EXISTENCE CONDITIONS OF THIRTEEN LIMIT CYCLES IN A CUBIC SYSTEM*

JUNMIN YANG and MAOAN HAN ${ }^{\dagger}$
Department of Mathematics, Shanghai Normal University, Shanghai 200234, P. R. China
${ }^{\dagger}$ mahan@shnu.edu.cn
JIBIN LI
Department of Mathematics, Zhejiang Normal University, Jinhua, Zhejiang 321004, P. R. China
PEI YU
Department of Applied Mathematics, The University of Western Ontario London, Ontario, Canada N6A 5B7

Received November 5, 2009; Revised December 21, 2009

Abstract

In this paper, we study a cubic system and obtain a concrete condition under which the cubic system has 13 limit cycles.

Keywords: Cubic; limit cycle; bifurcation; polynomial system.

1. Introduction and Main Result

As we know, the second part of the Hilbert problem is to find the maximal number and relative locations of limit cycles of polynomial systems of degree n. Let $H(n)$ denote this number, which is called the Hilbert number. Then the problem of finding $H(n)$ is divided into two parts: find an upper and lower bounds of it. For the upper bound there are important works of Écalle [1990] and IIyashenko and Yakovenko [1991]. However, if $H(n)<\infty$ holds or not is still open, even for the case $n=2$. On the other hand, many works have been done on the lower bound, especially for quadratic and cubic systems. See [Li, 2003] for a detailed introduction to recent advancement of the problem. For example, Bautin [1952] proved $H(2) \geq 3$ by studying Hopf
bifurcation. Chen and Wang [1979] and Shi [1980] separately proved $H(2) \geq 4$. Li and Huang [1987] first found a cubic system having 11 limit cycles, giving $H(3) \geq 11$. Li and Liu [1991], and Liu et al. [2003] respectively found more cubic systems having 11 limit cycles with the same distribution. Later, Han et al. [2004] and Han et al. [2004, 2005] used the method of stability-changing of a homoclinic loop to give more cubic systems having 11 limit cycles with two different distributions. Then Zhang et al. [2005] studied an asymmetric cubic system and found three different distributions of 11 limit cycles. Yu and Han [2004, 2005a, 2005b] proved further $H(3) \geq 12$ by studying Hopf bifurcation in some centrally symmetric cubic systems. Recently, Liu and Li [2008] obtained a sufficient condition for

[^0]the existence of 13 limit cycles in this kind of cubic systems. The 13 limit cycles have the distribution: one large limit cycle bifurcated from the equator surrounds 12 small limit cycles which are bifurcated from two symmetric foci. Then in the same year, Li et al. [2009] considered a cubic system of the form
\[

$$
\begin{align*}
\dot{x}= & y\left(y^{2}-k^{2}\right), \\
\dot{y}= & x(x+1)(x-\lambda) \tag{1}\\
& +\varepsilon y\left(\alpha_{1}+\alpha_{2} x+\alpha_{3} x^{2}+\alpha_{4} y^{2}\right),
\end{align*}
$$
\]

where $0<\lambda<1, k>10$, and $\alpha_{1}, \alpha_{2}, \alpha_{3}$ and α_{4} are parameters, and proved that the system can also have 13 limit cycles if k is sufficiently large. The limit cycles are obtained by proving the existence of zeros of Melnikov functions based on some known results, and present a new distribution. Both works of Liu and Li [2008], Li et al. [2009] are the best results so far for cubic systems and are very important, yielding $H(3) \geq 13$.

In this paper, motivated by the work of Li et al. [2009], we consider the following cubic system

$$
\begin{align*}
\dot{x}= & 2 y\left(y^{2}-k^{2}\right), \\
\dot{y}= & -\left(x^{3}+b x^{2}-x\right) \tag{2}\\
& -\varepsilon y\left(\delta_{1}+\delta_{2} x+\delta_{3} x^{2}+\delta_{4} y^{2}\right),
\end{align*}
$$

where $k>0, b>0$, and $\delta_{1}, \delta_{2}, \delta_{3}$ and δ_{4} are parameters. It is easy to see that (1) and (2) are equivalent. We use the method developed in Han and Chen [2000], Han et al. [2008], Yang and Han [2007] to prove that system (2) can have 13 limit cycles. The main purpose is to give a concrete condition for the existence of 13 limit cycles, which can be taken as an improvement of the work by Li et al. [2009] in two aspects: a simple and concrete condition for the existence of 13 limit cycles is given; on the other hand, the proof method (i.e. the way to find zeros of Melnikov functions) is simpler and more direct. The condition here is also much simpler than that of Liu and Li [2008]. More precisely, we have the following main result.

Theorem 1. System (2) has 13 limit cycles if

$$
\begin{equation*}
k=100, \quad b=\frac{7}{2}, \quad 0<k_{1} \delta_{4}<\delta_{3}<k_{2} \delta_{4} \tag{3}
\end{equation*}
$$

where
$k_{1} \approx 0.75249999999975, \quad k_{2} \approx 0.75250000000036$, and

$$
\begin{equation*}
0<\varepsilon \ll K_{0}+K_{1} \delta_{1}-\delta_{2} \ll \delta_{1}^{*}-\delta_{1} \ll 1 \tag{4}
\end{equation*}
$$

Fig. 1. The distribution of the 13 limit cycles of system (2).
with

$$
\begin{aligned}
K_{0} \approx & \frac{77514906777564200000}{8051754528899929} \delta_{4} \\
& +\frac{2127709682470669621}{603881589667494675} \delta_{3}, \\
K_{1} \approx & \frac{38757455034549104}{120776317933498935}, \quad \delta_{1}^{*}=-30000 \delta_{4} .
\end{aligned}
$$

In particular, if

$$
\begin{equation*}
\delta_{3}=20000, \quad \delta_{4}=\frac{8 \times 10^{6}}{301} \tag{5}
\end{equation*}
$$

and (4) holds with

$$
\begin{align*}
& K_{0} \approx \frac{265838587879011391034962400}{1038676334228090841} \\
& K_{1} \approx \frac{38757455034549104}{120776317933498935} \tag{6}\\
& \delta_{1}^{*}=-\frac{24}{301} \times 10^{10}
\end{align*}
$$

then system (2) has 13 limit cycles.
Remark. The distribution of the 13 limit cycles under the condition of the above theorem is just the same as obtained in Li et al. [2009] as shown in Fig. 1.

2. Proof of the Main Result

Consider system (2). For $\varepsilon=0$, (2) is Hamiltonian with

$$
\begin{equation*}
H(x, y)=\frac{1}{2} y^{4}-k^{2} y^{2}+\frac{1}{4} x^{4}-\frac{1}{2} x^{2}+\frac{b}{3} x^{3}, \tag{7}
\end{equation*}
$$

and has five centers $A_{1}, A_{2}, A_{3}, A_{4}, O$ (the origin) and four saddles $S_{0}, S_{1}, S_{2}, S_{3}$, where

$$
\begin{gather*}
A_{1}=\left(x_{1}(b), k\right) \quad A_{2}=\left(x_{2}(b), k\right) \\
A_{3}=\left(x_{1}(b),-k\right), \quad A_{4}=\left(x_{2}(b),-k\right), \\
S_{0}=(0, k), \quad S_{1}=\left(x_{1}(b), 0\right) \tag{8}\\
S_{2}=\left(x_{2}(b), 0\right), \quad S_{3}=(0,-k)
\end{gather*}
$$

and $x_{i}(b)=\left(-b+(-1)^{i} \sqrt{b^{2}+4}\right) / 2, i=1,2$. Let

$$
\begin{align*}
\alpha_{1} & =H\left(A_{1}\right)=H\left(A_{3}\right), \\
\alpha_{2} & =H\left(A_{2}\right)=H\left(A_{4}\right), \\
h_{0} & =H\left(S_{0}\right)=H\left(S_{3}\right), \tag{9}\\
h_{1} & =H\left(S_{1}\right), \\
h_{2} & =H\left(S_{2}\right) .
\end{align*}
$$

For example, for $k=100, b=7 / 2$, then (8) and (9) become

$$
\begin{aligned}
& A_{1}=\left(-\frac{7}{4}-\frac{\sqrt{65}}{4}, 100\right), \\
& A_{2}=\left(-\frac{7}{4}+\frac{\sqrt{65}}{4}, 100\right), \\
& A_{3}=\left(-\frac{7}{4}-\frac{\sqrt{65}}{4},-100\right), \\
& A_{4}=\left(-\frac{7}{4}+\frac{\sqrt{65}}{4},-100\right), \\
& S_{0}=(0,100), \\
& S_{1}=\left(-\frac{7}{4}-\frac{\sqrt{65}}{4}, 0\right), \\
& S_{2}=\left(-\frac{7}{4}+\frac{\sqrt{65}}{4}, 0\right), \\
& S_{3}=(0,-100)
\end{aligned}
$$

and

$$
\begin{aligned}
& \alpha_{1}=-\frac{19200003673}{384}-\frac{455}{384} \sqrt{65}, \\
& \alpha_{2}=-\frac{19200003673}{384}+\frac{455}{384} \sqrt{65},
\end{aligned}
$$

$$
\begin{align*}
h_{0} & =-50000000 \\
h_{1} & =-\frac{3673}{384}-\frac{455}{384} \sqrt{65} \\
h_{2} & =-\frac{3673}{384}+\frac{455}{384} \sqrt{65} \tag{11}
\end{align*}
$$

respectively. It is easy to see that $\alpha_{1}<\alpha_{2}<h_{0}<$ $h_{1}<h_{2}<0$.

Then for each of h_{1} and h_{2}, the equation $H(x, y)=h_{j}$ defines a double homoclinic loop passing through S_{j}, denoted by L_{j}, and for h_{0}, the equation $H(x, y)=h_{0}$ with $y>0$ defines a double homoclinic loop passing through S_{0}, denoted by L_{0}. Let $L_{01}=\left.L_{0}\right|_{x \leq 0}, L_{02}=\left.L_{0}\right|_{x \geq 0}, L_{11}=$ $\left.L_{1}\right|_{y \geq 0}, L_{12}=\left.L_{1}\right|_{y \leq 0}$, and L_{21} be the homoclinic loop passing through S_{2} and surrounding a unique singular point at the origin, and L_{22} be the homoclinic loop passing through S_{2} and surrounding all other singular points. Then $L_{j}=L_{j 1} \cup L_{j 2}, j=0$, 1, 2. See Fig. 2.

Introduce

$$
\begin{array}{ll}
L_{h}^{ \pm}: H(x, y)=h, & h \in\left(h_{0}, h_{1}\right), \\
& \pm y>0 \\
L_{j h}^{ \pm}: H(x, y)=h, & h \in\left(\alpha_{j}, h_{0}\right), \\
& j=1,2 \\
& \pm y>0 \\
\tilde{L}_{1 h}: H(x, y)=h, & h \in\left(h_{2}, 0\right), \quad \tilde{L}_{1 h} \subset \operatorname{Int} L_{21} \\
\tilde{L}_{2 h}: H(x, y)=h, & h>h_{2}, \quad \operatorname{Int} \tilde{L}_{2 h} \supset L_{22}
\end{array}
$$

with $\tilde{L}_{2 h}$ surrounding all the singular points. In the following, we fix $\left(k, b, \delta_{3}, \delta_{4}\right)$ satisfying (3). Then

Fig. 2. Four double homoclinic loops of $\left.(2)\right|_{\varepsilon=0}$.
correspondingly we have the following Melnikov functions

$$
\begin{array}{rr}
M^{ \pm}\left(h, \delta_{1}, \delta_{2}\right)=\oint_{L_{h}^{ \pm}} q\left(x, y, \delta_{1}, \delta_{2}\right) d x, \quad h \in\left(h_{0}, h_{1}\right), \\
M_{j}^{ \pm}\left(h, \delta_{1}, \delta_{2}\right)=\oint_{L_{j h}^{ \pm}} q\left(x, y, \delta_{1}, \delta_{2}\right) d x, \quad h \in\left(\alpha_{j}, h_{0}\right), \\
& j=1,2,
\end{array}
$$

$$
\tilde{M}_{1}\left(h, \delta_{1}, \delta_{2}\right)=\oint_{\tilde{L}_{1 h}} q\left(x, y, \delta_{1}, \delta_{2}\right) d x, \quad h_{2}<h<0
$$

$$
\begin{equation*}
\tilde{M}_{2}\left(h, \delta_{1}, \delta_{2}\right)=\oint_{\tilde{L}_{2 h}} q\left(x, y, \delta_{1}, \delta_{2}\right) d x, \quad h>h_{2}, \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
q\left(x, y, \delta_{1}, \delta_{2}\right)=-y\left(\delta_{1}+\delta_{2} x+\delta_{3} x^{2}+\delta_{4} y^{2}\right) \tag{13}
\end{equation*}
$$

Since $H(x, y)$ is even in y and q is odd in y, we have (see [Li et al., 2009])

$$
\begin{gather*}
M^{+}\left(h, \delta_{1}, \delta_{2}\right)=M^{-}\left(h, \delta_{1}, \delta_{2}\right), \\
M_{j}^{+}\left(h, \delta_{1}, \delta_{2}\right)=M_{j}^{-}\left(h, \delta_{1}, \delta_{2}\right), \quad j=1,2 . \tag{14}
\end{gather*}
$$

Thus, we will only consider the zeros of M^{+}, M_{j}^{+} and $\tilde{M}_{j}, j=1,2$.

For convenience, we let

$$
\begin{gather*}
M\left(h, \delta_{1}, \delta_{2}\right)=M^{+}\left(h, \delta_{1}, \delta_{2}\right) \\
M_{j}\left(h, \delta_{1}, \delta_{2}\right)=M_{j}^{+}\left(h, \delta_{1}, \delta_{2}\right), \quad j=1,2 . \tag{15}
\end{gather*}
$$

We will prove Theorem 1 by finding zeros of the functions M, M_{1}, M_{2} and \tilde{M}_{2}. First, on their analytical property at the endpoints of their domain, by Remark 1.4 in [Han \& Chen, 2000] or Theorem 2.2 in [Han et al., 2008], Theorem 1.2 in [Han, 2000] and Lemma 2.9 in [Han, 2006] we have
Lemma 1. Let (3) be satisfied by δ_{3} and δ_{4} constant. Then

$$
\begin{align*}
M\left(h, \delta_{1}, \delta_{2}\right)= & c_{0}+2 c_{1}\left(h-h_{0}\right) \ln \left|h-h_{0}\right|+c_{2}\left(h-h_{0}\right) \\
& +O\left(\left|h-h_{0}\right|^{2} \ln \left|h-h_{0}\right|\right), \quad 0<h-h_{0} \ll 1, \\
M\left(h, \delta_{1}, \delta_{2}\right)= & \bar{c}_{0}+O\left(\left|h-h_{1}\right| \ln \left|h-h_{1}\right|\right), \quad 0<h_{1}-h \ll 1, \\
M_{j}\left(h, \delta_{1}, \delta_{2}\right)= & c_{0 j}+c_{1}\left(h-h_{0}\right) \ln \left|h-h_{0}\right|+c_{2 j}\left(h-h_{0}\right) \\
& +O\left(\left|h-h_{0}\right|^{2} \ln \left|h-h_{0}\right|\right), \quad j=1,2, \quad 0<h_{0}-h \ll 1, \tag{16}\\
M_{1}\left(h, \delta_{1}, \delta_{2}\right)= & b_{01}\left(h-\alpha_{1}\right)+O\left(\left(h-\alpha_{1}\right)^{2}\right), \quad 0<h-\alpha_{1} \ll 1, \\
\tilde{M}_{j}\left(h, \delta_{1}, \delta_{2}\right)= & \tilde{c}_{0 j}+O\left(\left|h-h_{2}\right| \ln \left|h-h_{2}\right|\right), \quad j=1,2, \quad 0<h-h_{2} \ll 1, \\
\tilde{M}_{1}\left(h, \delta_{1}, \delta_{2}\right)= & \tilde{b}_{01} h+O\left(h^{2}\right), \quad 0<-h \ll 1,
\end{align*}
$$

where

$$
\begin{align*}
& c_{0 j}=M_{j}\left(h_{0}, \delta_{1}, \delta_{2}\right) \\
&=\oint_{L_{0 j}} q\left(x, y, \delta_{1}, \delta_{2}\right) d x, \quad j=1,2, \tag{17}\\
& c_{0}=c_{01}+c_{02}, \\
& c_{1}=\frac{1}{200} \delta_{1}+150 \delta_{4}, \\
& c_{2}=\bar{c}_{2}+O\left(c_{1}\right), \quad \bar{c}_{2}=\bar{c}_{21}+\bar{c}_{22}, \\
& \bar{c}_{2 j}=\oint_{L_{0 j}}\left[q_{y}\left(x, y, \delta_{1}, \delta_{2}\right)-q_{y}\left(0,100, \delta_{1}, \delta_{2}\right)\right] d t, \\
& j=1,2, \\
& \bar{c}_{0}=\oint_{L_{11}} q\left(x, y, \delta_{1}, \delta_{2}\right) d x, \tag{18}
\end{align*}
$$

$$
\tilde{c}_{0 j}=\oint_{L_{2 j}} q\left(x, y, \delta_{1}, \delta_{2}\right) d x, \quad j=1,2
$$

and

$$
\begin{aligned}
\tilde{b}_{01}= & \frac{\sqrt{2} \pi}{100} q_{y}\left(O, \delta_{1}, \delta_{2}\right)=-\frac{\sqrt{2} \pi}{100} \delta_{1}, \\
b_{01}= & \frac{\sqrt{2} \pi q_{y}\left(A_{1}, \delta_{1}, \delta_{2}\right)}{50 \sqrt{65+7 \sqrt{65}}} \\
= & \frac{2 \sqrt{2} \pi}{\sqrt{65+7 \sqrt{65}}}\left(-\frac{1}{100} \delta_{1}+\frac{7+\sqrt{65}}{400} \delta_{2}\right. \\
& \left.-\frac{57+7 \sqrt{65}}{800} \delta_{3}-300 \delta_{4}\right) .
\end{aligned}
$$

Under the condition (3), (7) becomes

$$
H(x, y)=\frac{1}{4} x^{4}+\frac{1}{2} y^{4}-10000 y^{2}-\frac{1}{2} x^{2}+\frac{7}{6} x^{3} .
$$

By (17) we have

$$
\begin{align*}
c_{0 j} & =-\left(\delta_{1} I_{j 1}+\delta_{2} I_{j 2}+\delta_{3} I_{j 3}+\delta_{4} I_{j 4}\right), \quad j=1,2, \\
\bar{c}_{2 j} & =-\oint_{L_{0 j}}\left(\delta_{2} x+\delta_{3} x^{2}+3 \delta_{4}\left(y^{2}-10^{4}\right)\right) d t \\
& =-\oint_{L_{0 j}} \frac{\delta_{2} x+\delta_{3} x^{2}+3 \delta_{4}\left(y^{2}-10^{4}\right)}{2 y\left(y^{2}-10^{4}\right)} d x \tag{19}\\
& =-\left(\delta_{2} J_{j 2}+\delta_{3} J_{j 3}+3 \delta_{4} J_{j 4}\right), \quad j=1,2,
\end{align*}
$$

where

$$
\begin{aligned}
& I_{j i}= \oint_{L_{0 j}} x^{i-1} y d x=\int_{\hat{x}_{j}}^{0} x^{i-1}\left(y_{1}-y_{2}\right) d x, \\
& j=1,2, \quad i=1,2,3, \\
& I_{j 4}= \oint_{L_{0 j}} y^{3} d x=\int_{\hat{x}_{j}}^{0}\left(y_{1}^{3}-y_{2}^{3}\right) d x, \quad j=1,2, \\
& J_{j i}= \oint_{L_{0 j}} \frac{x^{i-1} d x}{2 y\left(y^{2}-10000\right)} \\
&=\int_{\hat{x}_{j}}^{0}\left(\frac{x^{i-1}}{2 y_{1}\left(y_{1}^{2}-10000\right)}-\frac{x^{i-1}}{2 y_{2}\left(y_{2}^{2}-10000\right)}\right) d x, \\
& J_{j 4}=\oint_{L_{0 j}} \frac{1}{2 y} d x=\int_{\hat{x}_{j}}^{0}\left(\frac{1}{2 y_{1}}-\frac{1}{2 y_{2}}\right) d x, \quad j=1,2
\end{aligned}
$$

with

$$
\begin{aligned}
H\left(\hat{x}_{1}, 100\right) & =H\left(\hat{x}_{2}, 100\right)=h_{0} \\
\hat{x}_{1} & =-\frac{7}{3}-\frac{\sqrt{67}}{3}
\end{aligned}
$$

By (17) again, we have

$$
\begin{aligned}
\bar{c}_{0} & =-\left(\delta_{1} \bar{I}_{1}+\delta_{2} \bar{I}_{2}+\delta_{3} \bar{I}_{3}+\delta_{4} \bar{I}_{4}\right), \\
\tilde{c}_{01} & =-\left(\delta_{1} \tilde{I}_{1}+\delta_{2} \tilde{I}_{2}+\delta_{3} \tilde{I}_{3}+\delta_{4} \tilde{I}_{4}\right), \\
\tilde{c}_{02} & =-\left(\delta_{1} \tilde{J}_{1}+\delta_{2} \tilde{J}_{2}+\delta_{3} \tilde{J}_{3}+\delta_{4} \tilde{J}_{4}\right),
\end{aligned}
$$

$$
\bar{I}_{i}=\oint_{L_{11}} x^{i-1} y d x=\int_{\bar{x}_{1}}^{\bar{x}_{2}} x^{i-1}\left(\bar{y}_{1}-\bar{y}_{2}\right) d x, \quad i=1,2,3
$$

$$
\bar{I}_{4}=\oint_{L_{11}} y^{3} d x=\int_{\bar{x}_{1}}^{\bar{x}_{2}}\left(\bar{y}_{1}^{3}-\bar{y}_{2}^{3}\right) d x
$$

$$
H\left(\bar{x}_{1}, 100\right)=H\left(\bar{x}_{1}, 100\right)=h_{1}, \quad \bar{x}_{1} \approx-120.10904980338, \quad \bar{x}_{2} \approx 117.77510233465
$$

$$
\bar{y}_{1}=\frac{1}{12} \sqrt{1440000+6 \sqrt{57599988981-1365 \sqrt{65}+576 x^{2}-1344 x^{3}-288 x^{4}}}
$$

$$
\bar{y}_{2}=\frac{1}{12} \sqrt{1440000-6 \sqrt{57599988981-1365 \sqrt{65}+576 x^{2}-1344 x^{3}-288 x^{4}}}
$$

and

$$
\begin{aligned}
& \tilde{I}_{i}=\oint_{L_{21}} x^{i-1} y d x=2 \int_{\tilde{x}_{4}}^{\tilde{x}_{3}} x^{i-1} \tilde{y}_{2} d x, \quad \tilde{I}_{4}=\oint_{L_{21}} y^{3} d x=2 \int_{\tilde{x}_{4}}^{\tilde{x}_{3}} \tilde{y}_{2}^{3} d x, \quad i=1,2,3, \\
& \tilde{J}_{i}=\oint_{L_{22}} x^{i-1} y d x=2\left(\int_{\tilde{x}_{1}}^{\tilde{x}_{5}} x^{i-1} \tilde{y}_{1} d x+\int_{\tilde{x}_{2}}^{\tilde{x}_{1}} x^{i-1} \tilde{y}_{2} d x+\int_{\tilde{x}_{5}}^{\tilde{x}_{4}} x^{i-1} \tilde{y}_{2} d x\right), \quad i=1,2,3, \\
& \tilde{J}_{4}=\oint_{L_{22}} y^{3} d x=2\left(\int_{\tilde{x}_{1}}^{\tilde{x}_{5}} \tilde{y}_{1}^{3} d x+\int_{\tilde{x}_{2}}^{\tilde{x}_{1}} \tilde{y}_{2}^{3} d x+\int_{\tilde{x}_{5}}^{\tilde{x}_{4}} \tilde{y}_{2}^{3} d x\right), \\
& H\left(\tilde{x}_{1}, 100\right)=H\left(\tilde{x}_{2}, 0\right)=H\left(\tilde{x}_{3}, 0\right)=H\left(\tilde{x}_{4}, 0\right)=H\left(\tilde{x}_{5}, 100\right)=h_{2}, \quad \tilde{x}_{1}<\tilde{x}_{2}<\tilde{x}_{3}<\tilde{x}_{4}<\tilde{x}_{5}, \\
& \tilde{x}_{1} \approx-120.1090612, \quad \tilde{x}_{2}=-\frac{7}{12}-\frac{\sqrt{65}}{4}-\frac{1}{6} \sqrt{49+21 \sqrt{65}}, \\
& \tilde{x}_{3}=-\frac{7}{12}-\frac{\sqrt{65}}{4}+\frac{1}{6} \sqrt{49+21 \sqrt{65}}, \quad \tilde{x}_{4}=-\frac{7}{4}+\frac{1}{4} \sqrt{65}, \quad \tilde{x}_{5} \approx 117.7751137, \\
& \tilde{y}_{1}=\frac{1}{12} \sqrt{1440000+6 \sqrt{57599988981+1365 \sqrt{65}+576 x^{2}-1344 x^{3}-288 x^{4}}}, \\
& \tilde{y}_{2}=\frac{1}{12} \sqrt{1440000-6 \sqrt{57599988981+1365 \sqrt{65}+576 x^{2}-1344 x^{3}-288 x^{4}}} .
\end{aligned}
$$

Also by Maple, we get

$$
\begin{align*}
& \bar{I}_{1} \approx 26426.695431194, \\
& \bar{I}_{2} \approx-30847.384030487, \\
& \bar{I}_{3} \approx 93503233.017653, \\
& \bar{I}_{4} \approx 594536975.78668, \\
& \tilde{I}_{1} \approx-0.6165686494 \times 10^{-3}, \\
& \tilde{I}_{2} \approx-0.2266214100 \times 10^{-4}, \\
& \tilde{I}_{3} \approx-0.6263873180 \times 10^{-5}, \tag{23}\\
& \tilde{I}_{4} \approx-0.5273174788 \times 10^{-9}, \\
& \tilde{J}_{1} \approx 0.5285407076 \times 10^{5}, \\
& \tilde{J}_{2} \approx-0.6169553114 \times 10^{5}, \\
& \tilde{J}_{3} \approx 0.1870066096 \times 10^{9}, \\
& \tilde{J}_{4} \approx 0.1189074254 \times 10^{10},
\end{align*}
$$

Now substituting (21) into (19) and by (17) we get

$$
\begin{aligned}
& c_{0}=\bar{K}_{0}+\bar{K}_{1} \delta_{1}+\bar{K}_{2} \delta_{2}, \\
& c_{1}=\frac{1}{200} \delta_{1}+150 \delta_{4},
\end{aligned}
$$

where

$$
\begin{aligned}
\bar{K}_{0}= & -\left(I_{13}+I_{23}\right) \delta_{3}-\left(I_{14}+I_{24}\right) \delta_{4} \\
\approx & -\frac{2127709682470669621}{10^{18}} \delta_{3} \\
& -\frac{1162723601663463}{2 \times 10^{11}} \delta_{4}, \\
\bar{K}_{1}= & -\left(I_{11}+I_{21}\right) \approx-\frac{2422340939659319}{125 \times 10^{14}}, \\
\bar{K}_{2}= & -\left(I_{12}+I_{22}\right) \approx \frac{24155263586699787}{4 \times 10^{16}} .
\end{aligned}
$$

Therefore we have
Lemma 2. Let (3) be satisfied. Then $c_{0} \geq 0$ if and only if

$$
\delta_{2} \geq K_{0}+K_{1} \delta_{1}
$$

and $c_{1} \geq 0$ if and only if $\delta_{1} \geq-30000 \delta_{4}$, where

$$
\begin{aligned}
K_{0}= & -\frac{\bar{K}_{0}}{\bar{K}_{2}} \approx \frac{77514906777564200000}{8051754528899929} \delta_{4} \\
& +\frac{2127709682470669621}{603881589667494675} \delta_{3},
\end{aligned}
$$

$$
\begin{equation*}
K_{1}=-\frac{\bar{K}_{1}}{\bar{K}_{2}} \approx \frac{38757455034549104}{120776317933498935} . \tag{24}
\end{equation*}
$$

Let $\delta_{1}^{*}=-30000 \delta_{4}, \delta_{2}^{*}=K_{0}+K_{1} \delta_{1}^{*}$. Then by (24)

$$
\begin{aligned}
\delta_{2}^{*} \approx & -\frac{3291534008000}{8051754528899929} \delta_{4} \\
& +\frac{2127709682470669621}{603881589667494675} \delta_{3}
\end{aligned}
$$

Next, we study the property of the functions M, M_{1}, M_{2} and \tilde{M}_{2} as $\left(\delta_{1}, \delta_{2}\right)=\left(\delta_{1}^{*}, \delta_{2}^{*}\right)$. In this case, by (18), (19) and (21)-(24), we have

$$
\begin{aligned}
c_{01} \approx & -\frac{16007678383413707737}{402587726444996450000000000} \delta_{4} \\
& +\frac{7349954756236336535315248941}{20129386322249822500000000000000} \delta_{3} \\
c_{02} \approx & \frac{16007678383413707737}{402587726444996450000000000} \delta_{4} \\
& -\frac{7349954756236336535315248941}{20129386322249822500000000000000} \delta_{3} \\
\bar{c}_{2} \approx & \frac{69269175158411302787920692328991}{4025877264449964500000000000000000000} \delta_{4} \\
& -\frac{16510200872197961063715188463601}{3019407948337473375000000000000000} \delta_{3}
\end{aligned}
$$

$$
(28248237268876517 \sqrt{65}
$$

$$
b_{01} \approx \frac{-4633315056457821781) \sqrt{2}}{483105271733995740000 \sqrt{65+7 \sqrt{65}}} \delta_{3}
$$

$$
-\frac{(8228835020 \sqrt{65}+57601845140) \sqrt{2}}{8051754528899929 \sqrt{65+7 \sqrt{65}}} \delta_{4}
$$

$\bar{c}_{0} \approx 198263874.53882 \delta_{4}-93394545.687548 \delta_{3}$,
$\tilde{c}_{02} \approx 396547843.8 \delta_{4}-186789232.3 \delta_{3}$,
$\tilde{b}_{01}=300 \sqrt{2} \delta_{4} \pi$,
$\tilde{c}_{01} \approx-18.49704737 \delta_{4}+0.00008611108867 \delta_{3}$
which together with (3) follows that

$$
\begin{gather*}
c_{01}>0, \quad \bar{c}_{2}<0, \quad b_{01}<0, \quad \bar{c}_{0}>0 \\
\tilde{c}_{02}>0, \quad \tilde{c}_{01}<0, \quad \tilde{b}_{01}>0 \tag{26}
\end{gather*}
$$

Hence, by (16) and (26) we have

$$
\begin{array}{cl}
M\left(h, \delta_{1}^{*}, \delta_{2}^{*}\right)<0 & \text { for } 0<h-h_{0} \ll 1 \\
M\left(h, \delta_{1}^{*}, \delta_{2}^{*}\right)>0 & \text { for } 0<h_{1}-h \ll 1 \\
M_{1}\left(h, \delta_{1}^{*}, \delta_{2}^{*}\right)>0 & \text { for } 0<h_{0}-h \ll 1 \tag{27}\\
M_{1}\left(h, \delta_{1}^{*}, \delta_{2}^{*}\right)<0 & \text { for } 0<h-\alpha_{1} \ll 1 \\
\tilde{M}_{2}\left(h, \delta_{1}^{*}, \delta_{2}^{*}\right)>0 & \text { for } 0<h-h_{2} \ll 1
\end{array}
$$

Then we can prove
Lemma 3. Let (3) be satisfied. Then
(1) the function $M_{1}\left(h, \delta_{1}^{*}, \delta_{2}^{*}\right)$ has a zero $h_{0}^{*} \in$ $\left(\alpha_{1}, h_{0}\right)$;
(2) $M\left(h, \delta_{1}^{*}, \delta_{2}^{*}\right)$ has three zeros $h_{j}^{*} \in\left(h_{0}, h_{1}\right), j=$ $3,4,5$, with $h_{3}^{*}<h_{4}^{*}<h_{5}^{*}$;
(3) $\tilde{M}_{2}\left(h, \delta_{1}^{*}, \delta_{2}^{*}\right)$ has a zero $\tilde{h}_{0}^{*} \in\left(h_{2},+\infty\right)$;
(4) all of these zeros are of an odd multiplicity.

Proof. First by (27), the function $M_{1}\left(h, \delta_{1}^{*}, \delta_{2}^{*}\right)$ has a zero $h_{0}^{*} \in\left(\alpha_{1}, h_{0}\right)$. Similarly, the function $M\left(h, \delta_{1}^{*}, \delta_{2}^{*}\right)$ also has a zero in $\left(h_{0}, h_{1}\right)$. To find more zeros of M, let us calculate their values at some points.

By (12), (13) and (15) we have

$$
\begin{aligned}
& M\left(h, \delta_{1}, \delta_{2}\right)=-\oint_{L_{h}}\left(\delta_{1}+\delta_{2} x+\delta_{3} x^{2}+\delta_{4} y^{2}\right) y d x \\
&=-\left(\delta_{1} \hat{I}_{1}+\delta_{2} \hat{I}_{2}+\delta_{3} \hat{I}_{3}+\delta_{4} \hat{I}_{4}\right), \\
& h_{0}<h<h_{1}, \\
& \tilde{M}_{2}\left(h, \delta_{1}, \delta_{2}\right)=-\oint_{\tilde{L}_{2 h}}\left(\delta_{1}+\delta_{2} x+\delta_{3} x^{2}+\delta_{4} y^{2}\right) y d x \\
&=-\left(\delta_{1} \hat{J}_{1}+\delta_{2} \hat{J}_{2}+\delta_{3} \hat{J}_{3}+\delta_{4} \hat{J}_{4}\right), \\
& h>h_{2},
\end{aligned}
$$

where

$$
\begin{aligned}
& \hat{I}_{j}=\oint_{L_{h}} x^{j-1} y d x=\int_{x_{1}(h)}^{x_{2}(h)} x^{j-1}\left(\hat{y}_{1}-\hat{y}_{2}\right) d x, \quad j=1,2,3 \\
& \hat{I}_{4}=\oint_{L_{h}} y^{3} d x=\int_{x_{1}(h)}^{x_{2}(h)}\left(\hat{y}_{1}^{3}-\hat{y}_{2}^{3}\right) d x
\end{aligned}
$$

$$
\begin{aligned}
& \hat{J}_{j}=\oint_{\tilde{L}_{2 h}} x^{j-1} y d x=2\left(\int_{\tilde{x}_{1}(h)}^{\tilde{x}_{4}(h)} x^{j-1} \hat{y}_{1} d x+\int_{\tilde{x}_{4}(h)}^{\tilde{x}_{3}(h)} x^{j-1} \hat{y}_{2} d x+\int_{\tilde{x}_{2}(h)}^{\tilde{x}_{1}(h)} x^{j-1} \hat{y}_{2} d x\right), \quad j=1,2,3, \\
& \hat{J}_{4}=\oint_{\tilde{L}_{2 h}} y^{3} d x=2\left(\int_{\tilde{x}_{1}(h)}^{\tilde{x}_{4}(h)} \hat{y}_{1}^{3} d x+\int_{\tilde{x}_{4}(h)}^{\tilde{x}_{3}(h)} \hat{y}_{2}^{3} d x+\int_{\tilde{x}_{2}(h)}^{\tilde{x}_{1}(h)} \hat{y}_{2}^{3} d x\right), \\
& \hat{y}_{1}=\frac{1}{6} \sqrt{360000+6 \sqrt{-18 x^{4}-84 x^{3}+36 x^{2}+3600000000+72 h}}, \\
& \hat{y}_{2}=\frac{1}{6} \sqrt{360000-6 \sqrt{-18 x^{4}-84 x^{3}+36 x^{2}+3600000000+72 h}} .
\end{aligned}
$$

and $x_{1}(h)<0<x_{2}(h), \tilde{x}_{1}(h)<\tilde{x}_{2}(h)<0<$ $\tilde{x}_{3}(h)<\tilde{x}_{4}(h)$ satisfy

$$
\begin{aligned}
& H\left(x_{i}(h), 100\right)=h, i=1,2, \quad h_{0}<h<h_{1}, \\
& H\left(\tilde{x}_{i}(h), 0\right)=h, \\
& H\left(\tilde{x}_{i}(h), 100\right)=h, 3, \quad h>h_{2}, \\
& i=1,4, \quad h>h_{2} .
\end{aligned}
$$

By Maple 10 we have

$$
\begin{align*}
& \left.M\left(h, \delta_{1}^{*}, \delta_{2}^{*}\right)\right|_{h=-31502882.64306} \\
& \quad \approx 18119541.753047 \delta_{4}-24079125.253207 \delta_{3} \\
& \quad \equiv M_{1}^{*}, \\
& \left.M\left(h, \delta_{1}^{*}, \delta_{2}^{*}\right)\right|_{h=-31502882.64304} \\
& \quad \approx 18119541.753057 \delta_{4}-24079125.253240 \delta_{3} \\
& \quad \equiv M_{2}^{*} \\
& \left.\tilde{M}_{2}\left(h, \delta_{1}^{*}, \delta_{2}^{*}\right)\right|_{h=9 \times 10^{7}} \\
& \quad \approx 410963172.382053 \delta_{4}-645192646.536934 \delta_{3} \\
& \quad \equiv \tilde{M}^{*} . \tag{28}
\end{align*}
$$

By (3) and (28), we have

$$
M_{1}^{*}>0, \quad M_{2}^{*}<0, \quad \tilde{M}^{*}<0 .
$$

Thus, by (27), M(h, $\left.\delta_{1}^{*}, \delta_{2}^{*}\right)$ has three zeros h_{3}^{*}, h_{4}^{*} and h_{5}^{*} satisfying

$$
\begin{aligned}
& h_{3}^{*} \in\left(h_{0},-31502882.64306\right), \\
& h_{4}^{*} \in(-31502882.64306,-31502882.64304), \\
& h_{5}^{*} \in\left(-31502882.64304, h_{1}\right),
\end{aligned}
$$

while $\tilde{M}_{2}\left(h, \delta_{1}^{*}, \delta_{2}^{*}\right)$ has a zero $\tilde{h}_{0}^{*} \in\left(h_{2}, 9 \times 10^{7}\right)$. Note that all of the zeros $h_{0}^{*}, \tilde{h}_{0}^{*}, h_{3}^{*}, h_{4}^{*}$ and h_{5}^{*} are of an odd multiplicity. The proof is completed.

Unfortunately, we cannot find a zero of $\tilde{M}_{1}\left(h, \delta_{1}^{*}, \delta_{2}^{*}\right)$ for $h \in\left(h_{2}, 0\right)$.

By Lemmas 2 and 3 we can prove
Lemma 4. Let (3) be satisfied by δ_{3} and δ_{4} constant. If

$$
\begin{equation*}
0<K_{0}+K_{1} \delta_{1}-\delta_{2} \ll \delta_{1}^{*}-\delta_{1} \ll 1, \tag{29}
\end{equation*}
$$

where $\delta_{1}^{*}=-30000 \delta_{4}$, and K_{0} and K_{1} are given by (24), then
(1) $M\left(h, \delta_{1}, \delta_{2}\right)$ has five zeros in $\left(h_{0}, h_{1}\right)$;
(2) $M_{1}\left(h, \delta_{1}, \delta_{2}\right)$ has a zero in $\left(\alpha_{1}, h_{0}\right)$;
(3) $\tilde{M}_{2}\left(h, \delta_{1}, \delta_{2}\right)$ has a zero in $\left(h_{2},+\infty\right)$;
(4) all of these zeros are of an odd multiplicity.

Proof. By Lemma 2, under (29) we have

$$
0<-c_{0} \ll-c_{1} \ll-c_{2}
$$

which ensures that $M\left(h, \delta_{1}, \delta_{2}\right)$ has two new zeros $h_{1}^{*}, h_{2}^{*} \in\left(h_{0}, h_{3}^{*}\right)$ near h_{0} both having an odd multiplicity with $h_{1}^{*}<h_{2}^{*}$. At the same time, the zeros h_{3}^{*}, h_{4}^{*} and h_{5}^{*} of $M\left(h, \delta_{1}, \delta_{2}\right), h_{0}^{*}$ of $M_{1}\left(h, \delta_{1}, \delta_{2}\right)$ and \tilde{h}_{0}^{*} of $\tilde{M}_{2}\left(h, \delta_{1}, \delta_{2}\right)$ remain under (29). This ends the proof.

Corollary 1. Let $k=100, b=7 / 2$ and $\left(\delta_{3}, \delta_{4}\right)$ satisfy (5). Then for K_{0}, K_{1} and δ_{1}^{*} satisfying (6) and δ_{1} and δ_{2} satisfying (29), the conclusions (1)-(4) of Lemma 4 hold.

In fact, under (5) we have
$k_{1} \delta_{4} \approx 19999.999999993, \quad k_{2} \delta_{4} \approx 20000.000000010$. Thus, (3) is satisfied. Hence, the corollary follows from Lemma 4.

On the other hand, in this case, similar to (25) and (28) we have

$$
\begin{gathered}
c_{01} \approx 7.3016544125820>0, \\
\bar{c}_{2} \approx-108.90321618344<0,
\end{gathered}
$$

$$
\begin{aligned}
b_{01} & \approx-147.39575898743<0, \\
\bar{c}_{0} & \approx 0.34015808347891 \times 10^{13}>0, \\
\tilde{c}_{02} & \approx 0.680369293 \times 10^{13}>0,
\end{aligned}
$$

and

$$
\begin{aligned}
& \left.M\left(h, \delta_{1}^{*}, \delta_{2}^{*}\right)\right|_{h=-31502882.64306} \\
& \quad \approx 0.22899937435633>0, \\
& \left.M\left(h, \delta_{1}^{*}, \delta_{2}^{*}\right)\right|_{h=-31502882.64304} \\
& \quad \approx-0.16451532561954<0, \\
& \left.\tilde{M}_{2}\left(h, \delta_{1}^{*}, \delta_{2}^{*}\right)\right|_{h=9 \times 10^{7}} \\
& \quad \approx-1981243697993.1<0
\end{aligned}
$$

which also yield Corollary 1 by the above discussion. Now, it is clear that Theorem 1 follows from Lemma 4, Corollary 1 and the well-known Poincare-Pontrjagin-Andronov theorem (Theorem 6.1 in [Li, 2003]).

Acknowledgments

The authors would like to thank C. Li for providing them a preprint of the work [Li et al., 2009] before the preparation of the present work.

References

Bautin, N. N. [1952] "On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type," Mat. Sb (N.S.) 30, 181-196.
Chen, L. \& Wang, M. [1979] "The relative position and the number of limit cycles of a quadratic differential system," Chinese Acta Math. Sinica 22, 751-758.
Écalle, J. [1990] "Finitude des cycles limites et accélérosommation de L'application de retor," Lecture Notes in Mathematics 1455, 74-159.
Han, M. [2000] "On Hopf cyclicity of planar systems," J. Math. Anal. Appl. 245, 404-422.

Han, M. \& Chen, J. [2000] "The number of limit cycles bifurcating from a pair of homoclinic loops," Sci. China Ser. A 30, 401-414.
Han, M. [2002] "On the number and distributions of limit cycles in a cubic system," Chin. Ann. Math. A 23, 143-152.
Han, M., Wu, Y. \& Bi, P. [2004] "Bifurcation of limit cycles near polycycles with n vertices," Chaos Solit. Fract. 22, 383-394.

Han, M., Zhang, T. \& Zang, H. [2004] "On the number and distribution of limit cycles in a cubic system," Int. J. Bifurcation and Chaos 12, 4285-4292.
Han, M., Wu, Y. \& Bi, P. [2005] "A new cubic system having eleven limit cycles," Discr. Cont. Dyn. Syst. 12, 675-686.
Han, M. [2006] "Bifurcation theory of limit cycles of planar systems," Handbook of Differential Equations, Ordinary Differential Equations, Vol. 3, eds. Canada, A., Drabek, P. \& Fonda, A. (Elsevier) Chap. 4.

Han, M., Yang, J., Tarta, A. \& Gao, Y. [2008] "Limit cycles near homoclinic and heteroclinic loops," J. Dyn. Diff. Eq. 20, 923-944.
Ilyashenko, Yu. S. \& Yakovenko, S. [1991] Finiteness for Limit Cycles, Transl. Math. Monographs, Vol. 94 (Amer. Math. Soc., Providence, RI).
Li, C., Liu, C. \& Yang, J. [2009] "A cubic system with thirteen limit cycles," J. Diff. Eqs. 246, 3609-3619.
Li, J. \& Huang, Q. [1987] "Bifurcations of limit cycles forming compound eyes in the cubic system," Chinese Ann. Math. Ser. B 8, 391-403.
Li, J. \& Liu, Z. [1991] "Bifurcation set and limit cycles forming compound eyes in a perturbed Hamiltonian system," Publ. Math. 35, 487-506.
Li, J. [2003] "Hilbert's 16th problem and bifurcations of planar polynomial vector fields," Int. J. Bifurcation and Chaos 13, 47-106.
Liu, Z., Yang, Z. \& Jiang, T. [2003] "The same distribution of limit cycles in five perturbed cubic Hamiltonian systems," Int. J. Bifurcation and Chaos 13, 243-249.
Liu, Y. \& Li, J. [2008] " Z_{2}-Equivariant cubic systems which yield 13 limit cycles," to appear in Qualitative Theory of Dynamical Systems.
Shi, S. [1980] "A concrete example of the existence of four limit cycles for quadratic system," Sci. Sinica 23, 153-158.
Yang, J. \& Han, M. [2007] "Limit cycles near a double homoclinic loop," Ann. Diff. Eqs. 23, 536-545.
Yu, P. \& Han, M. [2004] "Twelve limit cycles in a cubic order planar system with Z_{2}-symmetry," Commun. Pure Appl. Anal. 3, 515-526.
Yu, P. \& Han, M. [2005a] "Small limit cycles bifurcating from fine focus points in cubic order Z_{2}-equivariant vector fields," Chaos Solit. Fract. 24, 329-348.
Yu, P. \& Han, M. [2005b] "Twelve limit cycles in a cubic case of the 16th Hilbert problem," Int. J. Bifurcation and Chaos 15, 2191-2205.
Zhang, T., Han, M. \& Zang, H. [2005] "Perturbation from an asymmetric cubic Hamiltonian," J. Math. Anal. Appl. 305, 617-630.

[^0]: ${ }^{*}$ The project was supported by National Natural Science Foundation of China (10971139), the Shanghai Leading Academic Discipline Project (S30405) and the Leading Academic Discipline Project of SHNU (DZL707).
 ${ }^{\dagger}$ Author for correspondence

