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In this paper, the equivalence of the multiple time scales (MTS) method and the center manifold
reduction (CMR) method is proved for computing the normal forms of ordinary differential
equations and delay differential equations. The delay equations considered include general delay
differential equations (DDE), neutral functional differential equations (NFDE) (or neutral delay
differential equations (NDDE)), and partial functional differential equations (PFDE). The delays
involved in these equations can be discrete or distributed. Particular attention is focused on
dynamics associated with the semisimple singularity, and both the MTS and CMR methods
are applied to compute the normal forms near the semisimple singular point. For the ordinary
differential equations (ODE), we show that the two methods are equivalent up to any order
in computing the normal forms; while for the differential equations with delays, we obtain the
conditions under which the normal forms, derived by using the MTS and CMR methods, are
identical up to third order. Different types of practical examples with delays are presented
to demonstrate the application of the theoretical results, associated with Hopf, Hopf-zero and
double-Hopf singularities.

Keywords : Ordinary differential equation (ODE); delay differential equation (DDE); neutral
functional differential equation (NFDE); partial functional differential equation (PFDE); discrete
delay; distributed delay; semisimple singularity; normal form; multiple time scales (MTS); center
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1. Introduction

As we all know, it is important to compute normal
forms of differential equations in the study of non-
linear dynamical systems, particularly for stability
and bifurcation properties. The center manifold

reduction (CMR) (e.g. see [Carr, 1981; Wiggins,
1990; Guckenheimer & Holmes, 1990; Kuznetsov,
2004]) and multiple time scales (MTS, or simply
multiple scales (MS)) (e.g. see [Nayfeh, 1973, 1981;
Yu, 1998]) are two useful techniques for computing
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the normal forms of differential equations. The
CMR method is widely used by researchers from
mathematical society, while the MTS method is
mainly used by applied scientists and researchers
from engineering society. Van Dyke [1975] perhaps
is the first to discuss the problem of multiple time
scales, referred to as the method of strained coor-
dinates. The MTS method is sometimes attributed
to Poincaré, though Poincaré credits the basic idea
to the astronomer Lindstedt [Kevorkian & Cole,
1996], leading to one of the standard perturba-
tion approaches, nowadays called the Lindstedt–
Poincaré technique. Lighthill [1949] introduced a
more general version of the MTS method in 1949.
Later, Krylov and Bogoliubov (a development of the
method of Krylov and Bogoliubov may be found in
[Minorsky, 1947]), and Kevorkian and Cole [1996]
introduced the two-scale expansion, which is now
the more standard method. On the other hand,
in order to study complex behavior of dynam-
ical systems, the two-scale approach had been
extended to multiple (more than two) time scales in
the study of second-order scalar differential equa-
tions (e.g. see [Nayfeh, 1973]). Further, this tech-
nique was generalized to consider the stability and
bifurcations of general n-dimensional, first-order
differential systems [Yu, 1998]. For a dynamical
system described by ordinary differential equations
(ODEs), the MTS method is systematic and can
be directly applied to the original nonlinear system
[Yu, 1998, 2002; Zheng & Wang, 2010]. In fact, this
approach combines the two steps involved in using
center manifold theory and normal form theory into
one unified step to obtain the normal form and
nonlinear transformation simultaneously. Based on
the MTS method, Yu [1998, 2001, 2002] developed
Maple programs for computing the normal forms
associated with Hopf bifurcation and other singular-
ities. These programs can be “automatically” exe-
cuted with a computer algebra system for a given
ODE system. The basic idea of center manifold the-
ory is applying successive coordinate transforma-
tions to systematically construct a simpler system
which has less dimension compared to the original
system, and thus greatly simplifies the dynamical
analysis of the system.

The MTS method can also be directly applied
to delay differential equations (DDEs) (for funda-
mental theory of functional differential equations,
see [Hale, 1977; Das & Chatterjee, 2002; Nayfeh,
2008]). Compared to the MTS method, the CMR

method is more complex in computing the normal
forms of DDEs, since one needs to first change a
DDE to an operator differential equation, and then
decompose the solution space of their linearized
form into stable and center manifolds; next, with
adjoint operator equations, one computes the center
manifold by projecting the whole space to the cen-
ter manifold, and finally calculate the normal form
restricted to the center manifold (e.g. see [Hassard
et al., 1981; Faria & Magalhães, 1995a, 1995b]).

To be more specific in defining the singular-
ity of a given system, consider the m-dimensional
autonomous differential equation,

ẋ = g(x, α), x ∈ Rm, α ∈ Rn,

g : Rm × Rn → Rm, (1)

where x is a state vector, α is a parameter vector,
and g is a general nonlinear function, assumed to
be analytic. Further, assume g(0, α) = 0, imply-
ing that x = 0 is an equilibrium solution for any
real value of α. When the characteristic equation
of the linearized system of (1) at x = 0, evalu-
ated at a critical point, α = αc, has n1 pairs of
purely imaginary roots ±iωj (j = 1, 2, . . . , n1), n2

zero roots, and m − 2n1 − n2 roots with nonzero
real part, we say that system (1) undergoes an n1-
Hopf–n2-zero bifurcation, where n1 ≥ 1 and n2 ≥ 0.
Suppose under a linear transformation, the Jaco-
bian matrix of the linearized system of (1) can be
put in a diagonal Jordan canonical form, namely,
J = diag(J1, J2), where

J1 = diag(λ1, λ2, . . . , λ2n1+n2),

J2 = diag(λ2n1+n2+1, . . . , λm),

in which λ2k−1 = iωk, λ2k = −iωk, k = 1, 2, . . . , n1,
λl = 0, l = 2n1 +1, . . . , 2n1 +n2, λj, j = 2n1 +n2 +
1, . . . ,m satisfying Re(λj) �= 0, then system (1)
is said to undergo a semisimple n1-Hopf–n2-zero
bifurcation.

Many authors have considered some types of
bifurcations in DDEs, by using the CMR method
(e.g. see [Yu et al., 2002; Yuan et al., 2004; Chen &
Yu, 2005; Wei & Jiang, 2005; Yuan & Wei, 2006;
Jiang & Yuan, 2007; Ma et al., 2008; Wang &
Jiang, 2010]). Nayfeh [2008] used both the MTS and
CMR methods to derive equivalent normal forms of
Hopf bifurcation for some simple delayed nonlinear
dynamical systems. Ding et al. [2012, 2013a, 2013b]
applied the two methods to obtain the normal forms
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near Hopf-zero and double-Hopf critical points in
DDEs and NFDEs, and showed their equivalence.
Due to complexity in computing the center man-
ifold and normal forms of DDEs, in recent years,
researchers have paid attention to developing algo-
rithms using numerical algorithm such as Fortran
package [Aboud et al., 1988] or using computer alge-
bra systems such as Maple [Campbell, 2009]. How-
ever, it has been found that even with the help
of computer systems, the computation using the
CMR method is still not an easy job, in particu-
lar for those who are not familiar with the CMR
method. On the other hand, many researchers from
engineering or physical society prefer to apply a
simple method, such as the MTS approach, to cal-
culate the center manifold and normal forms for
ODEs and DDEs. But since no rigorous proof has
been given to show the equivalence of the MTS and
CMR methods in general, people often have reser-
vations or even suspicions on the results obtained by
using the MTS method. That’s why, as mentioned
above, some researchers applied both the MTS and
CMR methods to derive the normal form for a given
dynamical system in order to show the correctness
of their results. This certainly wastes researchers’
time and thus a general proof is needed for the
equivalence of the two methods.

The aim of this paper is to provide a rigorous
proof for the equivalence of the MTS and CMR
methods for general delay differential equations,
associated with the semisimple n1-Hopf–n2-zero
singularity. The differential equations considered in
this paper include ordinary differential equations,
general delay differential equations (DDE), neu-
tral functional differential equations (NFDE) (or
neutral delay differential equations (NDDE)), and
partial functional differential equations (PFDE).
The delays involved in these equations can be
discrete or distributed. The NFDEs have been
proposed in the study of population dynamics,
neural network, engineering problems, etc. (e.g.
see [Brayton, 1967; Kuang, 1999; El-Morshedy &
Gopalsamy, 2000]). Several articles have been pub-
lished [Guo & Lamb, 2008; Wang & Wei, 2008,
2010; Weedermann, 2001, 2006; Wu, 1993], focus-
ing on bifurcation theory of NFDEs, such as nor-
mal form of Hopf bifurcation, global existence
of periodic solutions, and equivariant Hopf bifur-
cation theory. Based on the work of Kazarinoff
et al. [1978] who introduced Hopf bifurcation the-
ory to differential-difference and integro-differential

equations, Wang and Wei [2010] applied normal
form theory and center manifold theory to study
Hopf bifurcation properties (such as the direction
of bifurcation and the stability of bifurcating peri-
odic solutions) of NFDEs. The CMR method devel-
oped by Faria and Magalhães [1995a, 1995b] for
DDEs was used by Weedermann [2001] to compute
the normal forms of NFDEs. Later, Weedermann
[2006], Wang and Wei [2008] extended the idea of
[Faria & Magalhães, 1995b] to investigate NFDEs
with parameters.

Compared to the DDE and NFDE systems,
the PFDE systems have even wider applications,
though they have more difficulty in analysis, since
many physical systems are not only evolved tempo-
rally, but also varied spatially. For example, when
an HIV model is focused on in-house dynamics, an
ODE or a DDE model is good enough for study-
ing the dynamical behavior of the system such
as instability and bifurcations (e.g. see [Perelson
et al., 1993; Culshaw & Ruan, 2000]). However,
when species in different patches are involved in
such a model, then a PFDE model is necessary
to be developed (e.g. see [Arino & van den Driess-
che, 2003]). Fundamental theory for general PFDEs
has been established and applied to solve many
physical, engineering and biological problems (e.g.
see [Wu, 1996]). Other studies have mainly focused
on dynamics of the systems like the existence
of solutions [Travis & Webb, 1974; Hernández &
Henŕiquez, 1998], stability and Hopf bifurcation
[Busenberg & Huang, 1996; Azevedo & Ladeira,
2004], boundedness and almost periodicity of solu-
tions [Furumochi et al., 2002], and state-dependent
delay involved in the systems [Hernández et al.,
2006], etc.

Another direction in the study of FDEs is
to consider distributed delays rather than discrete
delays, since using discrete delays is no longer
appropriate in modeling such FDE systems. For
example, when a more realistic age structure is
introduced into an HIV model, distributed delays
must be introduced in order to obtain more realis-
tic dynamical solution of the system (e.g. see [Nel-
son et al., 2004]). Recently, for the standard SIRS
model, reinvestigation of this model by introduc-
ing distributed delays reveals that the shape of
the distributions can destabilize oscillations, while
fixed delays may yield stable oscillations for certain
parameter values [Goncalves et al., 2011]. The ref-
erences mentioned above (e.g. see [Wu, 1996] and
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references therein) also consider FDEs with dis-
tributed delays.

Although the semisimple case considered in this
paper is simpler than nonsemisimple case, most real
applications actually fall in this category, rather
than the nonsemisimple case. We will show in the
proofs of theorems and the examples in the appli-
cations that the MTS method is simpler than the
CMR method, which is particularly useful in appli-
cations. Another advantage of the MTS method
over the CMR method is that the MTS method
can easily treat multiple time delays with vari-
ations (perturbation) while the CMR method is
restricted to single fixed constant delays or to the
delays with their ratios to the maximum delay being
constants (e.g. see [Faria, 2001]). From the view-
point of applications, normal forms up to third
order are usually enough for real practical systems.
Thus, in this paper, we will show under certain
conditions that the normal forms derived by using
the MTS and the CMR methods are identical up
to third order. Actually, the specific examples in
the literature we refer to showing equivalence of
the two methods all satisfy the conditions obtained
in this paper. In order to show the basic idea in
proving the equivalence of the two methods for
DDEs, we will start our analysis from ODEs. In
fact, the proof for the ODEs provides an indepen-
dent rigorous proof for the equivalence of the MTS
and CMR methods, which does not exist in the
literature.

The rest of the paper is organized as follows.
In the next section, the MTS method is proved to
be equivalent to the CMR method up to any order
for the ODE systems. In Sec. 3, particular atten-
tion is focused on the DDE systems, and a proof
is given to show the equivalence of the two normal
forms up to third order by using the MTS and CMR
methods, associated with the semisimple n1-Hopf–
n2-zero bifurcation. The proofs on the equivalence
of the MTS and CMR methods for the NFDE and
PFDE systems are given in Secs. 4 and 5, respec-
tively. The DDEs, NFDEs and PFDEs with dis-
tributed delays are considered in Sec. 6 to show
the equivalence of the MTS and CMR methods.
Several different types of practical examples with
discrete or distributed delays are present in Sec. 7
to demonstrate the application of the theoretical
results. Finally, conclusion and discussion are given
in Sec. 8.

2. Equivalence of the MTS and
CMR Methods for ODEs

First, in this section we prove that the normal
forms associated with the semisimple n1-Hopf–n2-
zero bifurcation, derived by using the MTS and
CMR methods are identical provided that the cor-
responding nonlinear transformations for the two
methods are properly chosen for the normal forms.
In other words, the MTS and CMR methods are
equivalent in deriving normal forms.

Assume system (1) undergoes a semisimple n1-
Hopf–n2-zero bifurcation at a critical point, α = αc,
with all eigenvalues of the linearized system of (1)
having nonpositive real part. Without loss of gener-
ality, we may rewrite system (1) at the critical point
α = αc as

ẋ1 = J1x1 + g1(x1, x2), x1 ∈ C2n1+n2 ,

ẋ2 = J2x2 + g2(x1, x2), x2 ∈ Cm−2n1−n2,
(2)

where J1 =J1(αc)= diag{iω1,−iω1, . . . , iωn1,−iωn1 ,
n2︷ ︸︸ ︷

0, . . . , 0} and J2 = J2(αc) = diag{λ2n1+n2+1, . . . ,
λm} with Re(λk) < 0, k = 2n1 + n2 + 1, . . . ,m,
and gj(0, 0) = Dgj(0, 0) = 0 (j = 1, 2), namely, sys-
tem (2) has a trivial equilibrium solution (x1, x2) =
(0, 0). Note that one half of the equations in the
first 2n1 equations of ẋ1 are actually complex con-
jugates of the other half. Also, note that system (2)
is assumed to not contain unstable manifold, which
is usually the case in practical applications.

For system (2), we have the following theorem.

Theorem 1. Assume that system (2) undergoes a
semisimple n1-Hopf–n2-zero (n1 ≥ 1, n2 ≥ 0, n =
n1 + n2 ≥ 1) bifurcation from the trivial equilib-
rium at the critical point α = αc. Then, the normal
forms associated with the semisimple n1-Hopf–n2-
zero bifurcation, derived by using the multiple time
scales and center manifold reduction methods, are
identical up to any order provided that the corre-
sponding nonlinear transformations associated with
the two methods are properly chosen for their nor-
mal forms.

Remark 1. Here, for simplicity, we ignore the deriva-
tion of unfolding terms, but focus on the normal
forms, since the unfolding is obviously the same for
the normal forms derived by using the two methods.
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Proof. We apply the method of mathematical
induction to prove the equivalence of the MTS and
CMR methods order by order. We first describe the
procedures of the CMR and MTS methods, respec-
tively, and show that the conclusion is true up to
third order. Then, under the assumption that the
conclusion is true up to the (k − 1)th order, prove
that the conclusion is also true for the kth order.

First, consider the CMR method. By center
manifold theorem [Wiggins, 1990; Guckenheimer &
Holmes, 1990], system (2) is locally topologically
equivalent (near the origin) to the following system:

ẋ1 = J1x1 + g1(x1, l(x1)), x1 ∈ C2n1+n2, (3)

where l(x1) satisfies

Dx1 l(x1)[J1x1 + g1(x1, l(x1))]

− J2l(x1) − g2(x1, l(x1)) = 0, (4)

and the center manifold is defined by Mc � {(x1,
x2) |x2 = l(x1)}. It can be seen from the defini-
tion of the center manifold that the “noncritical”
state variable x2 (associated with the eigenvalues
having negative real part) is expressed in terms of
the “critical” state variable x1 (associated with the
eigenvalues having zero real part), starting from
second-order terms. This is the basic idea of cen-
ter manifold theory, implying that the influence of
the eigenvalues with negative real part on the “non-
critical” state variable x2 has been neglected from
the asymptotic property, and only the influence
from the “critical” state variable x1 is considered.
Equation (3) describes the dynamics of system (2)
restricted to its center manifold, Mc. To find the
normal form of (3), we apply a general nonlinear
transformation to system (3) and choose appro-
priate terms in the transformation to simplify the
system.

Suppose the nonlinear transformation is

x1 = z + h2(z) + h3(z) + · · · , (5)

which is differentiated with respect to time t to yield

ẋ1 = (I + Dzh2 + Dzh3 + · · ·)ż.
Then, the equation for deriving the normal form is
obtained as

ż = (I + Dzh2 + Dzh3 + · · ·)−1ẋ1

= (I + Dzh2 + Dzh3 + · · ·)−1

× [J1(z + h2 + h3 + · · ·) + g1(z + h2

+h3 + · · · , l(z + h2 + h3 + · · ·))]. (6)

For convenience, we denote

l(x1) = l(z + h2(z) + h3(z) + · · ·)

:=
∑
k≥2

lk(z),

gj(z + h2 + h3 + · · · , l(z + h2 + h3 + · · ·))

:=
∑
k≥2

gjk(z), j = 1, 2.

(7)

Here, hk, lk and gjk represent kth degree homoge-
neous polynomials with respect to z. We introduce
a linear operator Lk

J1
: Hk

2n1+n2
→ Hk

2n1+n2
(k ≥ 2),

defined by

Lk
J1
h̃k(z) = Dzh̃kJ1z − J1h̃k, ∀ h̃k ∈ Hk

2n1+n2
,

(8)

which is usually called Homological operator or
Lie bracket operator [Wiggins, 1990; Gucken-
heimer & Holmes, 1990]. Here, Hk

2n1+n2
denotes

a linear space, spanned by the kth degree homo-
geneous polynomials in (z1, z1, z2, z2, . . . , zn1 , zn1 ,

zn1+1, . . . , zn). Moreover, we decompose Hk
2n1+n2

as
Hk

2n1+n2
= Ik ⊕ Ck, where Ik represents the image

of Lk
J1

, and Ck is the complementary space to Ik.
Now, suppose the normal form of (3) has been

obtained up to (k − 1)th order, given by ż = J1z +
q22(z) + · · · + q(k−1)2(z) + · · · , where qj2 ∈ Cj,
j = 2, 3, . . . , k − 1. Then, (6) becomes

ż = J1z + q22(z) + · · · + q(k−1)2(z)

+ [g1k(z) − Lk
J1
hk(z)] + · · · , k ≥ 3. (9)

Further, we split g1k(z) into two parts as g1k(z) =
qk1(z) + qk2(z), where qk1(z) satisfies

qk1(z) − Lk
J1
hk(z) = 0,

and qk2(z) is the kth order normal form, and thus
the normal form up to kth order becomes

ż = J1z + q22(z) + · · · + q(k−1)2(z) + qk2(z) + · · · .
(10)
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Next, for the MTS method, we do not directly
apply the center manifold theory, but instead
assume that the solution of (2) is given in the
form of

x̃1(t) = εx11(T0, T1, T2, . . .) + ε2x12(T0, T1, T2, . . .)

+ ε3x13(T0, T1, T2, . . .) + · · · ,
x̃2(t) = εx21(T0, T1, T2, . . .) + ε2x22(T0, T1, T2, . . .)

+ ε3x23(T0, T1, T2, . . .) + · · · ,
(11)

where Tk = εkt, k = 0, 1, 2, . . . , are called mul-
tiple time scales, and x̃j(t) (j = 1, 2) is used to
distinguish from the variable used in the CMR
method, xj(t). The derivative with respect to t
now becomes

d
dt

=
∂

∂T0
+ ε

∂

∂T1
+ ε2

∂

∂T2
+ · · ·

= D0 + εD1 + ε2D2 + · · · , (12)

where the differential operator Dk = ∂
∂Tk

, k = 0, 1,
2, . . . . Substituting (11) into gj(x1, x2) (j = 1, 2)
yields

gj(x1, x2) =
∑
k≥2

εkgjk(x11, x21, x12, x22, . . . ,

x1(k−1), x2(k−1)), j = 1, 2.

Further, substituting (11) with the multiple scales
(12) and the above expressions into (2) and balanc-
ing the coefficients of εk (k = 1, 2, . . .) yields a set
of ordered linear differential equations (LDEs).

First, consider the ε1-order LDEs, given by

D0x11 − J1x11 = 0,

D0x21 − J2x21 = 0.
(13)

Since Re(λj) < 0, j = 2n1 + n2 + 1, . . . ,m, the
solution of the second equation of (13) x21 → 0
as t → +∞. Therefore, in the sense of asymptotic
behavior with respect to x21, we write the solution
x21 as x21 = 0.

For the ε2-order LDEs:

D0x12 − J1x12 = −D1x11 + g12(x11, 0),

D0x22 − J2x22 = g22(x11, 0).
(14)

Letting the secular terms in the first equation
of (14) be zero, we can solve D1x11 in terms of x11,

and then obtain x12 expressed in x11. By using the
second equation of (14), we obtain x22 expressed in
x11, denoted by x22(x11).

The above procedure can in principle continue
indefinitely (to any high order). For general εk-order
LDEs (k ≥ 3), we have

D0x1k − J1x1k = −
k−1∑
j=1

Djx1(k−j) + g1k(x11, x21,

x12, x22, . . . , x1(k−1), x2(k−1)),

D0x2k − J2x2k = −
k−2∑
j=1

Djx2(k−j) + g2k(x11, x21,

x12, x22, . . . , x1(k−1), x2(k−1)).

(15)

Substituting Djx1(k−j) (j = 1, 2, . . . , k− 2) into the
first equation of (15) and letting the secular terms
equal zero, we can solve Dk−1x11 in terms of x11,
and then obtain x1k expressed in x11. By using the
second equation of (15), we obtain x2k expressed
in x11.

The normal form derived using the MTS
method can now be written as

ẋ11 =
dx11

dt

=
∂x11

∂T0

∂T0

∂t
+
∂x11

∂T1

∂T1

∂t
+
∂x11

∂T2

∂T2

∂t

+ · · · + ∂x11

∂Tk−1

∂Tk−1

∂t
+ · · ·

= J1x11 + εD1x11 + ε2D2x11

+ · · · + εk−1Dk−1x11 + · · · .
Note that Djx11 (j = 1, 2, . . .) is (j+1)-order linear
homogeneous polynomial involving x11. With the
use of backwards scaling x11 �→ x11/ε, the above
equation becomes

ẋ11 = J1x11 + D1x11 + D2x11

+ · · · + Dk−1x11 + · · · , (16)

which is the normal form derived using the MTS
method.

Having described the procedures of the CMR
and MTS methods, we are now ready to prove the
equivalence of the two normal forms (10) and (16),
derived by using the CMR and MTS methods
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respectively, order by order. The proof is divided
into four steps.

Step 1. We show that the solutions of the linearized
system in the center subspace for the two methods
are identical.

Actually, it is seen from (10) that the linear
solution z in the center subspace by using the CMR
method satisfies

ż = J1z.

Similarly, it follows from (13) that the linear solu-
tion x11 on the center manifold by using the MTS
method is described by

D0x11 =
∂x11

∂T0
=
∂x11

∂t
= J1x11.

Thus, the linear solution z in the CMR method
corresponds to the linear solution x11 in the MTS
method, since these two equations have the exact
same form. This is obvious because linear normal
forms must be identical.

Step 2. We show that the second-order normal
forms obtained by using the CMR and MTS meth-
ods are identical.

First note that gj2(z) (j = 1, 2) is exactly in the
same form as that of gj2(x11, 0) with z correspond-
ing to x11. Directly using (6) for the CMR method
and (13)–(14) for the MTS method, we obtain

q22(z) = g12(z) + J1h2(z) − Dzh2(z)J1z,

D1x11 = g12(x11, 0) + J1x12(x11) − D0x12(x11)

= g12(x11, 0) + J1x12(x11)

− Dx11x12(x11)J1x11.

Thus, as long as h2(z) takes the same form of
x12(x11), q22(z) and D1x11 are identical, with z cor-
responding to x11. Then, the second-order normal
forms derived using the CMR method

ż = J1z + q22(z)

and the normal form up to second order derived by
using the MTS method

ẋ11 = J1x11 + D1x11

are identical.

Remark 2. Due to the choice of the basis for the
complementary space Ck in the CMR method being

not unique, the choice of the nonlinear transforma-
tion hk is not unique and hence qk2 is not unique;
while in the MTS method, the solution of x12 by
solving the particular solution of the differential
equation is unique. Thus, in order for the two
second-order normal forms to be identical, h2(z)
must be chosen as the same form as that of the
x12(x11).

Further, for the CMR method, it is easy to see
from (4) and (5) that the second-order terms in the
center manifold, denoted by l2(z), satisfy

Dzl2(z)J1z − J2l2(z) = g22(z). (17)

On the other hand, for the MTS method, with the
use of (13), the second equation of (14) can be
rewritten as

Dx11x22(x11)J1x11 − J2x22(x11)

= g22(x11, 0). (18)

Obviously, gj2(z) (j = 1, 2) is exactly in the same
form as that of gj2(x11, 0), with z corresponding to
x11, and so is Eq. (17) as that of Eq. (18), and
thus l2(z) and x22(x11) have the exact same solu-
tion, with z corresponding to x11.

Step 3. We show that the third-order normal forms
obtained using the CMR and MTS methods are
identical.

Note that gj3(z) (j = 1, 2) is exactly in the
same form as that of gj3(x11, 0, x12, x22) with z cor-
responding to x11, h2(z) to x12(x11) and l2(z) to
x22(x11). For the CMR method, it follows from (6)
that

q32(z) = g13(z) + J1h3(z)

−Dzh2(z)[J1h2(z) + g12(z)]

−Dzh3(z)J1z + Dzh2(z)Dzh2(z)J1z,

which, due to q22(z) = g12(z)+J1h2(z)−Dzh2(z)×
J1z, is reduced to

q32(z) = g13(z) + J1h3(z) − Dzh3(z)J1z

−Dzh2(z)q22(z).

For the MTS method, by the first equation of (15)
with k = 3, we have

D0x13 − J1x13

= −D1x12 − D2x11 + g13(x11, 0, x12, x22),
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which can be rewritten as

D2x11 = g13(x11, 0, x12, x22) + J1x13

−Dx11x13J1x11 − Dx11x12D1x11.

Thus, similarly as long as h3(z) takes the same form
of x13(x11), q32(z) and D2x11 are identical, with z
corresponding to x11. Hence, the third-order normal
form derived using the CMR method,

ż = J1z + q22(z) + q32(z),

and the normal form up to the third order derived
using the MTS method,

ẋ11 = J1x11 + D1x11 + D2x11,

are identical.
Moreover, note that for the CMR method,

using (4) and (5) yields the third-order terms on
the center manifold, denoted by l3(z), satisfying

Dz l3(z)J1z + Dz l2(z)[J1h2(z) + g12(z)

−Dzh2(z)J1z] − J2l3(z) − g23(z) = 0. (19)

The second equation of (15) with k = 3 can be
rewritten as

Dx11x23(x11)J1x11 + Dx11x22[J1x12(x11)

+ g12(x11, 0) − Dx11x12(x11)J1x11]

− J2x23(x11) − g23(x11, 0, x12, x22) = 0. (20)

Obviously, gj3(z) (j = 1, 2) is exactly in the same
form as that of gj3(x11, 0, x12, x22), with z corre-
sponding to x11, and so is Eq. (19) as that of
Eq. (20), and thus l3(z) and x23(x11) have the exact
same solution with z corresponding to the x11.

Step 4. Finally we prove that the normal forms
obtained using the CMR and MTS methods are
identical up to any order.

Having proved that the conclusion of Theo-
rem 1 is true for second order and third order
(k = 2 and k = 3). According to the method of
mathematical induction, we assume that the con-
clusion of Theorem 1 is true up to (k − 1)th order
(k ≥ 4). That is, qj2 (j = 2, 3, . . . , k − 1) and
Dj−1x11 are identical with hj(z) corresponding to
x1j , and both x1j (j = 2, 3, . . . , k − 1) and x2j are
expressed in terms of x11, and lj(z) and x2j(x11)
(j = 2, 3, . . . , k − 1) are identical, with glj(z) (l =
1, 2; j = 2, 3, . . . , k) and glj(x11, x21, x12, x22, . . . ,
x1(j−1), x2(j−1)) having the same form. With the
assumption, we now prove that the conclusion is

also true for kth order, namely, the kth order terms
in the normal forms, qk2 in the CMR method and
Dk−1x11 in the MTS method, are identical.

In the CMR method,

qk2(z) = g1k(z) + J1hk(z) − Dzhk(z)J1z

−
k−2∑
j=1

Dzh(k−j)(z)qj2(z).

For the MTS method, by the first equation of (15),

Dx11x1kJ1x11 − J1x1k

= −Dk−1x11 −
k−2∑
j=1

Dx11x1(k−j)Djx11

+ g1k(x11, 0, x12, x22, . . . , x1(k−1), x2(k−1)).

That is,

Dk−1x11 = g1k(x11, 0, x12, x22, . . . , x1(k−1), x2(k−1))

+ J1x1k − Dx11x1kJ1x11

−
k−2∑
j=1

Dx11x1(k−j)Djx11.

Thus, as long as hk(z) takes the same form of
x1k(x11), qk2(z) and Dk−1x11 are identical, with z
corresponding to x11. Then, the kth order normal
forms derived using the CMR method,

ż = J1z + q22(z) + q32(z) + · · · + qk2(z),

and using the MTS method,

ẋ11 = J1x11 + D1x11 + D2x11 + · · · + Dk−1x11,

are identical.
Further, note that for the CMR method, with

(4) and (5), it can be shown that the kth order terms
on the center manifold, denoted by lk(z), satisfy

Dz lk(z)J1z +
k−2∑
j=1

[Dzlk−j(z)g1(j+1)(z)]

− J2lk(z) − g2k(z) = 0. (21)

With the use of (13), the second equation of (15)
can be rewritten as

Dx11x2k(x11)J1x11 +
k−2∑
j=1

[Dx11x2(k−j)(x11)Djx11]

− J2x2k(x11) − g2k(x11, x21, x12, x22, . . . ,

x1(k−1), x2(k−1)) = 0. (22)
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Obviously, gjk(z) (j = 1, 2) is exactly in the same
form as that of gjk(x11, 0, x12, x22, . . . , x1(k−1),
x2(k−1)), with z corresponding to x11, and so is
Eq. (21) as that of Eq. (22), and thus lk(z) and
x2k(x11) have the exact same solution with z corre-
sponding to x11.

The proof of Theorem 1 is complete. �

Remark 3

(a) It is clear from Eq. (16) that the role of the
multiple time scales is to distinguish different
order terms in the solution, resulting in differ-
ent order normal form terms.

(b) From the proof of Theorem 1, we can see
that the MTS method combines the two steps
involved in using center manifold theory and
normal form theory into one unified step to
obtain the normal form and nonlinear transfor-
mation simultaneously.

3. Equivalence of the MTS and
CMR Methods for DDEs

In the previous section, we have shown that the
MTS and CMR methods are equivalent for ODE
systems associated with the semisimple n1-Hopf–
n2-zero singularity. In this section, we turn to con-
sider such singularity in DDE systems, and to
obtain the conditions under which the normal forms
obtained using the two methods are identical up to
third order.

Consider the general m-dimensional delay
differential equation:

u̇(t) = N0(α)u(t) +N1(α)u(t − 1)

+ f(u(t), u(t− 1)), (23)

where u ∈ Rm is a state vector, α ∈ Rn is a param-
eter vector, f ∈ C∞, f(0) = Df(0) = 0. In general,
the nonlinear function f should contain α. However,
since the unfolding terms are involved in N0(α) and
N1(α), f will be expanded around a critical point
α = αc, and thus α is not explicitly shown in f . If
the equilibrium of system (23) is not a trivial solu-
tion, we can transfer the nontrivial equilibrium to
the origin by a simple translation, and if the delay
in system (23) is τ �= 1, we can obtain the form (23)
by scaling the time delay, t �→ t/τ . So, without loss
of generality, we use system (23) in the following
analysis.

Remark 4. In general, system (23) can be directly
extended to involve multiple delays for the case
when using the MTS method. That is, the MTS
method can be used to study the following system
with multiple delays,

u̇(t) = N0u(t) +
p∑

j=1

Nju(t− τj)

+ f(u(t), u(t− τ1), . . . , u(t− τp)).

However, since the CMR method can only be able
to deal with constant delays or the delays with their
ratios to the maximum delay being constants [Faria,
2001], we use (23) in this section for a comparison
of the two methods.

The characteristic equation of (23), evaluated
at the trivial equilibrium u = 0, is given by

det ∆(λ) = 0, where

∆(λ) = λI −N0(α) −N1(α)e−λ, (24)

where I is the m×m identity matrix. For the DDE
system (23), we have the following result.

Theorem 2. Assume that system (23) undergoes a
semisimple n1-Hopf–n2-zero (n1 ≥ 1, n2 ≥ 0, n =
n1 +n2 ≥ 1) bifurcation from the trivial equilibrium
at the critical point, defined by α = αc, where α
is a parameter vector involved in system (23), at
which the characteristic equation (24) has n1 pairs
of purely imaginary roots ±iωj (j = 1, 2, . . . , n1)
and n2 zero roots, and all other roots have neg-
ative real part. If the second-order terms in the
normal form vanish at α = αc, then the normal
forms associated with the semisimple n1-Hopf–n2-
zero singularity, derived using the multiple time
scales and center manifold reduction methods, are
identical up to third order.

Proof. For convenience, we define the character-
istic matrix ∆(λ) as ∆c(λ) at the critical point,
α = αc, and denote ∆∗

c(λ) the adjoint matrix of
∆c(λ). Then, let pj (j = 1, 2, . . . , n1) and pl (l =
n1 + 1, . . . , n) be the eigenfunctions of ∆c(λ) corre-
sponding to the eigenvalues iωj and 0, respectively;
and p∗j (j = 1, 2, . . . , n1) and p∗l (l = n1 + 1, . . . , n)
be the normalized eigenfunctions of ∆∗

c(λ) corre-
sponding to the eigenvalues −iωj and 0, respec-
tively, satisfying the inner products,

〈p∗j , pj〉 = p∗Tj pj = 1, j = 1, 2, . . . , n. (25)
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We take perturbation α = αc + εαε in (23).
Substituting it into N0(α) and N1(α), we have the
following expansions in terms of ε:

N0(α) = N0(αc) + εN
(1)
0 (αε) + ε2N

(2)
0 (αε) + · · · ,

N1(α) = N1(αc) + εN
(1)
1 (αε) + ε2N

(2)
1 (αε) + · · · ,

where N0(αc) and N1(αc) are the values of N0 and
N1 evaluated at the critical point, α = αc. Note that
the so-called unfolding terms, necessary for bifurca-
tion analysis, will come from N0(α) and N1(α).

Then, with the MTS method, suppose the solu-
tion of (23) is given by

u(t) = εu1(T0, T1, T2, . . .) + ε2u2(T0, T1, T2, . . .)

+ ε3u3(T0, T1, T2, . . .) + · · · . (26)

To deal with the terms involving delays, we expand
uj(T0−1, T1−ε, T2−ε2, . . .) at uj(T0−1, T1, T2, . . .)
for j = 1, 2, . . .. Ignoring the high order terms
involving parameters, we obtain

f(u(t), u(t− 1))

=
∑
j≥2

εjfj(u1, u1,1, . . . , uj−1, uj−1,1),

where up,1 := up(T0 − 1, T1, T2, . . .), p = 1, 2, . . . .
Then, substituting solution (26) with the multiple
scales (12) into (23) and balancing the coefficients
of εj (j = 1, 2, . . .) yields a set of ordered linear
differential equations (LDEs).

First, from the ε1-order LDE, we have

D0u1 −N0(αc)u1 −N1(αc)u1,1 = 0. (27)

Since ±iωj (j = 1, 2, . . . , n1) and zero (with mul-
tiplicity n2) are the eigenvalues of the linear part
of (23), the solution of (27) restricted to the center
subspace can be expressed in the form of

u1(T0, T1, T2, . . .) =
n1∑
j=1

Gj(T1, T2, . . .)pjeiωjT0

+
n1∑
j=1

Gj(T1, T2, . . .)pje−iωjT0

+
n∑

l=n1+1

Gl(T1, T2, . . .)pl. (28)

Next, from the ε2-order LDE, we obtain

D0u2 −N0(αc)u2 −N1(αc)u2,1

= −D1u1 +N
(1)
0 (αε)u1 +N

(1)
1 (αε)u1,1

−N1(αc)D1u1,1 + f2(u1, u1,1). (29)

Substituting solution (28) into (29) yields the
equation,

D0u2 −N0(αc)u2 −N1(αc)u2,1

= gs,0
2 +

n1∑
j=1

ξ2jeiωjT0 +
n1∑

j=1

ξ2je−iωjT0

+
n∑

l=n1+1

ξ2l + gu
2 , (30)

where gs,0
2 is a constant vector, representing all the

terms expressed in Gl1Gl2el (l1, l2 = n1 + 1, . . . , n;
l = 1, . . . , 2n1 + n2) and GjGjel (j = 1, 2, . . . , n1),
generated from f2(u1, u1,1), and gu

2 denotes the
remaining terms in f2(u1, u1,1) that do not produce
secular terms, and

ξ2j = −D1Gjpj +N
(1)
0 (αε)Gjpj

+N
(1)
1 (αε)Gjpje−iωj −N1(αc)pjD1Gje−iωj

+ g
s,hj

2 (u1, u1,1), j = 1, 2, . . . , n1,

ξ2l = −D1Glpl −N1(αc)D1Glpl

+ (N (1)
0 (αε) +N

(1)
1 (αε))Glpl,

l = n1 + 1, . . . , n,

where gs,hj

2 (u1, u1,1) (j = 1, 2, . . . , n1) is a part of
f2(u1, u1,1) which generates secular terms in the
solution, consisting of the terms GjGle2j−1 (j = 1,
2, . . . , n1, l = n1 + 1, . . . , n).

Equation (30) is a linear nonhomogeneous
equation for u2, which has a periodic solution if
and only if the so-called “solvability conditions”
are satisfied [Nayfeh, 1981], that is, 〈p∗j , ξ2j〉 = 0
(j = 1, 2, . . . , n1) and 〈p∗l , gs,0

2 +
∑n

k=n1+1 ξ2k〉 =
0 (l = n1 + 1, . . . , n), are satisfied. Solving
these equations for D1Gj (j = 1, 2, . . . , n1) and
(D1Gn1+1, . . . ,D1Gn)T, yields,

D1Gj =
〈p∗j , (N (1)

0 (αε)pj +N
(1)
1 (αε)e−iωjpj)Gj + g

s,hj

2 〉
〈p∗j , pj +N1(αc)e−iωjpj〉 , j = 1, 2, . . . , n1,
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


D1Gn1+1

...

D1Gn


 = Kz




p∗n1+1


gs,0

2 +
n∑

k=n1+1

[N (1)
0 (αε) +N

(1)
1 (αε)]pkGk




...

p∗n


gs,0

2 +
n∑

k=n1+1

[N (1)
0 (αε) +N

(1)
1 (αε)]pkGk






,

where Kz is assumed to be invertible, given by

Kz =



p∗n1+1(I +N1(αc))pn1+1 · · · p∗n1+1(I +N1(αc))pn

... · · · ...

p∗n(I +N1(αc))pn1+1 · · · p∗n(I +N1(αc))pn




−1

. (31)

Remark 5. It is noted from the above expressions that each D1Gk contains two parts, one comes from the
parameter perturbation, called unfolding, and the other part comes from the contribution of gs,hj

2 and gs,0
2 ,

which are the second-order terms in the normal form. Under the assumption that the second-order terms
in the normal form vanish at the critical point, i.e. gs,0

2 = g
s,hj

2 = 0, we can show that the normal forms
obtained using the MTS and CMR methods are identical up to third order. In order for the consistence
with the CMR method discussed next, we will still call the unfolding terms the second-order terms in the
normal form.

Thus, under the assumption, setting gs,0
2 = g

s,hj

2 = 0 yields

D1Gj =
〈p∗j , (N (1)

0 (αε)pj +N
(1)
1 (αε)e−iωjpj)Gj〉

〈p∗j , pj +N1(αc)e−iωjpj〉 , j = 1, 2, . . . , n1,




D1Gn1+1

...

D1Gn


 = Kz




p∗n1+1


 n∑

k=n1+1

[N (1)
0 (αε) +N

(1)
1 (αε)]pkGk




...

p∗n


 n∑

k=n1+1

[N (1)
0 (αε) +N

(1)
1 (αε)]pkGk






.

(32)

Then, the particular solution of u2 is obtained
from (30) as

u2 =
n1∑

j=1

ζ1jeiωjT0 +
n1∑
j=1

ζ2je2iωjT0

+ c.c.+ ζ0, (33)

where ζ0, ζ1j , ζ2j ∈ Cm, and ζ1j = ζ1j(αε), indicat-
ing that ζ1j has relevance to the parameter vector
αε, which actually represents the contribution from

the unfolding terms, and c.c. stands for the complex
conjugate of the preceding terms.

Further, from the ε3-order LDE, we similarly
obtain

D0u3 −N0(αc)u3 −N1(αc)u3,1

= −D2u1 − D1u2 +N
(1)
0 (αε)u2 +N

(2)
0 (αε)u1

+N
(2)
1 (αε)u1,1 −N

(1)
1 (αε)D1u1,1
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+N
(1)
1 (αε)u2,1 −N1(αc)D2u1,1

+
1
2
N1(αc)D2

1u1,1 −N1(αc)D1u2,1

+ f3(u1, u1,1, u2, u2,1,D1u1,1), (34)

where D2
1 = ∂2

∂T 2
1
, and f3(u1, u1,1, u2, u2,1,D1u1,1)

denotes the ε3 order terms after substituting (26)
into (23).

Substituting the solutions (28) and (33)
into (34), we have

D0u3 −N0(αc)u3 −N1(αc)u3,1

=
n1∑

j=1

ξ3jeiωjT0 + c.c

+
n∑

l=n1+1

ξ3l + gs,0
3 + gu

3 ,

where gs,0
3 , consisting of the terms Gl1Gl2Gl3el

and Gl1GjGjel, where l1, l2, l3 = n1 + 1, . . . , n1 +
n2; j = 1, 2, . . . , n1; l = 2n1 + 1, . . . , 2n1 + n2,
denotes the third-order terms in f3(u1, u1,1, u2, u2,1,
D1u1,1) that produce constant terms, and gu

3

denotes the remaining third-order terms in f3(u1,
u1,1, u2, u2,1,D1u1,1), and ξ3j and ξ3l are given by

ξ3j = ρj − pjD2Gj −N1(αc)e−iωjpjD2Gj

+ g
s,hj

3 , j = 1, 2, . . . , n1,

ξ3l = ρl − plD2Gl

−N1(αc)plD2Gl, l = n1 + 1, . . . , n,

in which g
s,hj

3 , consisting of the terms GjGl1 ×
Gl2e2j−1 and GjGrGre2j−1, where j, r = 1, 2, . . . ,
n1; l1, l2 = n1 + 1, . . . , n1 + n2, represents the
third-order terms in f3(u1, u1,1, u2, u2,1) that pro-
duce secular terms, and

ρj = −D1ζ1j +N
(1)
0 (αε)ζ1j +N

(2)
0 (αε)Gjpj

+N
(2)
1 (αε)Gjpje−iωj −N

(1)
1 (αε)D1Gjpje−iωj

+N
(1)
1 (αε)ζ1je−iωj +

1
2
N1(αc)D2

1Gjpje−iωj

−N1(αc)D1ζ1je−iωj , j = 1, 2, . . . , n1,

ρl = −D1ζ0 +N
(1)
0 (αε)ζ0 +N

(2)
0 (αε)Glpl

+N
(2)
1 (αε)Glpl −N

(1)
1 (αε)D1Glpl

+N
(1)
1 (αε)ζ0 +

1
2
N1(αc)D2

1Glpl

−N1(αc)D1ζ0, l = n1 + 1, . . . , n.

Then, the solvability conditions are similarly given
by 〈p∗j , ξ3j〉 = 0 (j = 1, 2, . . . , n1) and 〈p∗l , gs,0

3 +∑n
k=n1+1 ξ3l〉 = 0 (l = n1 + 1, . . . , n). Note that

ρj and ρl contain the parameter terms, which are
actually the unfolding terms. We ignore the higher-
order terms in the expansion of parameters, and
obtain the derivatives D2Gj (j = 1, 2, . . . , n1) and
(D2Gn1+1, . . . ,D2Gn)T in the form of

D2Gj =
〈p∗j , gs,hj

3 〉
〈p∗j , pj +N1(αc)e−iωjpj〉 ,

j = 1, 2, . . . , n1,


D2Gn1+1

...

D2Gn


 = Kz



p∗n1+1g

s,0
3

...

p∗ng
s,0
3


,

(35)

where Kz is given in (31).
Finally, using the backwards scaling, Gj �→

Gj/ε, yields the normal form of system (23) up to
the third-order terms,

Ġ = D1G+ D2G, where G = (G1, G2, . . . , Gn)T,

(36)

associated with the semisimple n1-Hopf–n2-zero
singularity, derived using the MTS method.

Now, we apply the CMR method to compute
the normal form of system (23), restricted to the
center manifold, near the semisimple n1-Hopf–n2-
zero critical point: α = αc. Define

η(θ) =



N0(αc), for θ = 0,

0, for θ ∈ (−1, 0),

−N1(αc), for θ = −1.

Then, the linearized equation of (23) at the trivial
equilibrium can be written as

u̇(t) = Lcut,

with Lcφ =
∫ 0
−1 dη(θ)φ(θ), ∀φ ∈ C � C([−1, 0],

Rm), and the bilinear form on C∗×C (here ∗ stands
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for adjoint) as

〈ψ(s), φ(θ)〉

= ψ(0)φ(0) −
∫ 0

−1

∫ θ

ξ=0
ψ(ξ − θ)dη(θ)φ(ξ)dξ,

(37)

in which φ ∈ C, ψ ∈ C∗. Thus, the phase space
C is decomposed by Λ = {±iω1,±iω2, . . . ,±iωn1 ,

n2︷ ︸︸ ︷
0, . . . , 0}, as C = P ⊕ Q, where Q = {ϕ ∈ C :
(ψ,ϕ) = 0, for all ψ ∈ P ∗}, and the bases for P and
its adjoint P ∗ are given by

Φ(θ) = (ϕ1(θ), ϕ1(θ), ϕ2(θ), ϕ2(θ), . . . ,

ϕn1(θ), ϕn1(θ), ϕ̂n1+1(θ), . . . , ϕ̂n(θ))

and

Ψ(s) = (ψ1(s), ψ1(s), ψ2(s), ψ2(s), . . . ,

ψn1(s), ψn1(s), ψ̂n1+1(s), . . . , ψ̂n(s))T,

respectively, where ϕj(θ) = ϕj(0)eiωjθ, ϕ̂l(θ) ≡ ϕl,

for θ ∈ [−1, 0], and ψj(s) = ψj(0)e−iωjs, ψ̂l(s) ≡ ψl,
for s ∈ [0, 1], where j = 1, 2, . . . , n1; l = n1 +
1, . . . , n, and 〈Ψ(s),Φ(θ)〉 = I.

We use the same bifurcation parameters, given
by α = αc+αε, where αε = (α1, α2, . . . , αn) is a per-
turbation parameter vector. Note here that there is
no explicit ε in the perturbation parameter. Substi-
tuting these bifurcation parameters into N0 and N1,
we have the following expansions in terms of αε:

N0(α) = N0(αc) + αεN
′
0(αc) + · · ·

� N0(αc) +N
(1)
0 (αε) + · · · ,

N1(α) = N1(αc) + αεN
′
1(αc) + · · ·

� N1(αc) +N
(1)
1 (αε) + · · · .

Then, Eq. (23) can be rewritten as

u̇(t) = N0(α)ut +N1(α)ut(−1)

+ f(u(t), u(t− 1), αε). (38)

We now consider the enlarged phase space BC of
functions from [−1, 0] to Rm, which are contin-
uous on [−1, 0) with a possible jumping discon-
tinuity at zero. This space can be identified as
C × Rm. Thus, its elements can be written in the
form ϕ̃ = ϕ + X0c, where ϕ ∈ C, c ∈ Rm and

X0 is an m × m matrix-valued function, defined
by X0(θ) = 0 for θ ∈ [−1, 0) and X0(0) = I. In
the space BC, Eq. (38) becomes an abstract ODE,
described by

ẇ = Aw +X0F (w,αε), (39)

where w ∈ C, and A is defined by

A : C1 → BC, Aw = ẇ +X0[L0w − ẇ(0)]

and

F (w,αε) = [N0(α)w(0) +N1(α)w(−1)

−N0(αc)w(0) −N1(αc)w(−1)]

+ f(w,αε).

Neglecting the higher-order terms in the expansion
of the perturbation parameter, we obtain

F (w,αε) = N
(1)
0 (αε)w(0) +N

(1)
1 (αε)w(−1)

+ f2(w, 0) + f3(w, 0) + · · · .

Further, introducing the continuous projection
π : BC �→ P , π(ϕ + X0c) = Φ[(Ψ, ϕ) + Ψ(0)c],
we can decompose the enlarged phase space by
Λ = {±iω1,±iω2, . . . ,±iωn1 , 0, . . . , 0} as BC = P ⊕
Kerπ, where Kerπ = {ϕ +X0c : π(ϕ +X0c) = 0},
denoting the Kernel under the projection π. Let
x = (x1, x1, x2, x2, . . . , xn1 , xn1 , xn1+1, . . . , xn)T, y ∈
Q1 := Q ∩ C1 ⊂ Kerπ, and AQ1 be the restriction
of A as an operator from Q1 to the Banach space
Kerπ.

In addition, denote w = Φx+y. Then, Eq. (39)
is decomposed into the form of

ẋ = Bx+ Ψ(0)F (Φx+ y, αε),

dy
dt

= AQ1y + (I − π)X0F (Φx+ y, αε),
(40)

whereB = diag{iω1,−iω1, iω2,−iω2, . . . , iωn1,−iωn1,
0, . . . , 0}.

To find the normal form, we rewrite Eq. (40) in
the series form,

ẋ = Bx+
∑
j≥2

f1
j(x, y, αε),

dy
dt

= AQ1y +
∑
j≥2

f2
j(x, y, αε).

(41)
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Remark 6. Here, we omit the coefficient 1
j! in (41)

before f1
j(x, y, αε), which is for the consistence in

comparing the two methods. The coefficient 1
j! is

used in [Faria & Magalhães, 1995b], which does not
affect our results and conclusion.

Let V 3n1+2n2
j (X) denote the linear space of jth

degree homogeneous polynomials in the 2n1 com-
plex variables x1, x1, x2, x2, . . . , xn1 , xn1, the n2 real
variables xn1+1, . . . , xn as well as the real parame-
ter vector α, with coefficients in space X. Further,
let Mj (j ≥ 2) denote the operator defined in
V 3n1+2n2

j (C3n1+2n2 × Kerπ), with the values taken
from the same space, by

Mj(p, h) = (M1
jp,M

2
jh),

(M 1
jp)(x, αε) = Dxp(x, αε)Bx−Bp(x, αε),

(M 2
jh)(x) = Dxh(x)Bx−AQ1h(x),

(42)

where p(x, αε) ∈ V 3n1+2n2
j (C3n1+2n2), h(x)(θ) ∈

V 3n1+2n2
j (Ker π).

The above decompositions can be denoted as

V 3n1+2n2
j (C3n1+2n2) = Im(M1

j ) ⊕ Im(M1
j )

c

V 3n1+2n2
j (C3n1+2n2) = Ker(M1

j ) ⊕ Ker(M 1
j)

c

V 3n1+2n2
j (Kerπ) = Im(M2

j ) ⊕ Im(M2
j )

c

V 3n1+2n2
j (Q1) = Ker(M2

j ) ⊕ Ker(M 2
j)

c.

Now, we denote the projections associated with
the above decompositions of V 3n1+2n2

j (C2n1+n2) ×
V 3n1+2n2

j (Ker π) over Im(M 1
j) × Im(M 2

j) and of

V 3n1+2n2
j × V 2n1+n2

j (Q1) over Ker(M1
j )

c × Ker ×
(M2

j )
c by, respectively, PI,j = (P 1

I,j, P
2
I,j) and

PK,j = (P 1
K,j, P

2
K,j). The right inverse of Mj with

range defined by the spaces complementary to the
kernels of Mj with range defined by the spaces
complementary to the kernels of M i

j (i = 1, 2),
namely M−1

j = ((M 1
j)

−1, (M 2
j)

−1) with M−1
j ◦

PI,j ◦Mj = PK,j.
Then, the kth order (k ≥ 2) normal form,

derived with a recursive procedure by computing
the jth order terms 1 ≤ j ≤ k− 1 at each step, can
be expressed as

ẋ = Bx+
k−1∑
j=1

g1
j(x, y, αε) + f̃1

k(x, y, αε) + · · · ,

dy
dt

= AQ1y +
k−1∑
j=1

g2
j(x, y, αε) + f̃2

k(x, y, αε) + · · · ,

(43)

with g1
1(x, y, αε) = g2

1(x, y, αε) = 0. The kth order
normal form of system (43) is derived from the
(k− 1)th order normal form through a transforma-
tion of variables

(x, y) → (x, y) + Uk(x),

where Uk = M−1
k PI,kfk(x, 0, αε). Actually, gk can

be solved via gk = f̃k −MkUk.
Therefore, repeating the above iteration proce-

dure for k = 2, 3, . . . , we obtain the normal form
restricted to the center manifold arising from (23)
as

ẋ = Bx+
∑
j≥2

g1
j(x, 0, αε), (44)

associated with the semisimple n1-Hopf–n2-zero
singularity, derived using the CMR method.

Next, we compare the two normal forms derived
by using the MTS and CMR methods. Note that in
the MTS method, the first-order linear solution of
system (23) is u1, given in (28), while in the CMR
method, the linear solution on the center manifold
is expressed by Φ(θ)x(t), that is,

Φ(θ)x(t) =
n1∑
j=1

ϕj(0)eiωj(t+θ)xj(t)

+
n1∑
j=1

ϕj(0)e−iωj(t+θ)xj(t)

+
n∑

l=n1+1

ϕlxl(t), θ ∈ [−1, 0]. (45)

In fact, if we choose ϕj(0) = pj, ψj(0) = Kjp
∗T
j (j =

1, 2, . . . , n1), where Kj = [1 + e−iωjp∗Tj N1(αc)pj ]−1,
and ϕl = pl, Ψz(0) � (ψn1+1(0), . . . , ψn(0))T =
Kz(p∗n1+1, . . . , p

∗
n)T, where Kz is given by (31), then

both the inner products (25) and (37) are normal-
ized. Note that t + θ in (45) corresponds to T0

in (28), thus, neglecting the difference in the nota-
tions, the two linear solutions derived by the two
methods are identical, that is, Φ(0)x and Φ(−1)x
in the CMR method correspond to u1 and u1,1 in
the MTS method, respectively.
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In the CMR method, for the operator M1
2,

we may choose the decomposition V 3n1+2n2
2 ×

(C2n1+n2) = Im(M 1
2) ⊕ Im(M1

2)
c, where the com-

plementary space Im(M1
2)

c is spanned by
αkxje2j−1, αkxje2j , αkxl1el, xjxl1e2j−1, xjxl1e2j ,
xjxjel and xl1xl2el, where k = 1, 2, . . . , n; j = 1,
2, . . . , n1; l1, l2 = n1 + 1, . . . , n; l = 2n1 + 1, . . . ,
2n1 + n2, ep (p = 1, 2, . . . , 2n1 + n2) is the pth unit
vector, and αk is the kth component of αε. There-
fore, the second-order terms of the normal form are
given by

g1
2(x, αε) = (g1

21(x, αε), . . . , g1
2n1

(x, αε),

g1
2(n1+1)(x, αε), . . . , g1

2n(x, αε))T,

g1
2j(x, αε) = ψj(0)[N

(1)
0 (αε) +N

(1)
1 (αε)e−iωj ]

×ϕj(0)xj , j = 1, 2, . . . , n1,

g1
2l(x, αε) = ψl[N0(αε) +N1(αε)]

×
n∑

k=n1+1

ϕkxk, l = n1 + 1, . . . , n,

(46)

where N
(1)
0 (αε) and N

(1)
1 (αε) are the first-order

approximations in the parameter αε, and g1
2(x, 0) =

0 due to the assumption that the second-order terms
in the normal form vanish at the critical point. In
order to compare the two normal forms, we can
rewrite (32) for the MTS method as

D1Gj = Kj〈p∗j , (N (1)
0 (αε)pj +N

(1)
1 (αε)e−iωjpj)Gj〉

= ψj(0)[N
(1)
0 (αε) +N

(1)
1 (αε)e−iωj ]ϕj(0)Gj , j = 1, 2, . . . , n1,




D1Gn1+1

...

D1Gn


 = Kz




p∗n1+1


 n∑

k=n1+1

[N (1)
0 (αε) +N

(1)
1 (αε)]pkGk




...

p∗n


 n∑

k=n1+1

[N (1)
0 (αε) +N

(1)
1 (αε)]pkGk







= Ψz(0)(N
(1)
0 (αε) +N

(1)
1 (αε))

n∑
k=n1+1

ϕk(0)Gk.

(47)

Note that xj (j = 1, 2, . . . , n), used to represent
the normal form in the CMR method, corresponds
to Gj , used to denote the normal form in the MTS
method. Thus, neglecting the difference in the nota-
tions, the two equations in (47) are identical to the
last two equations in (46), implying that the nor-
mal forms obtained using the MTS method and the
CMR method are actually identical up to second
order.

Next, we consider the third-order terms of the
normal form. Since we only consider the linear
approximation of parameters in the CMR method,
we ignore the higher-order (starting from the sec-
ond order) approximations in the parameter α for
the MTS method. By using M2

2h2(x, αε) = (I −
π)X0f2(Φx), we obtain

Dxh2(x, αε)(θ)Bx− ḣ2(x, αε)(θ)

+X0[ḣ2(x, αε)(0) − Lc(h2(x, αε)(θ))]

= [X0 − ΦΨ(0)]f2(Φx),

which can be written as
Dxh2(x, αε)(θ)Bx− ḣ2(x, αε)(θ) = −ΦΨ(0)f2(Φx),

ḣ2(x, αε)(0) − Lc(h2(x, αε)(θ)) = f2(Φx).

(48)

Neglecting the higher-order terms in the expansion
of the perturbation parameter, h2(x, 0)(θ) has the
following form:

h2(x, 0)(θ) =
∑
|q|=2

h2,q(θ)xq.
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Since we have neglected the higher-order terms in
the expansion of the perturbation parameter in the
CMR method from the third-order terms, we will
also neglect the higher-order terms in the expansion
of the perturbation parameter in the MTS method
from the third-order terms, Eq. (29) becomes

D0u2 −N0(αc)u2 −N1(αc)u2,1

= f2(u1, u1,1). (49)

We have shown that Φ(0)x and Φ(−1)x in the
CMR method correspond to u1 and u1,1 in the
MTS method, respectively. Next, we prove that
the second-order solutions in the CMR method
Φ(0)U 1

2 + h2(0) and Φ(−1)U 1
2 + h2(−1) correspond

to the second-order solutions in the MTS method
u2(T0, T1, . . .) and u2(T0 − 1, T1, . . .), respectively.
In fact,

dΦ(θ)U1
2(x)

dθ

∣∣∣∣
θ=0

= Lc(Φ)U1
2 = [N0(αc)Φ(0) +N1(αc)Φ(−1)]U 1

2,

dh2(x, 0)(θ)
dθ

∣∣∣∣
θ=0

= N0(αc)h2(x)(0) +N1(αc)h2(x)(−1)

+ f2(Φ(0)x,Φ(−1)x).

Denote ũ2(θ) = Φ(θ)U1
2 + h2(θ) and ũ2t(θ) =

ũ2(t+ θ), then,

dũ2t(θ)
dθ

∣∣∣∣
θ=0

= N0(αc)ũ2t(0) +N1(αc)ũ2t(−1)

+ f2(Φ(0)x(t),Φ(−1)x(t)).

Noting that

dũ2t(θ)
dθ

∣∣∣∣
θ=0

=
dũ2(t+ θ)

dθ

∣∣∣∣
θ=0

=
dũ2(t+ θ)
d(t+ θ)

∣∣∣∣
θ=0

t+θ=T−−−−→ dũ2(T )
d(T )

∣∣∣∣
T=t

,

we can rewrite Eq. (49) as

du2(T0, . . .)
dT0

= N0(αc)u2(T0, . . .) +N1(αc)u2(T0 − 1, . . .)

+ f2(u1, u1,1).

Thus, Φ(0)U 1
2 + h2(0) and Φ(−1)U 1

2 + h2(−1) in
the CMR method correspond to u2(T0, T1, . . .) and
u2(T0 − 1, T1, . . .) in the MTS method, respectively.

It should be pointed out here that in the CMR
method, the delay is taken by the function h2,q(θ)
in θ, while in the MTS method, taken by T0 = t+ θ
in e(λj+λk)T0 . A big difference between the CMR
method and the MTS method has been revealed:
finding h2,q(θ) needs solving of Eq. (48) which is
actually a partial differential equation with bound-
ary conditions, while solving u2 from Eq. (49) only
needs solving algebraic equations. In fact, a com-
plete solution for h2,q(θ) is not necessary for the
normal form computation, which only needs the val-
ues at the two bounded points: h2,q(0) and h2,q(−1).
Thus, we only need to compare Eq. (49) with the
second equation of Eq. (48) for the two methods.
Since the MTS method does not define a transform
in function form, but rather directly defines it in the
algebraic form, with the delay involved in the expo-
nential function, this greatly simplifies the com-
putation. Moreover, it can be seen that the CMR
method cannot deal with more than one delay, due
to h2(θ) taking the boundary values, while the MTS
method does not have this limit. It should be also
noted that although the CMR method can deal with
fixed constant delays or the delays with their ratios
to the maximum delay being constants [Faria, 2001],
there are difficulties for the cases in which at least
one of the delays is treated as a perturbation param-
eter. Unfortunately, in real applications, delays are
usually treated as perturbation parameters.

For the MTS method, the third-order terms in
Eq. (23) are given by f3(u1, u1,1, u2, u2,1,D1u1,1),
since D1u1,1|αε=0 = 0 due to the assumption that
the second-order terms vanish at α = αc, neglecting
the terms involving the parameter, f3(u1, u1,1, u2,
u2,1,D1u1,1) can be rewritten as f3(u1, u1,1, u2, u2,1).
For the CMR method, the third-order terms in the
first equation of (41) are written by f1

3(x, y) =
f1

3(Φx + ΦU1
2 + h2) = Ψ(0)f3(Φx + ΦU1

2 + h2),
which has the same form with the third-order
terms, Ψ(0)f3(u1, u1,1, u2, u2,1), derived by the MTS
method using the solvability conditions. In fact,

f1
3(Φx+ ΦU1

2 + h2)

= Ψ(0)
[
f3(Φ(0)x,Φ(−1)x)

+
∂f2(Φ(0)x,Φ(−1)x)

∂(Φ(0)x)
(Φ(0)U 1

2 + h2(x)(0))
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+
∂f2(Φ(0)x,Φ(−1)x)

∂(Φ(−1)x)

× (Φ(−1)U1
2 + h2(x)(−1))

]
,

Ψ(0)f3(u1, u1,1, u2, u2,1)

= Ψ(0)(f3(u1, u1,1)

+ f2(u1 + u2, u1,1 + u2,1))

= Ψ(0)
[
f3(u1, u1,1) +

∂f2(u1, u1,1)
∂u1

u2

+
∂f2(u1, u1,1)

∂u1,1
u2,1

]
.

Thus, for the CMR method, the third-order term
f1

3(Φx+ ΦU1
2 +h2) has the same form as the third-

order term Ψ(0)f3(u1, u1,1, u2, u2,1) in the MTS
method.

The third-order terms of normal form given by
(35) for the MTS method, taking only the linear
approximation of parameters, can be written as

D2Gj = Kj〈p∗j , gs,hj

3 〉

= ψj(0)g
s,hj

3 , j = 1, 2, . . . , n1,


D2Gn1+1

...

D2Gn


 = Kz



p∗n1+1g

s,0
3

...

p∗ng
s,0
3




= Ψz(0)g
s,0
3 .

(50)

Note that gs,hj

3 (j = 1, 2, . . . , n1) contains the terms
GjGl1Gl2e2j−1 and GjGrGre2j−1, and gs,0

3 con-
tains the terms Gl1Gl2Gl3el and Gl1GrGrel, where
l1, l2, l3 = n1 +1, . . . , n1 +n2; l = 2n1 +1, . . . , 2n1 +
n2; r = 1, 2, . . . , n1.

Next, for operator M1
3, we may choose the

decomposition V 2n1+n2
3 (Cm) = Im(M1

k)⊕ Im(M1
k)

c

with the complementary space Im(M 1
3)

c spanned by
xjxl1xl2e2j−1, xjxl1xl2e2j , xjxrxre2j−1, xjxrxre2j ,
xl1xl2xl3el and xl1xrxrel, where j = 1, 2, . . . , n1;
l = 2n1 + 1, . . . , 2n1 + n2; l1, l2, l3 = n1 + 1, . . . , n;
r = 1, 2, . . . , n1, and ek (k = 1, 2, . . . , 2n1 + n2) is
the kth unit vector, and V 2n1+n2

3 (Cm) represents
the linear space of the third-degree homogeneous
polynomials in the 2n1 + n2 variables (x1, x1, x2,
x2, . . . , xn1 , xn1 , xn1+1, . . . , xn) with coefficients
in Cm. Therefore, the third-order terms of the

normal form are given by

g1
3(x, 0) = (g1

31(x, 0), g
1
31(x, 0), . . . , g

1
3n1

(x, 0),

g1
3n1

(x, 0), g1
3(2n1+1)(x, 0), . . . ,

g1
3(2n1+n2)

(x, 0))T,

g1
3j(x, 0) = ψj(0)f̂3j , j = 1, 2, . . . , n1, (51)

g1

3(2n1+1)(x, 0)
...

g1
3(2n1+n2)

(x, 0)


 = Ψz(0)f̂3z,

where f̂3j represents all the terms expressed in
xjxl1xl2e2j−1 and xjxrxre2j−1, and f̂3z denotes all
the terms expressed in xl1xl2xl3el and xl1xrxrel,
and the index notations are the same as that used
for the MTS method. Thus, if we treat xj and Gj

(j = 1, 2, . . . , n) just as two different notations, then
g

s,hj

3 and gs,0
3 in (50) have the same forms as that

of f̂3j and f̂3z in (51), respectively. Therefore, the
third-order normal forms derived by using the two
methods are identical.

This completes the proof of Theorem 2. �

In order to apply Theorem 2, first we need to
compute the second-order normal form to check
whether or not its part evaluated at the critical
point equals zero. In the following, we give two use-
ful results which can be used in applications to jus-
tify if this condition is satisfied.

Corollary 3.1. Assume that system (23) undergoes
a semisimple n1-Hopf–n2-zero (n1 ≥ 1, n2 ≥ 0, n =
n1 + n2 ≥ 1) bifurcation from the trivial equilib-
rium at the critical point, and all characteristic
roots have nonpositive real part. If system (23) does
not contain second-order terms, then the normal
forms associated with the semisimple n1-Hopf–n2-
zero singularity, derived by using the multiple time
scales and center manifold reduction methods, are
identical up to third order.

Corollary 3.2. Assume that system (23) undergoes
a semisimple n1-Hopf (n1 ≥ 1) bifurcation from the
trivial equilibrium at the critical point, and all char-
acteristic roots have nonpositive real part. Then, the
normal forms associated with the semisimple n1-
Hopf singularity, derived by using the multiple time
scales and center manifold reduction methods, are
identical up to third order.
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Remark 7

(a) In order to apply the MTS method, we have
assumed that there is at least one pair of purely
imaginary eigenvalues for system (23) at the
critical point: α = αc, i.e. n1 ≥ 1. In fact, if
n1 = 0, the normal form is the same as that of
the abstract ODE in BC space.

(b) Since for any w ∈ C = P ⊕ Q, the formula
w = Φx + yt holds, where x = (x1, x1, x2,
x2, . . . , xn1, xn1, xn1+1, . . . , xn), Φx ∈ P and
yt ∈ Q. Thus, π(w) = x1ϕ1 + x1ϕ1 + x2ϕ2 +
x2ϕ2 + · · · + xn1ϕn1 + xn1ϕn1 + xn1+1ϕn1+1 +
· · · + xnϕn, implying that the construction of
the project π in the CMR method is to gener-
ate the solution as a linear combination of the
bases. On the other hand, in the MTS method,
the expression (28) for the linear solution u1

is indeed a linear combination of the bases. So
from the view point of computation, the MTS
method can be considered as a simple realiza-
tion of the CMR method.

(c) From the proof of Theorem 2, it is seen that
in the MTS method, it is assumed that there
does not exist unstable manifold, and the two
steps involved in using center manifold theory
and normal form theory are combined into one
unified step to obtain the normal form and non-
linear transformation simultaneously. Thus, a
simpler system is directly obtained by elim-
inating the secular terms, compared to the
CMR method for which the computation of the
terms are expanded on the bases of Im(Mj)c.
Although the CMR method can be used to
deal with DDEs which involve unstable man-
ifold [Faria & Magalhães, 1995b], the normal
forms of such systems are not interesting since
the solutions would quickly evolve outside of
the local region where the normal forms are
applicable.

(d) The characteristic equation (24) has n1 pairs of
purely imaginary roots ±iωj (j = 1, 2, . . . , n1).
When n1 ≥ 2, a possible n1-Hopf bifurcation
with the ratio ω1 : ω2 : · · · : ωn1 appears. If
there exist mj ∈ Z, j = 1, 2, . . . , n1, with at
least two nonzero, such that

∑n1
j=1mjωj = 0,

then n1-Hopf bifurcation is called resonant; oth-
erwise, it is called nonresonant. From the proof
of Theorem 2, it is easily seen that both the
MTS and CMR methods can deal with resonant
and nonresonant cases, without altering the

equivalence of the two normal forms, derived
by the two methods.

(e) By a comparison between the MTS and CMR
methods, we can see that when dealing with
DDEs the MTS method, unlike the CMR
method which involves solving differential equa-
tions, only involves algebraic manipulations
with explicit algebraic formulas and simple pro-
cedure, making it easier to implement them
in symbolic computation. In particular, when
more than one discrete delay is involved in
DDEs, the MTS method can be directly
extended to consider such cases, while the CMR
method has difficulty to deal with if at least
one of the delays is treated as a perturbation
parameter, which is usually the case in applica-
tions. Although two discrete delays have been
considered in a DDE using the CMR method,
it is assumed that the ratio of the two delays
is fixed to be a constant and thus an equiva-
lent single delay is actually considered [Yuan &
Wei, 2007]. Therefore, the MTS method is sim-
pler than the CMR method in computation. It
should be noted however that the CMR method
can deal with nonsemisimple cases, which is still
open for the MTS method.

In the following three sections, we will prove
the equivalence of the MTS and CMR methods for
the NFDE and PFDE systems, as well as for the
DDEs, NFDEs and PFDEs with distributed delays.
Since some parts of the proofs are similar to that
for DDEs (see the proof of Theorem 2), we will skip
some detailed steps whenever possible.

4. Equivalence of the MTS and
CMR Methods for NFDEs

In this section, we consider neutral functional dif-
ferential equations (NFDE) or neutral delay dif-
ferential equations (NDDE). The CMR method
associated with NFDEs used in this paper is based
on [Wang & Wei, 2008].

The MTS method can be used to study more
general NFDEs with multiple delays,

d
dt


u(t) +

p∑
j=1

Mj(α)u(t − τj)




= N0(α)u(t) +
p∑

j=1

Nj(α)u(t− τj)
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+F (u(t), u(t − τ1), . . . , u(t− τp), α)

+G(u(t − τ1), . . . , u(t− τp),

u̇(t− τ1), . . . , u̇(t− τp), α).

(52)

Given that the CMR method has limitation to deal
with DDEs [see Remark 7(e)], here we only consider
the NFDEs with single delay for a comparison with
the MTS method. Thus, without loss of generality,
we shall use the following NFDE in this section for
comparing the MTS and CMR methods,

d
dt

[u(t) +M1(α)u(t − 1)]

= N0(α)u(t) +N1(α)u(t − 1)

+F (u(t), u(t − 1), α)

+G(u(t− 1), u̇(t− 1), α). (53)

The characteristic equation of (53), evaluated
at the trivial equilibrium u = 0, is given by

det∆(λ) = 0, where

∆(λ) = λI + λM1e−λ −N0 −N1e−λ,

(54)

with I as the m×m identity matrix. For the NFDE
system (53), we have the following result.

Theorem 3. Assume that system (53) undergoes a
semisimple n1-Hopf–n2-zero (n1 ≥ 1, n2 ≥ 0, n =
n1 +n2 ≥ 1) bifurcation from the trivial equilibrium
at the critical point, defined by α = αc, and the
characteristic equation (54) has n1 pairs of purely
imaginary roots ±iωj (j = 1, 2, . . . , n1) and n2 zero
roots, and all other roots have negative real part. If
the second-order terms in the normal form vanish
at α = αc, then the normal forms associated with
the semisimple n1-Hopf–n2-zero singularity, derived
using the multiple time scales and center manifold
reduction methods, are identical up to third order.

Proof. Similar to the proof for Theorem 2 in the
previous section for general DDEs, we define the
characteristic matrix ∆(λ) of (53) as ∆c(λ) at
the critical point, α = αc, and denote ∆∗

c(λ) the
adjoint matrix of ∆c(λ). Then, let pj (j = 1,
2, . . . , n1) and pl (l = n1 + 1, . . . , n) be the eigen-
functions of ∆c(λ) corresponding to the eigenvalues
iωj and 0, respectively; and p∗j (j = 1, 2, . . . , n1)

and p∗l (l = n1 + 1, . . . , n) be the normalized eigen-
functions of ∆∗

c(λ) corresponding to the eigenval-
ues −iωj and 0, respectively, satisfying the inner
product (25).

The perturbation for (53) is taken the same as
before: α = αc + εαε. Substituting it into M1, N0

and N1, we have the following expansions in terms
of ε,

M1(α) = M1(αc) + εM
(1)
1 (αε) + ε2M

(2)
1 (αε) + · · · ,

N0(α) = N0(αc) + εN
(1)
0 (αε) + ε2N

(2)
0 (αε) + · · · ,

N1(α) = N1(αc) + εN
(1)
1 (αε) + ε2N

(2)
1 (αε) + · · · ,

where M1(αc), N0(αc) and N1(αc) are the values
of M1, N0 and N1 evaluated at the critical point,
α = αc.

With the MTS method, suppose the solution
of (53) is given by

u(t) = εu1(T0, T1, T2, . . .) + ε2u2(T0, T1, T2, . . .)

+ ε3u3(T0, T1, T2, . . .) + · · · , (55)

which, together with the multiple time scales (12), is
substituted into (53) and then balancing the coeffi-
cients of εj , j = 1, 2, . . . yields a set of ordered linear
differential equations (LDEs).

For the ε1-order LDE, we have

D0u1 +M1(αc)D0u1,1

−N0(αc)u1 −N1(αc)u1,1 = 0, (56)

where u1,1 = u1(T0 − 1, T1, T2, . . .). Since ±iωj (j =
1, 2, . . . , n1) and zero (with multiplicity n2) are the
eigenvalues of the linear part of (53), the linear solu-
tion of (56) restricted to the center subspace can be
expressed in the form of (with the same reason as
for the ODEs and DDEs)

u1(T0, T1, T2, . . .)

=
n1∑

j=1

Gj(T1, T2, . . .)pjeiωjT0

+
n1∑
j=1

Gj(T1, T2, . . .)pje−iωjT0

+
n∑

l=n1+1

Gl(T1, T2, . . .)pl. (57)
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Next, from the ε2-order LDE, we obtain

D0u2 +M1(αc)D0u2,1 −N0(αc)u2 −N1(αc)u2,1

= −D1u1 −M
(1)
1 (αε)D0u1,1 −M1(αc)D1u1,1 +M1(αc)D0D1u1,1 +N

(1)
0 (αε)u1

+N
(1)
1 (αε)u1,1 −N1(αc)D1u1,1 + f2(u1, u1,1), (58)

where u2,1 = u2(T0 − 1, T1, T2, . . .), and f2(u1, u1,1) represents the ε2-order terms in (53). Substitut-
ing solution (57) into (58), and using the solvability conditions, we obtain D1Gj (j = 1, 2, . . . , n1) and
(D1Gn1+1, . . . ,D1Gn)T as follows:

D1Gj = Kj〈p∗j ,−M (1)
1 (αε)Gjpjiωje−iωj +N

(1)
0 (αε)Gjpj +N

(1)
1 (αε)e−iωjpjGj〉,




D1Gn1+1

...

D1Gn


 = Kz




p∗n1+1


 n∑

k=n1+1

[N (1)
0 (αε) +N

(1)
1 (αε)]pkGk




...

p∗n


 n∑

k=n1+1

[N (1)
0 (αε) +N

(1)
1 (αε)]pkGk






,

(59)

where Kj = [1 + p∗jM1(αc)e−iωjpj(1 − iωj) + p∗jN1(αc)e−iωjpj]−1, and the assumption that the second-
order terms in the normal form vanish at the critical point has been used. Kz is assumed to be invertible,
given by

Kz =



p∗n1+1(I +M1(αc) +N1(αc))pn1+1 · · · p∗n1+1(I +M1(αc) +N1(αc))pn

... · · · ...

p∗n(I +M1(αc) +N1(αc))pn1+1 · · · p∗n(I +M1(αc) +N1(αc))pn




−1

. (60)

Further, from the ε3-order LDE, we similarly obtain

D0u3 +M1(αc)D0u3,1 −N0(αc)u3 −N1(αc)u3,1

= −D2u1 − D1u2 −M
(2)
1 (αε)D0u1,1 −M

(1)
1 (αε)D1u1,1 −M1(αc)D2u1,1 +M

(1)
1 (αε)D0D1u1,1

+M1(αc)D2
1u1,1 +M1(αc)D0D2u1,1 − 1

2
M1(αc)D0D2

1u1,1 −M
(1)
1 (αε)D0u2,1 −M1(αc)D1u2,1

+M1(αc)D0D1u2,1 +N
(1)
0 (αε)u2 +N

(2)
0 (αε)u1 +N

(2)
1 (αε)u1,1 −N

(1)
1 (αε)D1u1,1 +N

(1)
1 (αε)u2,1

−N1(αc)D2u1,1 +
1
2
N1(αc)D2

1u1,1 −N1(αc)D1u2,1 + f3(u1, u1,1, u2, u2,1), (61)

where u3,1 = u3(T0 − 1, T1, T2, . . .), and f3(u1, u1,1, u2, u2,1) represents the ε3-order terms in (53).
Neglecting the higher-order terms in the expansion of the perturbation parameter and solving

the solvability conditions yields the derivatives D2Gj (j = 1, 2, . . . , n1) and (D2Gn1+1, . . . ,D2Gn)T,
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given by

D2Gj = Kj〈p∗j , gs,hj

3 〉, j = 1, 2, . . . , n1,


D2Gn1+1

...

D2Gn


 = Kz



p∗n1+1g

s,0
3

...

p∗ng
s,0
3


,

(62)

where gs,hj

3 and gs,0
3 stand for the same notations as

that used for the DDE systems.
Finally, by using the backwards scaling, Gj �→

Gj/ε, we obtain the normal form up to third order
for system (53),

Ġ = D1G+ D2G,

where G = (G1, G2, . . . , Gn)T, (63)

associated with the semisimple n1-Hopf–n2-zero
singularity, derived using the MTS method.

Now, we apply the CMR method to compute
the normal form of (53) restricted to the center
manifold near the semisimple n1-Hopf–n2-zero crit-
ical point: α = αc. Define

ξ(θ) =

{
M1(αc), θ = −1,

0, θ ∈ (−1, 0],

η(θ) =



N0(αc), θ = 0,

0, θ ∈ (−1, 0),

−N1(αc), θ = −1.

Then, the linearized equation of (53) at the trivial
equilibrium is

d
dt

[Dxt] = Lcxt,

satisfying Dϕ = ϕ(0) − ∫ 0
−1 dξ(θ)ϕ(θ), Lcϕ =∫ 0

−1 dη(θ)ϕ(θ), ∀ϕ ∈ C = C([−1, 0], Rm), and the
bilinear form on C∗ × C (∗ stands for adjoint) is

〈ψ(s), ϕ(θ)〉
= ψ(0)ϕ(0)

−
∫ 0

−1

d
dζ

[∫ ς

0
ψ(s − ς)dξ(θ)ϕ(s)ds

]∣∣∣∣
ς=θ

−
∫ 0

−1

∫ θ

0
ψ(s− θ)dη(θ)ϕ(s)ds,

in which ϕ ∈ C, ψ ∈ C∗. Then, the phase space
C is decomposed by Λ = {±iω1,±iω2, . . . ,±iωn1 ,

n2︷ ︸︸ ︷
0, . . . , 0}, as C = P ⊕ Q, where Q = {ϕ ∈ C :
(ψ,ϕ) = 0, for all ψ ∈ P ∗}, and the bases for P and
its adjoint P ∗ are given by

Φ(θ) = (ϕ1(θ), ϕ1(θ), ϕ2(θ), ϕ2(θ), . . . ,

ϕn1(θ), ϕn1(θ), ϕ̂n1+1(θ), . . . , ϕ̂n(θ))

and

Ψ(s) = (ψ1(s), ψ1(s), ψ2(s), ψ2(s), . . . ,

ψn1(s), ψn1(s), ψ̂n1+1(s), . . . , ψ̂n(s))T,

respectively, where ϕj(θ) = ϕj(0)eiωjθ, ψj(s) =
ψj(0)e−iωjs, ϕ̂l(θ) ≡ ϕl for θ ∈ [−1, 0], ψ̂l(s) ≡ ψl

for s ∈ [0, 1], where j = 1, 2, . . . , n1; l = n1 +
1, . . . , n, and 〈Ψ(s),Φ(θ)〉 = I.

In the enlarged space BC, (53) becomes an
abstract ODE,

dwt

dt
= Awt +X0F̃ (wt, αε), (64)

where wt ∈ C, and A is defined by

A : C1 → BC, Awt = w′
t(θ) +X0[Lcwt −Dw′

t]

and

F̃ (wt, ε) = [N0(α)wt(0) +N1(α)wt(−1)

−N0(αc)wt(0) −N1(αc)wt(−1)]xt

+F (wt, αε) +G(wt, ẇt, αε).

Denote w = Φx+ y. Then, Eq. (64) is decom-
posed into

ẋ = Bx+ Ψ(0)F̃ (Φx+ y, αε),

dy
dt

= AQ1y + (I − π)X0F̃ (Φx+ y, αε),
(65)

whereB = diag{iω1,−iω1, iω2,−iω2, . . . , iωn1,−iωn1,
0, . . . , 0}.

The remaining part of deriving the normal form
by using the CMR method is similar to that in the
proof for Theorem 2 in the DDE case, and hence
the details are omitted here.

Similar to the proof of Theorem 2, we only need
to show that (i) choosing the basis for the linear
space leads to the identical linear solutions in the
center subspace; and (ii) the second-order terms u2

and Φ(0)U1
2+h2(0), u2,1 and Φ(−1)U1

2+h2(−1) are
identical for the NFDE (53), respectively.
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Actually, we can also choose ϕj(0) = pj ,
ψj(0) = Kj p

∗T
j (j = 1, 2, . . . , n1), ϕl = pl, Ψl =

Kz(p∗n1+1, . . . , p
∗
n)T (l = n1 + 1, . . . , n), where Kj =

[1 + p∗jM1(αc)e−iωjpj(1 − iωj) + p∗jN1(αc)e−iωj ×
pj]−1, assuming that Kz is invertible, given by (60).
Then, neglecting the difference in the notations
shows that the linear solution in the center subspace
obtained by using the MTS and CMR methods are
identical.

For the CMR method, the transformation h2

satisfies

Dxh2(x)(θ)Bx− ḣ2(x)(θ) +X0[ḣ2(x)(0)

+M1(αc)ḣ2(x)(−1) − Lc(h2(x))]

= [X0 − Φ(θ)Ψ(0)]f2(Φ(θ)x),

which can be written as

Dxh2(x)(θ)Bx− ḣ2(x)(θ)

= −Φ(θ)Ψ(0)f2(Φ(θ)x),

ḣ2(x)(0) +M1(αc)ḣ2(x)(−1) − Lc(h2(x))

= f2(Φ(θ)x),

(66)

where f2 represents the second-order terms in (53).
We again ignore the higher-order terms in the

expansion of parameter α, and thus the ε2-order
LDE for the MTS method becomes

D0u2 +M1(αc)D0u2,1 −N0(αc)u2 −N1(αc)u2,1

= f2(u1, u1,1). (67)

Similar to proving Theorem 2, we have

dΦ(θ)U1
2(x)

dθ

∣∣∣∣
θ=0

= −M1(αc)Φ(−1)U 1
2(x) + Lc(Φ)U 1

2

= −M1(αc)Φ(−1)U 1
2(x)

+ [N0(αc)Φ(0) +N1(αc)Φ(−1)]U 1
2

dh2(x, 0)(θ)
dθ

∣∣∣∣
θ=0

= −M1(αc)
dh2(x, 0)(θ)

dθ

∣∣∣∣
θ=−1

+N0(αc)h2(x)(0) +N1(αc)h2(x)(−1)

+ f2(Φ(0)x,Φ(−1)x).

Similarly denoting ũ2(θ) = Φ(θ)U1
2 + h2(θ) and

ũ2t(θ) = ũ2(t+ θ), we obtain

dũ2t(θ)
dθ

∣∣∣∣
θ=0

= −M1(αc)ũ2t(−1) +N0(αc)ũ2t(0)

+N1(αc)ũ2t(−1)

+ f2(Φ(0)x(t),Φ(−1)x(t))

=
dũ2(t+ θ)

dθ

∣∣∣∣
θ=0

=
dũ2(t+ θ)
d(t+ θ)

∣∣∣∣
θ=0

t+θ=T−−−−→ dũ2(T )
d(T )

∣∣∣∣
T=t

.

Equation (67) can thus be rewritten as

du2(T0, . . .)
dT0

= −M1(αc)
du2(T0 − 1, . . .)

dT0

+N0(αc)u2(T0, . . .)

+N1(αc)u2(T0 − 1, . . .)

+ f2(u1, u1,1),

which clearly shows that the corresponding second-
order solutions u2 and Φ(0)U 1

2 + h2(0), u2,1

and Φ(−1)U 1
2 + h2(−1) are identical, which is

the same as that for the DDE systems, as
expected. The remaining part of the proof is similar
to that for Theorem 2, and thus omitted for
brevity. �

Corollary 4.1. Assume that system (53) undergoes
a semisimple n1-Hopf–n2-zero (n1 ≥ 1, n2 ≥ 0,
n = n1 + n2 ≥ 1) bifurcation from the trivial equi-
librium at the critical point, and all characteristic
roots have nonpositive real part. If system (53) does
not contain second-order terms, then the normal
forms associated with the semisimple n1-Hopf–n2-
zero singularity, derived by using the multiple time
scales and center manifold reduction methods, are
identical up to third order.

Corollary 4.2. Assume that system (53) undergoes
a semisimple n1-Hopf (n1 ≥ 1) bifurcation from the
trivial equilibrium at the critical point, and all char-
acteristic roots have nonpositive real part. Then, the
normal forms associated with the semisimple n1-
Hopf singularity, derived by using the multiple time
scales and center manifold reduction methods, are
identical up to third order.
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5. Equivalence of the MTS and
CMR Methods for PFDEs

In this section, we prove the equivalence of the MTS
and CMR methods for partial functional differential
equations (PFDE).

General PFDE systems with an equilibrium
point at the origin, can be written in the form of

∂u(x, t)
∂t

= K(α)∆u(x, t) + L(α)(ut(x, t))

+F (ut(x, ·), α), t > 0,

u ∈ Rm, x ∈ Rp, (68)

where ut(x, ·) = u(x, t + θ), ∀ θ ∈ [−τ, 0], with τ
being the maximum of delays in (68).

For convenience of the proof, we first introduce
some notations taken from [Faria, 2000]. Denote
Ω ⊂ Rp an open set, X a Hilbert space of func-
tions from Ω to Rm with the inner product 〈·, ·〉,
and C = C([−τ, 0];X) (τ > 0) the Banach space
of continuous maps from [−τ, 0] to X with the sup
norm. Then, the PFDE (68) can be written in an
abstract form (i.e. in the phase space C [Faria,
2000]),

du(t)
dt

= K(α)∆u(t) + L(α)(ut)

+F (ut, α), t > 0, (69)

where domain (∆) ⊂ X, α is a parameter vector
with appropriate dimension, L is a bounded linear
operator from C to X, and F : C → X is a C∞
function (or Ck-smooth, k ≥ 2, for which the nor-
mal form can be obtained up to kth order) with
F (0, α) = DF (0, α) = 0.

Further, it is assumed that for the linearized
equation about the zero equilibrium, d

dtu(t) =
K(α)∆u(t) + L(α)(ut), the following hypotheses
hold.

(H1) K(α)∆ generates a C0 semigroup {T (t)}|t≥0

on X with |T (t)| ≤ Meωt (for some M ≥ 1,
ω ∈ R) for all t ≥ 0, and T (t) is a compact
operator for t > 0.

(H2) The eigenfunctions {βq(x)}∞q=1 of K(α)∆,
corresponding to eigenvalues {µq}∞q=1, form
an orthonormal basis for X, with limq→∞×
µq = −∞.

(H3) The subspaces Bq := {〈v(·), βq〉βq | v ∈ C} of
C satisfy L(Bq) ⊂ span{βq}.

(H4) L can be extended to a bounded linear opera-
tor from BC to X, where BC = {ψ : [−τ, 0] →
X |ψ is continuous on [−τ, 0),∃ limθ→0− ×
ψ(θ) ∈ X}, with the sup norm.

Using the decomposition of X by {βq} and
Hypothesis (H3), we obtain a sequence of “char-
acteristic” equations

λβq − µqβq − L(eλ·βq) = 0, q ∈ N, (70)

and there exists an n0 such that all solutions of (70)
satisfy Re(λ) < 0 for q > n0.

The MTS method can be used to study more
general PFDEs with multiple delays, similar to that
for DDEs and NFDEs. Here, we only consider the
PFDEs with single delay since in general the CMR
method can only be applied to consider single delay.
Thus, without loss of generality, we shall use the fol-
lowing more explicit PFDE in this section to prove
the equivalence of the MTS and CMR methods,

∂u(x, t)
∂t

= K(α)∆u(x, t) +N0(α)u(x, t)

+N1(α)u(x, t − 1) + F (ut, α). (71)

For the PFDE system (71), we have the following
result.

Theorem 4. Assume (H1)–(H4) hold, and sys-
tem (71), associated with some eigenfunctions βq,
undergoes a semisimple n1-Hopf–n2-zero (n1 ≥ 1,
n2 ≥ 0, n = n1 + n2 ≥ 1) bifurcation from the
space homogeneous trivial equilibrium at the critical
point, defined by α = αc, at which the character-
istic equation (70) has n1 pairs of purely imagi-
nary roots ±iωj (j = 1, 2, . . . , n1) and n2 zero roots,
and all other roots have negative real part. If the
second-order terms in the normal form vanish at
α = αc, then the normal forms associated with the
semisimple n1-Hopf–n2-zero singularity, derived by
using the multiple time scales and center manifold
reduction methods, are identical up to third order.

Remark 8. In Theorem 4, the eigenvalues ±iωj (j =
1, 2, . . . , n1) and zero (with multiplicity n2) can be
associated with different eigenfunctions βq, or with
a unique eigenfunction. We prove the general case
with different eigenfunctions, while in practical
applications, they are usually associated with a
unique eigenfunction (i.e. unimode oscillation).

Proof. Define the characteristic matrix ∆(λ)q of
the linearized equation of (71) as ∆c(λ)q at the
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critical point, α = αc, and denote ∆∗
c(λ)q the

adjoint matrix of ∆c(λ)q. Assume that the charac-
teristic equation (70), corresponding to the eigen-
function βq, has kq pairs of purely imaginary
eigenvalues ±iωq,1, . . . ,±iωq,kq and nq zero eigen-
values. Let pq,j (j = 1, 2, . . . , kq) and pq,l (l = kq +
1, . . . , kq + nq) be the eigenfunctions of ∆c(λ)q cor-
responding to the eigenvalues iωq,j (j = 1, 2, . . . , kq)
and 0, respectively; and p∗q,j (j = 1, 2, . . . , kq) and
p∗q,l (l = kq + 1, . . . , kq + nq) be the normalized
eigenfunctions of ∆∗

c(λ)q corresponding to the
eigenvalues −iωq,j (j = 1, 2, . . . , kq) and 0, respec-
tively, with

∑n0
q=1 kq = n1 and

∑n0
q=1 nq = n2, satis-

fying the inner product

〈p∗q,k, pq,k〉 = p∗Tq,k pq,k = 1, q = 1, 2, . . . , n0;

k = 1, 2, . . . , kq + nq. (72)

The perturbation on the parameter is taken as
the same as before: α = αc + εαε, which is substi-
tuted into K, N0 and N1 to obtain the expansions
in terms of ε:

K(α) = K(αc) + εK(1)(αε) + ε2K(2)(αε) + · · · ,

N0(α) = N0(αc) + εN
(1)
0 (αε) + ε2N

(2)
0 (αε) + · · · ,

N1(α) = N1(αc) + εN
(1)
1 (αε) + ε2N

(2)
1 (αε) + · · · ,

where K(αc), N0(αc) and N1(αc) represent the val-
ues of K, N0 and N1 evaluated at the critical point,
α = αc.

In the following, we first show the procedure
of the MTS method, and then that of the CMR
method, and finally prove the equivalence of the
normal forms obtained using the two methods.

With the MTS method, suppose the solution
of (71) is given by

u(x, t) = εu1(x, T0, T1, T2, . . .)

+ ε2u2(x, T0, T1, T2, . . .)

+ ε3u3(x, T0, T1, T2, . . .) + · · · . (73)

Thus, the derivatives with respect to t ∈ R+ and
x ∈ Rp now become

∂

∂t
=

∂

∂T0
+ ε

∂

∂T1
+ ε2

∂

∂T2
+ · · ·

= D0 + εD1 + ε2D2 + · · · ,
∆u = ε∆u1 + ε2∆u2 + ε3∆u3 + · · · .

(74)

Substituting (73), with the multiple time scales
(74), into (71) and then balancing the coefficients of
εj, j = 1, 2, . . . for the resulting equations yields a
set of ordered linear differential equations (LDEs).

For the ε1-order LDE, we have

D0u1 −K(αc)∆u1 −N0(αc)u1

−N1(αc)u1,1 = 0, (75)

where u1,1 = u1(x, T0 − 1, T1, T2, . . .). Noticing that
±iωq,j (q = 1, 2, . . . , n0; j = 1, 2, . . . , kq) and zero
(with multiplicity n2) are the eigenvalues of the
characteristic equation (70), with Hypotheses (H1)–
(H4), we can express the linear solution of (75) in
the center subspace in the form of

u1(x, T0, T1, T2, . . .)

=
n0∑

q=1

kq∑
j=1

βq(x)Gq,j(T1, T2, . . .)pq,jeiωq,jT0

+
n0∑

q=1

kq∑
j=1

βq(x)Gq,j(T1, T2, . . .)pq,je−iωq,jT0

+
n0∑

q=1

kq+nq∑
l=kq+1

βq(x)Gq,l(T1, T2, . . .)pq,l, (76)

where Gq,k = 〈p∗q,k, 〈u1|T0=0, βq〉〉, q = 1, 2, . . . , n0;
k = 1, 2, . . . , kq + nq.

Next, from the ε2-order LDE, we obtain

D0u2 −K(αc)∆u2 −N0(αc)u2 −N1(αc)u2,1

= −D1u1 +K(1)(αε)∆u1 +N
(1)
0 (αε)u1

+N
(1)
1 (αε)u1,1 −N1(αc)D1u1,1

+ f2(u1, u1,1), (77)

where u2,1 = u2(x, T0 − 1, T1, T2, . . .), and f2(u1,
u1,1) represents the ε2-order terms in (71) with
multiple time scales. Substituting solution (76)
into (77), we obtain

D0u2 −K(αc)∆u2 −N0(αc)u2 −N1(αc)u2,1

=
n0∑

q=1


 kq∑

j=1

χ
(2)
q,j e

iωq,jT0 +
kq∑

j=1

χ
(2)
q,je

−iωq,jT0

+
kq+nq∑
l=kq+1

χ
(2)
q,l + gs,0

q,2 + gu
q,2


,
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where

χ
(2)
q,j = [−βq(x)D1Gq,j +K(1)(αε)∆βq(x)Gq,j +N

(1)
0 (αε)βq(x)Gq,j +N

(1)
1 (αε)βq(x)Gq,je−iωq,j

−N1(αc)βq(x)D1Gq,je−iωq,j ]pq,j + g
s,hj

q,2 , j = 1, 2, . . . , kq,

χ
(2)
q,l = [−βq(x)D1Gq,l +K(1)(αε)∆βq(x)Gq,l +N

(1)
0 (αε)βq(x)Gq,l +N

(1)
1 (αε)βq(x)Gq,l

−N1(αc)βq(x)D1Gq,l]pq,l, l = kq + 1, . . . , kq + nq,

with g
s,hj

q,2 and gs,0
q,2, corresponding to the eigenfunctions βq(x), being the parts of f2(u1, u1,1) which

generate secular terms (associated with purely imaginary eigenvalues) and constant vector (associated
with zero eigenvalues), respectively, and gu

q,2 denotes the terms that do not produce secular terms. Fur-

ther, using the solvability conditions, 〈p∗q,j, 〈χ(2)
q,j , βq〉〉 = 0, (q = 1, 2, . . . , n0; j = 1, 2, . . . , kq) and 〈p∗q,l,

〈gs,0
q,2+

∑kq+nq

k=kq+1 χ
(2)
q,k, βq〉〉 = 0, (q = 1, 2, . . . , n0; l = kq +1, . . . , kq +nq), and noting that ∆βq(x) = µqβq(x),

we obtain D1Gq,j (j = 1, 2, . . . , kq) and (D1Gkq+1, . . . ,D1Gkq+nq)
T as follows:

D1Gq,j = Kq,j〈p∗q,j, µqK
(1)(αε)Gq,jpq,j +N

(1)
0 (αε)Gq,jpq,j +N

(1)
1 (αε)e−iωq,jpq,jGq,j + g

s,hj

q,2 〉,




D1Gq,kq+1

...

D1Gq,kq+nq


 = Kz,q




p∗q,kq+1


gs,0

q,2 +
kq+nq∑

k=kq+1

[N (1)
0 (αε) +N

(1)
1 (αε) + µqK

(1)(αε)]pq,kGq,k




...

p∗q,kq+nq


gs,0

q,2 +
kq+nq∑

k=kq+1

[N (1)
0 (αε) +N

(1)
1 (αε) + µqK

(1)(αε)]pq,kGq,k






,

where Kq,j = [1 + p∗q,jN1(αc)e−iωq,jpq,j]−1, here we assume that Kz,q is invertible, given by

Kz,q =



p∗q,kq+1(I +N1(αc))pq,kq+1 · · · p∗q,kq+1(I +N1(αc))pq,kq+nq

... · · · ...

p∗q,kq+nq
(I +N1(αc))pq,kq+1 · · · p∗q,kq+nq

(I +N1(αc))pq,kq+nq




−1

.

Note that u2 is in the form of u2 =
∑

k≥1 βk(x)ηk, where ηk is a coefficient, in terms of Gq,k, k =
1, 2, . . . , nq, to be determined. Due to the assumption that the second-order terms in the normal form
vanish at α = αc, g

s,0
q,2 = 0 and gs,hj

q,2 = 0, and thus D1Gq,j (j = 1, 2, . . . , kq) and (D1Gkq+1, . . . ,D1Gkq+nq)
T

are reduced to

D1Gq,j = Kq,j〈p∗q,j, µqK
(1)(αε)Gq,jpq,j +N

(1)
0 (αε)Gq,jpq,j +N

(1)
1 (αε)e−iωq,jpq,jGq,j〉,




D1Gq,n1+1

...

D1Gq,n


 = Kz,q




p∗q,kq+1


 kq+nq∑

k=kq+1

[N (1)
0 (αε) +N

(1)
1 (αε) + µqK

(1)(αε)]pq,kGq,k




...

p∗q,kq+nq


 kq+nq∑

k=kq+1

[N (1)
0 (αε) +N

(1)
1 (αε) + µqK

(1)(αε)]pq,kGq,k






.

(78)
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Further, from the ε3-order LDE, we similarly
obtain

D0u3 −K(αc)∆u3 −N0(αc)u3 −N1(αc)u3,1

= −D2u1 − D1u2 +K(2)(αε)∆u1

+K(1)(αε)∆u2 +N
(1)
0 (αε)u2 +N

(2)
0 (αε)u1

+N
(2)
1 (αε)u1,1 −N

(1)
1 (αε)D1u1,1

+N
(1)
1 (αε)u2,1 −N1(αc)D2u1,1

+
1
2
N1(αc)D2

1u1,1 −N1(αc)D1u2,1

+ f3(u1, u1,1, u2, u2,1), (79)

where u3,1 = u3(x, T0 − 1, T1, T2, . . .), and f3(u1,
u1,1, u2, u2,1) represents the ε3-order terms in (71).
Substituting the solutions of u1 and u2 into (79) and
neglecting the higher-order terms in the expansion
of the perturbation parameter, we have

D0u3 −K(αc)∆u3 −N0(αc)u3 −N1(αc)u3,1

=
n0∑

q=1


 kq∑

j=1

χ
(3)
q,j e

iωq,jT0 +
kq∑

j=1

χ
(3)
q,je

−iωq,jT0

+
kq+nq∑
l=kq+1

χ
(3)
q,l + gs,0

q,3 + gu
q,3


,

where

χ
(3)
q,j = [−βq(x)D2Gq,j

−N1(αc)βq(x)D2Gq,je−iωq,j ]pq,j

+ g
s,hj

q,3 , j = 1, 2, . . . , kq,

χ
(3)
q,l = [−βq(x)D2Gq,l −N1(αc)βq(x)D2Gq,l]pq,l,

l = kq + 1, . . . , kq + nq,

with gs,hj

q,3 and gs,0
q,3, corresponding to the eigenfunc-

tions βq(x), being the parts of f3(u1, u1,1, u2, u2,1)
which generate secular terms (associated with
purely imaginary eigenvalues) and constant vector
(associated with zero eigenvalues), respectively, and
gu

q,3 denotes the remaining terms. Similarly, using

the solvability conditions, 〈p∗q,j, 〈χ(3)
q,j , βq〉〉 = 0,

(q = 1, 2, . . . , n0; j = 1, 2, . . . , kq) and 〈(p∗q,kq+1, . . . ,

p∗q,kq+nq
), 〈∑kq+nq

k=kq+1 χ
(3)
q,k + gs,0

q,3, βq〉〉 = 0, (q = 1,
2, . . . , n0; l = kq + 1, . . . , kq + nq), and noting

that ∆βq(x) = µqβq(x), we obtain the deriva-
tives D2Gq,j (j = 1, 2, . . . , kq) and (D2Gn1+1, . . . ,
D2Gn)T (i.e. the normal form terms) as follows:

D2Gq,j = Kq,j〈p∗q,j, g
s,hj

q,3 〉, j = 1, 2, . . . , kq,


D2Gq,n1+1

...

D2Gq,n


 = Kz,q



p∗q,kq+1g

s,0
q,3

...

p∗q,kq+nq
gs,0

q,3


.

(80)

Finally, by using the backwards scaling, Gq,k �→
Gq,k/ε (q = 1, 2, . . . , n0; k = 1, 2, . . . , kq + nq), we
obtain the normal form up to third order for the
PFDE system (71),

Ġq = D1Gq + D2Gq, where

Gq = (Gq,1, Gq,2, . . . , Gq,kq+nq)
T, (81)

associated with the semisimple n1-Hopf–n2-zero
singularity, derived using the MTS method.

Now, we apply the CMR method to compute
the normal form of (71), restricted to the center
manifold, near the semisimple n1-Hopf–n2-zero crit-
ical point: α = αc. Let C := C([−1, 0]; R), and for
each q ∈ N, define Lq : C → R by

Lq(ψ)βq = L(ψβq).

Then, on Bq, the linear equation d
dtut = K(α)∆u+

L(α)(ut) is equivalent to the FDE on R,

ż(t) = µqz(t) + Lqzt, (82)

with the characteristic equation given by (70).
Further, for 1 ≤ q ≤ n0, define ηq by

µqψ(0) + Lqψ =
∫ 0

−1
dηq(θ)ψ(θ), ψ ∈ C,

and (·, ·)q, the adjoint bilinear form on C∗ × C,
C∗ = C([0, 1]; R), by

(α, β)q = α(0)β(0)

−
∫ 0

−1

∫ θ

0
α(ξ − θ)dηq(θ)β(ξ)dξ. (83)

Based on the adjoint operator theory, we decompose
C by Λq := {λ ∈ C : λ satisfies (70) and Reλ = 0}
to obtain

C = Pq ⊕Qq, Pq = span{Φq},
P ∗

q = span{Ψq}, (Ψq,Φq)q = I,

dimPq = dimP ∗
q := mq, Φ̇ = ΦqBq,
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where Pq is the generalized eigenspace for (82) asso-
ciated with Λq, and Bq is an mq × mq constant
matrix. Thus, C can be decomposed by Λ as

C = P ⊕Q, P = Imπ, Q = Kerπ,

where dimP =
∑n0

q=1mq = 2n1 + n2 and π := C →
P is the projection defined by πφ =

∑n0
q=1 Φq(Ψq,

〈φ(·), βq〉)qβq.
Similar to the DDE and NFDE systems, we

consider the enlarged phase space BC of continuous
functions from [−1, 0] to Cm. Thus, the elements of
BC have the form ψ = φ + X0c, with φ ∈ C and
c ∈ X. Hence, in the space BC, (71) becomes an
abstract ODE, described by

ẇ = Aw +X0F̃ (w,α), (84)

where w ∈ C, and A is defined by

A : C1 → BC,

Aw = ẇ +X0[L(αc)w

+K(α)∆w(0) − ẇ(0)]

and

F̃ (w,α) = [N0(α)w(0) +N1(α)w(−1)

−N0(αc)w(0) −N1(αc)w(−1)]

+F (w,α),

defined on C1 := {φ ∈ C : φ̇ ∈ C, φ(0) ∈ dom(∆)}.
For c ∈ X we have π(X0c) =

∑n0
q=1 ΦqΨq(0) ×

〈α, βq〉βq.
In addition, denote w =

∑n0
q=1 Φqzq(t)βq + yt,

where zq(t) = (Ψq, 〈w(t)(·), βq〉)q ∈ Rmq , for 1 ≤
q ≤ n0. Then, Eq. (84) is further decomposed into
the form:

żq = Bqzq + Ψq(0)

〈
F̃

(
n0∑

k=1

Φkzkβk + y

)
, βq

〉
,

q = 1, 2, . . . , n0,

dy
dt

= AQ1y + (I − π)X0F̃

(
n0∑

k=1

Φkzkβk + y

)
,

(85)

where Bq = diag{iωq,1,−iωq,1, iωq,2,−iωq,2, . . . ,

iωq,kq ,−iωq,kq ,

nq︷ ︸︸ ︷
0, . . . , 0}.

For convenience in the following proof, we
rewrite (85) in a simpler form by considering its

first n0 equations as a union equation in C2n1+n2 .
To achieve this, define the (2n1 + n2) × (2n1 + n2)
constant matrix B = diag(B1, . . . , Bn0), the n0 ×
(2n1 + n2) matrix Φ = diag(Φ1, . . . ,Φn0) and the
(2n1 + n2) × n0 matrix Ψ = diag(Ψ1, . . . ,Ψn0). As
a result, (85) becomes

ż = Bz + Ψ(0)




〈
F̃

( n0∑
q=1

Φqzqβq + y

)
, β1

〉

...〈
F̃

( n0∑
q=1

Φqzqβq + y

)
, βn0

〉



,

dy
dt

= AQ1y + (I − π)X0F̃


 n0∑

q=1

Φqzqβq + y


,

(86)

where z = (z1, . . . , zn0) ∈ C2n1+n2, yt ∈ Q1.
To find the normal form of system (86), we

introduce transformations into Eq. (86) to obtain

ż = Bz +
∑
j≥2

f1
j(z, y, αε),

dy
dt

= AQ1y +
∑
j≥2

f2
j (z, y, αε).

(87)

Similarly, define the operators Mj = (M 1
j ,M

2
j),

j ≥ 2, by

M1
j : VM

j (CM ) → VM
j (CM ),

(M1
jp)(z, αε) = Dzp(z, αε)Bz −Bp(z, αε),

M2
j : VM

j (Q1) ⊂ VM
j (Kerπ) → VM

j (Kerπ),

(M2
jh)(z, αε) = Dzh(z, αε)Bz −AQ1h(z, αε).

(88)

Now, suppose the above procedure has been
performed up to order k−1, with the resulting equa-
tion given in the form of

ż = Bz +
k−1∑
j=1

g1
j (z, y, αε) + f̃1

k(z, y, αε) + · · · ,

dy
dt

= AQ1yt +
k−1∑
j=1

g2
j (z, y, αε) + f̃2

k(z, y, αε) + · · · ,

(89)
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where gj = f̃j − MjUj (j = 1, 2, . . . , k − 1) with
g1 = 0. Then, the center manifold and normal form
can be obtained via a recursive procedure: comput-
ing the jth order terms (j ≥ 2) at each step, through
a transformation of variables

(z, y) = (ẑ, ŷ) + (U 1
j , U

2
j ),

with z, ẑ ∈ C2n1+n2 , yt, ŷt ∈ Q1, and U1
j and U2

j ,
defined by U1

j : C2n1+n2 → C2n1+n2 and U2
j :

C2n1+n2 → Q1, are homogeneous polynomials of
degree j in z.

Furthermore, to find the normal form restricted
to the center manifold of (89), we introduce a for-
mal change of variables: z = ẑ+ p(ẑ), y = ŷ+ h(ẑ),
into (71) to obtain the normal form,

ż = Bz +
∑
j≥2

g1
j(z, αε), (90)

where the hat has been dropped from ĝ1
j (z, αε)

for simplicity, and g1
j ’s are to be determined.

Equation (90) is the normal form of the PFDE sys-
tem (71), associated with the semisimple n1-Hopf–
n2-zero singularity, derived using the CMR method.

The remaining part of the proof is similar to
that for proving Theorem 2 in the DDE case, but
we need to show that

(i) choosing the same bases for the linear space
leads to the identical linear solutions in the cen-
ter subspace; and

(ii) the second-order solutions u2 and Φ(0)U 1
2 +

h2(0), u2,1 and Φ(−1)U1
2 +h2(−1) are identical

for the PFDE system (71), respectively, where
Φ(θ) = (Φ1(θ),Φ2(θ), . . . ,Φn0(θ)).

For convenience, we define

Hq = (pq,1, pq,1, . . . , pq,kq , pq,kq ,

pq,kq+1, . . . , pq,kq+nq),

H∗
q = (p∗q,1, p

∗
q,1, . . . , p

∗
q,kq

,

p∗q,kq
, p∗q,kq+1, . . . , p

∗
q,kq+nq

),

Ψq(s) = (ψq,1(s), ψq,1(s), . . . , ψq,kq(s),

ψq,kq(s), ψq,kq+1, . . . , ψq,kq+nq),

Gq = (Gq,1, Gq,1, . . . , Gq,kq ,

Gq,kq , Gq,kq+1, . . . , Gq,kq+nq)
T,

Υq(t) = (eiωq,1t, e−iωq,1t, eiωq,2t, e−iωq,2t, . . . ,

eiωq,kq t, e−iωq,kq t,

nq︷ ︸︸ ︷
1, . . . , 1),

(a1, a2, . . . , ap) × (b1, b2, . . . , bp)
:= (a1b1, a2b2, . . . , apbp).

With the above notations, the linear solution (76)
for the MTS method can be written as

u1 =
n0∑

q=1

(Hq × Υq(T0))Gqβq, where

Gq = 〈H∗
q, 〈u1|T0=0, βq〉〉, (91)

while the linear solution for the CMR method can
be expressed as

z(t) =
n0∑

q=1

(Φq × Υq(t))zqβq, where

zq(t) = (Ψq, 〈z|Υq(t)=Υq(0), βq〉). (92)

Thus, we can choose Φq(0) = Hq, ψq,j(0) = Kq,j p
∗T
q,j

(j = 1, 2, . . . , kq), and Ψz,q(0) = Kz,q(p∗q,kq+1, . . . ,

p∗q,kq+nq
)T, under which, by neglecting the difference

in the notations, the two inner products (72) and
(83), the two linear solutions (91) and (92) obtained
by using the MTS and CMR methods, are identical.

For the CMR method, the transformation h2

satisfies

Dzh2(z)(θ)Bz − ḣ2(z)(θ)

+X0(θ)[ḣ2(z)(0) −K(αc)∆h2(z)(0)

−Lc(h2(z))]

= [X0(θ) − Φ(θ)Ψ(0)]f2(Φ(θ)z),

which can be rewritten as

Dzh2(z)(θ)Bz − ḣ2(z)(θ)

= −Φ(θ)Ψ(0)f2(Φ(θ)z),

ḣ2(z)(0) −K(αc)∆h2(z)(0) − Lc(h2(z))

= f2(Φ(θ)z).

(93)

We again ignore the higher-order terms in the
expansion of parameter α, and can thus rewrite
Eq. (77) for the MTS method as

D0u2 −K(αc)∆u2 −N0(αc)u2 −N1(αc)u2,1

= f2(u1, u1,1). (94)
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Similar to the proof for Theorem 2, we have

dΦ(θ)U1
2(x)

dθ

∣∣∣∣
θ=0

= K(αc)∆Φ(0)U 1
2(x) + Lc(Φ)U1

2

= K(αc)∆Φ(0)U 1
2(x)

+ [N0(αc)Φ(0) +N1(αc)Φ(−1)]U 1
2,

dh2(x, 0)(θ)
dθ

∣∣∣∣
θ=0

= K(αc)∆h2(θ)|θ=0 +N0(αc)h2(x)(0)

+N1(αc)h2(x)(−1)

+ f2(Φ(0)x,Φ(−1)x).

Denoting ũ2(θ) = Φ(θ)U1
2 + h2(θ) and ũ2t(θ) =

ũ2(t+ θ), we obtain

dũ2t(θ)
dθ

∣∣∣∣
θ=0

= K(αc)ũ2t(0) +N0(αc)ũ2t(0)

+N1(αc)ũ2t(−1) + f2(Φ(0)x(t),Φ(−1)x(t))

=
dũ2(t+ θ)

dθ

∣∣∣∣
θ=0

=
dũ2(t+ θ)
d(t+ θ)

∣∣∣∣
θ=0

t+θ=T−−−−→ dũ2(T )
d(T )

∣∣∣∣
T=t

.

Equation (94) can be rewritten as

du2(T0, . . .)
dT0

= K(αc)∆u2(T0 − 1, . . .)

+N0(αc)u2(T0, . . .)

+N1(αc)u2(T0 − 1, . . .)

+ f2(u1, u1,1).

It is seen that the second-order solutions u2 and
Φ(0)U 1

2+h2(0), u2,1 and Φ(−1)U1
2+h2(−1) are iden-

tical, which is similar to that for the DDE systems,
as expected, and thus the details of the remaining
part are omitted for brevity. �

Corollary 5.1. Assume (H1)–(H4) hold, and sys-
tem (71), associated with some eigenfunctions βq,

undergoes a semisimple n1-Hopf–n2-zero (n1 ≥ 1,
n2 ≥ 0, n = n1 + n2 ≥ 1) bifurcation from the space
homogeneous trivial equilibrium at the critical point,
defined by α = αc, at which the characteristic equa-
tion (70) has n1 pairs of purely imaginary roots
±iωj (j = 1, 2, . . . , n1) and n2 zero roots, and all
other roots have negative real part. If system (71)
does not contain second-order terms, then the nor-
mal forms associated with the semisimple n1-Hopf–
n2-zero singularity, derived by using the multiple
time scales and center manifold reduction methods,
are identical up to third order.

Corollary 5.2. Assume (H1)–(H4) hold, and sys-
tem (71), associated with some eigenfunctions βq,
undergoes a semisimple n1-Hopf (n1 ≥ 1) bifurca-
tion from the space homogeneous trivial equilibrium
at the critical point, defined by α = αc, and all char-
acteristic roots have nonpositive real part. Then the
normal forms associated with the semisimple n1-
Hopf singularity, derived by using the multiple time
scales and center manifold reduction methods, are
identical up to third order.

6. Equivalence of the MTS and CMR
Methods for DDEs, NFDEs and
PFDEs with Distributed Delays

Having proved the identity of the normal forms
up to third order, derived by using the MTS and
CMR methods for the DDE, NFDE and PFDE
systems with discrete delays in previous sections,
we now turn to consider the case with distributed
delays, which not only has theoretical interests, but
also has wide applications in solving real world
problems (e.g. see [Nelson et al., 2004; Goncalves
et al., 2011; Wu, 1996]). It has been shown that
the MTS method can also be applied to study
some special DDEs with distributed delays (e.g.
see [Han & Song, 2012]). Therefore, in this sec-
tion, we will show that the MTS and CMR meth-
ods are also equivalent in deriving the normal forms
up to third order for general differential systems
with distributed delays, including the DDE, NFDE
and PFDE systems. To achieve this, without loss
of generality, we will use the following explicit gen-
eral differential equation (which includes the DDE,
NFDE and PFDE systems) with distributed delays
to prove the equivalence of the MTS and CMR
methods,
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∂

∂t
[u(x, t) +M1(α)u(x, t − 1)]

= K(α)∆u(x, t) +N0(α)u(x, t)

+N1(α)u(x, t − 1)

+W (α)
∫ +∞

0
κ(s)u(x, t − s)ds

+F (ũ, α) +G(ũ, ˙̃u, α), (95)

where ũ denotes u(x, t), u(x, t− 1) and
∫ +∞
0 κ(s)×

u(x, t− s)ds, and κ is called the delayed kernel.
Under Hypotheses (H1)–(H4) (see Sec. 5), we

obtain a sequence of “characteristic” (eigenvalue-
eigenfunction) equations of (95):[
λ+ λM1e−λ −Kµq −N0 −N1e−λ

−W

∫ +∞

0
κ(s)e−λsds

]
βq = 0, q ∈ N, (96)

and assume that there exists an n0 such that all
solutions of (96) satisfy Re(λ) < 0 for q > n0. In
particular, when K = 0, the characteristic equation
(96) becomes

det
(
λI + λM1e−λ −N0 −N1e−λ

−W

∫ +∞

0
κ(s)e−λsds

)
= 0. (97)

Obviously, the improper integral
∫ +∞
0 κ(s) ×

e−λsds exactly defines the Laplace transform. To
guarantee the existence of the transform, we
assume

(H5) The kernel κ(s) is piecewise continuous on
[0,+∞) and is of exponential order for s > S.
That is, there exist constants c, M > 0, and
S > 0 such that |κ(s)| ≤Mecs for all s > S.

Thus, under (H5),
∫ +∞
0 κ(s)e−λsds= L(κ(s))�

K(λ) exists, where L represents the Laplace oper-
ator. So, for the eigenvalues of (96) [or (97)] with

zero real part, we may define
∫ +∞
0 κ(s)e−iωjsds =

K(iω) � aj ,
∫ +∞
0 κ(s)eiωjsds = K(−iω) � bj , j = 1,

2, . . . , n1 and
∫ +∞
0 κ(s)ds = K(0) = c. Then, we

have the following result.

Theorem 5. Assume (H1)–(H5) hold, and sys-
tem (95), associated with some characteristic eigen-
functions (whose corresponding eigenvalues have
nonpositive real part), undergoes a semisimple n1-
Hopf–n2-zero (n1 ≥ 1, n2 ≥ 0, n = n1 + n2 ≥ 1)
bifurcation from the space homogeneous trivial equi-
librium at the critical point, α = αc, (in case K = 0,
Hypotheses (H1)–(H4) are not needed and the space
homogeneous trivial equilibrium becomes a trivial
equilibrium), at which the characteristic equation
(96) [(97) if K = 0] has n1 pairs of purely imagi-
nary roots ±iωj (j = 1, 2, . . . , n1) and n2 zero roots,
and all other roots have negative real part. If the
second terms in the normal form vanish at α = αc,
then the normal forms associated with the semisim-
ple n1-Hopf–n2-zero singularity, derived using the
multiple time scales and center manifold reduction
methods, are identical up to third order.

Proof. We adopt the notations used in the previous
sections. So, for the ε1-order LDE derived using the
MTS method, we have

D0u1 +M1(αc)D0u1,1 −K(αc)∆u1

−N0(αc)u1 −N1(αc)u1,1

−W (αc)
∫ +∞

0
κ(s)u1(x, t− s)ds

= 0. (98)

The linear solutions derived using the two methods
can still be expressed by (76) and (92), respec-
tively, since the characteristic equation (96) [or
(97)] is satisfied. We also choose Φq(0) = Hq,
ψq,j(0) = Kq,j p

∗T
q,j (j = 1, 2, . . . , kq), and Ψz,q(0) =

Kz,q(p∗q,kq+1, . . . , p
∗
q,kq+nq

)T, where Kq,j = [1 +
p∗q,jM1(αc)e−iωq,jpq,j(1 − iωj) + p∗q,jN1(αc) ×
e−iωq,jpq,j]−1 and

Kz,q =



p∗q,kq+1(I +M1(αc) +N1(αc))pq,kq+1 · · · p∗q,kq+1(I +M1(αc) +N1(αc))pkq+nq

... · · · ...

p∗q,kq+nq
(I +M1(αc) +N1(αc))pq,kq+1 · · · p∗q,kq+nq

(I +M1(αc) +N1(αc))pq,kq+nq




−1

,

under which, the two linear solutions in the center subspace are identical provided that the difference in
the notations is ignored.
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Next, we neglect the high-order terms in the expansion of parameter α, and thus the second-order
terms u2 and h2 in the two methods need to satisfy the following equations:

D0u2 +M1(αc)D0u2,1 −K(αc)∆u2 −N0(αc)u2 −N1(αc)u2,1 −W (αc)
∫ +∞

0
κ(s)u2(x, t− s)ds

= f2

(
u1, u1,1,

∫ +∞

0
κ(s)u1(x, t− s)ds

)
,

ḣ2(z)(0) +M1ḣ2(z)(−1) −K(αc)∆h2(z) − Lc(h2(z)(θ)) −W (αc)
∫ +∞

0
κ(s)h2(z)(x, t − s)ds

= f2(Φ(θ)z).

The key step here is how to deal with the integral term with the distributed delay involved in the
expression on the right-hand side of the equations. Actually, under (H5), this integral with distributed
delay can be expressed, for example, using (76) in the MTS method as∫ +∞

0
κ(s)u1(x, T0 − s)ds

=
n0∑

q=1

kq∑
j=1

βq(x)Gq,j(T1, T2, . . .)pq,jeiωq,jT0

∫ +∞

0
κ(s)e−iωjsds

+
n0∑

q=1

kq∑
j=1

βq(x)Gq,j(T1, T2, . . .)pq,je−iωq,jT0

∫ +∞

0
κ(s)eiωjsds

+
n0∑

q=1

kq+nq∑
l=kq+1

βq(x)Gq,l(T1, T2, . . .)pq,l

∫ +∞

0
κ(s)ds

=
n0∑

q=1

kq∑
j=1

βq(x)Gq,j(T1, T2, . . .)pq,jeiωq,jT0aj

+
n0∑

q=1

kq∑
j=1

βq(x)Gq,j(T1, T2, . . .)pq,je−iωq,jT0bj

+
n0∑

q=1

kq+nq∑
l=kq+1

βq(x)Gq,l(T1, T2, . . .)pq,lc,

which has got rid of the integral form in the expres-
sion. Similarly, this can also be done for the CMR
method. Therefore, we can follow the procedures
used for the DDE, NFDE and PFDE systems to
obtain the same conclusion. So the detailed deriva-
tions (similar to that in the previous sections) are
omitted here. Hence, the conclusion of Theorem 5
holds, that is, the normal forms associated with
the semisimple n1-Hopf–n2-zero bifurcation of (95),
derived using the MTS and CMR methods, are
identical up to third order provided that the same

basis for the normal forms is chosen for the two
methods. �

Corollary 6.1. Assume (H1)–(H5) hold, and sys-
tem (95), associated with some system eigen-
functions (whose corresponding eigenvalues have
nonpositive real part), undergoes a semisimple n1-
Hopf–n2-zero (n1 ≥ 1, n2 ≥ 0, n = n1 + n2 ≥ 1)
bifurcation from the space homogeneous trivial equi-
librium at the critical point, α = αc, (in case K = 0,
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Hypotheses (H1)–(H4) are not needed and the space
homogeneous trivial equilibrium becomes a trivial
equilibrium), at which the characteristic equation
(96) [(97) if K = 0] has n1 pairs of purely imagi-
nary roots ±iωj (j = 1, 2, . . . , n1) and n2 zero roots,
and all other roots have negative real part. If sys-
tem (95) does not contain second-order terms, then
the normal forms associated with the semisimple n1-
Hopf–n2-zero singularity, derived using the multiple
time scales and center manifold reduction methods,
are identical up to third order.

Corollary 6.2. Assume (H1)–(H5) hold, and sys-
tem (95), associated with some system eigen-
functions (whose corresponding eigenvalues have
nonpositive real part), undergoes a semisimple n1-
Hopf (n1 ≥ 1) bifurcation from the space homo-
geneous trivial equilibrium at the critical point,
α = αc, (in case K = 0, Hypotheses (H1)–(H4)
are not needed and the space homogeneous trivial
equilibrium becomes a trivial equilibrium), and all
characteristic roots have nonpositive real part, then
the normal forms associated with the semisimple
n1-Hopf singularity, derived using the multiple time
scales and center manifold reduction methods, are
identical up to third order.

In many applications, the following Γ-distri-
bution delay kernel is often used

κ(s) = βñ+1 s
ñe−βs

ñ!
, s ∈ (0,+∞), ñ = 0, 1, . . . .

Two special cases, ñ = 0 and ñ = 1, are called
weak delay kernel and strong delay kernel, respec-
tively. Obviously, hypothesis (H5) holds for the
Γ-distribution delay kernel. Thus, a corollary can
be directly obtained from Theorem 5 for the weak
and strong delay kernels of the Γ-distribution delay
kernel, which are most interesting and very useful
in applications.

Corollary 6.3. Assume (H1)–(H4) hold and κ is
the Γ-distribution delay kernel with either ñ = 0
or ñ = 1, and system (95), associated with some
system eigenfunctions (whose corresponding eigen-
values have nonpositive real part), undergoes a
semisimple n1-Hopf–n2-zero (n1 ≥ 1, n2 ≥ 0, n =
n1 + n2 ≥ 1) bifurcation from the space homo-
geneous trivial equilibrium at the critical point,
α = αc, (in case K = 0, Hypotheses (H1)–(H4)
are not needed and the space homogeneous trivial
equilibrium becomes a trivial equilibrium), at which

the characteristic equation (96) [(97) if K = 0]
has n1 pairs of purely imaginary roots ±iωj (j =
1, 2, . . . , n1) and n2 zero roots, and all other roots
have negative real part. If one of the following con-
ditions holds:

(1) the second-order terms in the normal form
vanish at α = αc;

(2) system (95) do not contain second-order terms;
(3) n2 = 0,

then the normal forms up to third order, derived
using the multiple time scales and center manifold
reduction methods, are identical.

Proof. Here, we give a different and independent
proof, by first transforming system (95) to an equiv-
alent differential system without distributed delays,
and then directly applying Theorems 1–5.

Case 1. Weak kernel (ñ = 0), i.e. κ0(s) = βe−βs.
Let v(x, t) =

∫ +∞
0 κ0(s)u(x, t − s)ds. Then,

introducing the transformation t− s = ŝ and drop-
ping the hat, we have v(x, t) =

∫ t
−∞ κ(t − s) ×

u(x, t)ds, and thus obtain v̇(x, t)(t) = βu(x, t) −
βv(x, t). As a result, Eq. (95), corresponding to the
weak delay kernel, is equivalent to the following
differential system without distributed delays,

∂

∂t
[u(x, t) +M1u(x, t− 1)]

= K(α)∆u(x, t) +N0(α)u(x, t)

+N1(α)u(x, t − 1) +W (α)v(x, t)

+F (ũ, α) +G(ũ, ˙̃u, α),

v̇(t) = βu(t) − βv(t),

(99)

where ũ denotes u(x, t), u(x, t− 1) and v(x, t).

Case 2. Strong kernel (ñ = 1), i.e. κ1(s) = β2se−βs.
Similarly, let v1(x, t) =

∫ +∞
0 κ(s)u(x, t−s)ds =∫ t

−∞ κ(t − s)u(x, t)ds and v2(x, t) =
∫ t
−∞ β2 ×

e−β(t−s)u(x, t)ds. Then, we obtain v̇1(x, t) = v2(x,
t) − βv1(x, t) and v̇2(x, t) = β2u(x, t) − βv2(x, t),
under which Eq. (95), corresponding to the strong
delay kernel, is equivalent to the following differen-
tial system without distributed delays,

∂

∂t
[u(x, t) +M1u(x, t− 1)]

= K(α)∆u(x, t) +N0(α)u(x, t)
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+N1(α)u(x, t − 1) +W (α)v1(x, t)

+F (ũ, α) +G′(ũ, ˙̃u, α),

v̇1(x, t) = v2(x, t) − βv1(x, t),

v̇2(x, t) = β2u(x, t) − βv2(x, t),

(100)

where ũ denotes u(x, t), u(x, t − 1), v1(x, t) and
v2(x, t).

Now we directly apply Theorems 1–5 to sys-
tems (99) and (100), which only contain discrete
delays, to complete the proof. �

7. Applications

In this section, we present a number of practical
examples to demonstrate the application of the the-
oretical results obtained in previous sections. For
the ODE systems, there are many articles in the lit-
erature which compare the MTS method with the
CMR method in computing normal forms (e.g. see
[Han & Yu, 2012]). In the following subsections, dif-
ferent types of differential equations (including the
DDE, NFDE and PFDE systems) with single delay,
multiple delays, or distributed delays are given to
show how the MTS and CMR methods are used
to derive the normal forms for a given system when
either no delay is treated as perturbation parameter
or at least one of the delays is chosen as a pertur-
bation parameter.

7.1. Single delay : The van der
Pol–Duffing equation

First, consider the van der Pol–Duffing equation
with a nonlinear damping [Wei & Jiang, 2005]:

ẍ+ ε(x2 − 1)ẋ+ x = f(x), (ε > 0), (101)

where the forcing function f is a delayed feedback
of position x. For different f , the equilibrium at the
origin may exhibit a diversity of bifurcations, such
as Hopf bifurcation [Wei & Jiang, 2005], Hopf-zero
bifurcation [Wang & Jiang, 2010], and double-Hopf
bifurcation [Ma et al., 2008; Ding et al., 2013a].
For these three types of bifurcations, we use Theo-
rem 2 (or Corollaries 2.1 or 2.2) and the formulas
obtained in Sec. 3 to show the equivalence of normal
forms derived by using the MTS and CMR meth-
ods. Note that for this example, both the MTS and
CMR methods are applicable.

7.1.1. Case 1 : Hopf bifurcation
(n1 = 1, n2 = 0)

With f = εkx(t − τ) [Wei & Jiang, 2005], system
(101) does not contain quadratic terms. Suppose the
system undergoes a Hopf bifurcation from the triv-
ial equilibrium at the critical point, τ = τc = τ±j .
The system formulation and the derivation for the
critical time delays τ±j (j = 0, 1, 2, . . .) can be found
in [Wei & Jiang, 2005], and thus the detailed linear
analysis is omitted here.

First, we assume that (101) undergoes a Hopf
bifurcation at the critical point τ = τc, and that
the characteristic equation of the linearized part
of (101) has a pair of purely imaginary roots ±iω,
and the remaining roots have negative real part. We
take perturbation as τ = τc + ετε. Let ẋ = y, and
rescale the time delay by t �→ t/τ . Then, (101) can
be rewritten as

ẋ = τy,

ẏ = −τx+ εkτx(t− 1) − ετ(x2 − 1)y.
(102)

According to the MTS method, we have

N0 = τ

[
0 1

−1 ε

]
, N1 = τ

[
0 0

εk 0

]

and

p1 =

(
1

iω

)
, p∗1 =




ε+ iω
ε+ 2iω

− 1
ε+ 2iω


.

The linear solution of (102) can be expressed in the
form of

u1 = Gp1eiωτcT0 +Gp1e−iωτcT0 .

By Eq. (32), we obtain

D1G =
(1 + ω2 − εke−iωτc)τεG
ε− 2iω − τcεke−iωτc

.

Thus, the particular solution of Eq. (29) is u2 = 0.
Then, by Eq. (35) we have

D2G =
τciωεG2G

ε− 2iω − τcεke−iωτc
.

Therefore, it follows from Eq. (36) that the nor-
mal form of Hopf bifurcation derived by the MTS
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method is

Ġ =
(1 + ω2 − εke−iωτc)τεG
ε− 2iω − τcεke−iωτc

+
τciωεG2G

ε− 2iω − τcεke−iωτc
+ · · · . (103)

Next, for the CMR method we choose

Φ(θ) =

[
eiωτcθ e−iωτcθ

iωeiωτcθ −iωe−iωτcθ

]
and

Ψ(s) =

[
d(ε− iω)e−iωτcs −de−iωτcs

d(ε+ iω)eiωτcs −deiωτcs

]
,

where d = (ε− 2iω − τcεke−iωτc)−1. Then, by using
the Eqs. (40)–(44), we obtain the same normal form
(103) associated with the Hopf bifurcation.

7.1.2. Case 2 : Hopf-zero bifurcation
(n1 = n2 = 1)

Assume f(x) = εg(x(t− τ)) [Wang & Jiang, 2010],
where g ∈ C3 is an odd function, satisfying

g(0) = g′′(0) = 0, g′(0) = k �= 0,

g′′′(0) = 6b �= 0,

showing that system (101) does not contain
quadratic terms. When the parameters satisfy

k =
1
ε
,

τ = τ0 =




1√
2 − ε2

[π − arcsin(ε
√

2 − ε2)],

for 0 < ε < 1,

1√
2 − ε2

arcsin(ε
√

2 − ε2),

for 1 ≤ ε <
√

2,

the characteristic equation of system (101) with
f(x) = εg(x(t − τ)) has a single zero and a pair
of purely imaginary roots ±iω0 with ω0 =

√
2 − ε2,

with the remaining roots having negative real part
(see [Wang & Jiang, 2010]). Again, let ẋ = y, and
rescale the time delay by t �→ t/τ . Then, with
f(x) = εg(x(t − τ)), Eq. (101) becomes

ẋ = τy(t),

ẏ = −τx(t) + ετ(kx(t− 1) + bx3(t− 1))

− ετ(x2(t) − 1)y(t) + · · · .
(104)

Similarly, for the MTS method, we choose

p1 =

(
1

iω0

)
, p2 =

(
1

0

)
,

p∗1 =




ε+ iω0

ε+ 2iω0

− 1
ε+ 2iω0


, p∗2 =


 1

−1
ε


.

Thus, the linear solution of system (104) can be
expressed in the form of

u1 = G1p1eiω0τ0T0 +G1p1e−iω0τ0T0 +G2p2.

It then follows from the Eqs. (32), (35) and (36)
that the normal form of system (104) associated
with the Hopf-zero bifurcation, obtained using the
MTS method, is given by

Ġ1 = m(iε+ 2ω0)ω0µ2G1

−mετ0e−iω0τ0µ1G1

−mετ0(be−iω0τ0 − iω0)

× (G1G
2
2 +G2

1G1) + · · · ,

Ġ2 = − ετ0
ε− τ0

µ1G2 − bετ0
ε− τ0

× (G2
2 + 6G2G1G1) + · · · ,

(105)

where m = (ε− 2iω0 − τ0e−iωτc)−1, which is identi-
cal to that derived by using the CMR method (see
[Wang & Jiang, 2010]).

7.1.3. Case 3 : Double Hopf bifurcation
(n1 = 2, n2 = 0)

A modified system of (101), given by

ẍ(t) + ω2
0x(t) − [b− γx2(t)]ẋ(t) + βx3(t)

= A[x(t− τ) − x(t)], (106)

which again does not contain quadratic terms, has
been considered by Ding et al. [2013a] to show that
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Eq. (106) may undergo a nonresonant double Hopf bifurcation at the critical point: (A, τ) = (Ac, τc), where
τc is given by

τc = τ
(j)
1 = τ

(l)
2 , l, j = 0, 1, 2, . . . ,

with

τ
(j)
1,2 =




1
ω1,2

[
arccos

(
1 +

ω2
0 − ω2

1,2

Ac

)
+ 2jπ

]
, for Ac > 0,

1
ω1,2

[
2π − arccos

(
1 +

ω2
0 − ω2

1,2

Ac

)
+ 2jπ

]
, for Ac < 0,

where j = 0, 1, 2, . . ., and

ω1,2 =

√
2Ac + 2ω2

0 − b2 ±
√

(b2 − 2ω2
0 − 2Ac)2 − 4(ω4

0 + 2Acω
2
0)

2
,

and the corresponding Ac is then determined by
τ

(j)
1 = τ

(l)
2 , l, j = 0, 1, 2, . . . .

We assume that system (106) undergoes a non-
resonant double-Hopf bifurcation at the critical
point: (A, τ) = (Ac, τc), and the characteristic equa-
tion of the linearized system of (106) has two pairs
of purely imaginary roots ±iω1 and ±iω2, with the
remaining roots having negative real part. We take
perturbations as (A, τ) = (Ac, τc) + ε(Aε, τε). Intro-
ducing ẋ = y and rescaling t �→ t/τ into Eq. (106)
yields

ẋ = τy(t),

ẏ = bτy(t) − τω2
0x(t) +Aτ [x(t− 1) − x(t)]

− γτx2(t)y(t) − βτx3(t).

(107)

With the MTS method, we have

N0 = τ

[
0 1

−ω2
0 −A b

]
, N1 = τ

[
0 0

A 0

]
,

and

p1 =

(
1

iω1

)
, p2 =

(
1

iω2

)
,

p∗1 =




b+ iω1

b+ 2iω1

− 1
ε+ 2iω1


, p∗2 =




b+ iω2

b+ 2iω2

− 1
ε+ 2iω2


.

The linear solution of system (107) can be expressed
as

u1 = G1p1eiω1τcT0 +G1p1e−iω1τcT0

+G2p2eiω2τcT0 +G2p2e−iω2τcT0.

By using the formulas (32), (35) and (36), we obtain
the normal form of Eq. (106) by using the MTS
method, associated with the double Hopf bifurca-
tion, as

Ġ1 = −g1Aετc(e−iω1τc − 1)G1 + g1[ω2
1 + ω2

0 −Ac(e−iω1τc − 1)]τεG1

+ g1τc(iω1γ + 3β)G2
1G1 + 2g1τc(iω1γ + 3β)G1G2G2 + · · · ,

Ġ2 = −g2Aετc(e−iω2τc − 1)G2 + g2[ω2
2 + ω2

0 −Ac(e−iω2τc − 1)]τεG2

+ g2τc(iω2γ + 3β)G2
2G2 + 2g2τc(iω2γ + 3β)G1G1G2 + · · · ,

(108)

where gj = (b− 2iωj −Acτce
−iωjτc)−1, j = 1, 2.

Next, for the CMR method we choose

Φ(θ) =

[
eiω1τcθ e−iω1τcθ eiω2τcθ e−iω2τcθ

iω1eiω1τcθ −iω1e−iω1τcθ iω2eiω2τcθ −iω2eiω2τcθ

]
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and

Ψ(s) =



g1(b− iω1)e−iω1τcs −g1e−iω1τcs

g1(b+ iω1)eiω1τcs −g1e
iω1τcs

g2(b− iω2)e−iω2τcs −g2e−iω2τcs

g2(b+ iω2)eiω2τcs −g2e
iω2τcs


,

where gj = (b − 2iωj − Acτce−iωjτc)−1, j = 1, 2.
Then, applying the formulas (40)–(44) yields the
same normal form given in (108). The detailed
derivation for the normal form by using the CMR
method can be found in [Ding et al., 2013a].

7.2. Multiple delays: A recurrent
neural network model

In this subsection, we consider a recurrent neu-
ral network model with four time delays and use
the MTS method to find the normal form of this
model [Ding et al., 2013c]. The MTS method can
be directly extended to consider such cases, while
the CMR method has difficulty to deal with if at
least one of the delays is treated as a perturbation
parameter. This model is described by the following
DDEs:

ẋ1(t) = −x1(t) + f(x2(t− τ̃2)),

ẋ2(t) = −x2(t) + u(t),

ẋ3(t) = −x3(t) + af (x1(t− τ̃1))

+ bf (x2(t− τ̃3)),

y(t) = f(x3(t− τ̃4)),

(109)

where xi(t) (i = 1, 2, 3) is the state of the ith neu-
ron, a and b are the connection weights, τ̃ ′js (j =
1, 2, 3, 4) are non-negative time delays. Here, u(t) =
y(t), u(t) is the input, and y(t) the output. The trig-
gering nonlinear function of the neurons takes the
hyperbolic tangent function, i.e. f(·) = tanh(·).

For simplicity, let u1(t) = x1(t), u2(t) = x2(t−
τ̃2) and u3(t) = x3(t− τ̃2 − τ̃4). Then, system (109)
can be transformed into the following equations
with only two delays:

u̇1(t) = −u1(t) + f(u2(t)),

u̇2(t) = −u2(t) + f(u3(t)),

u̇3(t) = −u3(t) + af (u1(t− τ1))

+ bf (u2(t− τ2)),

(110)

where τ1 = τ̃1 + τ̃2 + τ̃4 and τ2 = τ̃3 + τ̃4.

Under certain conditions, system (110) may
exhibit different types of bifurcations, such as
fixed point bifurcation, Hopf bifurcation, Hopf-zero
bifurcation, and nonresonant and resonant double-
Hopf bifurcations. Here, we consider Hopf-zero and
double-Hopf bifurcations, and take at least one of
the delays as perturbation parameter. Thus, the
CMR method cannot be applied here. For our pur-
pose, we will omit the detailed linear analysis, but
focus on the normal form derivation by using the
MTS method.

The Taylor expansion of Eq. (110) truncated at
the cubic order terms is as follows:

u̇(t) = N0u(t) +N1u(t− τ1) +N2u(t− τ2)

+ f(u(t), u(t− τ1), u(t− τ2)), (111)

where

u(t) =



u1(t)

u2(t)

u3(t)


, N0 =



−1 1 0

0 −1 1

0 0 −1


,

N1 = a




0 0 0

0 0 0

1 0 0


, N2 = b




0 0 0

0 0 0

0 1 0




and

f(u(t), u(t− τ1), u(t − τ2))

=




−1
3
u3

2(t)

−1
3
u3

3(t)

−a
3
u3

1(t− τ1) − b

3
u3

2(t− τ2)



,

which does not contain quadratic terms.

7.2.1. Case 1 : Hopf-zero bifurcation
(n1 = n2 = 1)

We treat the connection weight a and the time delay
τ2 as two bifurcation parameters. Suppose system
(110) undergoes a Hopf-zero bifurcation from the
trivial equilibrium at the critical point: (a, τ2) =
(ac, τ2c), and the characteristic equation of the lin-
earized system, u̇(t) = Lc(u(t), u(t− τ1), u(t− τ2c)),
has a pair of purely imaginary roots ±iω and a zero
root, and other roots have negative real part. By
a simple calculation, we obtain the eigenfunctions
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at the critical point, associated with the Hopf-zero
bifurcation, as follows:

p1 = (1, 1 + iω, (1 + iω)2)T,

p2 = (1, 1, 1)T,

p∗1 =
(

aceiωτ1

2(1 − iω)3 + aceiωτ1
,

(1 − iω)2

2(1 − iω)3 + aceiωτ1
,

1 − iω
2(1 − iω)3 + aceiωτ1

)T

,

p∗2 =
(

ac

ac + 2
,

1
ac + 2

,
1

ac + 2

)T

.

(112)

The linear solution of system (110), associated with
the Hopf-zero bifurcation, can be expressed as

u1 = G1p1eiωT0 +G1p1e−iωT0 +G2p2, (113)

where pj, j = 1, 2, are given in Eq. (112).
By using the MTS method, we obtain the fol-

lowing normal form up to third-order terms asso-
ciated with the Hopf-zero critical point: (a, τ2) =
(ac, τ2c),

Ġ1 = δ1G1 + δ2G
2
1G1 + δ3G1G

2
2 + · · · ,

Ġ2 = δ4G2 + δ5G
3
2 + δ6G1G1G2 + · · · ,

(114)

where

δ1 =
(1 + iω)e−iωτ1aε − i(1 + iω)2bτ2εωe−iωτ2c

2(1 + iω)3 + ace−iωτ1 + acτ1e−iωτ1(1 + iω) + bτ2ce−iωτ2c(1 + iω)2
,

δ2 = − (1 + iω)5(1 − iω) + (1 + iω)6(1 − iω)2 + ace−iωτ1(1 + iω)
2(1 + iω)3 + ace−iωτ1 + acτ1e−iωτ1(1 + iω) + bτ2ce−iωτ2c(1 + iω)2

,

δ3 = − 2ac(1 + iω)e−iωτ1 + (1 + iω)4 + b(1 + iω)2e−iωτ2c

2(1 + iω)3 + ace−iωτ1 + acτ1e−iωτ1(1 + iω) + bτ2ce−iωτ2c(1 + iω)2
,

δ4 =
aε

ac + 2 + acτ1 + bτ2c
,

δ5 = − 2ac + 1 + b

3(ac + 2 + acτ1 + bτ2c)
,

δ6 = −2[ac(1 + ω2) + (1 + ω2)2 + ac + b(1 + ω2)]
ac + 2 + acτ1 + bτ2c

,

(115)

in which aε = a− ac, τ2ε = τ2 − τ2c.

7.2.2. Case 2 : Nonresonant double-Hopf
bifurcation (n1 = 2, n2 = 0)

Next, we consider a double-Hopf bifurcation and
treat both time delays τ1 and τ2 as bifurcation
parameters. Suppose system (110) undergoes a non-
resonant double-Hopf bifurcation from the trivial
equilibrium at the critical point: (τ1, τ2) = (τ1c, τ2c),
and the characteristic equation of the linearized
system, u̇(t) = Lc(u(t), u(t − τ1c), u(t − τ2c)), has
two pairs of purely imaginary roots ±iω1 and ±iω2,
with the ratio ω1

ω2
being an irrational number, and

other roots have negative real part. With a sim-
ple calculation, we obtain the eigenfunctions associ-
ated with the nonresonant double-Hopf bifurcation
as follows:

pj = (1, 1 + iωj, (1 + iωj)2)T,

p∗j =
(

aeiωjτ1c

2(1 − iωj)3 + aeiωjτ1c
,

(1 − iωj)2

2(1 − iωj)3 + aeiωjτ1c
,

1 − iωj

2(1 − iωj)3 + aeiωjτ1c

)T

, j = 1, 2.

(116)

The linear solution of system (110), associated with
the nonresonant double-Hopf bifurcation, can be
written in the form of

u1 = G1p1eiω1T0 +G1p1e−iω1T0

+G2p2eiω2T0 +G2p2e−iω2T0 , (117)
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where pj , j = 1, 2, are given in Eq. (116). Then, the normal form up to cubic order, associated with the
nonresonant double-Hopf bifurcation, is given by

Ġ1 = δ1G1 + δ3G
2
1G1 + δ5G1G2G2 + · · · , Ġ2 = δ2G2 + δ4G

2
2G2 + δ6G1G1G2 + · · · , (118)

where

δj = − iωj(1 + iωj)e−iωjτ1caτ1ε + i(1 + iωj)2bτ2εωje−iωjτ2c

2(1 + iωj)3 + ae−iωjτ1c + aτ1ce−iωjτ1c(1 + iωj) + bτ2ce−iωjτ2c(1 + iωj)2
, j = 1, 2,

δ3 = − (1 + iω1)4(1 + ω2
1)(2 + ω2

1) + a(1 + iω1)e−iω1τ1c

2(1 + iω1)3 + ae−iω1τ1c + aτ1ce−iω1τ1c(1 + iω1) + bτ2ce−iω1τ2c(1 + iω1)2
,

δ4 = − (1 + iω2)4(1 + ω2
2)(2 + ω2

2) + a(1 + iω2)e−iω2τ1c

2(1 + iω2)3 + ae−iω2τ1c + aτ1ce−iω2τ1c(1 + iω2) + bτ2ce−iω2τ2c(1 + iω2)2
,

δ5 = − 2(1 + iω1)4(1 + ω2
2)(2 + ω2

2) + 2a(1 + iω1)e−iω1τ1c

2(1 + iω1)3 + ae−iω1τ1c + aτ1ce−iω1τ1c(1 + iω1) + bτ2ce−iω1τ2c(1 + iω1)2
,

δ6 = − 2(1 + iω2)4(1 + ω2
1)(2 + ω2

1) + 2a(1 + iω2)e−iω2τ1c

2(1 + iω2)3 + ae−iω2τ1c + aτ1ce−iω2τ1c(1 + iω2) + bτ2ce−iω2τ2c(1 + iω2)2
,

(119)

with τjε = τj − τjc, j = 1, 2.

7.2.3. Case 3 : 1:3 resonant double-Hopf
bifurcation (n1 = 2, n2 = 0)

Now, for system (110), we consider a 1:3 resonant
double-Hopf bifurcation and again treat the time
delays τ1 and τ2 as two bifurcation parameters.
Suppose system (110) undergoes a resonant double-
Hopf bifurcation from the trivial equilibrium at
the critical point: (τ1, τ2) = (τ1c, τ2c), and the
characteristic equation of the linearized system,
u̇(t) = Lc(u(t), u(t − τ1c), u(t− τ2c)), has two pairs
of purely imaginary roots ±iω1 and ±iω2, with
ω1
ω2

= 1
3 , and other roots have negative real part.

Then, the linear solution of system (110), associ-
ated with the 1:3 resonant double Hopf bifurcation,
can be expressed as

u1 = G1p1eiω0T0 +G1p1e−iω0T0

+G2p2e3iω0T0 +G2p2e−3iω0T0 , (120)

where pj, j = 1, 2, are given in Eq. (116) with
ω1 = ω0 and ω2 = 3ω0.

By using the MTS method, we obtain the nor-
mal form up to cubic order, associated with the 1:3
resonant double-Hopf bifurcation, given by

Ġ1 = δ1G1 + δ2G
2
1G1 + δ3G1G2G2

+ δ4G
2
1G2 + · · · ,

Ġ2 = δ5G2 + δ6G
2
2G2 + δ7G1G1G2

+ δ8G
3
1 + · · · ,

(121)

where

δ1 = − iω0(1 + iω0)e−iω0τ1caτ1ε + i(1 + iω0)2bτ2εω0e−iω0τ2c

2(1 + iω0)3 + ae−iω0τ1c + aτ1ce−iω0τ1c(1 + iω0) + bτ2ce−iω0τ2c(1 + iω0)2
,

δ2 = − (1 + iω0)4(1 + ω2
0)(2 + ω2

0) + a(1 + iω0)e−iω0τ1c

2(1 + iω0)3 + ae−iω0τ1c + aτ1ce−iω0τ1c(1 + iω0) + bτ2ce−iω0τ2c(1 + iω0)2
,

δ3 = − 2(1 + iω0)4(1 + 9ω2
0)(2 + 9ω2

0) + 2a(1 + iω0)e−iω0τ1c

2(1 + iω0)3 + ae−iω0τ1c + aτ1ce−iω0τ1c(1 + iω0) + bτ2ce−iω0τ2c(1 + iω0)2
,

δ4 = −(1 − iω0)2(1 + 3iω0)(1 + iω0)3 + (1 + iω0)2(1 − iω0)4(1 + 3iω0)2 + a(1 + iω0)e−iω0τ1c

2(1 + iω0)3 + ae−iω0τ1c + aτ1ce−iω0τ1c(1 + iω0) + bτ2ce−iω0τ2c(1 + iω0)2
,
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δ5 = − 3iω0(1 + 3iω0)e−3iω0τ1caτ1ε + 3i(1 + 3iω0)2bτ2εω0e−3iω0τ2c

2(1 + 3iω0)3 + ae−3iω0τ1c + aτ1ce−3iω0τ1c(1 + 3iω0) + bτ2ce−3iω0τ2c(1 + 3iω0)2
,

δ6 = − (1 + 3iω0)4(1 + 9ω2
0)(2 + 9ω2

0) + a(1 + 3iω0)e−3iω0τ1c

2(1 + 3iω0)3 + ae−3iω0τ1c + aτ1ce−3iω0τ1c(1 + 3iω0) + bτ2ce−3iω0τ2c(1 + 3iω0)2
,

δ7 = − 2(1 + 3iω0)4(1 + ω2
0)(2 + ω2

0) + 2a(1 + 3iω0)e−3iω0τ1c

2(1 + 3iω0)3 + ae−3iω0τ1c + aτ1ce−3iω0τ1c(1 + 3iω0) + bτ2ce−3iω0τ2c(1 + 3iω0)2
,

δ8 = − (1 + iω0)3(1 + 3iω0)3 + (1 + 3iω0)2(1 + iω0)6 + a(1 + 3iω0)e−3iω0τ1c

3[2(1 + 3iω0)3 + ae−3iω0τ1c + aτ1ce−3iω0τ1c(1 + 3iω0) + bτ2ce−3iω0τ2c(1 + 3iω0)2]
,

(122)

in which τjε = τj − τjc, j = 1, 2.

7.3. An NFDE example

In this subsection, we consider a container crane model with a delayed position feedback [Ding et al.,
2013b] to illustrate the application of Theorem 3 (or Corollary 3.1 or 3.2). The equation of the model is
described by

φ̈(t) + α1φ(t) + 2µφ̇(t) + kφ̈(t− τ)

= −εα3φ
3(t) − εα4φ(t)φ̇2(t) − εα4φ

2(t)φ̈(t) − εkφ(t− τ)φ̇2(t− τ)

− εkα5φ
2φ̈(t− τ) − 1

2
εkφ2(t− τ)φ̈(t− τ), (123)

where φ is the oscillating angle, τ the time delay, µ the inherent damping coefficient, k = − k̂
b−aR , in which

k̂ is the feedback gain (here, we also call k the feedback gain), ε is a small dimensionless parameter and
α′

is (i = 1, 3, 4, 5) are known constants, given by

α1 =
gα̂1

4b(b− aR)2
, α3 =

4gα̂3

(b− aR)2
, α4 =

α̂2
1 + 96(b − aR)α̂5

16b2(b− aR)2
, α5 =

3α̂5

b− aR
,

with

a =
d− c

c
, b =

√
L2 − 1

4
a2c2, α̂1 = 4b2 + 4a2bR+ a2(1 + a)c2,

α̂3 =
16b4 + 16a2(8 + 12a+ 3a2)b3R+ 4a2(2 + 14a+ 15a2 + 3a2)b2c2 + 3a4(1 + a)2c4

96b3
,

α̂5 =
4b2 + 4a(2 + 3a)bR + 3a2(1 + a)c2

8b
.

It is seen that system (123) has cubic nonlinearity.
Let φ(t) = v1(t) and φ̇(t) = v2(t). Then, rescale vi → vi/

√
ε (i = 1, 2) and t �→ t/τ , and thus system

(123) can be rewritten in the form of (53) with

u(t) =

(
v1(t)

v2(t)

)
, M1 =

(
0 0

0 k

)
, N0 = τc

(
0 1

−α1 −2µ

)
, N1 =

(
0 0

0 0

)
,

F (ut) = τ

(
0

−α3v
3
1(t) − α4v1(t)v2

2(t) − kv1(t− 1)v2
2(t− 1)

)
,
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G(ut, u(t− 1), u̇(t), u̇(t− 1)) =


 0

−α4v
2
1(t)v̇2(t) − kα5v

2
1(t)v̇2(t− 1) − 1

2
kv2

1(t− 1)v̇2(t− 1)


.

(124)

By a simple linear analysis, we can show that when
1 − k2 > 0, α1 − 4µ2 > 0, system (123) may
undergo a double Hopf bifurcation at the critical
point: (k, τ) = (kc, τc), where τc is given by

τc = τ
(j)
1 = τ

(l)
2 , l, j = 0, 1, . . . ,

with

τ
(j)
1,2 =




1
ω1,2

[
arccos

(
α1 − ω2

1,2

kcω
2
1,2

)
+ 2jπ

]
,

for kcµ < 0,

1
ω1,2

[
2(j + 1)π − arccos

(
α1 − ω2

1,2

kcω2
1,2

)]
,

for kcµ > 0,

where j = 0, 1, . . . , and

ω1,2 =

√
α1 − 2µ2 ±

√
4µ4 + α2

1k
2
c − 4α1µ2

1 − k2
c

,

and kc is then determined from τ
(j)
1 = τ

(l)
2 , l, j =

0, 1, . . . .
We assume that system (123) undergoes a

nonresonant double-Hopf bifurcation at the criti-
cal point: (k, τ) = (kc, τc), and the characteristic

equation of the linearized system of (123) has two
pairs of purely imaginary roots ±iω1 and ±iω2, with
the remaining roots having negative real part. We
take perturbations as (k, τ) = (kc, τc) + ε(kε, τε).
Then, with the MTS method, by a simple calcula-
tion, we have

pj = (1, iωj)T,

p∗j =

(
α1

α1 + ω2
j

,
iωj

α1 + ω2
j

)T

, j = 1, 2.
(125)

The linear solution of system (53), with M1,
N0 and N1 given in Eq. (124), associated with
the nonresonant double-Hopf bifurcation, can be
expressed as

u1 = G1p1eiω1τcT0 +G1p1e−iω1τcT0

+G2p2eiω2τcT0 +G2p2e−iω2τcT0,

where pj, j = 1, 2 are given in Eq. (124). Then,
by the MTS method, the normal form up to cubic
order is given by

Ġ1 = β1G1 + P1G
2
1G1 + P2G1G2G2 + · · · ,

Ġ2 = β2G2 + P3G
2
2G2 + P4G1G1G2 + · · · ,

(126)

where

βj =
2(iωjα1 − ω2

jµ)τε − iω3
jτce

−iωjτckε

α1 + ω2
j + ω2

jkce−iωjτc − iω3
jkcτce−iωjτc

, j = 1, 2,

P1 = − iω1τc(2eiω1τcω2
1kcα5 − 6α3 + 4ω2

1α4 + e−iω1τcω2
1kc + 4e−iω1τcω2

1kcα5)
2(α1 + ω2

1 + ω2
1kce−iω1τc − iω3

1kcτce−iω1τc)
,

P2 = − iω1τc[4kcα5ω
2
2 cos(ω2τc) + e−iω1τcω2

1kc + 2α4ω
2
2 − 6α3 + 2ω2

1α4 + 2e−iω1τcω2
1kcα5]

α1 + ω2
1 + ω2

1kce−iω1τc − iω3
1kcτce−iω1τc

,

P3 = − iω2τc(2eiω2τcω2
2kcα5 − 6α3 + 4ω2

2α4 + e−iω2τcω2
2kc + 4e−iω2τcω2

2kcα5)
2(α1 + ω2

2 + ω2
2kce−iω2τc − iω3

2kcτce−iω2τc)
,

P4 = − iω2τc[4kcα5ω
2
1 cos(ω1τc) + e−iω2τcω2

2kc + 2α4ω
2
1 − 6α3 + 2ω2

2α4 + 2e−iω2τcω2
2kcα5]

α1 + ω2
2 + ω2

2kce−iω2τc − iω3
2kcτce−iω2τc

.

(127)
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Next, for the CMR method, we choose

Φ(θ) =

[
eiω1τcθ e−iω1τcθ eiω2τcθ e−iω2τcθ

iω1eiω1τcθ −iω1e−iω1τcθ iω2eiω2τcθ −iω2e−iω2τcθ

]

and

Ψ(s) =




d1e−iω1τcs − iω1d1

α1
e−iω1τcs

d1eiω1τcs iω1d1

α1
eiω1τcs

d2e−iω2τcs − iω2d2

α1
e−iω2τcs

d2eiω2τcs iω2d2

α1
eiω2τcs




,

where dj = α1

α1+ω2
j+ω2

jkce
−iωjτc−iω3

jkcτce
−iωjτc , j = 1, 2.

We also use the same bifurcation parameters given by (k, τ) = (kc, τc) + (kε, τε), where kε and τε are
perturbation parameters, and denote ε = (kε, τε). Thus, F̃ (wt, ε) in Eq. (64) becomes

F̃ (wt, ε) =

(
τεv2(t)

−α1τεv1(t) − 2µτεv2(t)

)
+

(
0

−(τc + τε)[α3v
3
1(t) + α4v1(t)v2

2(t) + (kc + kε)v1(t− 1)v2
2(t− 1)]

)

+




0

−α4v
2
1(t)v̇2(t) −

[
kε + (kc + kε)α5v

2
1(t) +

1
2
(kc + kε)v2

1(t− 1)
]
v̇2(t− 1)


.

Let x = (x1, x1, x2, x2). Then, substituting wt =
Φx+yt into Ψ(0)F̃ (wt, ε), and noting that Im(M1

2)
c

is spanned by kεx1e1, τεx1e1, kεx1e2, τεx1e2, kεx2e3,
τεx2e3, kεx2e4, τεx2e4, and Im(M1

3)
c spanned

by x2
1x1e1, x1x2x2e1, x1x

2
1e2, x1x2x2e2, x2

2x2e3,
x1x1x2e3, x2x

2
2e4, x1x1x2e4, where ei (i = 1, 2, 3, 4)

is the ith unit vector, we obtain the same nor-
mal form (by neglecting the difference in notations)
given in Eq. (126) for the NFDE (123), associated
with the nonresonant double-Hopf bifurcation.

7.4. Examples for the PFDE
system

In this subsection, we use two simple examples with
different boundary conditions to illustrate the appli-
cation of Theorem 4 (or Corollary 4.2).

7.4.1. Hutchinson equation with
Neumann boundary condition

The first example is the Hutchinson equation
with Neumann boundary condition [Faria, 2000],

given by

∂u(x, t)
∂t

= d
∂2u(x, t)
∂x2

− au(x, t− 1)[1 + u(x, t)],

t > 0, x ∈ (0, π),

∂u(x, t)
∂t

= 0, x = 0, π,

(128)

where d and a are positive parameters. By lineariz-
ing system (128) at the equilibrium u = 0, we obtain
the characteristic equations

λ+ ae−λ + dk2 = 0, k = 0, 1, 2, . . . . (129)

It is easy to show that when a < π
2 , all roots of

the equations in (129) have negative real part, so
the zero solution is asymptotically stable. When
a = ac = π

2 , the equation in (129) with k = 0 has a
unique pair of purely imaginary roots ±iω0 = ±π

2 i,
and all the other solutions of the equations in (129)
have negative real part. Assume that the equa-
tion in (129) with k = 0 has a pair of solutions,

1450003-41

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

4.
24

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
IT

Y
 U

N
IV

E
R

SI
T

Y
 O

F 
H

O
N

G
 K

O
N

G
 o

n 
02

/1
9/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.



January 29, 2014 7:50 WSPC/S0218-1274 1450003

P. Yu et al.

λ(ac) and λ(ac) at the critical point, a = ac.
Then, Reλ′(ac) > 0, and a Hopf bifurcation (i.e.
n1 = 1, n2 = 0) occurs at a = ac. Note that system
(128) has quadratic nonlinearity, and thus Corol-
lary 4.2 can be applied here, while Corollary 4.1 is
not applicable for this case. Theorem 4 can also be
applied here since normal form of Hopf bifurcation
does not have even order terms.

To study the qualitative behavior of system
(128) near the critical point: ac = π

2 , with the MTS
method, we take perturbation as a = ac + εaε. Note
that system (128) can be written in the form of (71)
with

K = d, N0 = 0, N1 = −a and

F (ut) = −au(x, t− 1)u(x, t).

By using the MTS method, from the ε1-order
LDE, we obtain

D0u1 − d∆u1 + acu1,1 = 0, (130)

where u1,1 = u1(x, T0 − 1, T1, . . .). Thus, the solu-
tion of Eq. (130), associated with the Hopf bifurca-
tion, can be expressed as

u1(x, t) = β0(x)G0(T1, T2, . . .)eiω0T0

+β0(x)G0(T1, T2, . . .)e−iω0T0 , (131)

where β0(x) = cos(kx)|k=0 = 1.
Next, for the ε2-order LDE, we have

D0u2 − d∆u2 + acu2,1

= −D1u1 + acD1u1,1 − acu1u1,1 − aεu1,1, (132)

where u2,1 = u2(x, T0−1, T1, . . .). Substituting solu-
tion (131) into Eq. (132) and using the formulas in
Eq. (78), we obtain

D1G0 =
aεG0

ac − eiω0

∣∣∣∣
ω0=ac=

π
2

=
(2π − 4i)aεG0

4 + π2
,

(133)

which shows that D1G0|αε=0 = 0, as expected.
Then, solving the resulting differential equation
yields the particular solution of u2 as

u2 =
∑
k≥0

[ηk,1 + ηk,1 + ηk,2e2iω0T0

+ ηk,2e−2iω0T0 ]βk(x).

Note that 〈β0βk, β0〉 = 0, ∀k ≥ 1. Thus, we obtain

η0,1 = −e−iω0G0G0|ω0=
π
2

= iG0G0,

η0,2 = − ace−iω0G2
0

2iω0 + ace−2iω0

∣∣∣∣
ω0=ac=

π
2

=
πiG2

0

2πi − π
.

Hence, using the formulas in Eq. (80) yields

D2G0 =
−ac(e−2iω0 + eiω0)c2G0

1 − ace−iω0

∣∣∣∣
ω0=ac=

π
2

=
π(1 + i)G2

0G0

(2i − 1)(2 + πi)
. (134)

Finally, it follows from Eq. (81) that the normal
form of the Hopf bifurcation, near the critical point:
ac = π

2 , derived using the MTS method for the
PFDE system (128) is

Ġ0 =
(2π − 4i)aεG0

4 + π2
+

π(1 + i)G2
0G0

(2i − 1)(2 + πi)
+ · · · .

(135)

In order to compare this result with that given by
Faria [2000], we introduce the scaling x→ x/

√
π to

Eq. (135), together with G0 = ρei(ξ+ π
2
t), to obtain

the following system in polar coordinates:

ρ̇ =
2π

4 + π2
aερ+

2 − 3π
5(4 + π2)

ρ3

+O(a2
ερ+ |(ρ, aε)|4),

ξ̇ = −π
2

+O(|(ρ, aε)|),

which is identical to that derived by using the CMR
method (see Eq. (5.10) in [Faria, 2000]).

7.4.2. Hutchinson equation with Dirichlet
boundary condition

The second example is a scalar PFDE with Dirichlet
boundary condition [Faria, 2000], described by

∂u(x, t)
∂t

=
∂2u(x, t)
∂x2

+ u(x, t)

− au(x, t− 1)[1 + u(x, t)],

t > 0, x ∈ (0, π),

u(x, t) = 0, x = 0, π, t > 0,

(136)

where a is a positive parameter. In space X, the
sequence of eigenvalues of ∆ is {−k2}+∞

k=1, with
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normalized eigenfunctions βk(x) =
√

2
π sin kx. By

linearizing system (136) at the equilibrium u = 0,
we obtain the characteristic equations,

λ+ ae−λ + k2 − 1 = 0, k = 1, 2, . . . . (137)

It is easy to show that when 0 < a < π
2 , all roots

of the equations in (137) have negative real part,
so the zero solution is asymptotically stable. When
a = ac = π

2 , the equation in (137) with k = 1 has a
unique pair of purely imaginary roots ±iω1 = ±π

2 i,
and all the solutions of the remaining equations
in (137) have negative real part. Assume that the
equation in (137) with k = 1 has a pair of solu-
tions, λ(ac) and λ(ac) at the critical point, a = ac.
Then, Reλ′(ac) > 0, and a Hopf bifurcation (i.e.
n1 = 1, n2 = 0) occurs at a = ac. Thus, Corollary
4.2 can be again applied for this example.

To study the qualitative behavior of system
(136) near the critical point: ac = π

2 , with the MTS
method, we take perturbation as a = ac + εaε. Sys-
tem (136) can be written in the form of (71) with

K = 1, N0 = 1, N1 = −a and

F (ut) = −au(x, t− 1)u(x, t).

By using the MTS method, we obtain the ε1-
order LDE as

D0u1 − ∆u1 − u1 + acu1,1 = 0, (138)

where u1,1 = u1(x, T0 − 1, T1, . . .). The solution of
Eq. (138), associated with the Hopf bifurcation, can
be written in the form of

u1(x, t) = β1(x)G1(T1, T2, . . .)eiω1T0

+β1(x)G1(T1, T2, . . .)e−iω1T0 , (139)

where β1(x) = sin(kx)|k=1 = sin(x).
Next, for the ε2-order LDE, we have

D0u2 − ∆u2 − u2 + acu2,1

= −D1u1 + acD1u1,1 − acu1u1,1

− aεu1,1, (140)

where u2,1 = u2(x, T0−1, T1, . . .). Substituting solu-
tion (139) into Eq. (140) and using the formulas in
Eq. (78), we obtain

D1G1 =
(2π − 4i)aεG1

4 + π2
. (141)

Then, solving the resulting differential equation
yields the particular solution of u2 as

u2 =
∑
k≥1

[ηk,1 + ηk,1 + ηk,2e2iω0T0

+ ηk,2e−2iω0T0 ]βk(x).

Noticing that

ck � 〈β1βk, β1〉

=




0, for k even,

−
(

2
π

)3/2 4
k(k2 − 4)

, for k odd,
(142)

where k ≥ 1, we have

u2 =
∑
k≥1

ck
πi
2

×

 G2

1e
2iω1T0

k2 − 1 − π

2
+ πi

− G2
1e

−2iω1T0

k2 − 1 − π

2
− πi


.

Further, applying the formulas in Eq. (80) results
in

D2G1 =
1
4
π2
∑
k≥1

c2k
(1 + i)(

k2 − 1 − π

2
+ πi

)(
1 +

π

2
i
)

×G2
1G1. (143)

Finally, it follows from Eq. (81) that the normal
form of Hopf bifurcation derived using the MTS
method, near the critical point: ac = π

2 , for the
PFDE system (136) is

Ġ1 =
(2π − 4i)aεG1

4 + π2

+
1
4
π2
∑
k≥1

c2k
(1 + i)G2

1G1(
k2 − 1 − π

2
+ πi

)(
1 +

π

2
i
)

+ · · · . (144)

For a comparison with Faria’s result, let G1 =
ρei(ξ+ π

2
t), which transforms (144) to

ρ̇ =
2π

4 + π2
aερ+K∗ρ3

+O(a2
ερ+ |(ρ, aε)|4),

ξ̇ = −π
2

+O(|(ρ, aε)|),

(145)
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where

K∗ =
π2

4 + π2

∑
k≥1

c2kAk,

with

Ak =

(
1 +

π

2

)(
k2 − 1 − π

2

)
+ π

(
1 − π

2

)
(
k2 − 1 − π

2

)2
+ π2

.

System (145) is identical to that obtained by Faria
[2000] using the CMR method (see Eq. (5.26) in
[Faria, 2000]). Comparing the above procedure with
that given in [Faria, 2000] shows that the MTS
method is simpler than the CMR method.

7.5. An example of DDE with
distributed delays

Finally, in this subsection, we consider the van der
Pol equation with continuously distributed delay
[Liao et al., 2003],

u̇1(t) =
∫ +∞

0
κ(τ)u2(t− τ)dτ

− f

(∫ +∞

0
κ(τ)u1(t− τ)dτ

)
,

u̇2(t) = −
∫ +∞

0
κ(τ)u1(t− τ)dτ,

(146)

where f(u) = au + bu3. The weight function
κ(s) is a non-negative bounded function defined
on [0,+∞) that describes the influence of the past
states on the current dynamics. It is assumed in
this model that the presence of the continuous
time delay does not affect the equilibrium val-
ues. Therefore, we normalize the kernel to satisfy∫ +∞
0 κ(s)ds = 1.

Here, as a demonstration, we choose κ(s) as a
Γ-distribution delay kernel, and only consider the
case of weak kernel,

κ(s) = βe−βs, β > 0, (147)

since the case of strong kernel can be treated
similarly.

The characteristic equation of the linearized
system of (146) is

λ4 + 2βλ3 + β(β + a)λ2 + β2 = 0. (148)

By a simple analysis, assuming 0 < a < 2, we can
show that when β = βc = 4−a2

2a , Eq. (148) has a pair

of purely imaginary roots ±iω0 with ω0 =
√

βca
2 ,

and so system (146) undergoes a Hopf bifurcation
at the critical point: β = βc.

In the following, we compute the normal form of
system (146) by directly applying the MTS method
to this system without transforming it to a differen-
tial system having no distributed delays. First, by
a simple calculation, we obtain

p1 =




1

− βc

iω0(βc + iω0)


, p∗1 =




1

− βcd0

iω0(βc − iω0)


,

where

d0 = 1 − β2
c

iω0(βc + iω0)2
− aβc

βc + iω0

+
β2

c

ω2
0(βc + iω0)2

− β2
c

iω0(βc + iω0)2
. (149)

Then, with the MTS method, we take perturbation
as β = βc + εβε. Because the nonlinearity is cubic,
we seek a uniform second-order approximate solu-
tion of system (146) in powers of ε1/2 [Nayfeh, 2008],
and thus obtain a set of ordered linear differential
equations with respect to εn/2 (n = 1, 3, 5, . . .). Cer-
tainly, we may seek the solution in powers of ε, and
obtain a set of ordered linear differential equations
with respect to εn (n = 1, 2, 3, . . .), and the results
for these two different scalings are identical. Thus,
the solution of system (146) is assumed to take the
form:

u1 = ε1/2u11 + ε3/2u12 + · · · ,

u2 = ε1/2u21 + ε3/2u22 + · · · .
For the ε1/2-order LDE, we have

D0u11 −
∫ +∞

0
βce−βcsu21(t− s)ds

+ a

∫ +∞

0
βce−βcsu11(t− s)ds = 0,

D0u21 −
∫ +∞

0
βce−βcsu11(t− s)ds = 0.

(150)

The solution of system (150) can be expressed in
the form of

u(1) = Gp1eiω0T0 +Gp1e−iω0T0 , (151)

where u(1) = (u11, u21)T.
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Next, from the ε3/2-order LDE, we obtain

D0u12 −
∫ +∞

0
βce−βcsu22(t− s)ds+ a

∫ +∞

0
βce−βcsu12(t− s)ds

= −D1u11 −
∫ +∞

0
βce−βcsD1u21(t− s)ds −

∫ +∞

0
βcβεse−βcsu21(t− s)ds

+
∫ +∞

0
βεe−βcsu21(t− s)ds+ a

∫ +∞

0
βce−βcsD1u11(t− s)ds

+ a

∫ +∞

0
βcβεse−βcsu11(t− s)ds− a

∫ +∞

0
βεe−βcsu11(t− s)ds

− b

(∫ +∞

0
βce−βcsu11(t− s)ds

)3

,

D0u22 +
∫ +∞

0
βce−βcsu12(t− s)ds

= −D1u21 +
∫ +∞

0
βce−βcsD1u11(t− s)ds +

∫ +∞

0
βcβεse−βcsu11(t− s)ds

−
∫ +∞

0
βεe−βcsu11(t− s)ds.

(152)

Substituting solution (151) into Eq. (152), and using solvability conditions, we obtain the normal form of
system (146) derived using the MTS method, associated with Hopf bifurcation, as

Ġ =
h1

d0
G+

h2

d0
G2G+ · · · , (153)

where d0 is given in Eq. (149), and

h1 =
2β3

cβε − 2βcβε(βc + iω0) + aβcβε(βc + iω0)iω0 − aβεiω0(βc + iω0)2

iω0(βc + iω0)3
,

h2 = − bβ3
c

(βc + iω0)(βc − iω0)
.

Now, for the CMR method we choose

Φ(θ) =




eiω0θ e−iω0θ

− βc

iω0(βc + iω0)
eiω0θ βc

iω0(βc − iω0)
e−iω0θ


 and Ψ(s) =



d0e−iω0s d0βc

(βc + iω0)iω0
e−iω0s

d0eiω0s − d0βc

(βc − iω0)iω0
eiω0s


.

We use the same bifurcation parameter, given by β = βc + βε, where βε is a perturbation. Thus, similar to
the treatment for the DDEs, in the space BC, system (146) becomes an abstract ODE

dw
dt

= Aw +X0F̃ (wt, βε), (154)

where w ∈ C, and A is defined by

A : C1 → BC, Aw = ẇ +X0[L0w − ẇ(0)],
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with

L0w =



∫ +∞

0
βce−βcsu2(t− s)ds − a

∫ +∞

0
βce−βcsu1(t− s)ds

−
∫ +∞

0
βce−βcsu1(t− s)ds




and

F̃ (wt, βε) =



∫ +∞

0
(βc + βε)e−(βc+βε)su2(t− s)ds−

∫ +∞

0
βce−βcsu2(t− s)ds

∫ +∞

0
βce−βcsu1(t− s)ds−

∫ +∞

0
(βc + βε)e−(βc+βε)su1(t− s)ds




+


a

∫ +∞

0
βce−βcsu1(t− s)ds− f

(∫ +∞

0
(βc + βε)e−(βc+βε)su1(t− s)ds

)
0


.

Let x = (x1, x1). Further, denote wt = Φx + yt.
Then, Eq. (154) is decomposed to

dx
dt

= Bx+ Ψ(0)F̃ (Φx+ yt, βε),

dyt

dt
= AQ1yt + (I − π)X0F̃ (Φx+ yt, βε),

(155)

where B = diag{iω0,−iω0}.
Moreover, let M1

2 denote the operator defined
in V 3

2(C
2 × Kerπ), with

M1
2 : V 3

2(C
2) �→ V 3

2(C
2),

(M1
2p)(x, βε) = Dxp(x, βε)Bx−Bp(x, βε),

where V 3
2(C

2) represents the linear space of the
second-degree homogeneous polynomials in the
three variables (x1, x1, βε) with coefficients in C2.
Then, one may choose the decomposition V 3

2(C
2) =

Im(M 1
2) ⊕ Im(M1

2)
c with the complementary space

Im(M 1
2)

c spanned by βεx1e1 and βεx1e2, where
ei (i = 1, 2) is the ith unit vector.

Similarly, let M1
3 denote the operator defined

in V 2
3(C

2 × Kerπ), with

M1
3 : V 2

3(C
2) �→ V 2

3(C
2),

(M1
3p)(x, βε) = Dxp(x, βε)Bx−Bp(x, βε),

where V 2
3(C

2) stands for the linear space of the
third-degree homogeneous polynomials in the two
variables (x1, x1) with coefficients in C2. Then, one

may choose the decomposition V 2
3(C

2) = Im(M1
3)⊕

Im(M 1
3)

c with the complementary space Im(M1
3)

c

spanned by x2
1x1e1 and x1x

2
1e2, where ei (i =

1, 2) is the ith unit vector. Thus, without giving
the detailed calculations, we obtain the same nor-
mal form (by neglecting the difference in nota-
tions) given in Eq. (153) for the DDE system (146)
with distributed delays, associated with the Hopf
bifurcation.

8. Conclusion and Discussion

In this paper, we have considered ordinary differ-
ential equations and general delay differential equa-
tions, including delay differential equations, neutral
functional differential equations and partial func-
tional differential equations, with particular atten-
tion focused on the semisimple n1-Hopf–n2-zero
singularity. We have applied the multiple time
scales and center manifold reduction methods
to derive the normal forms associated with the
semisimple n1-Hopf–n2-zero singular point for ordi-
nary differential equations, and rigorously proved
the equivalence of the two methods, which yields
the identical normal form up to any order for such
a singularity. For general delay differential systems,
if the second-order terms in the normal form vanish
at the critical point, then the normal forms asso-
ciated with the semisimple n1-Hopf–n2-zero singu-
larity, derived by using the multiple time scales and
center manifold reduction methods, are identical up
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to third order. This condition can be fulfilled by
either that the system does not contain quadratic
terms or that the semisimple n1-Hopf bifurcation
is considered. There two cases often occur in real
applications. For illustrations, a number of practical
examples have been used to show the application of
the theoretical results, particularly associated with
Hopf, Hopf-zero and double-Hopf bifurcations.

It has been shown that for differential equations
with time delays, the computation using the MTS
method is simpler than that of the CMR method,
and can deal with multiple discrete delays, for which
the CMR method cannot if at least one of the delays
is chosen as a bifurcation parameter. Using the MTS
method also makes it much easier to develop sym-
bolic software by using an computer algebra system,
such as Maple or Mathematica. This is particularly
useful for those who use the MTS method to solve
physical, engineering or biological system problems.
Maple programs for general delay differential equa-
tions, associated with the semisimple case, are being
developed, which only require a user to prepare
a simple input file without any interaction when
executing the programs. However, the extension of
applying the MTS method from the semisimple case
to nonsemisimple case, as well as to the case n1 = 0
(i.e. without purely imaginary eigenvalues, e.g. the
Bogdanov–Takens bifurcation), is not straightfor-
ward, while the CMR method can deal with these
cases, for example, the Bogdanov–Takens bifurca-
tion (double-zero bifurcation).
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