vs = lip,. Further, letting e = 5(c + 1) (so that vs = p, = 0) yields v; = 1iu,.

The above example indicates that the two methods described in the previous section have comparable computing
efficiency.

3.2. Twelve small limit cycles in Z,-equivariant cubic systems

In this section, we turn to study the small limit cycles bifurcating from cubic systems. First, we consider the case when the
origin is not a centre, and then investigate the case that the origin is a centre. Since the 1980’s many researchers have studied
the limit cycles of cubic systems, and, in particular, the main attention has been focused on local bifurcations (e.g., see
[37,40-44]). The maximum number of limit cycles obtained so far for cubic systems is twelve [1-3,16,17,25].

When the origin is not a centre, we may consider Z,-equivariant vector fields in order to simplify computation. It has been
proved [17,2,3] that the cubic-order system (9) can have twelve small limit cycles. This system has a saddle point, and two

X2 -1 p

2t

-1 -0.5

Fig. 1. The phase portrait of system (16) having 3 small limit cycles around the origin, for « = 0.00000002, b = 0.0002, c =0.5,d = 0.5, e = 7.6.
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X2 0

2 -0.5 0 0.5 1
X1

Fig. 2. The phase portrait of system (21) having 12 limit cycles, when the origin is a node for a = a;; = —bgs = —0.7,b = —ap3 = —0.3336019980,
asp = 4.5658610164, a,; = —5.0539492766, b3o = —1.3447323014, b,; = —0.8333681006, b1, = —4.1028222711.

1 —
\ N \\////r/
0.5 \ ( / - \ ]
( \

051 \%\ 1
\\ V|
Vo
-1 L !
) -1 0 1 2

Fig. 3. The phase portrait of system (26) having 8 limit cycles around the origin, for 2 = —0.4 x 107, a; = 0.5, a4 = 0.2935258759, as = 3.3759641940,
a; = —2.5483319254, b, = —0.1454777790, bs = 0.1 x 107%", bs = 3.6440555615, b; = 0.2935258759.

weak focus points which are symmetric about the origin. Six small limit cycles exist in the neighborhood of each of the two
weak focus points. More generally, consider the following general cubic-order Z,-equivariant vector field [35]:

2=F,(z,2), z=F,(z2),

(18)
where F(z,2) = P(wy,w;) +iQ (w1, ws), wy =

1(z+2),wy =L (z-2), P,Q,w;y and w; are all real, and
Fy(2,2) = (Ao + A1 12")Z + (A2 + As|z]*)Z + AuZ® + AsZ’. (19)
Let A; = a; + ib; where a;, b; are real. Then we obtain the following real Z,-equivariant vector field:
Wl = (aO + aZ)Wl - (bO - b2)W2 + (al +asz + a4 + a5)W? — (b] — b3 + 3b4 — 3b5)W%W2
+ ((11 +as — 3a, — 305)W1W§ — (b] — b3 — b4 + bs)Wg
Wy = (bo + by)Wi + (a0 — G2)Wz + (b1 + b3 + ba + bs)W; + (a1 — a3 + 3a4 — 3as)wiw,
+ (b] +bs —3by — 3b5)W1W% + ((11 —asz —ag + (15)W3

)

> (20)
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The eigenvalues of the Jacobian of system (20) evaluated at the origin are 4, = aop £ /a2 + bi - bé. There are two cases:

(I) when a + b — b} > 0, the origin is either a saddle point or a node; and
1I) when a2 + b2 — b < 0, the origin is either a focus point or a center.
2 2 0

In order to take advantage of the Z,-symmetry, we consider, instead of the origin, two non-zero weak focus points which
are symmetric about the origin. Therefore, if one finds a certain number of limit cycles around one of the focus points, the
total number of limit cycles of the system is doubled. To find the limit cycles around each of the weak focus points, introduce
the following linear transformation (w;, wy)" = T(x, y)", where

0 bo-b
{—b az 3} <b:i\/a§+b§—b§) for Case (1),

{O bg — bs
b as

} <b: —(a§+b§—b§)> for Case (II),

into system (20) with renamed coefficients gives the normalized equations:

X = ax + by + asox® + anx2y + anxy* + dgy?,

¥ = £bx 4 ay + b3pX® 4+ b1 X%y + b1axy? + bozy?; (21)
where the positive sign is taken for Case (I), the negative sign for Case (II), and a = ao. Without loss of generality, one may
assume that the two weak focus points are located at (0, £1), which yields aps = —b, bos = —a. Further, applying the following

scalings: a, b, aso, Gy1,b30, b21 = wa, wb, Wazy, WAy, Whsg, Wby, with by = (4a® — 2b% + ®?)/(2b), and the time scaling:
T = wt, together with introducing the following transformation:

()Ll BIC)

to the above normalized equations yields the following equations for computing the normal form of system (20) associated
with the Hopf critical points (0,+1):

Z—: = v+ 2ayu* + 4auv — % v? + 4basou® — 2a5,u% v — 2aur? +%1}3,

%’ = —u—4by1? +2(2a® F 2b + 1uv — 8bsou® + 4byu?v — (2a® T b* + 1)ur?, (22)
in which

ay =ayb-—a?,

Gz = asb +axa,
bz] = bz] b2 — a21ab F Zabz + 2a? +a,
b3 = bsob® — azeab® — ay @b + byab® F b +a* + 1%,

(23)

where the ‘—’ sign is for case (I), while the ‘+’ sign for case (II). It is noted that @y, Gso, b21, bso and a1, asg, ba1, b3 are mutually
uniquely determined.

The above normalizing procedure shows that one of the parameters: a,b and by, can be chosen arbitrarily since the fre-
quency w can be normalized to 1 using a time scaling. Therefore, we may, instead of the time scaling, let by, = ‘*2‘;“2 — b, un-
der which w =1 and so 7 =t.

It is clearly seen from Eq. (22) that the normal forms for the two cases (I) and (II) will be in the same formulas. Therefore,
one only needs to consider one case. In the following, we briefly summarize the computation of focus values. For the generic
case, letting v; = 0 yields the solution for dso. Then, setting 7, = 0 result in

6bp(a,b, a1, by1)’

where by and by, are polynomials of a, b, @,; and b,;. The remaining focus values are then simplified as

b3 = bso(a, b, az1,b21) =

e 4FF,
® 7 9la(8ay — 1) — 10by (aay + 202 — 2@ + 1) + 8a(a® — b))’
. FF,
* 405(a(8ay — 1) — 10by (ady + 2a? — 2a2 + 1) + 8a(a® — b°)P’
e FF;
® " 233280[a(8ay — 1) — 10by (ady + 202 — 22 + 1) + 8a(a? — b*)]*’
FF,4

Us = — = — 2 NER (24)
146966400(a(8d; — 1) — 10by; (ady; + 202 — 2b> + 1) + 8a(a® — b))
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where F, is a common factor, and F; = Fi(a, b, @y, b1),i = 1,2, 3, 4. Since F = 0 leads to centers, we should find solutions from
F; = 0. Further, note that F; is linear in a;, so one can explicitly solve a,; from F; = 0 to obtain

L . —a .b,b
ay = 021(ayb,b21) = %~

Then, substituting the above a,; into F;’s yields three polynomial equations:

E_ 672(10by; — a + 3b)*(10by; — a — 3b)?[5by (4by; — 4a® + 4ab* — 5a) + a*(8a* — 8b* + 5)]° F_o
? 25[280b%, — 112ab3, + 6(11a% — b*)b2, — 2a(5a2 — 3b*)by; + a* — 9a2b*? 2

F_ 21504(3125by; — a + 3b)*(10by; — a — 3b)°[5by; (4,1 — 4a® + 4ab” — 5a) + a2(8a* — 8b” + 5)° P
’ 25[280b%, — 112ab3, + 6(11a% — b*)b2, — 2a(5a? — 3b°)by + a* — 9a2b* P

Fo_ 2016(78125b,; — a + 3b)*(10by; — a — 3b)*[5by; (4byy — 4a® + 4ab® — 5a) + a?(8a® — 8b* + 5)]* F_0
! 25[280b%, — 112ab3, + 6(11a% — b*)b2, — 2a(5a2 — 3b°)by; + a* — 9a2b*? e

where F; = Fi(a,b,by1) =0, i = 2,3,4. These three polynomial equations are coupled and have to be solved simultaneously.
Similarly, we need to eliminate one of the coefficients a, b and b,; from the three equations. Eliminating b from the first two
equations (using the Maple resultant command), F, = 0 and F; = 0, yields the resultant equation:

Fs = 160b3, + 140ab3, — 40aby; + a>. (25)

Similarly, eliminating b from another two equations, F, = 0 and F4 = 0, yields another resultant equation: F¢ = 0, where Fj is
a lengthy expression, omitted here. We must solve Fs = Fg = 0 for a and b;, which may yield possible solutions such that
v; =0, i=1,2,...,6.1t should be pointed out that the above non-linear, variable elimination process does not miss any pos-
sible solutions, but as is well-known, it introduce extra, spurious, solutions, and thus one has to verify all solutions using the
original expressions of v;.

Finally, eliminating b,; from the two equations, F5 = Fs = 0, results in the final equation:

F7 = (11278332390406413903678327394304a'? 4 9439268357932268111521578554849280a'°
+ 15955549149699417710133152016699200a® + 7806733831958566794606224301855600a°
+2689670124233149942096312307701500a* + 1317907196524296813182912146670625a>
+248225087542552407942139964497500)a = 0.

It is obvious that the above equation has only one real solution a = 0. But if a =0, then b,; =0 resulting in @y =
bso = aso = 0, which can be shown to give a center. Thus, a must be non-zero. This implies that one cannot find possible
non-zero values of a and b,; such that Fs = Fg = 0, indicating that there is no solution for F, = F3 = F, = 0. Therefore, there
do not exist possible non-trivial solutions for a, b, @, bs1,G30 and bso such that v; =0,i=1,2,...,6. Hence, fourteen small
limit cycles are not possible for a cubic system with Z, symmetry.

Since there is one free parameter (i.e., a), we have infinitely many solutions. All parametric solutions can be found as fol-
lows. Finding these solutions only requires F, = F3 = 0 (F4;#0). Numerically solving these equations for b,; in terms of a
yields three solutions: by; = 0.2033343806a, —1.1061229255a and 0.2778854492a. Then, for each of the above solutions,
solving Eq. (25) gives two solutions for b%. By checking the equations F, = F5 = 0, four solutions are obtained: two for the
case when the origin is a saddle point and two for the case when the origin is a node. In the following, we consider one
of the two cases when the origin is a node. Let the critical values be denoted by

b* = 0.4765747114a,
by, = 0.20333438064,
a;, = 0.7000000000 + 1.0149654014a?,
~ a%(0.0481488581 + 65.9546167690a> — 9379.2591506305a*)

b0 = 0.0008286738 — 0.1076372236a? '

@3, = —(0.8202076319 + 2.4368685248a2).

Then, we have the following theorem for the generic case.

Theorem 3. Given the cubic system (21) which is assumed to have a saddle point or a node at the origin and a pair of symmetric
fine focus points at (x,y) = (0,1) and (0, —1). Further suppose a1, = —bo3 = a,a03 = —b, b1 = % — b. Then, for an arbitrarily
given a0, lf b7 bz] , 0o (b7 b21 )7 b3()(b7 asy, bz] ) and (130(b, axy, bz] ) are perturbed as
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b=>b"+¢€,

by = b, + €,

Uy = Qo1 (b + €1,b5, + €) + €3,

bso = bso(b* + €1,b3; + €2, G0 (b" + €1, D5, + €) + €3) + €4,

Q3p = ago(b$ + 617b31 +€27621(b* + 617b£1 + 62) + 63) + €s,
a2 = d + €g,

where 0 < |€s| < |€5] < |€4] < |€3] < (|€2], |€1]) < 1, system (21) has exactly twelve small limit cycles. The notation (|€;],|€1])
means that €, and €; are in the same order, with €; = (5 + €)€; for some 5 > 0 and some small € > 0. (Note that here the pertur-
bations, €;’s, can take positive or negative values since here a is not specified.)

To end with a case in which the origin is not a centre, we present a numerical example for the case when the origin is a
node. We choose a = —0.7, and then b* = —0.3336022980, b3, = —0.1423340664, a3, = 1.1973330467, b3, = 0.0744658372,
a3, = 2.0142732091, for which b;; = —4.1028179815. Further, we take the following perturbations: €; = 0.3 x 1078,
€ =-04x102,65=-07x10"7,6,=02x10"" €5 =0.1 x 107 €5 = 0.3 x 107'°, under which the system has five real
fixed points: Co = (0,0), C12 = (0,+1) and C34 = (£0.2398840466, +0.1797759006). A linear analysis shows that C; is a sta-
ble node, C; , are two weakly unstable focus points, and C; 4 are saddle points. Computing the focus values for the perturbed
system finally yields the six amplitudes for the small limit cycles: r = 0.0072744336,0.0100774933,0.0150111942,
0.0824725838,0.2066015944, 0.3591142108. The phase portrait for the above perturbed system is shown in Fig. 2, where
the two boxes contain the twelve small limit cycles near the focus points (0, £1). The stabilities of these limit cycles can be
easily determined from the signs of the focus values.

3.3. Eight small limit cycles in a simple cubic system

In the previous subsection we have shown that a cubic system with Z, symmetry exhibits twelve small limit cycles, but
distributed in the neighborhood of two fine focus points. Now we turn to the case that the origin is a centre and want to
investigate the small limit cycles around the origin. Many results have been obtained [44] showed six limit cycles bifurcating
from one critical point. Another such an example can be found in [37]. Later, seven limit cycles were found (e.g., see [40,42]).
In [42], eight limit cycles were obtained. All the results were based on the symbolic computation of focus values. Recently, it
was claimed that a cubic system can have eleven limit cycles around one critical point [43], which, however, does not pro-
vide detailed computation of focus values.

In the remaining of the section, we will first show that the simplest cubic system given in [42] which has seven limit cy-
cles can actually have eight limit cycles, and then present a cubic system which has nine limit cycles around the origin. These
new results are based on symbolic computation with the aid of Maple.

First, consider the simple cubic system given in [42]:

X=X+ Y+ a3x* + ax> + asx®y — 3bxy? + a7y°,
¥ =—X+2y+ (bs — a7)x’ + (bs — 3a4)x’y + (bs — as)xy* + b7y’. (26)

In [42], an extra condition 3as = —(10a3 + 11ay) is imposed in order to simplify computation. In fact, lifting this restriction
leads to eight limit cycles, as we will see. First, choose a;#0 as a scaling parameter and apply the following scalings:

a; — A@?, b —Bia}, x—x/a3, y—y/as, (27)
into system (26) to obtain

X=X +V+ x4+ Ax® + Asx’y — 3B;xy? + A7y3,

¥ =—X+2y+ (B4 — A7)X* + (Bs — 3A4)x*y + (Bs — As)xy” + B7y’. (28)
Executing the Maple program [20] yields (with 4 = 0) ;3 = {Bs. Setting v; = 0 gives Bs = 0. Then computing »s results in

1

Us = 3

Bs(As — B7).
There are two choices satisfying vs = 0: either Bs = 0 or B; = A4. Setting Bs = 0 leads to vs = v; =--- =0, a centre. So let
B; = A4, under which v; is to be

L A,Bs(—~35 + 3Bs + 15B4).

Y ="192

For the same reason, we must choose B4 = {5 (35 — 3Bg), in order to have »; = 0.
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Continuing the calculation shows that

A4Bs

Vg = 9600 [5A7(18Bs — 385) — 1750 — 525A5 — 140Bs — GBf3 + 30A5Bs)],
1750+525A5 +140B6 +6B3 —30As Bg

from which we obtain A; = <785, 385)

Having determined the values of four parameters: Bs, B;, B4 and A;, executing the Maple program gives »;; from which
one solves for A2 to obtain

A= — ]1%{691232 —1131660B; + 13935075B; — 269206875B2 + 5571820625B5 + 6458046875

+ 50A5[As(864B; — 114660B; + 35574005 — 32413500) — 864B¢ + 1154708 — 31492658

+ 278785508 — 62811875]} (29)
under which z4; =0, and then »13 and 2,5 are simplified. Now eliminating As from 243 = 0 and 15 = 0 results in a solution
for As:

A5 :=1/10%(28661513482345328640 x* B6"18 — 38320168058532606394368 x B6"17

+9435318117168421171902240 x B6"16 — 570016902679901015264786700 x B6"15

+ 25535041487348308966276655625 * B6"14 — 3061280078738836259886367093125 x B6"13

+195822583392525794901711704896875 x B6"12 — 7590055826170845204286658264296875 x B6"11

+181175551207640845515359092043437500 % B6"10

—2422011567548536504083848850989062500 * B6"9

+17883086326968346104050209283888671875 + B6"8

—14996908722289355090789513814423828125 * B6"7

— 6559231385063219885796682916555419921875 x B6"6

+157184152514218295700964005625140380859375 * B6"'5

—993493711663950435880818698896791992187500 x B6"4

—4978147766604270349385821736934973144531250 % B6"3

+79567813193066507771413909776845092773437500 x B6"2

— 360337535737356645696184571732116699218750000 * B6

+820'7895046256’766'7035948’7995542480468’75OOOOOOO)/(9051638614485322880*B6A1'7

— 7309116792568853830656 x B6"16 + 1311473686075172842327920 * B6"15

— 75973658751819234396739350 * B6"14 + 3508914547776203728170167250 * B6"'13

— 386896482462029995940545935000 * B6"12 + 25558623031202229428250392896875 * B6"11

— 872156830211624861821600079906250 * B6"10 + 14877380678999812057647542808281250 * B6"9

— 66004804107627327503321507824218750 * B6"8 — 1862922015663352341947357102654296875 % B6"7

+44774678952795365665845906717714843750 x B6"6

— 840132373908594158651942944233984375000 * B6"5

+10168568180578114687669746792439453125000 * B6"4

+22206624603189962191843382697719726562500 * B6"3

—1761489758224309026033012358605712890625000 * B6"2

4+ 13345336332385462657759104223828125000000000 * B6

— 23671656393010267601340973388671875000000000) : (30)

and a resultant equation:

F = (18Bs — 385)(8Bs — 735)F; (Bs), (31)
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where F; is a 25th-degree polynomial of Bg, given by

Fl:=25517942739795723889201643520 * B6"25 — 15961557129783711309683786317824 * B6"24
+192625552310827002440803128023040 x B6"23
+195550386732260521210324495097798400 x B6"22
—28158815198433584833713402047338176000 % B6"21
+1033734722674616222724983132524050525000 x B6"20
—59379935935449378171276843185977097343750 * B6"19
+9590292320511086071943531542881338566546875 *« B6"18
—451193899934739158581843476544588721670937500 * B6"17
+11207826884672338273965968245267373870987109375 « B6"16
—135696149188209357581589508528862248038023437500 * B6"15
—2513618748935572240155021795318134123658105468750 * B6"14
+66289843074171791813769089263414112799266015625000 % B6"13
+977604060330518550753995048095833893466941894531250 x B6"12
—24802878891314023830241132965042843004940749511718750 « B6"11
+135355422329906288642447252991195213905651605224609375 * B6"10
— 6332203795984067960375159713574273013757487915039062500 * B6"9
+53780987949344129764991805868491683170968479461669921875 * B6"8
+1353866539349998679702350808860664326424912896728515625000 * B6"7
—13860624815869973501744680650905940025539405349731445312500 * B6"6
+27031619976231087198815226613734972443015888824462890625000 * B6"5
— 535003645332341656553005034190528839048580353927612304687500 * B6"4
+2764135604231277672299533748358798801483962497711181640625000 * B6"3
—1449744782642143940578968415021056130318871974945068359375000 * B6"2
+11864665612169188008349245976691483162651824951171875000000000 * B6
—64739758475649691824510366041125989647941589355468750000000000 : (32)

Now, we can employ a numerical approach to solve the single variable polynomial F;. For example, we may use the Maple
built-in solver fsolve to find all the real roots of the polynomial. The first two real solutions: B = 385/18 and Bs = 735/8
yield two centres. The remaining given by F; = 0 have seven real roots. To verify these roots, for each solution Bg, in backing
order, first use Eq. (30) to obtain As, and then A4. Substituting the three solutions to verify »,;, 713 and vs while
v; =0, i=1,3,5,7,9 are automatically satisfied since they are solved one by one using one parameter at each step. Back
to the original system (26), these two solutions are given by (say, up to 50 decimal places):

as = 11.72677636147392252103108673156625861130540134632217a3,
as = —96.28308723695332837277347016717443395057677635891191a3,
a; = 23.87070969364661297334553081391162008758996623623660a2,
by = 32.304348913497059522616685885566055558190292494283 1543,

bs =0,
bs = —149.855077900818630946416762761163611124284795804749094a2,
b; = 11.72677636147392252103108673156625861130540134632217a2, (33)

and

as = 1.16364223535095645608539458464523114309856393525890a3,

as = 13.51273677593795918678747785044498166551946137068013a2,
a; = —10.18920587951907640059427939895810711880480806331355a2,
by = —0.58111111583561668080376402285512367825820241344231a3,

bs = 0,
bs = 14.57222224584475007068548678094228505795767873387819a2,
b, = 1.1636422353509564560853945846452311430985639352589002. (34)

Using the above second group of parameter values yields the following focus values v; ~ 0,i = 3,5,...,15, and

v17 = —3860.664135471169087755897283604661244227601550037426784a;°.
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One can choose an appropriate value of a; to make »;; smaller. For example, choosing a; = 1/2 gives
117 = —0.05890905968431349316033778814094026556743776779231.

Thus, system (26) can at most have eight small limit cycles around the origin. Further, we may apply Lemma 2 to prove that
the system indeed has eight limit cycles. Since the five parameters A4, A, B4, B; and Bs can be used one by one to perturb the
focus values: vq1, vg, V7, v5 and v3, we only need to verify the Jacobian matrix obtained from the equations »;3 and v;s. Eval-
uating this Jacobian matrix at the second group of parameter values results in

374.61334770404070439946a)° —151.19857162131752129186a.°
6805.71872946034421955644al?> —2775.84271190336979973928a)?

= —10852.78025513242068667926a2>#0 (because a;#0). (35)

det(J.) = det

This shows that for the given second group of parameter values with proper perturbations, system (26) has exactly eight
limit cycles.
Summarizing the above results gives the following theorem.

Theorem 4. For the cubic system (26), when the system parameters are properly perturbed to the critical values: 2 =0, bs =0,

_ 1 2 __ 1750a3+525a5a2+140bsa3+6bg —30asbg
b7 =a4,bs= 15 (3503 3bg), a; = 5(18Ds—3852)

back scaling (27), and Bg = bg/a3 is one of the two real roots of the polynomial equation F; = 0 (see Eq. (32)) satisfying the
Jacobian condition (35), then system (26) has exactly eight small limit cycles around the origin.

, a4 and as are given by (29) and (30), respectively, through the

Before moving on to the next case, we present a numerical example with the second group of critical values given in Eq.
(34) at a; = 1/2. We take the following perturbations:

€6=0222x107% €=01x107 €=01x10" €=01x10",

6=01x10%2, =02x10%" &=01x10", €=04x10"7,
under which the perturbed focus values are: vy =—-0.4 x 107, »;, =0.125 x 107%, v, = -0.9110138803 x 107!, v; =
0.8356442057 x 107, v, = —0.1707886684 x 10°"7, w5 = 0.5055921200 x 10", s = —0.2408082000 x 1077, v; =
0.1707722232 x 1073, w5 = —0.5829996790 x 10~', which results in the eight positive roots of r for the amplitudes of the
small limit cycles:

r; = 0.0000694069, r, = 0.0001028080, r; = 0.0003639564, rs = 0.0006441196,

rs = 0.0018656976, rs = 0.0045431825, r; =0.0110759988, rg = 0.0527431270.
The perturbed system has three fixed points: Co = (0,0), C; = (1.4993481472,—-0.6020762119) and C5 = (—1.7265198511,
0.6436456497). A linear analysis shows that Cj is a fine stable focus point, while C; and C; are saddle points. The phase por-
trait of this example is shown in Fig. 3. It should be noted that since the origin is a high order focus point, the dynamical

behaviour of the system in the vicinity of the origin is similar to that of a center. The limit cycles shown in this figure are
not exact trajectories, but used to demonstrate what it may look like.

3.4. Nine small limit cycles in a cubic system

So far, in the literature, the maximum number of limit cycles in the neighborhood of one singular point obtained using
symbolic computation is eight [42]. Although it was shown eleven small limit cycles might exist around one singular point
[43], the result has not been verified by computation. The difficulty in computing higher order focus values are obvious. Also,
solving coupled higher degree multivariate polynomials is difficult.

In the remaining part of this section, we present a cubic system which exhibits nine small limit cycles around one critical
point. Consider the general normalized cubic system (11). For convenience, we rewrite it here:

X=0X+y+X* + (b+2d)xy + cy* + X + g%y + (h — 3p)xy* + ky’,

y=—x+ay+dx’ +(e—2)xy —dy’ + x> + (m—h—3f)x%y + (n — g)xy* + py>.
The system has thirteen independent parameters. It is easy to see that v; = ¢, and other focus values are given in terms of the
remaining twelve parameters. It has been shown that the origin is a centre if « =b=e=h=n=m = 0. We let

a=d=e=h=0, (36)
and then compute the focus values. Here, we use the recursion formulas to compute the singular point quantities. The first-
order quantity is given by u, = %i[b(c + 1) — m]. setting u, = 0 results in

m=>b(c+1). (37)

For simplicity, letting b = 0, and so m = 0. Therefore, n must be non-zero, otherwise it is a centre. Thus, 7 free parameters are
remained: c,f, g, k, ¢, n,p.
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Under the above choices of parameters, the second-order singular point quantity becomes p, = —}in(p — f). In order to
have u, = 0, the only choice is
p=1, (38)

since n0. Then p; = &ifn(45 — 30c — 35¢% + 15¢ + 15k + 3n). One can choose n to set y; = 0, yielding
n:%(35c2+306— 15¢ — 15k — 45). (39)
The next singular point quantity can be found as

40)u, = Lifn g(7¢® + 30c + 6k + 6¢ — 45) — 648 + 162¢ — 81k — 72¢ + 30k¢ — 60ct — 54ck + 24k* + 6¢* + 516¢2
47192
—56¢%¢ — 21c%k + 434¢® + 168¢1],

from which we obtain

g = (648 — 162c + 81k + 72 — 30k( + 60ct + 54ck — 24k* — 6/ — 516¢> + 56¢%¢ + 212k — 434c>

—168c¢*)/(7¢ + 30c + 6k + 6¢ — 45). (40)
Then p is given by ps = — ]0368(30H72f2”+6k+6£745)2 s (f,c, k. £), where 5 is a polynomial of f, ¢, k, ¢, from which we can solve for

f? to obtain (here f2 = f?)

£f2:= —(—54584604xcx 1 — 39188124 x c xk — 27032049 x c"2% 1 + 48200751 x c"2 xk — 110968380 x ¢
419497105 xk + 59650425 x 1 + 1029976236 * ¢4 — 15231726 x k"2 — 21311586 12
+ 159042042 x c"3 — 850276440 x c"2 — 37330632+ 1 xk — 843453 x 1”2+ k + 6160698 * c"2 x k"2
+ 47523483 x 1 x ¢4 — 13941396 xc x 12 — 9106668 c x k"2 + 88773246 % 1 x '3
+ 173490822k * 3 — 3849120 % ¢ * 13 + 2978208 x ¢ x k"3 — 2719710 % c"2 x 1"3
— 6922962 % "2+ k"3 + 34758558 x ¢4 x k"2 + 31216050 % c"4 x 172 — 132783063 x 1L x c"6
— 85492743 xkx "6+ 477900 %k ¥ 13 + 538164 x k"3 % 1 + 11818224 x c"3 x k"2 + 44393184 x c"3 % 12
— 46656 xk"3x1"2 — 46656 xk"2%1"3 — 15562+ k"4x1 — 15552+ 174 xk + 2024946 x c"6 x 1”2
+19211742xc"2% 172+ 1234197 % k"2 %1 — 84526605 xk x ¢4 4 42444 x "2 x k"4
+83592xc"2%1"4 — 96720121 x c"8 — 2526636 x k * c'8 — 284445 % 1”3 x ¢4 — 34587 x k"3 * ¢4
+ 23328 xcx k"4 + 127656 c*1"4 — 802656 % 1"3 % c"3 — 3672000 x k"3 % c"3 + 957420 x k"2 %12
+ 29794716 % c"5x k"2 — 195603336 x k x ¢"'5 — 105820344 x 1 x ¢'5 + 11002068 x c"5 x 12
— 58934442 %1 % c"7 + 754029 k"3 + 44388 x k4 + 14256 x 1”4 — 522775800 x c\6
— 1323621 %1"3+ 57931686 * c"5 + 38574144 c"b*xk*1+ 145800+ c*1"3xk
— 68040 xc*1"2%k"2 — 62856 c*1*xk"3 —7236864*1"2*c "3k —10106208*1xc"3xk"2
+ 7135128 % c"6xk*x1 — 1242675 xk 2% c 4+ 1 — 1492533 xkxc"4%1"2 —10692xc"2%1"3xk
— 229716 xc 2%k 2% 12 — 92088+ 2% k"B x1 + 68219928 x4 xkx1+707616%xc* Kk 2x1
—6119712%c*xk*1"2 459710608 xc"3 xk*1— 13159746 % c 2%k 2% 1 — 8956494 xc 2 xk*1"2
421873240 c"2% 1 xk — 21473424 x c* 1 xk — 105232554 * ¢\7 + 154411628 * c"'8
+12910520 % ¢"10 + 84322630 x c"9 — 18758754 x k x c"7 + 5851062 * c" 6 * k"2 + 239345280)/

(24+k+24%1 —495+330%c+385%c"2)/(B0xc+7xc"2+6+k+6x1—45)"2/18: (41)

Then the next three singular point quantities are

:u6 = :u6 (C7 k7 £)7 :u7 = H7(C, k7 é) ,us = :u8 (C7 k7 Z)v

which are polynomials of ¢,k and ¢, with leading (combined) degrees of 14, 22 and 26 for ug, i, and g, respectively. The
Maple output files for the three polynomial equations have roughly 100, 315 and 588 lines, respectively. The three singular
point quantities are coupled, we thus have to simultaneously solve the three polynomial equations: g = 1, = g = 0. To
find the solutions of these equations, we might first eliminate one parameter from the three equations to obtain two resul-
tant equations, and then further eliminate one more parameter from the two equation to get a final resultant equation which
is a univariate polynomial and thus we could find all possible solutions. This elimination method has been used in our other
publications (e.g., [1-3]). The method may increase the degree of the final resultant polynomial substantially.

In this paper, we use a numerical approach to simultaneously solve the three equations. The solution of the system of
equations may be approached in several ways. A simple numerical approach, using solve in Maple directly, is successful
in many cases. By examining its source code, we find that this routine uses a variant of damped multivariate Newton
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iteration (there appears to be no published paper describing the routine), and by judicious choices of our initial guess we
obtained a result (with f, > 0) after only two tries.

In general, this in not completely satisfactory, because we would like to find all real positive roots. Advanced techniques
such as those described in [45] will be pursued for extensions of the work described in this paper.

Finally, for system (11), by taking a = 0.3, we have used the numerical method to obtain the critical parameter values
(results from computer output using Maple up to 1000 digits, but list only 50 digits):

b=d=e=h=0,

m =0,
p=f*=0.57205513738312947531208972107913988960903196760780,
n* = 1.55873662344968337059579107151819084101404714441598,

g =0.32875002652319114041354789797311142571533487466423,
f*=0.57205513738312947531208972107913988960903196760780,

- =-0.28703189754662589381676063046084638581078384981160,

¢ =-0.52179929787663453432829806398960426486646485537068,

k* =0.02751217774798897933976121289219741452562430620627. (42)

Under the above critical parameter values and conditions, we execute the Maple program (Yu, 1998) to find the following
focus values (again up to 1000 decimal digits, but »o is only given up to 50 digits here): v; =0,v; =0.1x 107,
V5 =-05x10""" 9, =-023x107'°% 25 =0.62 x 107%° p;; = —0.405 x 107%%° ;3 =0.135 x 107°%, p;5 =0.14 x 109%,
v17 = 0.9 x 107, and

V19 = —0.0014315972268236725754647008537844355295621179315106.

The above result indeed indicates that an excellent approximate solution has been obtained, and the values of
v;,i=1,3,...,17 can be considered as being very close to a true real zero. Thus, the maximum number of small limit cycles
which can be obtained in the vicinity of the origin of system (11) is nine. In order to prove that the nine small limit cycles
indeed exist, we need to check the Jacobian matrix obtained from the three equations:

2/13(‘6767 k) = U]S(ev Cak) = 1}17(87 C, k) = 07

with respect to ¢, c and k, since the other singular point quantities, us, 14, i3, i, and u, can be perturbed one after another by
the parameters, f,g,n,p and m (or b). Further, it can be shown that due to the relation between v, and p, (given in Eq.
(13)), the determinant of the Jacobian evaluated at the critical point, based on the y; formulas is equivalent to that based
on v; expressions. In other words, the determinant of the Jacobian based on the former is non-zero if and only if that based
on the latter is non-zero. Thus, we can use the following real equations:

ifg(l,c.k) =ip,(¢,c, k) =iug(¢,c,k) =0,

to compute the determinant, where i = v/—1. It should be noted that the values of these two determinants are not equal since
the constant coefficients between the relations are ignored, which does not change the non-zero property of the determi-
nant. Therefore,

% % % 0.0451319561 0.2439914595  0.0220645269
det(],) = det | 2 2k Oy =det | 0.1223727073 —0.0022077660 0.1580040454
oy oty digtg 0.0055179038 0.6737398583  —0.0271869307
ol ac ok d (t,ck)=(¢*c* k")
= —0.0019578515%0. (43)

Then, according to Lemma 2 we know that nine small-amplitude limit cycles bifurcating from the origin of system (11) can
be obtained by properly perturbing the critical values given in Eq. (42). The above results are summarized in the following
theorem:

Theorem 5. For the cubic system (11), suppose b = d = e = h = 0. When the remaining parameters are properly perturbed to the
critical values: oo = 0, m* = 0, p* = f, n* = 1(35¢% + 30c — 15¢ — 15k — 45), g*, f*2 is given by (41), while ¢, c* and k" are given in
(42) satisfying the Jacobian condition (43), then the system (11) has exactly nine small limit cycles around the origin.

4. Conclusion

In this paper, we have considered the existence of small-amplitude limit cycles of nonlinear dynamical systems. Particular
attention is given to planar quadratic and cubic systems, associated with Hilbert’s 16th problem. Up to now, all the studies of
small limit cycles in Hilbert’s 16th problem are almost based on computations of focus values and solving of polynomial
equations. This paper presents a computational method which are used to obtain some new results about small limit cycles.
Several cases are studied to show that efficient symbolic computation is crucial in finding the limit cycles of dynamical
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systems. All the results presented in this paper were obtained using Maple. This may help motivate developing new methods
for the research in limit cycles of Hilbert’s 16th problem. On the other hand, we see in this problem a potentially interesting
avenue for application of accurate real solving of large systems of multivariate polynomial equations. This may stimulate
research interest in developing more efficient symbolic computational methods for solving polynomial equations.
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