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Abstract This paper considers the computation of the
simplest parameterized normal forms (SPNF) of Hopf
and generalized Hopf bifurcations. Although the no-
tion of the simplest normal form has been studied
for more than two decades, most of the efforts have
been spent on the systems that do not involve pertur-
bation parameters due to the restriction of the com-
putational complexity. Very recently, two singularities
– single zero and Hopf bifurcation – have been in-
vestigated, and the SPNFs for these two cases have
been obtained. This paper extends a recently developed
method for Hopf bifurcation to compute the SPNF of
generalized Hopf bifurcations. The attention is focused
on a codimension-2 generalized Hopf bifurcation. It
is shown that the SPNF cannot be obtained by using
only a near-identity transformation. Additional trans-
formations such as time and parameter rescaling are
further introduced. Moreover, an efficient recursive for-
mula is presented for computing the SPNF. Examples
are given to demonstrate the applicability of the new
method.
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1 Introduction

Bifurcation and stability are two main concerns in
the study of nonlinear dynamical systems. There ex-
ist many methodologies in analyzing dynamical be-
haviors; one of the frequently used approaches is the
normal form theory. The basic idea of the normal form
theory is to transform the original system to a simpler
one that retains the essential dynamical behavior of the
original system, which greatly simplifies the dynamical
analysis of the original system. Normal forms are not
unique and can be given in equivalent forms, depending
upon what approaches are used. Normal form usually
refers to Poincaré normal form, Birkhoff normal form,
or Takens normal form. However, it is not clear which
“form” would be a “simpler” or even the simplest for a
particular singularity. In fact, it has been found that the
conventional (or classical) normal form (CNF) [1–5]
can be further reduced to the so-called simplest normal
form (SNF) or unique normal form. Takens is probably
the first one to notice that the CNF can be further sim-
plified, therefore he [6] considered a further reduction
of the normal form associated with degenerate simple
zero singularity. Ten years later, Ushiki [7] introduced
the method of infinitesimal deformation based on Lie
algebra to study the SNF for a number of singularities,
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but the SNF computation was limited to lower-order
terms. Following Ushiki’s work, many researchers have
applied the homological operator theory to study the
SNF and made significant contributions to this area in
both theoretical and computational developments (e.g.,
see [8–16]).

It has been noticed that the computation of the SNF
is much more complicated than that of the CNF. This
is why only very few singularities have been investi-
gated by using the SNF in the past two decades, where
the main attention has been focused on the SNF of the
systems without perturbation parameters. However, a
physical or an engineering problem always involves
some system parameters, which play an important role
in the study of bifurcation and stability. Therefore, find-
ing the SNFs with perturbation (bifurcation) parame-
ters is more important in practice. The terms in a nor-
mal form involving perturbation parameters are usually
called unfolding. Unfortunately, it has been found that
the computation of the SNF with unfolding is more
complicated than that of the SNF without unfolding.
Even with the aid of computer algebra systems such as
Maple and Mathematica, it is not easy to compute such
SNFs. Only very recently has attention been turned
to the computation of the SNFs with unfolding. Two
kinds of singularities have been investigated: the simple
zero [17] and the Hopf bifurcation [18]. Efficient com-
putational methods have also been developed for these
two singularities, with programs coded using Maple.

Normal forms of nonlinear systems are usually ob-
tained via near-identity transformations, particularly
for systems without perturbation parameters. However,
it has been shown that near-identity transformations
are not enough for computing the SNFs with unfold-
ing. Additional transformations like time rescaling and
reparmetrization need to be used [17, 18]. This paper
will extend a recently developed method for comput-
ing the SNF of Hopf bifurcation [19] to generalized
Hopf bifurcations. One key issue in the SNF compu-
tation is the computational efficiency, particularly for
the SNFs with unfolding. In fact, it has been noted
that even with powerful computers, one cannot go very
far if the method used is not efficient. Recently, some
efficient computational approaches have been devel-
oped [19–21], which considerably save the computa-
tional time and computer memory, making it possible to
obtain higher-order SNFs. One novel approach, called
the matching pursuit technique, has been developed to
completely solve the Takens–Bogdanov singularity (a

double-zero eigenvalue) [21]. This technique can au-
tomatically “match” a correct form of the SNF to a
particular system, without knowing any conditions or
restrictions that are generally needed by other methods
(e.g., see [7, 10–12, 14, 15, 20, 22]). This technique
will be employed in this paper.

The rest of the paper is organized as follows. In the
next section, an efficient computational formula is pre-
sented. Section 3 is devoted to the computation of the
SPNF of generalized Hopf bifurcations. Two examples
are given in Section 4 to illustrate the application of the
new method. Finally, conclusion is drawn in Section 5.

2 Efficient computational method

In this section, we present an efficient recursive for-
mula for computing the SPNF, which is applicable for
general differential equations and for any type of sin-
gularities (not restricted to the Hopf bifurcation).

Consider the following general parameterized non-
linear differential equation:

dx

dt
= f (x,μ), x ∈ Rn, μ ∈ Rm, (1)

where x and μ are the n-dimensional state vector
and m-dimensional parameter vector, respectively. It
is assumed that x = 0 is an equilibrium of the system
for all real values of μ, i.e., f (0,μ) ≡ 0. Further, it is
assumed that the nonlinear function f (x,μ) is analytic
with respect to both x and μ, so that one may expand
Equation (1) as

dx

dt
= L x + f 2(x,μ) + f 3(x,μ)

+ · · · + f k(x,μ) + · · · (2)

where L x
�= v1(x) represents the linear part and L is

the Jacobian matrix evaluated at the equilibrium x =
0 and the critical point μ = 0. It is assumed that all
eigenvalues of L have zero real parts and, without loss
of generality, L is given in Jordan canonical form.
f k(x,μ) denotes the kth-degree vector homogeneous
polynomials of x and μ.

The basic idea of the normal form theory is to find
a near-identity nonlinear transformation

x = y + h2(y,ν) + h3(y,ν)

+ · · · + hk(y,ν) + · · · , (3)
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where ν is a new scaled parameter, via the relation

μ = ν + p2(ν) + p3(ν) + · · · + pk(ν) + · · · (4)

so that a simpler form (normal form) can be obtained
as

d y

dτ
= (L + L1(ν)) y + g2(y) + g3(y)

+ · · · + gk(y) + · · · (5)

where the terms gk(y) are the same as that of the
CNF [1], while L1(ν) is an n × n matrix linear func-
tion of ν, to be determined in the process of computa-
tion, representing the unfolding. The new time variable
τ is defined through the time rescaling [17]

t = [ T0 + T1(y,ν) + T2(y,ν)

+ · · · + Tk(y,ν) + · · ·] τ. (6)

According to the normal form theory (e.g.,
see [1, 2]), we further define a so-called Lie bracket
operator as follows:

Lk : Hk �→ Hk,

Uk ∈ Hk �→ Lk(Uk) = [ Uk, v1 ] ∈ Hk,

[ Uk, v1] = Dv1 · Uk − DUk · v1, (7)

where Hk denotes a linear vector space consisting of
the kth-degree homogeneous vector polynomials. The
operator [ •, • ] is called the Lie bracket.

Next, define the space Rk as the range of Lk , and
the complementary space of Rk as Kk . Thus,

Hk = Rk ⊕ Kk, (8)

and we can choose desirable vector bases for spaces
Rk and Kk . Consequently, a vector homogeneous
polynomial f k ∈ Hk can be split into two parts: one
is spanned by the basis of Rk and the other by that
of Kk . Normal form theory shows that the part belong-
ing to Rk can be eliminated while the part belonging
to Kk must be retained in the normal form. The idea
of finding the SPNF is similar to the CNF: Finding
an appropriate nonlinear transformation which further
simplifies the normal form. The “simplest” here means
that the number of the terms in each order retained
in the SPNF reaches the minimum. More precisely,

differentiating Equation (3) with respect to t and then
applying Equations (2) and (3)–(5) yields a set of al-
gebraic equations in each order for solving the coeffi-
cients of the SPNF and the nonlinear transformation.
The main idea in further reduction from the CNF to the
SPNF is to find appropriate hk(y,ν)’s such that some
terms of gk(y)’s can be removed.

The key step in the computation of the kth-order nor-
mal form is to find the kth-order algebraic equations,
which take most of the computational time and com-
puter memory. The solution procedures given in most
of the existing normal form computation methods con-
tain all lower-order and many higher-order terms in
the kth-order equations, which tremendously increase
the memory requirement and the computational time.
Therefore, from the computational point of view, a cru-
cial step in normal form computation is to find the kth-
order algebraic equations that contain only the kth-
order nonlinear terms.

An efficient recursive formula for computing the
kth-order algebraic equations has been developed
in [18], which is given by

gk = y f k + [ hk, v1 ]

+
k−1∑
i=2

{D f i h̃k−i+1 − Dhk−i+1 gi }

+
k−2∑
m=0

Tm

[ k
2 ]−m∑
i=2

1

i

k−m−i∑
j=i

Di f j

×
∑

l1 + l2 + · · · + li = k − m − ( j − i)
2 ≤ l1, l2, . . . , li ≤ k − m + 2 − (i + j)

h̃l1 . . . h̃li

+
k−3∑
i=1

k−1−i∑
j=2

Ti D f j h̃k+1−i− j

+
k−2∑
i=1

Ti ( f k−i + Lhk−i )

+ (Tk−1v1 − Dhk−1L2), (9)

for k = 2, 3, . . . , where v1(y) = L y, representing the
linear part of the system, and L2 = L1(ν) y is the un-
folding.

Note that in Equation (9), the variables y and
ν in gi , f i , hi , v1 and Ti have been dropped for
simplicity, and h̃1 ≡ (y, ν)T. And f j (x,μ), g j (y)
and h j (y,ν) are all j th-degree vector homogeneous
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polynomials in their arguments, where x and μ are
given in Equations (3) and (4), respectively. More-
over, Tj (y,ν) is a scalar function of y and ν,
while p(ν) is a vector polynomial of ν. The nota-
tion Di f j h̃l1 h̃l2 . . . h̃li denotes the i th-order terms
of the Taylor expansion of the j th-degree vector ho-
mogeneous polynomial f j (y + h(y,ν),ν + p(ν)) ≡
f j (ỹ + h̃(ỹ)) about ỹ. Here, ỹ = (y, ν)T and h̃ =
(h, p)T. More precisely,

Di f j (ỹ + h̃(ỹ))

= D(D(· · · D((D f j )h̃l1 )h̃l2 ) . . . h̃li −1h̃li ,

where each differential operator D affects only func-
tion f j , not h̃lm (i.e., h̃lm is treated as a constant vector
in the process of differentiation), and thus i ≤ j . Note
that at each level of the differentiation, the D operator
is actually a Frechét differentiation with respect to ỹ,
which yields a matrix. This matrix is multiplied by a
vector to generate another vector, and then to another
level of the Frechét differentiation, and so on.

If system (1) does not contain parameter μ, then
Ti = 0, L1 = 0, p = 0, f (y,ν) = f (y), h(y,ν) =
h(y), and thus Equation (9) is reduced to the formula
that has been obtained for the “reduced” system [20].
Also, note that the only operation involved in the for-
mula is the Frechét differentiation in Dhi , Di f j and
the Lie bracket [•, •]. This operation can be easily im-
plemented by using a computer algebra system like
Maple.

3 The SPNFs of Hopf and generalized Hopf

bifurcations

We are now ready to discuss the SPNFs of Hopf and
generalized Hopf bifurcations. Consider the following
system:

dx

dt
= f (x, μ), x ∈ R2, μ ∈ Rq ,

f : R2+q → R2, (10)

where q ≥ 1. It is assumed that f (0, μ) = 0 for all
real values of μ ∈ Rq , indicating that x = 0 is an
equilibrium of system (10). Suppose that at μ = μ∗,
the Jacobian of system (10) has one pair of purely

imaginary eigenvalues. Then Hopf and generalized
Hopf bifurcations may bifurcate from the equilibrium
x = 0. Further, without loss of generality, it is as-
sumed that the critical point is μ∗ = 0, and that the
Jacobian of system (10) evaluated at the critical point
and at the equilibrium x = 0 is given in the following
form:

J0 =
[

0 1
− 1 0

]
, (11)

implying that system (10) is described on a two-
dimensional center manifold. The rest of the paper con-
centrates on the SPNF computation based on this center
manifold.

If system (10) does not contain parameter μ, the
SNFs of Hopf and generalized Hopf bifurcations have
been obtained using only near-identity transforma-
tions [13], which are summarized later. For simplicity,
suppose that the CNF (without parameters) has been
found from system (10) (e.g., by using the Maple pro-
gram developed in [5]), given in polar coordinates

dr
dt

= a13 r3 + a15 r5 + a17 r7 + · · ·
dθ

dt
= 1 + a23 r2 + a25 r4 + a27 r6 + · · · , (12)

where r and θ denote the amplitude and phase of
the motion, respectively. Then, the SNFs without per-
turbation parameters for Hopf and generalized Hopf
bifurcations are given in the following theorem.

Theorem 1 ([13]). When the CNF of a system is given
by Equation (12), we have

(a) For Hopf bifurcation: if a13 �= 0, then the SNF is

d R
dt

= a13 R3 + a15 R5,

d�

dt
= 1 + a23 R2, (13)

up to an arbitrary order, where R and � represent
the amplitude and phase of the motion.

(b) For generalized Hopf bifurcations:

(i) if

{
a13 = a15 = · · · = a1 (2k−1) = 0, a1 (2k+1) �= 0,

a23 = a25 = · · · = a2 (2k−1) = 0,
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then the SNF is

d R
dt

= a1 (2k+1) R2k+1 + b1 (4k+1) R4k+1,

d�

dt
= 1 + a2 (2k+1) R2k ; (14)

(ii) if

⎧⎪⎨⎪⎩
a13 = a15 = · · · = a1 (2k−1) = 0, a1 (2k+1) �=0,

a23 = a25 = · · · = a2 (2 j−3) = 0, a2 (2 j−1) �=0

(for 2 ≤ j ≤ k),
then the SNF is given by

d R
dt

= a1 (2k+1) R2k+1 + b1 (4k+1) R4k+1,

d�

dt
= 1 + a2 (2 j−1) R2( j−1) + · · · + b2 (2k+1) R2k .

(15)

Here, bi j ’s are explicitly expressed in terms of
ai j ’s.

Later, the SPNF, namely the SNF with perturbation
parameters for Hopf bifurcation was obtained, as sum-
marized in the following theorem.

Theorem 2 ([18]). The SNF with perturbation param-
eters (unfolding) for system (10) is given in polar co-
ordinates as follows:

d R
dτ

= R(α ν + b13 R2),

d�

dτ
= 1 + b23 R2 + b25 R4 + b27 R6 + · · · (16)

where bi j ’s are explicitly given in terms of the original
system parameters, and αν denotes the unfolding; in
addition, b13 �= 0.

It is observed, by comparing Equation (16) with
Equation (13), that the amplitude equation of the SPNF
is simpler than that of the SNF. However, the phase
equation of the SPNF has infinite terms, while that of
the SNF has only one term besides the frequency term,
1. Nevertheless, this does not increase difficulty in anal-
ysis since only the first equation of Equation (16) will
be used for bifurcation and stability studies.

In the remainder of the section, we use the method
developed in [18] to derive the SPNF of generalized
Hopf bifurcations for system (10). In order to clearly

present the idea of the SPNF, we need to define the codi-
mension of a generalized Hopf bifurcation. It is well
known that the codimension of Hopf bifurcation (with
condition a13 �= 0) is 1. When a13 = 0, but a15 �= 0,
the codimension of the generalized Hopf bifurcation
is 2, which requires two bifurcation parameters in the
unfolding. So, the dimension of μ in Equation (10)
should be 2, i.e., q = 2 in this case. In general, if
a13 = 0 = a15 = · · · = a1(2k−1) = 0, but a1(2k+1) �= 0,
the codimension of the generalized Hopf bifurcation
is q = k. Other codimension cases can be similarly
discussed.

In this paper, we restrict ourselves to a codimension-
2 generalized Hopf bifurcation, i.e., it is assumed that

a13 = 0, but a15 �= 0. (17)

In this case, we have the following theorem.

Theorem 3. Under the transformations (3)–(6) and
condition (17), the SPNF of system (10) for codimen-
sion-2 generalized Hopf bifurcation is given in polar
coordinates as follows:

d R
dτ

= R(α1 ν + α2 ν R2 + b15 R4),

d�

dτ
= 1 + b23 R2 + b25 R4 + · · · , (18)

up to any order, where ν = (ν1, ν2)T, and α1 =
(α11, α12) and α2 = (α21, α22) represent the coeffi-
cients of unfolding terms.

Note that the coefficients b1 j in Equation (18)
are not given in terms of the coefficients a1 j of
Equation (12), but the polynomial functions of the co-
efficients of system (10), since system (10) is not given
in a CNF form.

Proof: Since the proof is similar to that of the Hopf
bifurcation case [18], we only outline the main steps.
To do so, use the transformations x1 = 1

2 (z + z̄) and
x2 = i

2 (z − z̄) to obtain

dz
dt

= i z + f (z, z̄,μ),

dz̄
dt

= − i z̄ + f̄ (z, z̄,μ), (19)
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where f is a polynomial in z, z̄ and μ = (μ1, μ2)T,
starting from the 2nd-order terms, and z̄ and f̄ are
the complex conjugates of z and f , respectively. The
form of the CNF term gk can be easily determined by
using the Poincaré normal form theory as

gk(u, ū) =
(

gk(u, ū)
ḡk(u, ū)

)
(20)

=
(

(b1k + i b2k) u(k+1)/2 ū(k−1)/2

(b1k − i b2k) ū(k+1)/2 u(k−1)/2

)
,

for odd integers k ≥ 3. In the SPNF computation, one
wants to eliminate one or both of the b coefficients, in
each order, by nonlinear transformations.

Without loss of generality, assume that the homo-
geneous polynomial f k(z, z̄,μ) and the nonlinear
transformation hk(u, ū,ν) are given in the general
forms of f k(z, z̄,μ) = ( fk(z, z̄,μ), f̄k(z, z̄,μ) )T and
hk(u, ū,ν) = (hk(u, ū,ν), h̄k(u, ū,ν) )T, with

fk =
∑

j+l+m=k

(a1 j lm + i a2 j lm) z j z̄l μm, (21)

hk =
∑

j+l+m=k

(c1 j lm + i c2 j lm) u j ūl νm,

and then z = u + ∑
k=2 hk(u, ū,ν). Further, assume

that the time and parameter rescaling are given by

t =
{

1 +
∑
k=1

∑
j+m=k

t jm

[
1

2
(u + ū)

] j

νm

}
τ,

μ = ν +
∑
k=2

pk ν
k . (22)

Here, μm = (μm1
1 , μ

m2
2 )T for all nonnegative integers

m1 and m2 satisfying m1 + m2 = m, and similar def-
initions are applied to νm and ν j . Moreover, a1 j lm is
a 2-dimensional low vector, satisfying m1 + m2 = m.
Similar meanings apply to the notations a2 j lm , c1 j lm ,
c2 j lm , t jm , and p j .

The universal unfolding can be assumed in the form
of

L2(u, ū, ν) = α1ν (u, ū)T = (α11 ν1 + α12 ν2) (u, ū)T,

L4(u, ū, ν) = α2ν (u2ū, u ū2)T

= (α21 ν1 + α22 ν2 ) (u2ū, u ū2)T. (23)

The reason for choosing this form can be explained as
follows: since b13 = a13 = 0, the first nonzero coeffi-
cient in the normal form is b15, and thus, the amplitude
equation should be in the form of

d R
dτ

= b15 R5 + · · ·

Therefore, it requires two terms in the unfolding so
that the normal form can exhibit generic dynamical
behavior of the original system (e.g., see [4]). As a
matter of fact, if we process the SPNF computation
without assuming the unfolding (23), we would find
from the 2nd- and 4th-order computations that these
two terms must be retained in the normal form since
there do not exist any c, p , and t coefficients that can
be used for solving the algebraic equations associated
with the unfolding terms.

Next, we use the coefficients c1 jlm, c2 jlm, t jm , and
p j to eliminate b1k , b2k , α1 , and α2, as many as pos-
sible. Based on the notation fk given in Equation (22),
the degenerate condition for the codimension-2 gener-
alized Hopf bifurcation can be obtained as

a12100 − a11100 a22000 − a12000 a21100 = 0. (24)

We begin with the 2nd-order equations (k = 2). Ap-
plying the formula L2 + g2 = f 2 + [ h2, v1] + T1 v1

yields the following seven (3 + 2 × 2) 2nd-order com-
plex algebraic equations:

−(c22000 + a12000) + i (c12000 − a22000) = 0,

3 c20200 − a10200 − i (3 c10200 + a20200) = 0,

c21100 − a11100 − i (c11100 + a21100) = 0,

2 c20110 − a10110 − i (2 c10110 + a20110) = 0,

2 c20101 − a10101 − i (2 c10101 + a20101) = 0,

α11 − a11010 − i (t010 + a21010) = 0,

α12 − a11001 − i (t001 + a21001) = 0, (25)

which do not contain the b coefficients, as expected.
Solving the first five equations of Equation (25)
uniquely determines the c coefficients

c12000 = a22000, c22000 = −a12000,
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c10200 = −1

3
a20200,

c20200 = 1

3
a10200, c11100 = −a21100,

c21100 = a11100

c10110 = −1

2
a20110, c20110 = 1

2
a10110,

c10101 = −1

2
a20101, c20101 = 1

2
a10101.

The last two equations of Equation (25) result in

α11 = a11010, α12 = a11001,

t010 = − a21010, t001 = − a21001.

The above calculations show that except for one unfold-
ing term, α1 = (α11, α12) �= 0, all the 2nd-order terms
can be removed by using the c and t coefficients. The
p coefficients, however, do not appear in the 2nd-order
algebraic equations.

Next, consider k = 3. Similarly, we apply
the formula g3 = f 3 + [ h3, v1] + (D f 2 h̃2 −
Dh2 g2) + T1( f 2 + L h2) + T2 v1 − Dh2 L2 to
find 16 algebraic equations, which are obtained
from balancing the coefficients of the terms
u3, ū3, u2 ū, u ū2, u2 ν1, u2 ν2, ū2 ν1, ū2 ν2, u ū ν1,

u ū ν2, u ν2
1 , u ν2

2 , u ν1 ν2, ū ν2
1 , ū ν2

2 , and ū ν1 ν2, re-
spectively. These equations are listed in the Appendix.
It is seen from these equations that, except for the
3rd, 11th, 12th, and 13th equations, all the equations
can be solved by uniquely choosing the 3rd-order c

coefficients (those on the left-hand side of the equa-
tions). The 3rd, 11th, 12th, and 13th equations do not
contain any 2nd- or 3rd-order c coefficients, and thus,
other coefficients must be used. It is seen from the 3rd
equation that b13 = 0, due to the degenerate condition
(24), and that either b23 or t200 may be used to
balance the imaginary part. We use t200 and leave b23

undetermined. The reason for choosing t200 is similar
to that in the study of Hopf bifurcation [18]. The
11th, 12th, and 13th equations have nine coefficients,
t020, t011, t002, p120, p111, p102 and p220, p211, p202.
It can be shown that the coefficients p2i j ’s must be
used in the 5th-order computation. Therefore, all t0i j ’s
and p1i j ’s should be used to solve the three equations.
This clearly indicates that it is not enough to use only
near-identity transformations to compute the SPNF. It
is also noted that some 2nd-order c and t coefficients

have not been used in terms of this order. However, it
can be shown from higher-order equations that these
coefficients can be set to zero. Therefore, from the
3rd-order equations, we obtain

b13 = 0,

t200 = 2 (A2210 − a2210 + b23 ),

p120 = − 1

a11010
(A11020 + a11020 + p220 a11001),

p111 = − 1

a11010
(A11011 + a11011 + p211 a11001),

p102 = − 1

a11010
(A11002 + a11002 + p202 a11001),

t020 = − (A21020 + a21020 + p120 a21010

+ p220 a21001),

t011 = − (A21011 + a21011 + p111 a21010

+ p211 a21001),

t002 = − (A21002 + a21002 + p102 a21010

+ p202 a21001),

c11010 = c21010 = c11001 = c21001 = t110 = t101 = 0,

(26)

and all other c coefficients are uniquely determined.
It should be noted in the above calculations that the

coefficient of zμ1 in the original Equation (19) has
been assumed nonzero, i.e.,

a11010 �= 0, (27)

under which the coefficients p1i j ’s are uniquely de-
termined and the first term of the unfolding exists.
In case a11010 = 0, but a11001 �= 0, we can still find
the unfolding but the roles of p1i j and p2i j need to
be exchanged. Alternatively, we may just simply ex-
change ν1 and ν2. So, without loss of generality, we
assume a11010 �= 0. However, when both a11010 and
a11001 equal zero, it gives another kind of generalized
Hopf bifurcation, which is out of the scope of this paper
and thus not further discussed here.

The situation for k = 4 is similar to that of k = 2,
for which we obtain

α21 = a12110 + (· · ·) and α22 = a12101 + (· · ·),
(28)
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Table 1 Solving the
irregular equations (k ≥ 2) k = 2

α11 (R)

t010 (I)
=⇒ u ν1

α12 (R)

t001 (I)
=⇒ u ν2

k = 4
α21 (R)

t210 (I)
=⇒ u2 ū ν1

α22 (R)

t201 (I)
=⇒ u2 ū ν2

p2m1m2 (R)
t2m1m2 (I)
(i = 2)

=⇒
u2 ū ν

m1
1 ν

m2
2

(m1 + m2 = k − 3)

k ≥ 2
k �= 2, 4
i − j = 1

k − i − j �= 0

c1(i−2)( j−2)m1m2 (R)
t(2i−2)m2m2 (I)

(i �= 2)
=⇒ ui ū j ν

m1
1 ν

m2
2

(m1 + m2 = k − i − j)

where (· · ·) represents a lengthy known expression in
terms of ai jklm’s. Thus, it is unlikely to have α21 = 0 or
α22 = 0. However, similar to Equation (26), it needs at
least one of a12110 and a12110 to be nonzero in order to
determine the coefficients pi jk ( j + k = 4). Therefore,
once again without loss of generality, we assume that

a12110 �= 0. (29)

This procedure used in the 2nd- and 3rd-order equa-
tions can be carried forward to higher-order (k ≥ 4)
equations.

The method of mathematical induction has been ap-
plied to find the following general computational rules:

(1) The b1 j coefficients, except for b15 , can be set
zero, while b2(2l−1) (l ≥ 2) must be used to solve
the real part of the equation corresponding to the
term ul+2 ūl+1. The t coefficient t2l 00 can still be
used to eliminate the imaginary part of the equation
associated with the term ul+1 ūl .

(2) For the kth-order (k ≥ 3) case, the equation corre-
sponding to the term u ν

m1
1 ν

m2
2 (m1 + m2 = k − 1)

must be solved by using p1 m1m2 and t0 m1m2 , re-
spectively, for its real and imaginary parts.

(3) For each order k, there exist some “irregular” equa-
tions that must be solved by using lower order c

and t coefficients. The rules for solving the “ir-
regular” equations are given in Table 1, where R

and I means solving the real and imaginary parts,
respectively.

(4) All other “regular” equations can be solved by us-
ing the kth-order c coefficients. In fact, c2 jlm1m2

and c1 jlm1m2 are used, respectively, to solve the real
and imaginary parts of the equations corresponding
to the term u j ūl ν

m1
1 ν

m2
2 , where j, l, m1, and m2

are nonnegative integers satisfying j + l + m1 +
m2 = k, and j and l are not simultaneously equal
to zero. The rules for solving the “regular” equa-
tions are given in Table 2.

Having found the coefficients bi j and also hav-
ing determined the coefficients of the unfold-
ing, α1 and α1, one can write the SPNF in
the form of du

dτ
= i u + (α11 ν1 + α12 ν2) u + (α21 ν1 +

α22 ν2) u2 ū + ∑
gk(u, ū), i.e.,

du
dτ

= i u + (α11ν1 + α12ν2)u + (α21ν1 + α22ν2)u2ū

+ b15 u3ū2 + i
∞∑

m=1

b2(2m+1) um+1um, (30)

where b15 and b2 j are explicitly obtained, given in
terms of the original system coefficients ai jlm1m2 ’s.

Letting u = R ei�, where R and � are, respec-
tively, the amplitude and phase of motion, and splitting
the real and imaginary parts in Equation (30) results in
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Table 2 Solving regular
equations (k ≥ 3) N.T. R/I Corresponding term

p1(k−1)m1m2 =⇒ R u ν
m1
1 ν

m2
2

t0(k−1)m1m2 =⇒ I u ν
m1
1 ν

m2
2b1k = 0 (k = 3, k ≥ 7)

b15 =⇒ R u3ū2(k = 5)
b2(k−4) =⇒ R u(k+1)/2 ū(k−1)/2 (k ≥ 7, odd)
t(k−1)00 =⇒ I u(k+1)/2 ū(k−1)/2 (k ≥ 3, odd)
c2 jlm1m2 =⇒ R u j ūlν

m1
1 ν

m2
2

( j + l + m1 + m2 ≥ 7, j �= l + 1)
c1 jlm1m2 =⇒ I u j ūlν

m1
1 ν

m2
2

the real SPNF, given in polar coordinates

d R
dτ

= R [α11 ν1 + α12 ν2 + (α21 ν1 + α22 ν2)R2

+ b15 R4],

d�

dτ
= 1 + b23 R2 + b25 R4 + · · · , (31)

which is Equation (18). This completes the proof of
Theorem 3. �

Once the SPNF of a parameterized nonlinear system
is found, it is easy to derive bifurcation solutions and
their stability conditions. For convenience, let

ν̄ =
(

ν̄1

ν̄2

)
=

[
α11 α12

α21 α22

] (
ν1

ν2

)
≡ αν, (32)

so that ν = α−1ν̄ if α is nonsingular, and the first
equation of Equation (31) can be rewritten as

d R
dτ

= R(ν̄1 + ν̄2 R2 + b15 R4). (33)

On the basis of Equation (33), the steady-state solu-
tions are readily obtained as

(I) R0 = 0, and

(II) R2
± = 1

2 b15

( − ν̄2 ±
√

ν̄2
2 − 4 b15 ν̄1

)
.

Solution (I) actually represents the original equilib-
rium, while solution (II) denotes the families of limit
cycles. It is seen from Solution (II) that, unlike Hopf
bifurcation which has maximal one family of limit cy-
cles, generalized Hopf bifurcations may have multiple
families of limit cycles. For example, a codimension-2
generalized Hopf bifurcation may have maximal two
families of limit cycles by appropriately choosing the
parameters ν̄1 and ν̄2 (or ν1 and ν2) such that both the

two solutions R2
+ and R2

− are positive. In general, for
a codimension-q generalized Hopf bifurcation, there
may exist maximal q families of limit cycles.

The stability of the steady-state solutions can be
easily determined from the Jacobian of Equation (33),
which is given by

J = d
d R

(
d R
dτ

)
= ν̄1 + 3 ν̄2 R2 + 5 b15 R4. (34)

Substituting solution (I) into Equation (34) yields J0 =
ν̄1, implying that Solution (I) is stable (unstable) if
ν̄1 < 0 (> 0). The critical value at which limit cycles
bifurcate from the original equilibrium is ν̄1 = 0, rep-
resented by a straight line on the ν1 – ν2 parameter
space.

Evaluating Jacobian (34) on Solution (II) gives

J± = − 4 ν̄1 − 2 ν̄2 R2
±

= − 4 ν̄1 − ν̄2

b15

( − ν̄2 ±
√

ν̄2
2 − 4 b15 ν̄1

)
= 1

b15

√
ν̄2

2 − 4 b15 ν̄1
[ √

ν̄2
2 − 4 b15 ν̄1 ∓ ν̄2

]
,

(35)

where it is assumed that ν̄2
2 − 4 b15 ν̄1 > 0, implying

that ν̄1 = O(ν̄2
2 ), and thus

√
ν̄2

2 − 4 b15 ν̄1 = O(ν̄2).
Next, we want to find the conditions under which

there exist two families of limit cycles. In order to have
both R+ > 0 and R− > 0, in addition to the condition
ν̄2

2 − 4 b15 ν̄1 > 0, it requires either

(a) if b15 > 0, then ν̄2 < 0 and ν̄1 > 0; or
(b) if b15 < 0, then ν̄2 > 0 and ν̄1 < 0.

Therefore, by using the stability condition (35)
one easily concludes that when b15 > 0, solution R+
is unstable (since the term in the square bracket of
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Table 3 Stability of limit cycles of system (31)

b15 + −
ν̄2 − +
ν̄1 + −

ν̄2
2 − 4 b15 ν̄1 + +

R+ Unstable Unstable
Stability R− Stable Stable

R0 Unstable Stable

Equation (35) is positive), while R− is stable (since
the term in the square bracket of Equation (35) is nega-
tive). In this case, R+ > R− (see Solution (II)), in-
dicating that the limit cycle with amplitude R− is
inside the limit cycle having amplitude R+. When
b15 < 0, similarly, we found that R− is stable but
R+ is unstable. However, for this case, R+ < R−,
implying that the two limit cycles have exchanged
their positions. The above discussion shows that the
limit cycle with amplitude R− is always stable while
the limit cycle having amplitude R+ is always un-
stable. Further, the stability of R0 will be consistent
with the stability changes of the limit cycles. For ex-
ample, if b15 < 0, then the inner limit cycle (R+) is
unstable, while the original equilibrium (R0) and the
outer limit cycle (R−) must be stable. This is shown
in Fig. 1. The stability conditions are summarized in
Table 3.

It should be pointed out that generalized (or degen-
erate) Hopf bifurcations have been studied by many
researchers. However, many results only showed one
family of limit cycles like Hopf bifurcation, since the
term ν̄2 R3 in Equation (33) is not presented. For ex-
ample, the solution of the so-called “flat Hopf bifur-
cation” [23] is actually given in the form of ν̄1 =
− b15 R4.

R0

R_ R+

x2

x1

Fig. 1 Existence of multiple limit cycles when b15 < 0

It should also be noted that the computation of the
SPNF is much more involved than the CNF compu-
tation, and thus it is almost impossible to find the
SPNF by hand calculation even for very lower-order
SPNF. Fortunately, there are now many computer al-
gebra systems that can be used to implement the so-
lution procedure described in this paper. In fact, the
procedure presented in the proof earlier has been used
as a guideline for developing symbolic programs us-
ing Maple for the SPNFs of generalized Hopf bifur-
cations. The computation involves finding the coef-
ficients of the SPNF, the unfolding, the near-identity
nonlinear transformation, and the time and parameter
rescaling.

4 Applications

In this section, we present two examples to illustrate
the application of the theoretical results obtained in the
previous sections. The first one is a chemical reaction
process, showing a Hopf bifurcation, while the second
one is a nonlinear electrical circuit, demonstrating a
codimension-2 generalized Hopf bifurcation.

4.1 A chemical system

Since Bray [24] reported that hydrogen peroxide de-
composes in the presence of acidic iodate with an os-
cillatory rate, periodic behavior of reactions in homo-
geneous solution has received considerable attention.
The mechanisms of many chemical oscillations can be
very complex.

Consider a simplified model, the chlorine dioxide–
iodine–malonic acid (ClO2–I2–MA) reaction, de-
scribed by the following differential equations:

dw1

dt
= a − w1 − 4 w1 w2

1 + w2
1

≡ f1(w1, w2; a, b),

dw2

dt
= bw1

(
1 − w2

1 + w2
1

)
≡ f2(w1, w2; a, b), (36)

where w1 and w2 denote the dimensionless concen-
trations of I− and ClO−

2 , respectively. The parameters
a > 0 and b > 0 depend on the empirical rate constants
and the concentrations assumed for the slow reactants.
It’s not difficult to find that the system has a unique
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equilibrium point given by

P0 = (w10, w20)

=
(

a
5
, 1 +

(
a
5

)2 )
≡ (

w10, 1 + w2
10

)
. (37)

The Jacobian matrix evaluated at the point P0 is

J =
[

J11 J12

J21 J22

]
=

⎡⎣ ∂ f1

∂w1

∂ f1

∂w2

∂ f2

∂w1

∂ f2

∂w2

⎤⎦
= 1

1 + w10

[
3 w2

10 − 5 − 4 w10

2 b w2
10 − b w10

]
, (38)

which, in turn, gives the characteristic polynomial

λ2 − τλ + 	 = 0, (39)

where

τ = 3 w2
10 − 5 − b w10

1 + w2
10

and 	 = 5 b w10

1 + w2
10

. (40)

Since 	 > 0, we know that when τ = 0, that is, when

bc = 3a
5

− 25

a
, (41)

a Hopf bifurcation may occur at the equilibrium point

P0 when b = bc (where a > 5
√

5
3 since b > 0).

Introducing the following transformation:

w1 = w10 + y1, w2 = w20 + y2, (42)

we can shift the equilibrium point P0 to the origin and
then expand the right-hand side of the resulting equa-
tion in the form of Taylor series

dy1

dt
= − 1

25 + a2

{
20a y2 + (125 − 3a2) y1

+ 100

(
1 − 2a2

25 + a2

)
y1 y2

− 10a
(

1 + 3125 + 50a2 − 3a4

(25 + a2)2

)
y2

1

− 500a
25 + a2

(
1 + 50 − 2a2

25 + a2

)
y2

1 y2

}
+ · · · ,

dy2

dt
= 1

25 + a2

{
− 5ab y2 + 2a2b y1

+ 25b
(

2a2

25 + a2
− 1

)
y1 y2

+ 5ab
(

3 − 4a2

25 + a2

)
y2

1

+ 125ab
25 + a2

(
1 − 2(a2 − 25)

25 + a2

)}
y2

1 y2 + · · · .

(43)

When a Hopf bifurcation appears, the eigenvalues of
the system evaluated at the equilibrium become

λ = ± i ω, where ω =
√

15a2 − 625

a2 + 25

and i2 = − 1, (44)

and the associated complex eigenvector is V =
( i ω−J22

J21
, 1 )T. Therefore, under the linear transforma-

tion(
y1

y2

)
= T

(
x1

x2

)
=

[− J22
J21

ω
J21

1 0

] (
x1

x2

)
, (45)

setting

b = bc − μ (46)

yields the center manifold as follows (here, a has been
chosen as a = 10 for definiteness):

dx1

dt
=

√
7 x2 − 2

√
7

7
μ x2 +

√
7

20
x1x2 + 7

80
x2

1

− 1

16
x2

2 − 29

640
x1x2

2 + 1

56
μx2

2

− 37
√

7

3200
x2

1 x2 −
√

7

70
μx1x2 − 21

3200
x3

1

− 1

40
μx2

1 −
√

7

128
x3

2 + · · · ,

dx2

dt
= −

√
7x1 + 2

5
μx2 + 1

4
x1x2 +

√
7

16
x2

1 − 5
√

7

112
x2

2

− 29
√

7

896
x1x2

2 −
√

7

280
μx2

2
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− 37

640
x2

1 x2 + 1

50
μx1x2 − 3

√
7

640
x3

1 +
√

7

200
μx2

1

− 5

128
x3

2 + · · · . (47)

By using the Maple programs developed in [18], we
obtain the SPNF up to the fifth order, given in complex
form as follows:

du
dτ

= i
√

7 u + 1

5
ν u − 81

2800
u2 ū − i

180683
√

7

1587600
u2 ū

+ i
33276534620493449

√
7

14839702619696640000
u3 ū2, (48)

and the relative parameter scaling is

μ = ν − 16

1225
ν3 − 8

8575
ν4 + 284

1500625
ν5 + · · ·

(49)

The time scaling and the nonlinear transformation are
also obtained, but not presented here for brevity.

Let u = R ei�, where R and � are the amplitude and
phase of motion, respectively. Then, the SPNF given in
polar coordinates is

d R
dτ

= 1

5
ν R − 81

2800
R3,

d�

dτ
=

√
7

(
1 − 180683

1587600
R2

+ 33276534620493449

14839702619696640000
R4 + · · ·

)
. (50)

It follows from Equation (50) that the system has a
unique equilibrium solution R = 0 (representing the
P0 for the original system), which is stable (unstable)
for ν < 0 (ν > 0). At ν = 0, a family of limit cycles
bifurcates from the equilibrium point P0. The solutions
for the family of limit cycles are given by

R2 = 560

81
ν,

� =
√

7

(
1 − 180683

229635
ν

+ 33276534620493449

310469671198436400
ν2

)
.

(51)

 3

 4

 5

 6

 7

 0  1  2  3  4

w2

w1

(a)

 3

 4

 5

 6

 7

 0  1  2  3  4

w2

w1

(b)

Fig. 2 Simulated trajectories of system (36) for a = 10 with the
initial point w10 = w20 = 3: (a) convergent to the equilibrium
point P0 = (w10, w20) = (2, 5) when b = 4; and (b) convergent
to a stable limit cycle when b = 3

Since the coefficient of R3 is − 81
2800 < 0 (see the first

equation of Equation (50) ), we know that the Hopf
bifurcation is supercritical, that is, the bifurcating limit
cycles are stable for ν > 0.

Numerical simulation results based on the origi-
nal system (36) are shown in Fig. 2, where the pa-
rameter a is taken as a = 10 (so bc = 7

2 ), and b are
chosen as b = 4 > bc and b = 3 < bc, respectively,
for Fig. 2(a) and 2(b). It is shown that when b = 4
(i.e., μ = − 1

2 ), the trajectory converges to the equilib-
rium point P0 = (3, 3), as shown in Fig. 2(a), while
for b = 3 (i.e., μ = 1

2 ), the trajectory converges to
a stable limit cycle (see Fig. 2(a) ). These results
completely agree with the analytical predictions, as
expected.
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I G
I L

V

I

I C

VC
GV CL

R

R

Fig. 3 A nonlinear electrical circuit

4.2 An electrical circuit

Now we present a simple nonlinear electrical circuit,
shown in Fig. 3, to demonstrate the application of the
SPNF of generalized Hopf bifurcation. The circuit con-
sists of one inductor, L , one capacitor, C , and two non-
linear conductances characterized, respectively, by

VR = η1 IR + β1 I 2
R − β2 I 3

R and

IG = − η2 VG + β3 V 3
G, (52)

where IG, IR , and VG, VR , represent the currents and
voltages of the conductances, respectively, and η1 and
η2 are two bifurcation parameters, while the param-
eters β1, β2 and β3 are positive and can be varied,
considered as control parameters.

Choosing the current in the inductor and the voltage
across the capacitor as the state variables (as shown
in Fig. 3) yields the equations of the circuit, given
by

L
d IL

dt
= VC − VR,

C
dVC

dt
= − IL − IG . (53)

Denoting the state variables IL and VC by w1 and
w2, respectively, we may rewrite Equation (53) as

dw1

dt
= 1

L

(− η1 w1 + w2 − β1 w2
1 + β2 w3

1

)
,

dw2

dt
= 1

C

(−w1 + η2 w2 − β3 w3
2

)
. (54)

It is clear that (w1, w2) = (0, 0) is the unique equilib-
rium of system (54). Let C and L take its unit values,

and further let

η1 = 4

5
+ μ1 and η2 = 4

5
+ μ2. (55)

Then, the Jacobian of system (54) evaluated at the
critical point, μ1 = μ2 = 0, and at the equilibrium,
w1 = w2 = 0, has one pair of purely imaginary eigen-
values: λ± = ± 3

5 i ≡ ± ωi .
Next, introducing the following transformation:

w1 = 3 x1 + 4 x2, w2 = 5 x2, (56)

into system (54) yields

ẋ1 = 3

5
x2 − μ1 x1 − 4

3
(μ1 + μ2) x2

− 1

3
β1 (3x1 + 4x2)2

+ 1

3
β2 (3x1 + 4x2)3 + 100

3
β3 x3

2 ,

ẋ2 = − 3

5
x1 + μ1 x2 − 25 β3 x3

2 . (57)

Transforming Equation (57) into complex form and
then applying the degenerate condition (24) yields the
following result:

β2 = β3 + 40

27
β2

1 , (58)

under which the system undergoes a codimension-
2 generalized Hopf bifurcation. For determination,
let

β1 = 1

4
, β3 = 2

27
, and β2 = 1

6
. (59)

Finally, executing the Maple program gives the fol-
lowing complex SPNF:

du
dτ

= i
3

5
u − 1

2
(ν1 − ν2) u

−
(

4335304717

527212800
ν1 − 1729242217

527212800
ν2

)
u2ū

+ 8828125

839808
u3 ū2 + i

2811217217

439344000
u2 ū, (60)
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from which the real form of the SNF is obtained, as

dR
dτ

= 3

5
R
[

ν̄1 + ν̄2 R2 + 44140625

2519424
R4

]
,

d�

dτ
= 3

5
+ 2811217217

439344000
R2 + · · · , (61)

where

ν̄1 = 5

6
(ν2 − ν1),

ν̄2 = 1729242217

316327680

(
ν2 − 4335304717

1729242217
ν1

)
. (62)

Since b15 = 1729242217
527212800 > 0, in order to have two fam-

ilies of limit cycles, the following conditions must be
satisfied (see Table 3):

ν2 − ν1 > 0,

ν2 − 4335304717

1729242217
ν1 < 0,

(
1729242217

316327680
ν2 − 4335304717

316327680
ν1

)2

−220703125

104976
(ν2 − ν1) > 0, (63)

which defines a region in the parameter space, as shown
in Fig. 4(b), where the initial equilibrium solution, R0,
is unstable, the family of limit cycles defined by R− is
stable, while the family of limit cycles represented by
R+ is unstable. The solutions R± are given by

R± = 1259712

44140525

[
4335304717

316327680
ν1 − 1729242217

316327680
ν2

±
√

(
1729242217

316327680
ν2 − 4335304717

316327680
ν1)2 − 220703125

104976
(ν2 − ν1)

]
.

(64)

Since it requires that ν̄1 = O(ν̄2
2 ), it is seen from

Equation (62) that for this example ν1 and ν2 should
be chosen close to the line ν2 = ν1. The third condition
given in Equation (63) represents a hyperbola in the ν1 –
ν2 parameter space (see Fig. 4(a)), which approximates
the straight line, ν2 = ν1, near the origin. The first and
second conditions given in Equation (63) represent two

Fig. 4 Existence of multiple limit cycles: (a) the third condition
of Equation (63); and (b) the region of existence

straight lines, L1 and L2, with slopes 1 and 2.5071,
respectively (see Fig. 4(b)), which define a region in the
first quadrant between the two boundaries. However,
the third condition requires ν2 ≈ ν1, and therefore, the
region of existence for the multiple families of limit
cycles should be located above but near the line ν2 =
ν1, denoted by the shadowed area in Fig. 4(b).

Numerical simulation results are shown in Fig. 5.
The parameter values for the computer simulation are
chosen as ν1 = 0.1 and ν2 = 0.1003, which guarantee
that the three conditions given in Equation (63) are
satisfied. Applying formula (64) yields the amplitude
R− = 0.13 for the inner (stable) limit cycle, and R+ =
0.17 for the outer (unstable) limit cycle. To find the
values of the parameters μ1 and μ2 for the numerical
simulation, we need the parameter rescaling, which has
been obtained from the computer program as follows
(other lengthy nonlinear transformations are omitted
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Fig. 5 Simulated trajectories of system (54) for
L = C = 1, η1 = 0.865964, η2 = 0.866110, β1 = 0.25, β2 =
0.166667, β3 = 0.074074: (a) convergent to R− from
(w10, w20) = (0.01, 0.01); (b) convergent to R− from
(w10, w20) = (0.16, 0.16); and (c) divergent to ∞ from
(w10, w20) = (0.39, 0.01)

here):

μ1 = ν1 − 7959420665328859706969
21563374216500000000000ν2

1

− 41606390420789914836857
21563374216500000000000ν1ν2

− 14767192893813975853087
10781687108250000000000ν2

2

− 400840255476067331343537717977775248018067214153
58380710176547021936182500000000000000000000000 ν3

1

+ 140172064015569291051836860944299327578629994601
14595177544136755484045625000000000000000000000 ν1ν

2
2

+ 11511566439190677545389306783682957478066633541
11676142035309404387236500000000000000000000000ν2

1ν2

− 5294110998642714697821456776849865047441640163
4865059181378918494681875000000000000000000000ν3

2 ,

μ2 = ν2 + 15999884019671140293031
21563374216500000000000ν2

1

− 41606390420789914836857
21563374216500000000000ν1ν2

− 26746845236313975853087
10781687108250000000000ν2

2

− 320344186826450428611758416677827348018067214153
58380710176547021936182500000000000000000000000 ν3

1

+ 126233833360420304674358970604818002578629994601
14595177544136755484045625000000000000000000000 ν1ν

2
2

− 32128758886998798055297810333008882521933366459
11676142035309404387236500000000000000000000000ν2

1ν2

+ 10827429051517820367309197026603184952558359837
4865059181378918494681875000000000000000000000 ν3

2 ,

which result in μ1 = 0.065864 and μ2 = 0.066110
when ν1 = 0.1 and ν2 = 0.1003.

The numerical results given in Fig. 5 show the tra-
jectories of system (54), which agree with the ana-
lytical predictions: the original equilibrium R0 (i.e.,
w1 = w2 = 0) is unstable; the inner limit cycle with
amplitude R− is stable, while the outer limit cycle
with amplitude R+ is unstable. Figure 5(a) depicts a
trajectory starting from the point (0.01, 0.01) that con-
verges to a stable limit cycle (R−), and Fig. 5(b) shows a
trajectory starting from the point (0.16, 0.16) that con-
verges to the same limit cycle (R−). However, when the
initial point, (0.39, 0.01), is chosen far outside of the
stable limit cycle (R−), the trajectory diverges to ∞.
This implies that there exists an unstable limit cycle
(R+) enclosing the stable limit cycle (R−). Note that
the convergent speed shown in Figs. 5(a) and 5(b) is
very slow because the parameter values chosen in the
simulation are very close to the critical stability bound-
ary ν2 = ν1.

5 Conclusion

The simplest parameterized normal forms of Hopf and
generalized Hopf bifurcations have been studied. It has
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been shown that similar to Hopf bifurcation, the SPNF
of a generalized Hopf bifurcation cannot be found by
using only near-identity transformations. Time and pa-
rameter rescaling must be used. It has been shown that
the computation of the SPNF of generalized Hopf bi-
furcations is more involved than the SPNF of Hopf
bifurcation. An efficient method for computing the al-
gebraic equations has been developed, which reduces
the computation effort to minimum. This greatly saves
computational time and computer memory. Symbolic
computation programs have been coded using Maple
and then applied to two examples. The numerical sim-
ulation results of the two examples agree well with
the analytical predictions. This paper only deals with
a codimension-2 generalized Hopf bifurcation, how-
ever. Nevertheless, the method presented in the paper
is being generalized to higher-codimension general-
ized Hopf bifurcations and other singularities, targeting
more engineering applications.

Appendix

In the proof of the main theorem, the sixteen 3rd-order
algebraic equations used are

−2c23000 − a13000 + i(2c13000 − a23000)

= A13000 + i
(

A23000 + 1

4
t200

)
,

−4 c20300 + a10300 + i (4 c10300 + a20300)

= A10300 + i A20300,

− b13 − i
(

b23 − a22100 − 1

2
t200

)
= i A22100,

− 2 c21200 + a11200 + i (2 c11200 + a21200)

= A11200 + i
(

A21200 − 1

4
t200

)
,

− c22010 − a12010 + i (c12010 − a22010)

= A12010 + 2 c11010 a12000 − 2 c21010 a22000

+ i
(
A22010+2c11010 a22000+2 c21010 a12000+ 1

2
t110

)
,

−c22001 − a12001 + i (c12001 − a22001)

= A12001 + 2 c11001 a12000 − 2 c21001 a22000

+ i
(
A22001+2c11001 a22000+2 c21001 a12000+ 1

2
t101

)
,

−3 c20210 + a10210 + i (3 c10210 + a20210)

= A10210 − 2 c11010 a10200 − 2 c21010 a20200

+ i (A20210 − 2 c11010 a20200 + 2 c21010 a10200),

−3 c20201 + a10201 + i (3 c10201 + a20201)

= A10201 − 2 c11001 a10200 − 2 c21001 a20200

+ i (A20201 − 2 c11001 a20200 + 2 c21001 a10200),

−c21110 + a11110 + i (c11110 + a21110)

= A11110 − 2 c11010 a11100

+ i
(

A21110 − 2 c11010 a21100 − 1

2
t110

)
,

−c21101 + a11101 + i (c11101 + a21101)

= A11101 − 2 c11001 a11100

+ i
(

A21101 − 2 c11001 a21100 − 1

2
t110

)
,

−p120 a11010 − p220 a11001 − a11020 − i (t020

+p120 a21010 + p220 a21001 + a21020)

= A11020 + i A21020,

−p111 a11010 − p211 a21001 − a11011 − i (t011

+p111 a21010 + p211 a21001 + a21011)

= A11011 + i A21011,

−p102 a11010 − p202 a21001 − a11002 − i (t002

+p102 a21010 + p202 a21001 + a21002)

= A11002 + i A21002,

−2 c20120 + a10120 + i (2 c10120 + a20120)

= A10120 − c11010 a10110 − c21010 a20110

− p120 a10110 − p220 a10101

− i (A20120 + c11010 a20110 + c21010 a10110

+ p120 a20110 + p220 a20101),

−2 c20111 + a10111 + i (2 c10111 + a20111)

= A10111 − c11010 a10101 − c11001 a10110

− c21010 a20101 − c21001 a20110 − p111 a10110

−p211 a10101 − i (A20111 + c11010 a20101

+c11001 a20110 − c21010 a10101 − c21001 a10110

+ p111 a20110 + p211a20101 ),
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−2 c20102 + a10102 + i (2 c10102 + a20102)

= A10102 − c11001 a10101 − c21001 a20101

−p102 a10110 − p202 a10101

− i (A20102 + c11001 a20101 + c21001 a10101

+ p102 a20110 + p202 a20101),

where A jkl’s are explicitly given in terms of the original
system’s coefficients ai jlm’s in Equation (22).
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