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DYNAMICS AND BIFURCATION STUDY ON
AN EXTENDED LORENZ SYSTEM

Pei Yu1, Maoan Han2,3,† and Yuzhen Bai4

Abstract In this paper, we study dynamics and bifurcation of limit cycles in
a recently developed new chaotic system, called extended Lorenz system. A
complete analysis is provided for the existence of limit cycles bifurcating from
Hopf critical points. The system has three equilibrium solutions: a zero one
at the origin and two non-zero ones at two symmetric points. It is shown that
the system can either have one limit cycle around the origin, or three limit
cycles enclosing each of the two symmetric equilibria, giving a total six limit
cycles. It is not possible for the system to have limit cycles simultaneously
bifurcating from all the three equilibria. Simulations are given to verify the
analytical predictions.
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1. Introduction

Bifurcation of limit cycles has been extensively studied in planar vector fields, for
example see the review article [10] and books [4,5], as well as the references therein.
This problem is closely related to the well-known Hilbert’s 16th problem [6]. The
second part of Hilbert’s 16th problem is to find an upper bound on the number of
limit cycles that planar polynomial systems can have. This number is called Hilbert
number, denoted by H(n), where n is the degree of the polynomials. A modern
version of this problem was later formulated by Smale, chosen as one of his 18 most
challenging mathematical problems for the 21st century [20]. So far, for quadratic
systems, the best result is H(2) ≥ 4, obtained almost 40 years ago [1, 18, 19], but
H(2) = 4 is still open. For cubic systems, many results have been obtained on the
lower bound of H(3), with the best result obtained so far as H(3) ≥ 13 [9, 11].

On the other hand, Hopf bifurcation [7] has been applied for considering bifur-
cation of limit cycles from equilibria for a long time, for example see [15], and many
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physical examples can be found, for example in [5]. Recently, particular attention
was paid to some 3-dimensional dynamical systems, e.g., see [2, 12, 26]. On the
other hand, in the past two decades, many chaotic systems have been constructed
to study chaos control and chaos synchronization. However, in order to achieve
the two goals, the dynamics of the system such as stability and bifurcation must
be explored. Among those systems, the family of Lorenz system [13] is an impor-
tant class of chaotic systems to be studied. Thus, investigating systems which are
similar to the Lorenz family yet not equivalent to Lorenz family is certainly very
interesting and of importance for theoretical studies. In fact, a so-called extended
Lorenz system was developed in [16] to study chaotic dynamics, which is described
by

ẋ = y,

ẏ = mx− n y −mxz − p x3,

ż = − a z + b x2,

(1.1)

where m, n, p, a and b are real parameters. It can be shown that using the following
transformation:

x =
√

2X, y =
√

2
(
X + Y

σ

)
, z = X2

σ + (ρ− 1)Z,

a = − r, b = 2σ−r
σ(ρ−1) , m = σ(ρ− 1), p = 1, n = σ + 1,

(1.2)

system (1.1) can be transformed to the standard Lorenz system:

Ẋ = σ(Y −X),

Ẏ = ρX − Y −XZ,

Ż = − r Z +XY.

(1.3)

However, it should be noted in (1.2) that p is particularly taken as 1, and so in
general the two systems (1.1) and (1.3) are not topologically equivalent. In fact, we
will see in the next section that system (1.1) can have more limit cycles than that
system (1.3) can. Therefore, in this paper, particular attention is paid to the original
system (1.1). Note that both the extended Lorenz system (1.1) and the classical
Lorenz system (1.3) are invariant under the transformation: (x, y, z)→ (−x,−y, z).
Hence, solution trajectories of these two systems are symmetric with the z-axis.
Also, note that the z-axis (or Z-axis for the classical Lorenz system) is an invariant
manifold. Trajectories starting from the z-axis (or Z-axis for the classical Lorenz
system) either converges to the origin if a > 0 or diverges to ±∞ if a < 0.

Hopf bifurcation for the classical Lorenz system (1.3) has been studied by many
authors. In particular, Pade et al. [17] applied the center manifold theory and
averaging method to prove that the Hopf bifurcation is subcritical for r > 0 and
σ > r + 1. This implies that for the classical Lorenz system, only two limit cycles
(with 1-1 distribution) can bifurcate from the two symmetric equilibria, which con-
tradicts the existence of six limit cycles (with 3-3 distribution) shown in [23]. Hopf
bifurcation was also considered for the Chen [8, 14] and Lü [27, 28] chaotic systems
(which belong to the so called Lorenz family), but no attention was paid to multiple
limit cycle bifurcations in these articles.
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In the next section, we first briefly present the method of normal forms and
its computation for analyzing Hopf bifurcation and multiple limit cycle bifurcation.
Then, in order to make a comparison between the extended Lorenz system (1.1) and
the classical Lorenz system (1.3), we applied normal form theory to consider limit
cycles bifurcating in the classical Lorenz system (1.3) due to Hopf bifurcation, and
our result confirms that obtained by Pade [17]. The main result for the extended
Lorenz system (1.1) is then obtained by using the same normal form method, which
proves the existence of six (with 3-3 distribution) limit cycles. Simulations to verify
the analytical predictions are given in Section 3, and finally conclusion is drawn in
Section 4.

2. Main results

2.1. Methodology

In this paper, the method of normal forms will be applied to consider systems
(1.1) and (1.3). Suppose for general nonlinear dynamical system, ẋ = f(x, µ), x ∈
Rn, µ ∈ Rk, f(0, µ) = 0 and assume the system has a Hopf critical point at
(x, µ) = (0, 0). The normal form can be obtained using computer algebra systems
(e.g., see [21,22,24]) as given in polar coordinates:

ṙ = r
(
v0 + v1 r

2 + v2 r
4 + · · ·+ vk r

2k + · · ·
)
,

θ̇ = ωc + τ0 + τ1 r
2 + τ2 r

4 + · · ·+ τk r
2k + · · · ,

(2.1)

where r and θ represent the amplitude and phase of motion, respectively. vk (k =
0, 1, 2, · · · ) is called the kth-order focus value. v0 and τ0 are obtained from lin-
ear analysis. The first equation of (2.1) can be used for studying bifurcation of
limit cycles and stability of bifurcating limit cycles. To find k small-amplitude
limit cycles bifurcating from the origin, we first solve the k parametric equations:
v0 = v1 = · · · = vk−1 = 0 such that vk 6= 0, and then perform appropriate small
perturbations to prove the existence of k limit cycles. The following Lemma gives
sufficient conditions for proving the existence of k small-amplitude limit cycles.
(The proofs can be found in [25].)

Lemma 2.1. Suppose that the focus values for the general dynamical system ẋ =
f(x, µ) are given such that vj = vj(µ), j = 0, 1, . . . , k, satisfying vj(µc) = 0, j =
0, 1, . . . , k − 1, vk(µc) 6= 0 and

rank

[
∂(v0, v1, . . . , vk−1)

∂(µ1, µ2, . . . , µk)

]
µ=µc

= k.

Then, for any given µ near µc, the dynamical system can have at most k small limit
cycles bifurcating from the origin; and for some µ near µc, the system can have k
limit cycles around the origin.
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2.2. Limit cycle bifurcation in the classical Lorenz system (1.3)

The classical chaotic Lorenz system (1.3) has three equilibria:

C0 : (0, 0, 0), for any parameter values,

C± :
(
±
√
r(ρ− 1), ±

√
r(ρ− 1), ρ− 1

)
, for ρ ≥ 1.

(2.2)

The stability can be obtained from the Jacobian of the system evaluated at the
equilibria. The characteristic polynomial for the C0 is

PC0
(λ) = (λ+ r)[λ2 + (σ + 1)λ+ (1− ρ)σ]. (2.3)

According to the physical meaning, all the parameters in (1.3) take positive values.
Thus, the trivial equilibrium C0 is asymptotically stable for 0 < ρ < 1 for which the
symmetric equilibria C± do not exist. Moreover, it can be shown using Lyapunov
function that the C0 is globally asymptotically stable for 0 < ρ ≤ 1 (σ > 0, r > 0)
(e.g., see [3]). When ρ > 1, the C0 becomes unstable and the C± exist, whose
stability is determined by the following characteristic polynomial:

PC±(λ) = λ3 + (σ + r + 1)λ2 + r(σ + ρ)λ+ 2σr(ρ− 1), (2.4)

indicating that the C± are asymptotically stable for

ρ > 1 and (r + 1− σ) ρ+ (σ + r + 3)σ > 0. (2.5)

Therefore, the equilibria C± are always stable for r+ 1− σ ≥ 0. If σ > r+ 1, there
exists a Hopf critical point, defined by

ρH =
(σ + r + 3)σ

σ − r − 1
, (σ > r + 1). (2.6)

Then, the C± are asymptotically stable for 1 < ρ < ρH, and becomes unstable for
ρ > ρH. A Hopf bifurcation occurs from the C± at ρ = ρH.

In the following, we investigate the limit cycles bifurcating from the C± due
to Hopf bifurcation at the critical point ρ = ρH under the conditions r > 0 and
σ > r+1. Note that when ρ = ρH, the system still has two free parameters σ and r,
which implies that there may exist maximal 3 limit cycles around each of the C±.
However, surprisingly we have the following result.

Theorem 2.1. When r > 0, σ > r + 1, ρ > 1, Hopf bifurcation can occur from
the stable equilibria C± at the critical point ρ = ρH. The maximal number of small
limit cycles around each of the C± is one. Thus, the total maximal number of limit
cycles bifurcating from the symmetric equilibria C± is two, and the bifurcating limit
cycles are unstable, i.e. the Hopf bifurcation is subcritical.

Proof. Suppose r > 0, σ > r+ 1 and let ρ = ρH. Then, introducing the transfor-
mation: 

X

Y

Z

 =


√
r(ρ− 1)√
r(ρ− 1)

ρ− 1

+ T1


u

v

w

 , (2.7)
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where

T1 =


σ(σ−r−1)
σ2−1 T̄

(σ−r−1)2 ωC±
2r(σ2−1) T̄ σ

r T̄

σ−r−1
σ2−1 T̄

(σ+r−1)(σ−r−1)ωC±
2r(σ2−1) T̄ r+1

r T̄

1 0 1

 , (2.8)

with T̄ =
√
r(σ + 1)/(σ + r + 1)/(σ − r − 1), into (1.3), we obtain the system:

u̇ = ωC± v +
∑3
i+j+k=2Aijku

ivjwk,

v̇ = −ωC± u+
∑3
i+j+k=2Bijku

ivjwk,

ẇ = − (σ + r + 1)w +
∑3
i+j+k=2 Cijku

ivjwk,

(2.9)

where ωC± =
√

2σr(σ + 1)/(σ − r − 1), Aijk, Bijk and Cijk are coefficients ex-
pressed in terms of σ and r. Let σ = r + 1 + σ̃. Then σ > r + 1 is equivalent to
σ̃ > 0. Now applying the Maple program [24] to system (2.9) we obtain the first
focus value v1 as follows:

v1 =
σ̃2(σ̃ + r + 1)

16(σ̃ + r)(σ̃ + r + 2)(σ̃ + 2r + 2)

F1

F0
,

where F0 and F1 are given by

F0 =
[
σ̃3 + 2(3r + 2)σ̃2 + 2(4r2 + 7r + 2)σ̃ + 2r(r + 1)(r + 2)

]2
×
[
2σ̃3 + (7r + 9)σ̃2 + (9r2 + 20r + 12)σ̃ + (r + 1)(r + 2)(3r + 2)

]
×
[
4σ̃9+52(r+1)σ̃8+(325r2+582r+289)σ̃7+(1206r3+3066r2+2716r+892)σ̃6

+(2743r4+9336r3+11670r2+6800r+1660)σ̃5+(3818r5+16786r4+27912r3

+22720r2+9760r+1888)σ̃4+(3181r6+17482r5+37309r4+39920r3+23520r2

+7904r+1264)σ̃3+4(r+1)(r+2)(375r5+1376r4+1743r3+986r2+324r+56)σ̃2

+ 4(r + 1)2(r + 2)2(89r4 + 166r3 + 69r2 + 20r + 4)σ̃ + 32r3(r + 1)3(r + 2)3
]
,

F1 =4σ̃17 +4(27r+26)σ̃16+(1427r2+2608r+1253)σ̃15+(11551r3+31889r2+29013r

+9273)σ̃14+(62828r4+238722r3+326079r2+196936r+47104)σ̃13

+(242358r5+1199652r4+2240085r3+2018637r2+910506r+173800)σ̃12

+(687176r6+4266776r5+10306431r4+12611736r3+8434430r2+3030478r

480656)σ̃11+ (1470972r7 + 11117378r6 + 33425981r5 + 52566837r4

+ 47417128r3 + 25098194r2+ 7481232r + 1013232)σ̃10

+ (2430245r8 + 21749170r7 + 78924719r6 + 153489738r5 + 176826526r4

+ 125364038r3 + 54683844r2 + 13903032r + 1638912)σ̃9

+ (3154149r9 + 32524303r8 + 138601237r7 + 323266785r6 + 457910872r5

+ 412045718r4 + 238969280r3 + 88295040r2 + 19529664r + 2030336)σ̃8

+ (3247504r10 + 37579700r9 + 183373802r8 + 499553970r7 + 844428866r6
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+ 929336154r5 + 679634260r4 + 331181216r3 + 105686400r2

+ 20627904r + 1906432)σ̃7 + (2642920r11 + 33561998r10 + 183410712r9

+ 570316548r8 + 1121914168r7 + 1467244998r6 + 1305390840r5 + 796312152r4

+ 332070272r3 + 92802496r2 + 16138496r + 1328896)σ̃6

+ 2(r + 2)(r + 1)(832651r10 + 8929440r9 + 40286202r8 + 100663780r7

+ 154067167r6 + 150972284r5 + 96648684r4 + 40896688r3 + 11487232r2

+ 2026176r + 165888)σ̃5 + 2(r + 2)2(r + 1)2(391199r9 + 3410791r8

+ 12144161r7 + 23043333r6 + 25525592r5 + 17157628r4 + 7227504r3

+ 2006240r2 + 357952r + 27904)σ̃4 + 4(r+2)3(r+1)3(64931r8+438311r7

+ 1153923r6+1518369r5+1075554r4+433768r3+115704r2+20976r+1408)σ̃3

+ 8(r + 2)4(r + 1)4(7057r7 + 34285r6 + 59607r5 + 45287r4 + 15944r3

+ 3892r2 + 736r + 32)σ̃2 + 16r(r+2)5(r+1)5(443r5+1353r4 + 1185r3 + 275r2

+ 56r + 12)σ̃ + 128r4(r + 2)6(r + 1)6(3r + 4).

It is obvious that for r > 0 and σ̃ > 0, F0 > 0 and F1 > 0, and so v1 > 0 for r > 0
and σ > r+ 1, implying that the Hopf bifurcation is subcritical and the bifurcating
limit cycle is unstable.

This completes the proof of Theorem 2.1.
Theorem 2.1 confirms the result obtained by Pade et al. [17].

2.3. Stability and bifurcation of equilibria of the extended
Lorenz system (1.1)

Now, we study the extended Lorenz system (1.1). First, it is easy to find that this
system also has three equilibria, given by

E0 : (0, 0, 0), for any parameter values,

E± :
(
±
√

am
ap+bm , 0, bm

ap+bm

)
, for am

ap+bm ≥ 0 and ap+ bm 6= 0.
(2.10)

The stability of the equilibria is determined by the Jacobian of the system,

J(x, y, z) =


0 1 0

m−mz − 3px2 −n −mx

2bx 0 −a

. (2.11)

Thus, evaluating J at the E0 gives

J(E0) =


0 1 0

m −n 0

0 0 −a

, (2.12)

which yields the characteristic polynomial:

PE0
(λ) = (λ+ a)(λ2 + nλ−m) = λ3 + (a+ n)λ2 + (an−m)λ− am, (2.13)
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indicating that the E0, which exists for any real parameter values, is asymptotically
stable if

a > 0, m < 0 and n > 0. (2.14)

Note that when a < 0, PE0(λ) has a positive eigenvalue, implying that even a stable
limit cycle, embedded in a two-dimensional center manifold, would be actually
unstable in the whole system. Since in this paper attention is focused on Hopf
bifurcation, we will assume a > 0 when we explore Hopf bifurcation from the
equilibrium E0.

Similarly, evaluating J at the E± results in

J(E±) =


0 1 0

− 2map
ap+bm −n ∓m

√
am

ap+bm

±2b
√

am
ap+bm 0 −a

, (2.15)

which in turn gives the characteristic polynomial:

PE±(λ) = λ3 + (a+ n)λ2 + a
(
n+ 2mp

ap+bm

)
λ+ 2am, (2.16)

implying that the E± are asymptotically stable if the following conditions hold:

am > 0, a+ n > 0 and a
[
(a+ n)

(
n+ 2mp

ap+bm

)
− 2m

]
> 0. (2.17)

Note that stable E± can exist for both a > 0 and a < 0, described as follows:
E± are asymptotically stable when

a>0,m>0, a+n>0,


Case I: b > − a

m p, if 0<m< 1
2 (a+n)n, n>0;

Case II: − a
mp < b ≤

[ 2(a+n)
2m−(a+n)n −

a
m

]
p, p > 0,

if m>max
{

0, 1
2 (a+ n)n

}
;

a<0,m<0, a+n>0, Case III:
[ 2(a+n)

2m−(a+n)n −
a
m

]
p ≤ b <− a

m p, p > 0,

if m<max
{

0, 1
2 (a+ n)n

}
.

(2.18)
Firstly, it is easy to see by comparing the equations (2.13) and (2.16) that there
exists a pitchfork bifurcation between the E0 and E± at the critical point, defined
by am = 0.

Secondly, we consider possible Hopf bifurcations arising from the equilibria E0

and E±. For the E0, it is straightforward to find the Hopf critical point at n = 0
(a > 0, m < 0) with the critical frequency ωE0 =

√
−m (m < 0). Next, consider

Hopf bifurcation from the E±. It can be shown that Hopf bifurcation can occur
from the E± if the following condition holds:

p = pH ≡
b

2(a+n)
2m−(a+n)n −

a
m

, with ωE± =
√

2am
a+n , (2.19)

at which the third eigenvalue is −(a+ n) < 0. It is obvious that am > 0.
Now we investigate if Hopf bifurcations can occur simultaneously from the E0

and E±. It is easy to see that a necessary condition for a Hopf bifurcation to
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occur from the E0 is n = 0 and then the characteristic polynomial become P̃E0
=

(λ + a)(λ2 − m). With n = 0, the characteristic polynomial for the E± becomes
PE± = λ3 + a λ2 + 2amp

ap+bm λ + 2am. In order to have Hopf bifurcation from the
E±, the condition bm = 0 must be satisfied, i.e., b = 0. Thus, PE± is reduced to

P̃E± = (λ+ a)(λ2 + 2m). It follows from P̃E0
and P̃E± that it is impossible to have

Hopf bifurcations simultaneously from the E0 and E±.

Summarizing the above results and discussions leads to the following theorem.

Theorem 2.2. When a > 0, m < 0, system (1.1) can have Hopf bifurcation from
the equilibrium E0 at the critical point n = 0. When am > 0, a + n > 0, Hopf
bifurcation can happen from the symmetric equilibria E± at the critical point p = pH.
It is not possible to have Hopf bifurcations arising simultaneously from the E0 and
E±.

Local bifurcations in system (1.1) have been recently studied in detail by Zhou [29],
obtaining some results. In particular it is shown that one limit cycle bifurcates from
each of the two symmetric equilibria E±.

2.4. Limit cycle bifurcating from the E0 of the extended Loren-
z system (1.1)

We first consider Hopf bifurcation from the stable equilibrium E0 when a > 0,
m < 0 and n > 0. We have the following result.

Theorem 2.3. When a > 0, m < 0, system (1.1) has a Hopf bifurcation from
the equilibrium E0 at the critical point n = nH = 0, and the Hopf bifurcation is
supercritical (subcritical) if b > 0 (b < 0), leading to one stable (unstable) limit
cycle near the E0. For this case, no Hopf bifurcation can simultaneously appear
from the equilibria E±.

Proof. Hopf bifurcation occurs at the critical point n = nH = 0 at which the
system has a pair of purely imaginary eigenvalues λ1,2 = i ωE0

= i
√
−m and one

real eigenvalue λ3 = −a. Introducing the transformation y →
√
−my into (1.1)

and then applying the Maple program [24] to the resulting system we obtain the
following focus values:

v1 = bm
4(a2−4m) ,

v2 = b
16a(a2−4m)3

[
bm(a4 − 24ma2 + 48m2) + ap(a2 − 4m)(a2 − 16m)

]
,

v3 = − b
4096ma2(a2−4m)5(a2−16m)

[
b2m2(2883584m5 − 3306496m4p2 + 1241152m3p4

−151856m2p6+9548mp8−269p10)−2bmap(a2−4m)(802816m4−612864m3a2

+99152m2a4 − 8168ma6 + 269a8) + a2p2(a2 − 4m)2(256256m3 − 59856m2a2

+6936ma4 − 269a6)
]
,

...

(2.20)
which show that when b = 0, v1 = v2 = v3 = · · · = 0. Thus, for b 6= 0, v1 6= 0,
which implies that if a Hopf bifurcation occurs from the E0, there is only one limit
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cycle bifurcating from the E0, and it is stable (unstable) for b > 0 (b < 0). It should
be noted that the parameter p does not appear in the first focus value v1, but in
higher order focus values.

2.5. Limit cycles bifurcating from the E± of the extended
Lorenz system (1.1)

Now, we turn to Hopf bifurcation which emerges from the equilibria E±. Since the
two equilibria are symmetric with the z-axis, we only need to consider one of them.
We have the following result.

Theorem 2.4. When am > 0, a + n > 0, Hopf bifurcation can happen from the
E± at the critical point p = pH. The maximal number of small limit cycles near the
E+ or E− can reach three with outer one being either stable or unstable. Thus, the
total maximal number of limit cycles bifurcating from the symmetric equilibria E±
is 6.

Proof. Suppose am > 0 and a + n > 0. Then at the critical point p = pH, Hopf
bifurcation can occur from the E±. Introducing the transformation:

x

y

z

 =


√

am
ap+bm

0

bm
ap+bm

+ T2


u

v

w

, (2.21)

where

T2 =


m
√
a+n√
2m

T̃ m
√
am

an T̃
m
√

(a+n)√
2 a

T̃

√
2m2

n
√
a+n

T̃ m
√
am
n T̃ m(a+n)

√
a+n√

2 a
T̃

1 0 1

, (2.22)

with T̃ =
√
an/[bm(2m+ a2 + an)], into (1.1), we obtain the system:

u̇ = ωE± v +
∑3
i+j+k=2 aijku

ivjwk,

v̇ = −ωE± u+
∑3
i+j+k=2 bijku

ivjwk,

ẇ = − (a+ n)w +
∑3
i+j+k=2 cijku

ivjwk,

(2.23)

where aijk, bijk and cijk are coefficients given in terms of a, m and n. Note that
b does not appear in these expressions. Now applying the Maple program [24] to
system (2.23) we obtain the following focus values:

v1 = (a+n)m2 F1

8n2(2m+a2+an)2[(a+n)3+2am][(a+n)3+8am] ,

v2 = (a+n)m3 F2

1152an4(2m+a2+an)4[(a+n)3+18am][(a+n)3+2am]3[(a+n)3+8am]3 ,

v3 = (a+n)m4 F3

10616832a2n6(2m+a2+an)6[(a+n)3+32am][(a+n)3+18am]2[(a+n)3+2am]5[(a+n)3+8am]5 ,

where

F1 =16an(3a+5n)m3 + 2(a+ n)(3a3−27a2n+5an2+3n3)m2
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− n(a+ n)2(39a3 + 17a2n+ 21an2 + 3n3)m− 2na2(a+ 3n)(a+ n)4,

F2=2654208a6(27a2+104an+41n2)m10+36864a5(a+n)(2349a4+6134a3n+ 13796a2n2

+ 8314an3+895n4)m9+512a4(a+n)2(56349a6−260892a5n+465033a4n2+963848a3n3

+ 572295a2n4 + 131700an5 + 20915n6)m8 − 64a3(a+ n)3(13689a8 + 3129822a7n

+ 4749174a6n2+2006a5n3−4883240a4n4−3867366a3n5−1080214a2n6−132686an7

− 40881n8)m7−32a2(a+n)4(58779a10+2799513a9n+10139175a8n2+11938198a7n3

+ 3813688a6n4−3403896a5n5−4294544a4n6−2108918a3n7−314283a2n8−15681an9

− 6975n10)m6−16a(a+ n)6(20682a11+1405872a10n+7828005a9n2+12922778a8n3

+ 8412523a7n4+989849a6n5−1619143a5n6−1033043a4n7−510169a3n8−40925a2n9

+ 2822an10−371n11)m5−8(a+n)8(2835a12+421623a11n+2983311a10n2+7735180a9n3

+ 8038629a8n4 + 3319151a7n5 + 100708a6n6 − 374829a5n7 − 40603a4n8 − 51862a3n9

− 2919a2n10 + 433an11 − 9n12)m4 − 4(a+ n)11(+135a11 + 77202a10n+ 406656a9n2

+ 1508069a8n3 + 1853253a7n4 + 680325a6n5 + 109244a5n6 − 56790a4n7 + 13440a3n8

− 695a2n9 − 144an10 + 9n11)m3 − 2an(a+ n)14(8280a8 + 6027a7n+ 102829a6n2

+ 245463a5n3 + 66072a4n4 + 21427a3n5 − 4059a2n6 + 717an7 + 96n8)m2

−a2n(a+n)17(360a6−3123a5n−3496a4n2+14928a3n3+2200a2n4+1113an5+30n6)m

− 2a3n2(a+ n)20(54a3 + 95a2n− 45an2 − 6n3).

Next, eliminating m from the two equations F1 = 0 and F2 = 0 yields a solution

m = m(a, n) = mN (a,n)
mD(a,n) a

2, where

mN =− 145118822400a39 + 8420297074713a38n+ 1937334345180876a37n2

+136155571646782572a36n3+3194798805759399984a35n4+35966616792047795259a34n5

+ 221922136598323411602a33n6 + 753875689130289285408a32n7

+ 1036143752291928742968a31n8 − 1505852094040225275492a30n9

− 7521991071123630239280a29n10 − 8211091338516468330576a28n11

+ 5660913430498046904648a27n12 + 23970970622564686431684a26n13

+ 25564393293896780396280a25n14 + 6380816427649337371056a24n15

− 16247449681436271214920a23n16 − 24784440206055221854746a22n17

− 17697669886949301520056a21n18 − 5410371960997707843128a20n19

+ 2826476114555371783784a19n20 + 5041918024385859760450a18n21

+ 3842602497120806887244a17n22 + 2029417648468590252752a16n23

+ 817423705912582945640a15n24 + 256168487662741448508a14n25

+ 59901634692786638928a13n26 + 8349820772360497584a12n27

− 483850144879369448a11n28 − 617779803879041660a10n29

− 134169454772069576a9n30 + 7248773523375824a8n31

+ 11318955257574824a7n32 + 2935000684022825a6n33 + 360376751146188a5n34

+ 14796815063148a4n35 − 1381381134072a3n36 − 177186390981a2n37

− 5150585614an38 + 45632400n39,
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mD =676674967950a39 − 360610005790854a38n− 46790439207463134a37n2

− 2538421275417013008a36n3 − 48223641820969423656a35n4

− 413330520617120880792a34n5 − 1692478899149910020658a33n6

− 2439292211384651284140a32n7 + 5495797103327313434388a31n8

+ 18884748685774194168876a30n9 + 6357144596804918851860a29n10

− 26778358931845922236764a28n11 − 40499512412818302843300a27n12

− 18858925785761024124060a26n13 + 15733867294328925805668a25n14

+ 32553913767377587178004a24n15 + 24729482183615989049616a23n16

+ 7853263895059354960704a22n17 − 3568017877172945296584a21n18

− 6342834624755658568556a20n19 − 4519243537029378496868a19n20

− 2215427028162452220828a18n21 − 876590247220749540544a17n22

− 324155198630463871380a16n23 − 120634849042019381716a15n24

− 38301803045734434476a14n25 − 5803329993294537460a13n26

+ 2400862034147721580a12n27 + 1968084634574524308a11n28

+ 604420369610938924a10n29 + 54352478959614300a9n30

− 26945906948502052a8n31 − 11971332115482078a7n32 − 2278682250361402a6n33

− 217136364420986a5n34 − 4630424296084a4n35 + 1081216070812a3n36

+ 100863436964a2n37 + 2547730482an38 − 20078256n39,

and a resultant:

R12 = an(a2 − n2)(9a2 − n2) R12a(a, n),

where

R12a =6643012500a39 + 680229717750a38n+ 27941732823690a37n2

+ 243031205836926a36n3 − 3870453629582919a35n4 − 113872116973144644a34n5

− 1455977799249345657a33n6 − 11758763677939125183a32n7

− 60379986399148486539a31n8 − 185562327261637229499a30n9

− 255920868219460121181a29n10 + 170096166521643359151a28n11

+ 866801580354853883307a27n12 − 439924427793666279081a26n13

− 5677778080742194310427a25n14 − 11389406414366813626071a24n15

− 10355948551980557593491a23n16 − 630178930185349725103a22n17

+ 10836373576231106046695a21n18 + 15529587744820914224779a20n19

+ 11644034664825923686957a19n20 + 4032060514054361867623a18n21

− 1739954990466126836941a17n22 − 3684240222100387596117a16n23

− 3018923218712379290201a15n24 − 1664487129593507485145a14n25

− 676739015136631807183a13n26 − 206171492683005777099a12n27

− 46077050828531523567a11n28 − 7017422324887267571a10n29

− 549115344386489281a9n30 + 32275782378192731a8n31

+ 15305158135364835a7n32 + 1973401335496141a6n33

+ 107944455360187a5n34 − 2587735411437a4n35 − 775708992674a3n36
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− 44282118919a2n37 − 765584094an38 + 6692752n39,

which is a 39th-degree homogeneous polynomial in a and n. It is easy to show
that setting n(a2−n2)(9a2−n2) = 0 yields the E± being saddle points. Therefore,
it is not possible to find solutions such that v1 = v2 = v3 = 0, and so four limit
cycles can not exist. The next best possibility is to find three limit cycles, which
can be obtained by solving the equation R12a = 0. Letting n = Na and then solving
R12a = 0 for N 6= 0 yields 11 real solutions, and then using the solution m(a, n) we
obtain the following 11 solutions:

(m,n)=(0.007147 · · · a2, − 0.570923 · · · a), (0.021999 · · · a2, − 1.392097 · · · a),

(0.804329 · · · a2, − 2.361528 · · · a), (1.922924 · · · a2, 0.961226 · · · a),

(12829.627127 · · · a2, 160.256166 · · · a),

(−300.180082 · · · a2, 13.507367 · · · a), (−2.918811 · · · a2,−15.268853 · · · a),

(−1.323394 · · · a2, 8.439914 · · · a), (−0.569859 · · · a2, 1.250380 · · · a),

(−0.370621 · · · a2, − 0.453226 · · · a), (−0.065623 · · · a2, 0.056199 · · · a).

It is easy to use the conditions am > 0 and a + n > 0 to verify that only the
4th, 5th and 7th solutions are feasible solutions, that is, the feasible three solutions
are the following ones, satisfying v1 = v2 = 0:

a>0:


S1 = (1.922924 · · · a2, 0.961226 · · · a) : v3 = 0.0178165052 · · · a > 0,

S2 = (12829.62 · · · a2, 160.2561 · · · a) : v3 = −3.1288470830 · · · a < 0,

a<0: S3 = (− 2.9188 · · · a2, −15.26885 · · · a) : v3 = 0.0000008598 · · · a < 0.

(2.24)
The above results indicate that the stability of the three limit cycles can be different
since the outer one can be either stable or unstable. It follows from (2.18) that the
first solution S1 belongs to Case II, the second solution S2 belongs to Case I, and
the last solution S3 belongs to Case III. Further, a direct calculation shows that

∂(v1, v2)

∂(m,n)
=



0.1597421584 · · ·
a

× 10−7, for solution S1

0.1245322791 · · ·
− a

× 10−5, for solution S2

0.1739537197 · · ·
a

× 10−8, for solution S3


6= 0,

which implies that three limit cycles can be obtained near each of the two symmetric
equilibria E± by perturbing the parameters p, m and n, while a and b can be chosen
arbitrarily according to the conditions given in (2.18).

The proof of Theorem 2.4 is complete.

3. Simulation of limit cycles

In this section, we present several numerical examples to illustrate the theoretical
results obtained in previous sections for the standard Lorenz system (1.3) and the
extended Lorenz system (1.1). The simulations are obtained by using the Matlab
software package with ODE45 (2017 version).
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3.1. Two unstable limit cycles near the C± of the Lorenz
system (1.3)

We take the parameter values, which are usually used in the literature for finding
the butterfly chaotic attractor of system (1.3) (e.g., see [3]), given by σ = 10, r = 8

3 ,
for which ρH = 24 14

19 . At this critical point, the non-zero equilibria are given by

C± : (X,Y, Z) = (±7.956019458, ±7.956019458, 23.73684211).

For the above critical parameter values, the first focus value is v1 ≈ 0.0010804123.
In order to find the small-amplitude (unstable) limit cycle, we need to find v0 such
that 0 < −v0 � v1. v0 can be obtained from a linear analysis, which is actually
the read part of the complex conjugate eigenvalue of the Jacobian of system (1.3).
To achieve this, we perturb ρ from ρH to ρ = ρH − 1

100 = 46981
1900 . Then, a direct

computation shows that the eigenvalues of the Jacobian of system (1.3) are

λ1,2 = −0.0003022716± 9.6227153375 i and λ3 = −13.6660621236,

showing that v0 = −0.0003022716. Therefore, the truncated normal form up to
third order, given by

ṙ = v0 r + v1 r
3 = −0.0003022716 r + 0.0010804123 r3,

has a positive solution, r = 0.5289369236, which approximates the amplitude of the
(unstable) limit cycle. The simulation is shown in Figure 1, where two trajectories
starting from two different initial conditions chosen near the equilibria C±, diverge
to the well-known Lorenz butterfly chaotic attractor.
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(a) (X,Y, Z) = (7, 956, 7.956, 23.7368)
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(b) (X,Y, Z) = (−7, 956,−7.956, 23.7368)

Figure 1. Simulation of the Lorenz system (1.3), showing coexistence of the unstable limit cycles around

the symmetric equilibria C± and the butterfly chaotic attractor, for σ = 10, r = 8
3 and ρ = 46981

1900
with the initial points.

It can be seen from Figure 1 that the trajectory starting from the initial point
near the equilibrium C+ frequently visits the area near the unstable limit cycle
around the equilibrium C−, as shown in Figure 1(a). Similar situation happens
when the initial point is chosen near the equilibrium C−. This shows coexistence
of unstable limit cycles and the butterfly chaotic attractor.
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3.2. Limit cycle bifurcations in the extended Lorenz system
(1.1)

We now turn to the extended Lorenz system (1.1). First, we consider the limit cycle
bifurcation from the E0 (the origin), and then from the symmetric equilibria E±.

3.2.1. One limit cycle around the E0

It has been shown that only one limit cycle exists near the E0 due to Hopf bifurcation
and its stability depends upon the sign of b. We choose m = −1 and a = 1. Then
choosing b = 1

2 , we obtain v1 = − 1
40 , indicating that the limit cycle is stable. In

order to have this small-amplitude limit cycle, we need 0 < v0 � −v1. Similar to
the discussion given in Section 3.1 for the Lorenz system (1.3), we may let n = − 1

20 ,
which yields the eigenvalues of the linearized system as

λ1,2 =
1

40
± i
√

599

40
, λ3 = −1,

and so v0 = 1
40 . Thus, the truncated normal form is

ṙ = v0 r + v1 r
3 =

1

40
r − 1

40
r3

which gives the approximation of the stable limit cycle r = 1, as shown in Fig-
ure 2(a).

If we change b from 1
2 to − 1

2 , then we obtain v1 = 1
40 . Further, let n = 1

20 .
Then, v0 = − 1

40 , yielding the same approximation of limit cycle r = 1. However,
this limit cycle is unstable, as shown in Figure 2(b). It is noted that the unstable
limit cycle, shown in Figure 2(b) with negative z, seems symmetric to the stable
one, shown in Figure 2(a) with positive z. Actually, if we change (x, y, z) →
(−x,−y,−z) and (n, b)→ (−n,−b), we obtain the following system:

ẋ = y,

ẏ = mx+ n y +mxz − p x3,

ż = − a z + b x2.

(3.1)

System (3.1) has an unstable limit cycle, as shown in Figure 2(c), which is exactly
symmetric to the one given in Figure 2(b). The attracting region of the stable
equilibrium (0, 0, 0) is actually quite large. When the initial point is chosen as
(x, y, z) = (−0.9,−2,−100), as shown in Figure 2(d), the trajectory converges to
the origin via the manifold containing the unstable limit cycle. It is seen from Fig-
ures 2(b) and (d) that these two diagrams show almost exactly the same trajectory
near the origin, but the one given in Figure 2(d) has more part on the manifold
since the initial point is much far away than the one depicted in Figure 2(b). Also
note that the equilibria E± do not exist for the above chosen parameter values.
Therefore, for these parameter values, if the initial point is not chosen from the
attracting region, the trajectory will diverge to infinity.
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(a) for system (1.1) with n = − 1
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(c) for system (3.1) which is symmetric with
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appears

Figure 2. Simulation of the extended Lorenz system when m = −1 and p = a = 1.

3.2.2. Six limit cycles around the E±

Finally, we present simulation for the six limit cycles, with three around each of the
equilibria E±. According to the solutions classified in (2.24), we have three sets of
solutions. We will give one simulation for each case.

Case S1. We take a = 1, for which v3 = 0.0178165052 · · · > 0 and v0 =
v1 = v2 = 0. This indicates that the largest small-amplitude limit cycle is un-
stable. Then, we perturb (m,n) = (1.9229244660, 0.96122637340) to (m,n) =
(1.8858259631, 0.9423396437) under which 0 < v1 � −v2 � v3. More precisely,
we obtain the following new focus values:

v1 ≈ 0.0000106149, v2 ≈ − 0.0009994525, v3 ≈ 0.0164962448,

v4 ≈ 0.0564177682, v5 ≈ 0.1683022855.

Further, without loss of generality, we set b = 0.5. Under the above chosen parame-
ter values, we finally perturb p from pH = 0.3399531456 to p = 0.3399531956 so that
v0 ≈ −0.0000000184 for which the equilibria E± = (±1.2124396423, 0, 0.7350049431).
Then, the truncated 7th-order normal form is given by

ṙ = v0r + v1r
3 + v2r

5 + v3r
7

= −0.0000000184r + 0.0000106149r3 − 0.0009994525r5 + 0.0164962448r7,
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which has three positive roots:

r1 ≈ 0.046424, r2 ≈ 0.104346, r3 ≈ 0.217934.

(a) from the initial points: (x, y, z) =
(1.2124, 0, 0.735) (trajectory in blue color) and
(x, y, z) = (1.2124, 0.001, 0.735) (trajectory in
red color)

(b) a different projection of (a) showing an al-
most plane shape of the center manifold embed-
ding the limit cycles

-20
0

0.5

x

z

1

-1

1.5

y
20

1 4

(c) two trajectories starting from the initial
points: (x, y, z) = (2, 0, 1) and (− 2, 0, − 4)
converge to the stable limit cycle
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(d) a different projection of (c) showing an al-
most plane shape of the center manifold

Figure 3. Simulated trajectories of the extended Lorenz system when a = 1, m = 1.8858259631, n =
0.9423396437, b = 0.5 and p = 0.3399531956, showing convergence to the stable limit cycle.

In order to see if higher order focus values affect the solution of the roots, we add
two additional higher-order terms to the above truncated normal form to obtain the
11th-order normal form:

ṙ = v0r + v1r
3 + v2r

5 + v3r
7 + v4r

9 + v5r
11

= −0.0000000184r + 0.0000106149r3 − 0.0009994525r5 + 0.0164962448r7

+ 0.0564177682r9 + 0.1683022855r11,

which again has three positive roots:

r1 ≈ 0.046360, r2 ≈ 0.105140, r3 ≈ 0.197517.

It is seen that these three roots are quite close to that obtained from the 7th-order
normal form, indicating that these approximations of the amplitudes of the three
small-amplitude limit cycles are robust.
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Simulation for this case are depicted in Figure 3, which only shows the limit
cycles around the equilibrium E+ since E− is symmetric to E+. In Figure 3(a), two
very close initial points: (x, y, z) = (1.2124, 0, 0.735) and (1.2124, 0.0001, 0.735) are
chosen to perform the simulation. It is seen from Figure 3(a) that the trajectory
starting from the second initial point (in red color) converge to the stable limit
cycle, while the trajectory starting from the first initial point (in blue color) first
approaches the stable limit cycle, and then jumps to outside of the stable limit
cycle and continues to expand out. It is expected that the blue trajectory inside
the red trajectory should approach the red trajectory (the stable limit cycle), but
the sudden jump may be due to numerical accumulation error. However, the outside
blue trajectory shows an unstable limit cycle which exists between the red trajectory
and the outside blue trajectory. Since E+ is stable, there must exist an unstable
limit cycle between the E+ and the stable limit cycle, which is located on the
center manifold and very close to the equilibrium E+. A projection taken in a
difference angle, depicted in Figure 3(b), shows that the center manifold near the
equilibrium E+ is almost a plane. Since higher-order focus values are positive
(verified up to the term r27), there must exist an unstable limit cycle outside the
stable one. Moreover, two trajectories shown in Figures 3(c) and (d), starting
respectively from the initial points: (x, y, z) = (2, 0, 1) and (− 2, 0, − 4), indicate
that other trajectories converge to the stable limit cycle.

Case S2. We choose a = 0.005, which gives v3 = −0.0156442354 · · · < 0
and v0 = v1 = v2 = 0. This implies that the largest small-amplitude lim-
it cycle is stable. Then, we perturb (m,n) = (0.3207406782, 0.8012808319) to
(m,n) = (0.1658993054, 0.5762527391) for which the focus values become

v1 ≈ − 0.4253389437×10−5, v2 ≈ 0.4413506704×10−3, v3 ≈ − 0.6084976817×10−2,

v4 ≈ − 0.1158033372, v5 ≈ − 1.541745839.

Again we set b = 0.5. Under these chosen parameter values, we finally perturb p
from pH = − 0.0013546668 to p = − 0.0013551358 so that v0 ≈ 0.8002492701×
10−8 for which the equilibria E± = (±0.1000040844, 0, 1.0000816909). Then, the
truncated 7th-order normal form is given by

ṙ =v0r + v1r
3 + v2r

5 + v3r
7 = 0.8002492701×10−8r − 0.4253389437×10−5r3

+ 0.4413506704×10−3r5 − 0.6084976817×10−2r7,

which has three positive roots:

r1 ≈ 0.050150, r2 ≈ 0.092197, r3 ≈ 0.248024.

When higher order focus values v4 and v5 are added to the above truncated
normal form, we obtain

ṙ =v0r + v1r
3 + v2r

5 + v3r
7 + v4r

9 + v5r
11

=0.8002492701×10−8r − 0.4253389437×10−5r3

+0.4413506704×10−3r5−0.6084976817×10−2r7−0.1158033372r9

−1.5417458391r11,

which again has three positive roots:

r1 ≈ 0.050128, r2 ≈ 0.094327, r3 ≈ 0.168516.
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(x, y, z) = (− 0.01, − 0.001, 0.7984027) and
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(c) trajectories starting from (x, y, z) =
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stable limit cycle
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(d) a symmetric phase portrait of that in
(a) using the initial points: (x, y, z) =
(0.01, 0.001, 0.7984027) and (x, y, z) = (2, 0, 1)

Figure 4. Simulated trajectories of the extended Lorenz system (1.1) when a = 0.005, m =
0.1658993054, n = 0.5762527391, b = 0.5 and p = − 0.0013551358.

It is seen that the first two roots are very close to that obtained from the 7th-order
normal form, while the third one is slightly less than the one from the 7th-order
normal form, indicating that these approximations of the amplitudes of the three
small-amplitude limit cycles are robust.

Simulations for this case are depicted in Figure 4, which show two stable limit
cycles enclosing the equilibria E±. The trajectory starting from the initial point,
(x, y, z) = (− 0.01, − 0.001, 0.7984027), converges to the smaller limit cycle (in red),
while the one starting from the initial point, (x, y, z) = (− 2, 0, 1), converges to the
larger stable limit cycle (in blue). The center manifold embedding the limit cycles is
depicted in Figure 4(b). There exists an unstable limit cycle between the two stable
limit cycles, and the equilibria E± are unstable. Figure 4(c) shows that trajectories
starting from the initial points far away from the equilibria converge to the larger
stable limit cycle. Figure 4(d) shows a phase portrait symmetric to that in (a)
when the symmetric initial points, (x, y, z) = (0.01, 0.001, 0.7984027) and (2, 0, 1)
are used.

Case S3. For this case, a<0. We have v3 = 0.8598713267 · · · ×10−6 a < 0 (a <
0) and v0 = v1 = v2 = 0. This implies that the largest small-amplitude limit cycle
is stable. Then, we perturb (m,n) = (−2.9188113835 a2, −15.2688532498 a) to
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(a) converging to the smaller stable limit cycle
(b) a different projection of the phase portrait in
(a), showing the almost plane shape of the center
manifold

Figure 5. A simulated trajectory of the extended Lorenz system (1.1) when a = − 0.1, m =
0.8858259631, n = 0.9423396437, b = − 0.5 and p = 0.3399531956 with the initial point: (x, y, z) =
0.8587, 0.01, 3.6871).

(m,n) = (−2.9183094335 a2, −15.2745213540 a) for which the focus values become

v1 ≈ 0.1717405600×10−9 a, v2 ≈ − 0.2574566232×10−7 a,

v3 ≈ 0.8569028948×10−6 a, v4 ≈ 0.4534920741×10−7 a,

v5 ≈ − 0.8436340643×10−9 a.

For this case, it needs b < 0 (see Eq. (2.18)). We choose b = − 0.5. Under the
chosen parameter values, we finally perturb p from pH = −1.06340562335859 a
to p = −1.06340562335853 a so that v0 ≈ 0.1140543640 × 10−12 a < 0 for which
the equilibria E± = (±2.7155368789

√
−a, 0, 3.6870702704). Then, the truncated

7th-order normal form is given by

ṙ =v0r + v1r
3 + v2r

5 + v3r
7 = −ar

[
0.1140543640×10−12 − 0.1717405600×10−9r2

+ 0.2574566232×10−7 r4 − 0.8569028948×10−6 r6
]
,

which has three positive roots:

r1 ≈ 0.027301, r2 ≈ 0.093005, r3 ≈ 0.143711.

When higher order focus values v4 and v5 are added to the above truncated
normal form, we obtain

ṙ =v0r + v1r
3 + v2r

5 + v3r
7 + v4r

9 + v5r
11

=− ar
[

0.1140543640×10−12 − 0.1717405600×10−9r2 + 0.2574566232×10−7r4

− 0.8569028948×10−6r6 − 0.4427134796×10−7r8 − 0.2034258917×10−8r10
]
,

which again has three positive roots:

r1 ≈ 0.027301, r2 ≈ 0.093005, r3 ≈ 0.143574.

It is seen that these three roots are almost the same as that obtained from the
7th-order normal form, indicating that these approximations of the amplitudes of
the three small-amplitude limit cycles are robust.
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Simulation showing the smaller stable limit cycle is depicted in Figure 5(a). The
trajectory starts from an initial point near the E+: (x, y, z) = (0.8587, 0.01, 3.6871).
It is seen from Figure 5(b) that the center manifold is almost a plane, like Case S1, as
shown in Figure 3(b). However, for this case, it is hard to simulate the larger stable
limit cycle, even though higher-order focus values (verified up to the term r31) have
the same negative sign of v3. Many initial points are chosen but failed to find the
larger stable limit cycle. For example, let the initial point be (x, y, z) = (x0, 0, 4).
When |x0| ≤ 1.051, all trajectories converge to the smaller stable limit cycle; while
when |x0) > 1.051, all trajectories diverge to infinity. This may perhaps be caused
by a < 0 for which the invariant manifold (the z-axis) is unstable, while it is an
stable invariant manifold for the cases S1 and S2.

4. Conclusion

In this paper, we have considered an extended Lorenz system and applied normal
form theory to study bifurcation of limit cycles due to Hopf bifurcation. It is shown
that either one limit cycle (which may be stable or unstable) can bifurcate from
the trivial equilibrium (the origin), or six limit cycles bifurcate from two symmetric
equilibria. It is not possible to have Hopf bifurcations simultaneously from the
trivial and the two symmetric equilibria. For comparison, we also show that the
classical Lorenz system does not have Hopf bifurcation from the trivial equilibrium,
and only one unstable limit cycle can occur from each of the two symmetric equilibria
due to Hopf bifurcation.
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[13] J. H. Lü, G. R. Chen, D. Z. Cheng and S. Celikovsky, Bridge the gap between
the Lorenz system and the Chen system, Int. J. Bifur. Chaos, 2002, 12, 2917–26.
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