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1. Introduction and Main Result

As we know, the second part of the Hilbert prob-
lem is to find the maximal number and relative loca-
tions of limit cycles of polynomial systems of degree
n. Let H(n) denote this number, which is called
the Hilbert number. Then the problem of finding
H(n) is divided into two parts: find an upper and
lower bounds of it. For the upper bound there are
important works of Ecalle [1990] and Ilyashenko
and Yakovenko [1991]. However, if H(n) < oo holds
or not is still open, even for the case n = 2. On
the other hand, many works have been done on the
lower bound, especially for quadratic and cubic sys-
tems. See [Li, 2003] for a detailed introduction to
recent advancement of the problem. For example,
Bautin [1952] proved H(2) > 3 by studying Hopf

bifurcation. Chen and Wang [1979] and Shi [1980]
separately proved H(2) > 4. Li and Huang [1987]
first found a cubic system having 11 limit cycles,
giving H(3) > 11. Li and Liu [1991], and Liu et al.
[2003] respectively found more cubic systems hav-
ing 11 limit cycles with the same distribution. Later,
Han et al. [2004] and Han et al. [2004, 2005] used
the method of stability-changing of a homoclinic
loop to give more cubic systems having 11 limit
cycles with two different distributions. Then Zhang
et al. [2005] studied an asymmetric cubic system
and found three different distributions of 11 limit
cycles. Yu and Han [2004, 2005a, 2005b] proved fur-
ther H(3) > 12 by studying Hopf bifurcation in
some centrally symmetric cubic systems. Recently,
Liu and Li [2008] obtained a sufficient condition for
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the existence of 13 limit cycles in this kind of cubic
systems. The 13 limit cycles have the distribution:
one large limit cycle bifurcated from the equator
surrounds 12 small limit cycles which are bifurcated
from two symmetric foci. Then in the same year, Li
et al. [2009] considered a cubic system of the form

T = y(y2 - kg)a
y=x(z+1)(z—N) (1)
+ey(ag + asz 4+ azz® + auy?),

where 0 < A < 1,k > 10, and aq, ao, a3 and a4 are
parameters, and proved that the system can also
have 13 limit cycles if k is sufficiently large. The
limit cycles are obtained by proving the existence of
zeros of Melnikov functions based on some known
results, and present a new distribution. Both works
of Liu and Li [2008], Li et al. [2009] are the best
results so far for cubic systems and are very impor-
tant, yielding H(3) > 13.

In this paper, motivated by the work of Li et al.
[2009], we consider the following cubic system

T = 2y(y2 - k2)7
y = —(2® + ba? — ) (2)
— ey (01 + Sz + d32% + 6432),

where k > 0,b > 0, and 61, d9, 03 and d4 are param-
eters. It is easy to see that (1) and (2) are equiv-
alent. We use the method developed in Han and
Chen [2000], Han et al. [2008], Yang and Han [2007]
to prove that system (2) can have 13 limit cycles.
The main purpose is to give a concrete condition for
the existence of 13 limit cycles, which can be taken
as an improvement of the work by Li et al. [2009]
in two aspects: a simple and concrete condition for
the existence of 13 limit cycles is given; on the other
hand, the proof method (i.e. the way to find zeros
of Melnikov functions) is simpler and more direct.
The condition here is also much simpler than that
of Liu and Li [2008]. More precisely, we have the
following main result.

Theorem 1. System (2) has 13 limit cycles if

k=100, b= ;, 0 < k164 <63 < kgdy (3)
where

k1 ~ 0.75249999999975, k2 =~ 0.75250000000036,
and

0<6<<K0+K151—(52<<5f—(51<<1 (4)

—

—

Fig. 1. The distribution of the 13 limit cycles of system (2).

with
77514906777564200000
0~ 8051754528899929
2127709682470669621
603881589667494675
Ky ~ 38757455034549104 ’
120776317933498935

In particular, if

4

3

&% = —300006,.

8 x 106
53 = 2 5y =
3 = 20000, d4 201

()

and (4) holds with
__ 265838587879011391034962400
0= 1038676334228090841 ’

__ 38757455034549104
"~ 120776317933498935

24
§f = ——— x 10"

1

then system (2) has 13 limit cycles.

Remark. The distribution of the 13 limit cycles
under the condition of the above theorem is just
the same as obtained in Li et al. [2009] as shown in
Fig. 1.

2. Proof of the Main Result

Consider system (2). For ¢ = 0, (2) is Hamiltonian
with

1 1 1 b
H(z,y) = 53/4 — K*y® + 1334 - 5332 + §$37 (7)
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and has five centers Aj, As, A3, Ay, O (the origin)
and four saddles Sy, S1, 52, 53, where
A1 = (z1(b), k)
Az = (z1(b), —k),
So = (0,k),
Sy = (w2(b), 0),

Az = (z2(b), k),
Ay = (22(b), —k),
St = (21(0),0),
Ss = (0,—k)

(8)

and x;(b) = (=b+ (—1)'Vb2 +4)/2,i = 1,2. Let

a1 = H(Al) = H(Ag),
Qo = H(Ag) = H(A4),
ho = H(Sp) = H(S3), (9)
hi = H(S1),
he = H(S2).
For example, for k = 100,b = 7/2, then (8) and (9)
become
7 V65
Aj=—-—--—1
1 ( 4 A ) 00)5
7 V65
Ao = —-+—1
2 ( 4 + 4 ) 00)5
7 V65
Ay = —-—-—-—— —1
3 ( 4 A ) 00)7
7 V65
Ay = Z+T7100>7 (10)
So = (0,100),
7 V65
o= (1 - T’O>’
7 V65
So=|(—+—-,0
2 ( 4 + 4 ) )7
S3 = (0,—100)
and
o - 719200003673 B 4& o0
' 384 3847
o — 719200003673 4& o0
2 384 3847

ho = —50000000,
3673 455

hy =22 222 /65

! 384 384
3673 455

hy = — 12 4 229, /65
2 351 334

(11)

respectively. It is easy to see that a1 < ag < hg <
hi1 < hy < 0.

Then for each of hy and hsy, the equation
H(x,y) = h; defines a double homoclinic loop
passing through S, denoted by Lj;, and for ho,
the equation H(x,y) = hg with y > 0 defines a
double homoclinic loop passing through Sy, denoted
by Lo. Let Lon = Lolz<o, Loz = Lols>0, L11 =
L1|y20,L12 = L1|y§0, and L21 be the homoclinic
loop passing through S5 and surrounding a unique
singular point at the origin, and Loy be the homo-
clinic loop passing through S, and surrounding all
other singular points. Then L; = Lj; U Lj2,j = 0,
1,2. See Fig. 2.

Introduce

Lf:H(x,y) = h,
L;thH<;L'7y) = ha

h € (hg,hy), +y >0,
h € (o, ho), j=1,2

+y >0
Ith:H(x,y) =h, he (hy,0), Ly, € Int Lo,

EQh:H(LU,y) =h, h>ho, Int E2h D Loo,

with Loj, surrounding all the singular points. In
the following, we fix (k, b, 03, d4) satisfying (3). Then

Fig. 2. Four double homoclinic loops of (2)|z=0.
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correspondingly we have the following Melnikov
functions

M= (h, 61, 65) :f

L

iQ(ﬂfay,51,52)d$7 h € (ho, 1),

h

M (h,81,82) = ¢ qlw,y,81,82)dz,  h € (o, ho),

Jh

S~

] - 1727
Ml(h751a62):%~ q('xayaéla&Z)dxa h2 <h<07
Lip
M2(h751a62) = % q('xayaéla&Z)dxa h > h27
Lop
(12)
where

q(,y,01,05) = —y(61 + daw + 032 + 649°).  (13)

Since H (z,y) is even in y and ¢ is odd in y, we have
(see [Li et al., 2009])

M+ (h,61,0) = M~ (h,d1,02),

+ _ : (14)
M7 (h,61,02) = M (h,01,02), j=1,2.

Thus, we will only consider the zeros of M, M j
and M;, j = 1,2.
For convenience, we let

M (h,d1,02) = M (h,d1,82),

+ . (15)
Mj<h761752> - Mj <h761752>7 J = 172

We will prove Theorem 1 by finding zeros of the
functions M, M7, Ms and Mg. First, on their ana-
lytical property at the endpoints of their domain, by
Remark 1.4 in [Han & Chen, 2000] or Theorem 2.2
in [Han et al., 2008], Theorem 1.2 in [Han, 2000]
and Lemma 2.9 in [Han, 2006] we have

Lemma 1. Let (3) be satisfied by 03 and 64 con-
stant. Then

M(h, (51, (52) =g+ QCl(h — ho)ln‘h — h()’ + C2<h — h())

+ O(|h — ho|*In|h — ho|),
M(h, (51, 52) =cCo + O(|h — h1\1n|h — hl‘),

0<h—hy<1,
O0<hi—hk1,

Mj(h,(sl,ég) = coj + Cl(h — h0)1n|h — hg‘ + ng(h — hg)

+O(|h — ho|*In|h — hg),
Ml(h, (51, 52) = b01(h — 051) + O((h — a1)2),
Mj(h,d1,82) = éj + O(|h — ha|ln|h — hal),

My (h,d1,02) = borh + O(h?),

where

coj = M;(ho, 61, 02)

= f q(w,y,61,02)dx, j=1,2,
co = co1 + €02,
= =35 + 1506
L7 200" 4

co =0Cg+ O(c1), Ty =21 + Co2,

C2j :f lqy(x,y,01,02) — qy(0,100, 61, 62)]dt,

=12,

Co :% q(x,y, 01, 02)dx,
L1

0<-hk1,

. (16)
]:1a27 0<h07h<< 1a
O<h—a1 <1,
i=1,2, 0<h—hy <1,
|
Coj —?{ q(w,y,01,02)dx, j=1,2
27
(17)
and
. NoL V2o
bo1 = W%;(Oy&l;(b) = —th
by — V27, (A1, 61,62)
50/65 + 7v/65
22 1 N 7+ \/%6
= -0+ ——
65+ 7765\ 100 400
57 + 765
- %0\/_53 - 30054> . (18)
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Under the condition (3), (7) becomes

1 1 1 7
H(z,y) = Z$4 + §y4 — 10000y? — 5:6'2 + 6:(}3.

By (17) we have

coj = —(011j1 + 2ljo + 0313+ 04154), j=1,2,

Coj = —}I{L (692 + 0322 + 384 (y* — 10%))dt
0j

(19)
dx

o % (5258 + (53332 + 354(y2 — 104)
Lo, 2y(y* — 10%)

= —(02Jj2 + 03Jj3 + 304Jj4), j=1,2,
where

. O .
Ij; = ?{ ' lyde = / xl_l(yl — yo)dx,
LO]' z;

J

J=12,i=1,23,

0
11427{ y3dﬂf=/ (v} — y3)dz,
LO]' T

J

J=12

I _}g 2 ldx
It Lo, 2u(y? —10000)

0 xzfl xzfl
:/ < 2 - 2 )dw,
-, \201(s7 — 10000) ~ 2y(4% — 10000)
j=1,2i=23

1 071 1
J‘4:7§ —das:/ (——)dm, j=12
’ Lo; 2Y 3 \2Y1  2y2

J

with
H(31,100) = H (i, 100) = h,
R 7 \67
I =—-——-—
1 3 3 )

H(Cfl, 100) = H(Lf’l, 100) = hy,

1 ~ —120.10904980338,

1
Y = 6\/360000 — 62/ —1822 — 847 + 36,

1
Yy = 6\/360000 + 62/ — 1822 — 84 + 36.
(20)

By Maple we can obtain

I, ~ 0.19336179335719,
I15 =~ —0.60397799779263,

I3 ~ 2.1276842302270,

I14 ~ 5800.8535538510,

Ip; =~ 0.42548181555552 x 1073,
Iy ~ 0.96408125135325 x 1074,
I3 ~ 0.25452243669621 x 1074,
Ipy ~ 12.764454466315,

Jia = —0.036722972448375,

Jiz = 0.10568693840688,

Jia = —0.96680909021854 x 1072,
Jog & 0.77058591984887 x 102,
Joz = 0.20196618711375 x 1072,
Jog ~ —0.21274090779586 x 1077,

(21)

By (17) again, we have

eo = — (6111 + 82lo + 9315 + 04l y),
Gor = — (0111 + 621y + 0313 + 041y), (22)
Goa = —(01J1 + oo + 033 + 04.y),

T ~ 117.77510233465,

1
7 = ﬁ\/1440000 + 6\/57599988981 — 1365V 65 + 57622 — 134423 — 28824,

1
Y2 = —\/ 1440000 — 6\/57599988981 — 1365V 65 + 57622 — 134423 — 2884,

<
%)
|

12
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and

Also by Maple, we get |

Now substituting (21) into (19) and by (17) we get

~ . r3 . r3

= ]é 2 lyde = 2/ 2 ode, I, = ]é yidr = 2/ g;”d:c, 1=1,2,3,
Loy T4 Loy T4

~ . ‘i5 . ‘il . j4 .

J; = ?{ e lydr = 2(/ = de +/ e pdr +/ a:llgjgda:>, i=1,2,3,
Lo T1 T2 s

~ s i1 4
Jy = % yide = 2(/ gig’dx + / g%daz + / g%das>,
Loo T1 T2 5

H(a?l, 100) = H(:Z‘g,()) = H(:Z'3,0) = H(:Z'4,0) = H(:Z'5, 100) =hy, T1<To<T3< Ty <Ts,

7 v65 1
T ~ —120.1090612, o =——— —— — =1\/49+ 2165,
12 4 6
7 v65 1 7 1
573 = *E — T + 6 49 + 21 V 65, 574 = *Z + ZV 65, 1%5 ~ 1177751137,

1
71 = ﬁ\/1440000 + 6\/57599988981 + 1365v/65 + 57622 — 134423 — 28824,

1
Yo = B 1440000 — 6\/57599988981 + 1365V65 + 57622 — 134423 — 288x4.

where
T1 ~ 26426.695431194, Ko = — (I3 + I3)83 — (Ia + Io4)04
Iy =~ —30847.384030487, _ 2127709682470669621
I3 ~ 93503233.017653, - 1018 ’
I, ~ 594536975.78668, 1162723601663463
- - 11 4,
I, ~ —0.6165686494 x 10~3, 2x10
- _ _ 2422340939659319
I, ~ —0.2266214100 x 10~%, K = —(I I ~ —
N (23) 1= =l + 1) 125 x 1014
I3 ~ —0.6263873180 x 1072,
) _ 24155263586699787
Iy ~ —0.5273174788 x 1079, Kz =—(h2+In)~ 4 % 1016 '

Ji ~ 0.5285407076 x 107,

A 5
JNQ ~ ~0.6169553114 > 107, Lemma 2. Let (3) be satisfied. Then co > 0 if and
J3 =~ 0.1870066096 x 107, only if

Ji = 0.1189074254 x 1010, 5y > Ko+ K164,

Therefore we have

and ¢y > 0 if and only if 61 > —3000004, where

o _ Ko _ T7514906777564200000
co =Ko+ K10, + Kabo, 0 TR, T 8051754528809929

4

R PR | 2127709682470669621
= 500" b 603881589667494675 >’
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K1 ~ 38757455034549104

K, = .
YT KR, T 120776317933498935
(24)
Let 6% = —3000084, 65 = Ko + K16;. Then
by (24)
. 3291534008000
27 T 8051754528899929
2127709682470669621
603881589667494675

Next, we study the property of the functions
M,Ml,Mg and M2 as ((51,52) = ((5?,(5;) In this
case, by (18), (19) and (21)—(24), we have

- 16007678383413707737
402587726444996450000000000

7349954756236336535315248941
20129386322249822500000000000000
16007678383413707737
402587726444996450000000000
~7349954756236336535315248941
20129386322249822500000000000000 °
69269175158411302787920692328991
4025877264449964500000000000000000000 ~ *

16510200872197961063715188463601
3019407948337473375000000000000000 °’

Ccol ~

Coo ~

Co ~

(28248237268876517+/65
— 4633315056457821781)+/2

~ —————=03
483105271733995740000\/65 + 7/ 65

(82288350201/65 + 57601845140)+/2 5

- ——— 4,
8051754528899929+/ 65 + 7+/65

%o ~ 198263874.53882 5, — 93394545.68754803,

o2 ~ 396547843.8 5, — 186789232.353,
bor = 300V/2 6,7,
o1 ~ —18.49704737 84 + 0.0000861110886735

(25)

(yl - g2)dl’,

R ‘ za(h)
I; :% o lydx :/ i1
Lh ml(h)

T 3 I2(h) ~3 ~3
4 f y dx =/ (7 — 93)dx,
Lh Il(h)

which together with (3) follows that

cor >0, <0, by <0, ¢ >0,
G2 >0, G <0, bo>0. (26)
Hence, by (16) and (26) we have
M(h,67,05) <0 for 0 <h—ho <1,
M (h, (51‘,5*) for 0 < hy —h <1,
M (h,07,05) > for 0 < hyg—h <1, (27)
M (h,07,85) < for0<h—a; <1,
My(h,6%,85) >0 for 0 < h—hy < 1.

Then we can prove
Lemma 3. Let (8) be satisfied. Then

(1) the function Mi(h,07,05) has a zero h§ €
(ala h0)7

(2) M(h,67,65) has three zeros b} € (ho,h1),j =
3,4,5, with hy < hj < hg;

(3) My(h,d5,05) has a zero b € (hg, +00);

(4) all of these zeros are of an odd multiplicity.

Proof. First by (27), the function M;(h,d7],05)
has a zero h§ € (ai,hp). Similarly, the function
M (h, o7, 05) also has a zero in (hg, h1). To find more
zeros of M, let us calculate their values at some
points.

By (12), (13) and (15) we have

M(h,dy,087) = ff (61 + gz + 0322 + 04y%)ydx
Ly
—(0111 + Saly + 313 4 04ly),
ho < h < hq,
Ma(h, 61, 05) = — 7{ (01 + do + b32% + duy” ydar
Loy,
—(81J1 + g Jo + 835 + 04s),
h > hao,
where
Jj=12,3,
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. A Za(h) z

J; :]{ o yde =2 [ xj_lgjldx+/~
Lop, Z1(h) z
Z3(h) Z1(h)

dx—i—/ g;”dwr/ gadz |,
Za(h) Za(h)

R Z4(h)
= g2 [
Loy, z1(h)

. z1(h)
x]_lgzdx+/ $]_1@2d$ , j=1,2,3,
ig(h)

1
U1 = 6\/360000 + 6\/—18:(}4 — 8423 + 3622 + 3600000000 + 72h,

1
Yo = 6\/360000 — 6\/—18:()4 — 8423 + 3622 + 3600000000 + 72h.

and :L'1<h) <0< :L'g(h), 531(h) < :Z'g(h) < 0 <
Z3(h) < Z4(h) satisfy
1

00)

H(%;(h),0)
H (#;(h), 100)

, 1=1,2, hg <h < hq,

(R
ai(h),
i(h

h
h, i=2,3 h>hy,
h, 1=1,4, h > ho.
By Maple 10 we have
M(h, 07,05 ) | h=—31502882.64306
~ 18119541.75304704 — 24079125.2532073
= M7,
M(h, 67, 65)|h=—31502882.64304
~ 18119541.75305704 — 24079125.25324003
= M3,
MQ(ha 51: 5§)|h:9><107
~ 410963172.382053,4 — 645192646.53693405
= M*.
(28)
By (3) and (28

), we have

M; >0, Mj; <0, M*<O.

Thus, by (27), M(h,d7,03) has three zeros h3, hj
and hi satisfying
€ (hg, —31502882.64306),
h} € (—31502882.64306, —31502882.64304),
€ (—31502882.64304, h1 ),
(

while My(h,dF,85) has a zero hi € (hg,9 x 107).
Note that all of the zeros hg, h, hi, h} and hf are
of an odd multiplicity. The proof is completed. B

_ Unfortunately, we cannot find a zero of
M (h,07,03) for h € (he,0).
By Lemmas 2 and 3 we can prove

Lemma 4. Let (3) be satisfied by 03 and 64 con-
stant. If

0<K0+K151*52 < 5?*51 <1, (29)

where 07 = —3000004, and Ko and K; are given by

4), then

M (h,d1,062) has five zeros in (hg, hy);
M;(h,d1,02) has a zero in (aq, ho);
Ms(h,61,85) has a zero in (hg, +00);
all of these zeros are of an odd multiplicity.

(2
(1)
(2)
(3)
(4)

Proof. By Lemma 2, under (29) we have
0< —cp K —1 K —0

which ensures that M (h,d1,02) has two new zeros
hi,hs € (ho, h3) near hg both having an odd mul-
tiplicity with h] < h3. At the same time, the zeros
h§, h; and h} of M(h d1,02), h of My(h, (51,52) and
hi of My(h, d1,09) remain under (29). This ends the
proof. W

Corollary 1. Let k =100,b = 7/2 and (63,94) sat-
isfy (5). Then for Ko, K1 and 07 satisfying (6) and
01 and 62 satisfying (29), the conclusions (1)-(4) of
Lemma 4 hold.

In fact, under (5) we have
k104 = 19999.999999993, k2d4 ~ 20000.000000010.

Thus, (3) is satisfied. Hence, the corollary follows
from Lemma 4.

On the other hand, in this case, similar to (25)
and (28) we have

co1 ~ 7.3016544125820 > 0,
Ca2 ~ —108.90321618344 < 0,
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bo1 ~ —147.39575898743 < 0,
o ~ 0.34015808347891 x 103 > 0,
¢o2 ~ 0.680369293 x 10" > 0,

and
* *
M (h, 67, 63)|h=—31502882.64306

~ 0.22899937435633 > 0,

M(h, 07, 05)|h=—31502882.64304

~ —0.16451532561954 < 0,
MQ(ha 5T75§)|h=9x107

~ —1981243697993.1 < 0

which also yield Corollary 1 by the above discus-
sion. Now, it is clear that Theorem 1 follows from
Lemma 4, Corollary 1 and the well-known Poincare—
Pontrjagin-Andronov theorem (Theorem 6.1 in
[Li, 2003]).
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