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In the two articles in Appl. Math. Comput., J. Giné [2012a, 2012b] studied the number of small
limit cycles bifurcating from the origin of the system: & = —y + P,(z,y), ¥ = = + Qu(x,y),
where P, and ), are homogeneous polynomials of degree n. It is shown that the maximal
number of the small limit cycles, denoted by My (n), satisfies Mp(n) > 2n — 1 for n = 4,5,6,7;
and M (8) > 13, My (9) > 16. It seems that the correct answer for their case n = 9 should be
My(9) > 15. In this paper, we apply Hopf bifurcation theory and normal form computation,
and perturb the isolated, nondegenerate center (the origin) to prove that Mjy(n) > 2n for
n=4,56,7; and My(n) > 2(n — 1) for n = 8,9, which improve Giné’s results with one more

limit cycle for each case.

Keywords: Homogeneous polynomial system; nondegenerate center; Hopf bifurcation; limit cycle;

normal form.

1. Introduction

The second part of the well-known Hilbert’s 16th
problem , m is to find an upper bound
on the number of limit cycles that the following pla-
nar polynomial vector fields can have,

&= P(z,y), §=0Q(xy), (1)

where P(x,y) and Q(x,y) with real coefficients rep-
resent polynomial functions in  and y. This upper
bound is called Hilbert number, denoted as H(n), a
function of the degree of the polynomial functions P

$Author for correspondence

and (). A modern version of this problem was later
formulated by Smale, chosen as one of his 18 most
challenging mathematical problems for the 21st cen-
tury , ] Although many results have
been obtained, this problem is not even completely
solved for quadratic systems. Four limit cycles were
found for quadratic systems almost 40 years ago

[Shi, 1979, [1980; [Chen & Wang, [1979], but H(2) = 4

is still open. More references can be found from the
review article [Li, [2003] and the book [Han & Yui,

2012].
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Later, @] posed the so-called weak
Hilbert’s 16th problem, related to the following
near-Hamiltonian system IM, 2006; Han et all,
2018):

& = Hy(z,y) +epn(z,y), )
Y= _Hm(xyy) —+ aqn(x,y),

where H(x,y), pn(z,y) and g,(x,y) are all polyno-
mial functions in z and y, and 0 < ¢ < 1 denotes
a small perturbation. Then, the geometric problem
of finding bifurcating limit cycles is transferred to
an algebraic problem of studying the zeros of the
Abelian integral or the (first-order) Melnikov func-
tion, given in the form of

M(h,6) = ;4 4@, y)dz — pula,y)dy, (3)
H(x,y)=h

where H(z,y) = h for h € (hy, h2) defines a closed
orbit, and 0 represents the parameters (or coeffi-
cients) involved in the polynomial functions p,,(z, y)
and ¢, (z,y).

For cubic planar polynomial systems, many
results have been obtained on the lower bound of
H (3) and the best result obtained so far is H(3) >
13 l20.1.d; |IL€.L[JL|, . Note that in

,[EE], the authors considered a cubic sys-
tem with Z> symmetry and obtained 13 limit cycles
with the distribution 1 D (6 + 6), i.e. 12 small ones
around two symmetric foci and a large one at infin-
ity; while in Im, M], the authors studied
perturbing a cubic Hamiltonian system with nine
singular points to obtain 13 limit cycles with the
distribution 2 x (1,5) + 1.

If the problem is restricted to the vicinity of
an isolated fixed point, which is either an ele-
mentary center or an elementary focus, then it is
equivalent to studying generalized Hopf bifurca-
tions. This problem is usually called local bifurca-
tion of limit cycles, and the number of bifurcating
small-amplitude limit cycles is denoted by M (n).
In |Giné, 2007, 20124, [2012b], Giné considered the
limit cycles bifurcating from the origin of the fol-
lowing polynomial system:

= —y+ P(x,y),

v =+ Q(z,y),

where P(z,y) and Q(z,y) are polynomials start-
ing from second-order terms. For system (),

l2ﬂ0_ﬂ, 2012a, |2Ql2Jd] conjectured an upper bound

for the number of functionally independent focal

(4)

values, given by

Conjecture 1.1. The number of functionally inde-
pendent focal values of system ([J]) at the origin,
1.e. the minimum number of ideal generators 1is
M(n) = n? + 3n — 7, where n is the degree of the
polynomial differential system. In the case that P
and Q) are homogeneous polynomials of degree n,
Mp(n) =2n — 1.

Conjecture [T implies that if one perturbs sys-
tem (), for P and @ being homogeneous polynomi-
als of degree n, inside the class of the homogeneous
systems with the same degree n, one can obtain at
most 2n — 1 small-amplitude limit cycles. Similarly,
if one perturbs system (@), for P and @ being poly-
nomials of degree n, inside the class of the general
systems with the same degree n, one can obtain
at most n? + 3n — 7 limit cycles. More discussions
and relative references can be found in , ,
[20128].

When P and @ are nth-degree homogeneous
polynomials, the best-known result for n = 2
obtained by [Bautinl l@] is M(2) = M(2) = 3.
For n = 3, it has been shown in m
Blows & Lloyd, 1984; [Zotadek, 1994] that Mh

5, indicating that the conjecture is true. Recently,
Giné showed in , 120124, 2012b) that Mj,(n) >
2n — 1 for n = 4,5,6,7, and Mp(8) > 13, My(9) >
16. However, we will show in Sec. [3 that for Giné’s
case of M}, (9), the correct result should be M, (9) >
15. In this paper, we will use the systems given
in |Gind, 20124, to prove Mp(n) > 2n for
n =4,5,6,7, indicating that for homogeneous poly-
nomial systems, Conjecture [I1] can be improved at
least for n = 4,5,6,7. Moreover, we will show that
My (8) > 14, Mp(9) > 16.

When P and ) are general nth-degree poly-
nomials, many results have been obtained for cubic
systems, which can be classified into two categories:
one is to perturb an isolated focus and the other
to perturb an isolated center. For the former when
perturbing an isolated focus, nine small-amplitude
limit cycles are obtained in two different systems
[Yu_& Corlesd, 2009: |Chen et _all, 2013: Lloyd &
Pearson |2Qlj] using purely symbolic computation.
For the latter when perturbing an isolated center,
there are also a few results obtained in the past
two decades. In 1995, ] first used a
rational Darboux integral and Melnikov functions
up to second-order to claim the existence of 11 small
limit cycles around a center. After more than ten
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years, another two cubic systems were constructed
to show 11 limit cycles |Christopher. [2006: Bon-
dar & Sadovskii, [2008]. The system considered in
5 was reinvestigated by Yu and Han
| using the method of focus value computa-
tion, and only nine small limit cycles were obtained.
Recently, Tian and Yu [2016] found the mistakes in
and showed that the example given
@ indeed only has nine limit cycles
using up to second-order Melnikov functions. In a
very recently published paper [Tian & Yu, 201§],
the authors applied high-order analysis to prove
that the example given by M] indeed
can have 11 small-amplitude limit cycles if at least
seventh-order analysis (equivalent to seventh-order
Melnikov function method) is used. These results
seem to indicate that Conjecture [L1l is true for
n = 3, i.e. M(3) > 11. However, we recently used
the system given in i , to prove
that 12 limit cycles can exist, i.e. M(3) > 12, indi-
cating that for gemeral polynomial systems, Con-
jecture [L1l can be improved at least for n = 3. It
has been noted that Giné also proved ,M]
M(4) >21=42+3x4—7,and M(5) > 26 which
is however still quite less than 52 +3 x 5 — 7 = 33.
In this paper, we consider system () and focus
on the bifurcation of small-amplitude limit cycles
from the origin when P and () are nth-degree homo-
geneous polynomials. More precisely, consider the
following system:

z = 7y+Pn(x7y)a

y=x+ Qn($ay>a

where P, and @,, (n > 2) are nth-degree homoge-
neous polynomials.

In [Gind, 20124, [2012b)], the author added per-
turbations to system to obtain the following
perturbed system:

(5)

& =—y+ Py(z,y) + epn(z,v),

U =x+ Qn(x,y) +eqn(z,y),

where p, and ¢, are nth-degree homogeneous
polynomials. Then, Giné computed the Poincaré—
Lyapunov constants of the perturbed system ()
and used the independent linear parts and maybe
quadratic parts in the Poincaré—Lyapunov con-
stants to prove the existence of small-amplitude
limit cycles bifurcating from the center (the origin).

Our method used in this paper is different,
based on the normal form computation for gener-
alized Hopf bifurcations. Since the systems used in

(6)

|Gind, 20124, 120121] are all integrable systems, the
Hopf bifurcations occur at the center by introduc-
ing perturbation polynomials of the same degree.
To achieve this, we add perturbation polynomials
to system (@) to obtain

&= —y+ Pp(z,y) + ZSk Z aijrr'y’,
k>1  itj=n

J=24Quz,y) + Y " Y by,

E>1  itj=n

where 0 < ¢ < 1. When ¢ = 0, the above sys-
tem is integrable with a center at the origin. Note
that unlike system (@l), here in (@) we introduce
the perturbations in different orders of e, but all
of them are nth-degree homogeneous polynomials.
The basic idea of our method and how to prove the
existence of multiple limit cycles bifurcating from a
single singular point will be discussed in the next
section. Our main result is given in the following
theorem.

Theorem 1. For system (), the number of small-
amplitude limit cycles bifurcating from a nondegen-
erate center (the origin) satisfies My(n) > 2n for
n=4,56,7; and Mp(n) > 2(n—1) forn=2_8,9.

We will prove Theorem [ for the cases n = 4,
5,6,7 in Sec. Bl and the cases n = 8,9 in Sec. [
Conclusion is drawn in Sec.

2. Computation of Focus Values and
Bifurcation of Limit Cycles

In this paper, the basic idea for proving the exis-
tence of limit cycles is based on normal form
or focus value computation. For the general sys-
tem (@), the normal form can be obtained usin
computer algebra systems (e.g. see m, Mg,
(Tian & Y, 2013, 2014; [Han & Y, 12012

|) as given
in the polar coordinates:

i =1(vo +vir? +vogrt + o ),

0=we+ro+mr?+mrt+ ek

(8)

where r and 6 represent the amplitude and phase
of motion, respectively. v (k=0,1,2,...) is called
the kth-order focus value. vy and 7y are obtained
from linear analysis. The first equation of (§) can
be used for studying the bifurcation of limit cycles
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and stability of bifurcating limit cycles. To find k
small-amplitude limit cycles bifurcating from the
origin, we first solve the k equations: vg = v1 =

- = vk_1 = 0 such that v # 0, and then perform
appropriate small perturbations to prove the exis-
tence of k limit cycles. The following lemma gives
sufficient conditions for proving the existence of k
small-amplitude limit cycles. (The proofs can be

found in [Yu & Hanl, [2005].)

Lemma 1. Suppose that the focus values depend on
k parameters, vj, j = 1,2,...,k, expressed as

Uj:Uj<I/1,V2,...,Vk>, j:(),l,...,k', (9)
satisfying
Vj(Viey -+ Vke) =0, 7=0,1,...,k—1,
Ok (Vies -y Vke) 70 and
0 e Vg
det[ (U07U17 ) Uk 1) #0
W1, v2, -3 V8) L, ) =100 e)
(10)
Then, for any given v* > 0, there exist v1,Va, ...,V
and 6 > 0 with |v; —vj.| <v*, j=1,2,...,k such

that the equation 7 = 0 has exactly k real positive
roots r [i.e. system ([{]) has exactly k limit cycles| in
a 0-ball with the center at the origin.

Now consider the perturbed integral system ([).
To give a more clear view, we consider the following

near-integral polynomial systems, described in the
form of [Tian & Yal, 2018]

i =M (z,y, p)Hy(z,y, p) + ep(z,y, £, 0),

y = _M_l(xa Y, M)Hg;(ﬂ?, Y, /'L) + 5(1(55'7%57 6)7
(11)

where 0 < ¢ < 1, 4 and § are vector parameters;
H(z,y,p) is an analytic function in x, y and u;
p(x,y,e,0) and q(z,y,e,0) are polynomials in x and
y, and analytic in § and e. M (z,y, ) is an integrat-
ing factor of the unperturbed system (I])|.—o.

Suppose the unperturbed system (Idl)|.—¢ has
an elementary center. Then, considering limit cycle
bifurcation in system (I around the center, we
may use the normal form theory to obtain the first
equation of () as follows:

7 =rlvg(e) + v1 (8)7‘2 + vg(s)r4

o (), (12)

where

oo
v;(g) :Zak‘/;;k, i=0,1,2,...,
k=1

in which Vj; denotes the ith e*-order focus value.
Note that v;(e) = O(e) since the unperturbed sys-
tem ([I))|.—¢ is an integral system. Further, because
system () is analytic in e, we can rearrange the
terms in ([2), and obtain

7'“=Vi(r)e—l—‘é(r)gg+~-.+Vk(r)5k+...’ (13)
where
Vi(r) =Y Var?™, k=12, (14)
i=0

Note from the above discussions that there are
two orders in the above formulas: one is the order in
¢, and the other is in Vj;, for a fixed k. The former is
equivalent to the order of Melnikov functions, while
the latter is to the order of focus values at eF-order.

Also note that besides the perturbation param-
eters 0 involved in p(x,y,€,d) and q(x,y,¢€,d), there
are also parameters p included in the Hamilto-
nian function H(z,y, ), which can also be used to
increase the number of bifurcating limit cycles. In
the following, we first show the equivalence of our
method and the Melnikov function method [Tian &
Yu, ,12018], and then show why the free param-
eter involved in the Hamiltonian function can be
used to get more limit cycles.

2.1. The order idea and the
equivalence between our
method and the Melnikov
function method

By the method of normal forms, we can obtain the
second differential equation in (&) for system (1),
given by [Tian & Yul, 2018]

0 = To(r) + O(e),
with Tp(0) # 0, and thus

dr Vi(r)e + Va(r)e? + - 4+ Vi(r)eh + -

a9~ To(r) + O(e)

(15)

Assume that the solution (0, p,e) of (&), satisfy-
ing the initial condition (0, p,e) = p, is given in
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the form of
T(ea P 8) = TO(ev :0) + Tl(ea p)E + T2(97 :0)82
R (N CE

with 0 < p < 1. Then, ro(0, p) = p and (0, p) = 0,
for k£ > 1.

If there exists a positive integer K such that
Vi(r) = 0,1 < k < K, and Vg(r) # 0, then it
follows from (I5)) that

ro(0,p) = p, 7i(0,p) =0,
Vi (p)
1<k< K and rg(0,p) = 0.
- x(6:7) To(p)

Thus, the displacement function d(p) of system (I3
can be written as

d(p) =r(2m,p,e) = p

To(p)

Therefore, if we want to determine the number of
small-amplitude limit cycles bifurcating from the
center in system (1), we only need to study the
number of isolated zeros of Vi (p) for 0 < p <
1, and have to obtain the expression of the first
nonzero coefficient Vi (r) in (I3)) by computing Vi,
for i > 0.

The above discussions show that the basic idea
of using focus values of system (IIJ) is actually the
same as that of the Melnikov function method.
Using H(x,y) = h to parameterize the section
(i.e. the Poincaré map), we obtain the displacement
function of (IIJ), given by

d(h) = My (h)e + Ma(R)e® + - - + My (h)eF + - -,
(17)

_on VKW O(eF ). (16)

where
M) = § Mz, y, 1) la(, 9,0, 8)d
H(z,y,u)=h

_p(xaya()?é)dy]? (18)

evaluated along closed orbits H(xz,y,u) = h for
h € (hi,hs2). Then, we can study the first nonzero
Melnikov function My (h) in (I7) to determine the

number of limit cycles in system (ITl).

Remark 2.1. We give remarks on the comparison
of computations for Melnikov functions and focus
values.

(i) Let H =h, 0 < h—h; < 1 define closed orbits
around the center of system ([[1))|.—o. It is easy
to see that for any integer K > 1, Eq. (1G]
holds if and only if My(h) = 0,1 < k < K
and Mg (h) # 0 in (7). Moreover, Vi (p) for
0 < p<land Mg(h) for 0 < h—h; < 1 have
the same maximum number of isolated zeros.
So Vi (k > 1) is equivalent to the kth-order
Melnikov function.

(ii) As we can see, Vi(r) can be obtained by the
computation of normal forms or focus values.

(iii) In particular, when the original system is not
a Hamiltonian system but an integral sys-
tem, then even computing the coefficients of
the first-order Melnikov function is much more
involved than the computation of using the
method of normal forms.

(iv) However, the method of normal forms (or
focus values) is restricted to Hopf and gen-
eralized Hopf bifurcations, while the Mel-
nikov function method can also be applied to
study bifurcation of limit cycles from homo-
clinic/heteroclinic loops or any closed orbits.

Therefore, when using the focus value compu-
tation, if Vi(r) = 0, we can then apply Va(r) to
determine the existence of limit cycles; and further,
if Vo(r) =0, then we use V3(r), and so on.

2.2. The parameters in the
Hamzaltonian function used to
get more limit cycles

Next, we show that the free parameters involved in
the Hamiltonian function can be used to get more
limit cycles. The basic idea is discussed in [Han

et al., 2009] and [Han & Yu, 2012]. Suppose we

study a C'*° system of the form

&= Hy+ep(x,y,0), §=—Hy+eq(z,y,9),

(19)

where H(z,y), p(z,v,9), q(z,y,d) are C* func-
tions, € > 0 is small and § € D C R™ is a vector
parameter with D compact.

When e = 0, system (I9) becomes

T=Hy,, y=—-H, (20)

which is a Hamiltonian system, and thus Eq. (I9)
is called a near-Hamiltonian system. Suppose
that (20) has an elementary center at the origin,
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namely the function H satisfies H,(0,0) = H,(O0,
0) =0, and
o(H,,—H
dot Xy =Ha) (5
o(z,y)

Therefore, without loss of generality, we may sup-
pose that the expansion of H at the origin can be
written as

H(z,y) = y + %) Z hwazy, w > 0.
i+5>3

(21)

Then, the Hamiltonian system (20) has a family of
periodic orbits, given by

Ly:H(z,y)=h, he(0,0)

such that Lj approaches the origin as h — 0. Then,
we have the following results (the proofs can be

found in [Han eta] 2009] or Han& u, 1201 2

Lemma 2. Let (21) hold. Then M(h,d) is C* in
0 <h <1 with

M(h,6) =1 by(o)h' (22)

>0

formally for 0 < h < 1. Moreover, if (I9) is
analytic, so is M.

Lemma 3. Under the condition of Lemma 3, if
there exist k > 1, 69 € D such that bg(dp) # 0
and

b;(00) =0, j=01,... k-1,
A(bgy ... bk_1)
det ——1—=—2(§, 0,
o061, o) 07
where 6 = (01,...,0m), m > k, then there exist a

constant €y > 0 and a neighborhood V' of the origin
such that for all 0 < |e| < &g and |§ — do| < €0, (Z9)
has at most k limit cycles in V. Moreover, for any
neighborhood Vi of the origin there exists (,0) near
(0,80) such that system (L) has k limit cycles in
Vi. In other words, system ([I4) has Hopf cyclicity
k for all (g,6) near (0,dq).

In many cases, the Hamiltonian system (20)
contains some constants. If we take them as param-
eters and change them suitably we can find more
limit cycles. More precisely, suppose H (z,y, a) with
a € R" satisfies ([2I) where the coefficients h;;

depend on a. Then by Lemma [2] in this case we
have

M(h,6,a) =h>_ bi(d,a)h!. (23)
>0

For simplicity, suppose the functions p and ¢
in (I9) are linear in §. Then the coefficients b;(9, a)
are linear in 0. Assume that there exist an integer
k>0, dg € R™ and ag € R™ such that

bj((i(),d())zo, jZO,...,k—l,
d(bo, ..., bx_1) (24)
det ——————= 0.
o r, e 07
Then the linear equations b; =0, j = 0,...,k — 1,
of 4 have a unique solution of the form
(51, ce ,5k) = 80(5k+17 cee ,5m,a)
for a near ag. Obviously, ¢ is linear in g1, ..., dny.
Further, let
bk+j|(517~~~75k)=<P(5k+1,---,5m,a)
:Vj(5k+1,...,5m)Aj(a), ]:0,,1’L
(25)

We have the following lemma.

Lemma 4. Consider the mnear-Hamiltonian sys-
tem ([I9), where H(x,y,a) with a € R™ satis-
fies (Z1) and the functions p and q are linear in
0 € R™. Suppose there exist integer k > 0 and g =
(0105 ---,0mo) € R™ and ag € R™ such that (Z7)
and ([Z3) hold with

V}(ék+1707~~~75m0)7é07 J=0,...,n,
A]’(CL(]):O, jZO,...,’I’Lfl, An(ag)#o
(26)
and
ANg, ..., \p_
det XBo,---, An 1>(a0) # 0. (27)

8(a1,...,an)

Then for all (¢,0,a) near (0,00, ag) (I9) has at most
k 4+ n limit cycles near the origin, and for some
(e,0,a) near (0,d0,a0) (IJ) can have k + n limit
cycles near the origin.

PTOOf. We fix (5k+1, ce ,5m) = (5k+170, ce ,5m0) SO
that
‘G(ék)+17 cee 75771) = ‘/}(5]6+1,07 s 7677’10) = ‘/}0 7é 0.

1850078-6



Int. J. Bifurcation Chaos 2018.28. Downloaded from www.worldscientific.com

by THE UNIVERSITY OF WESTERN ONTARIO on 07/16/18. Re-use and distribution is strictly not permitted, except for Open Access articles.

An Improvement on the Number of Limit Cycles in Homogeneous Polynomial Systems

Then noting that b; = 0 for j = 0,...,k — 1 as
(51a"'a6k) = 90(5/6-5-1"'"67”7@)’ by (m)f(m)a we
have

M(h, 0,a)|(5,,....60)=(8r s 1,:rs6msa)

=Y VoA (a)h? = M(h,a).  (28)
7j=>0

By (21), we can change a near ag such that

VioVig1,08iAi11 <0, A < A4,

i=0,....n—1 (29)

which implies that the function M in (BR) has n pos-
itive simple zeros h}, < --- < h] near h = 0. Having
obtained a satisfying ([29), by ([24) we can change
(01,...,0k) near ©(dk+1,0,---,0mo,a) such that

’b]‘<<’b]+1‘7 j:07"'7k_17

(30)
which implies that the function M given by (23)
has k simple zeros in the interval (0, A} ). Clearly,
under ([B0) the zeros h},...,h} remain to exist.
Thus, under ([29)) and [B0)) the function M has n+k
positive simple zeros altogether. Finally, by (24)—
(20), we have

bj (50, ao) = 0,
bn+k (00, ao) = VaoAn(ag) # 0.

Following the proof of Lemma [2, one can show that
system (I9) can have n + k limit cycles near the
origin. The proof is complete. W

bjbj_H < 0,

i=0,...,n+k—1,

Remark 2.2

(1) The above proof is for the first-order Melnikov
function. Similarly, one can prove that it works for
the second-order Melnikov function if the first-order

Melnikov function identically equals zero, and so on.I

det

Similarly, in using focus values, the process starts
from e-order analysis (V7), and if V} = 0, then goes
to e2-order analysis (V3), and so on.

(2) The idea used in Lemma [l (combination of the
parameters in the Hamiltonian function and per-
turbation functions) was discussed by EIPE]
to prove the existence of more limit cycles.

(3) We used the above methods to obtain 12 limit
cycles in a cubic polynomial system around a single

singular point [Yu & Tian, 2014]. This cubic inte-

gral system is described in the form of

i = (32a% — 75)102(—6 — 9z — 32 + Saxy — 12y?),

g = (32a* — 75)(24a — 16ax + 90y + 15zy

—16azy® + 60y°), (32a* — 75 # 0),

(31)

which was constructed by |Christopher [2006] to

prove the existence of 11 limit cycles around an iso-
lated center with a fixed value a = 2. We let the
parameter a be free and perturb system (BI) with
the e-order cubic polynomials,

3 3
Ep=¢ E agjir'y’, eq=c¢ Z bijir'y’,
i+j=1 i+j=1

to obtain the focus values: vy, j = 1,2,.... (Here,
the notation vy, instead of v;1, was used in [Yu &
Tian, |20_L4]) Then we use the 11 coefficients, bg31,
b121, b211, b3o1, bo21, bi11, b201, bio1, @301, a1 and
a to solve the first 11 focus values to obtain six
sets of solutions such that vj; =0, j =1,2,...,11
and v;19 # 0. Since the solution procedure given in

i ,lZQlA]] is one by one, i.e. at each step,
using one coefficient to solve one focus value, for
example, using bps; to solve vy; = 0, bia1 to solve
v12 = 0, and so on. Thus, it does not need to check
the determinant given in (I0). In fact, we can obtain

0(v11,v12, V13, V14, V15, V16, V17, V18, V19, V110, V111)

0(bo31, bi21, b211, b3o1, bo21, bi11, b2o1, bio1, asor, azi1, @)

C(32a% — 75)17 Fy (a?)

" a%6(8a2 + 25)77 (4a2 — 5)67(16384a5 — 14400a* + 16500042 + 84375)12 F)(a2)’

where C represents a big integer, and Fiy and Fp are 60th- and 28th-degree polynomials in a

2 respectively.

It is easy to verify that for the solution given in ﬂXi]_&_Tiaﬂ, 2014, p. 2697, the above determinant is nonzero.
Thus, by Lemma M and plus a linear perturbation (i.e. in addition, perturbing the zero-order focus value
v10), the existence of 12 small-amplitude limit cycles are obtained by perturbing the cubic polynomial

system (BI).
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2.3. Methods for proving that all
ek-order focus values vanish

Unlike the Melnikov function method, when using
higher f-order focus values to consider the exis-
tence of limit cycles, a common difficulty is to prove
that all e¥-order focus values vanish. This certainly
cannot be done by checking an infinite number of
ef-order focus values. Without proving this, the-
oretically one cannot use e*tl-order focus values
to prove the existence of limit cycles. Here, for
near-integrable differential systems, we introduce
two approaches for proving the vanishing of all ¢*-
order focus values, one of which depends upon inte-
grating factor and corresponding first integral, and
the other only depends on integrating factor. We
rewrite (1) as

= P(x,y, 1) +ep(x,y,¢,0),
‘ (32)
v =Q(x,y, 1) +eq(z,y,¢€,0),
where
&= Px,y,p1), y=Qy,pn), (33)

is the unperturbed system which is integrable.
Suppose the integrating factor for the unperturbed
system (B3) is M (x,y, p), then

P(z,y,p) = M~ Na,y, p)Hy(z,y, 1),

Q(:U,y,,u,) =-M"

where H(x,y, ) is an analytic function in x, y and
1, which is usually called the first integral of sys-
tem (B3). [When system (33) is multiplied by the
integrating factor M, it becomes a Hamiltonian sys-
tem and then H(z,y,p) is called the Hamiltonian
function of the system.]

Suppose we have obtained e*-order focus val-
ues for the perturbed system (B32), and found the
conditions on the perturbed parameter § such that
Vie, = 0,1 =1,2,...,4, where j is finite. Now, we
want to prove that Vj; = 0 for any integer ¢ > 1.

Assume that for system ([B2) we have an e*-
order first integral Hy(z,y, 1), then it is easy to get

(34)
Yo,y ) Ha(2, y, 1),

(Pt 4 (gl — oh+1). (35)
ox oy

This result can be easily proved by using the closed

contour H; = h as the parameter to express the

displacement function. Thus, proving the vanishing

of all e¥-order focus values is equivalent to proving

the existence of such an analytic function Hy.

However, sometimes even for the unperturbed
system we can easily obtain an integrating factor,
but it is very difficult to find the first integral. In
this case, system ([B2) can be rewritten as

(Q +eq)dr — (P + ep)dy = 0. (36)

If there exists an eF-order integrating factor
My, (2,y, 1) such that system (BB) has an e*-order
first integral, then we have the equation,

M (Q + eq)dx — My (P + ep)dy = O(sF*1),  (37)
which has the following property:

ODM(P +2p)] | IMQ + <)
oz dy

= O(Mh), (38)

under which all e®-order focus values vanish. Using
this method, the proof only needs to find an M
satisfying the above equation.

Note that the above two methods are equiva-
lent, since based on the integrating factor My, we
can find the first integral Hj using the following
formula:

OH OH
= MLQ teq), T = —My(P +ep),
oz oy

which obviously does not change the order of €, but
the integration of finding H}, is sometimes not easy.

3. Proof of Theorem [I] for
n=4,5,6,7

In [Gind, [2012d], the author used the indepen-

dent linear parts in Poincaré— Lyapunov constants
to show that My(4) > 6, M(5) 6? 9
and My(7) > 13, and further in

the author applied the independent quadratlc parts
in Poincaré-Lyapunov constants to prove that
My (4) > 7 and Mp(6) > 11. These results agree
with the formula given in Conjecture LIk My (n) >
2n—1 for n = 4,5,6,7. In this section, we will show
that Mp(n) > 2n for n = 4,5,6,7, and thus Conjec-
ture [LT] can be improved at least for n = 4,5,6,7.
We start from the two simple cases, n = 5 and
n = 7, which only need the e-order focus values,
then consider the case n = 4, which requires up to
e2-order focus values, and finally the case n = 6,
which even needs up to e3-order focus values.

3.1. My(5) > 10 for the case n =5

The fifth-degree homogeneous polynomial system

considered in [Gind, 12006, 2!!122“ is given by the
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following equations without e-order terms:
@ = —y+ 2k (ky + ko)a® + 2(3 — 5k? — 3k1ky)xly
— 42 + k2 + 5k ko) 3y? — 4(2 — 5k?
+ krko)z%y® + 2(4 — 3k3 + Skiky)zy?
+2(1 — k2 + kiko)y® + eps (2,9, €),
g=a—2(1 — k¥ — kiky)a® — 2(4 — 3k?
— Skyko)xty + 4(2 — 53 — kiko)x3y?
+ 4(2 + k2 — Bkyko)a?y® — 2(3 — 5k?
+ 3kiko)ay® — 2k1 (k1 — k2)y® + eqs(x, y, ),
(39)

where k1 = cos¢ and ke = sin¢ with arbitrary
¢ € [0,27]. We do not need to find the first integral
of system (39), but following the form of (), we add
the e-order polynomial perturbation to system (39),
given by

Py
Ps = P51 = E ;51T v,
i+j=5

G =qs1= Y bijnz'y.
i+j=5

(40)

In , ], the author used independent
linear parts in Poincaré—Lyapunov constants to
show that Mj(5) > 9. By using our method, we
will show that the e-order focus values are enough
to prove Mp(5) > 10.

In this case, the nonzero focus values are Vs,
i=1,2,.... We let kg = /1 —k? (the case ky =
—+/1—k? can be similarly proved). Then we use
the eight parameters: a;j1 (i +j = 5), bso1 and bai1,
to linearly solve the first eight e-order focus value
equations: Vo;1 = 0,71 =1,2,...,8, and obtain

5C,
Vigt = 3665);0 (1 — k) (1 — 4k3)3(3 — 4kT) Fs1,
Voot = —L k(1 - k(1 — 4k2P(3 — 4K\
201 m 1( - 1)( - 1)( - 1) 51,

where C5g is a b8th-degree polynomial in ki, Cs; is
given by

Cs1 = —2k1(1 — k1)[C},b3a1 + C3 bas
+ O3 1bar + Caybosa] + /1 — k%[C’glbwl
+ C81boz1 + CLibiar + C8bosi],

where Cgl, j = 1,2,...,8, are polynomials in ki,
and

Fs1 = 1015283712k — 6091702272k 72 + 15990718464k 30 — 23470137344k1% 4 20165216256k 1°
— 9138921984k 11 + 542018048% 12 + 1857404640k 10 — 1187474796k% 4 373427914k$

— 58506927k + 2445696k2 — 7920,

Gs1 = —2k1(1 — k%)(276390009940663037067264k?0 + -+ - — 14000496840000)

+ /1 — k2(54194119596208438640640kS + - - - + 45159846197400).

Without loss of generality, we may set bga; = bog; = b141 = 0 and bgs; = 1. Moreover, it can be shown that

O(Va1, Viar, Vei, Va1, Vior, Viai, Viar, Vier, Visi)

Dets; = det [

_ 25k1(1 — k)3 (1 — 4k2)5(3 — 4k2)4

O(as01, aa11, as21, a231, G141, G051, bso1, bai1, k1)

Detsyn (k‘%)

1183529778020352+/1 — k2

X Det5D (k%) ’

_ 25K1(1 — kT)%(1 — 4k7)%(3 — 4k)" y Detty (k?) + k1/1 — k2 DetZy (k?)

1183529778020352+/1 — k2

Det5D(k‘%) ’

where DetéN, Det%N and Detsp are 46th-, 45th- and 28th-degree polynomials in k2, respectively.
Finally, solving F5; = 0 yields 12 real solutions for k; € (—1,1):

ki = £0.9599707067 - - - ,
+0.7225594278 - - - ,

+0.8942014961 - - - |
+0.2374112789 - - - |

£0.8347897513 - - -,
+0.0594117447 - - - |
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under which G551 # 0 and Dets; # 0. Note that  more small limit cycle, giving a total of ten limit
since ko = £4/1 —k?, we actually have a total  cycles around the origin, i.e. M (5) > 10.

of 24 sets of solutions. For example, taking ki = We can process the above procedure to e2-order
0.2374112789 - - and ko = /1 — k%, we obtain focus values to again obtain ten small-amplitude

Vir =0, k=24, .. 18 limit cycles bifurcating from the origin.

Vaor = —0.0665293532 - - - 7 0, 3.2. Mp(7) > 14 for the case n =7

Dets; = 0.1827344716--- x 1077 #£ 0. The seventh-degree homogeneous polynomial sys-

This, by Lemma H] implies that there exist param- tmem was proposed in |Gind, ] angl stu'd ied }1111
eter solutions for system (@0) to have nine small- ~ FHS ]'to prove Mh(7) = 13 y using the
independent linear parts in the Poincaré-Lyapunov

amplitude limit cycles bifurcating from the origin. ’ X X
Further, we use a linear perturbation to obtain one constants. The system is described by the following
I equations with e = 0:

4 2 4
&= —y+ ghi(k + o)z + (71— 11k% — Thyiko)aSy — S+ 2k% + 11k k)2 y?

4 2
(3 — 153 4 11k1ko)xy® — S+ Tk? 4 Sk ko) a3yt — (71— 23k3 + kiko)x?y®

_l’_

Wl Wl

(6 — 4k% + 7k1k2)a:y6 + 2(1 — k% + k1k2>y7 + € Z aijla:iyj,
i+5=T7

4 2
g=2—2(1 -k — kiky)a" — g(6 — 4k3 — Thyko)2ly + §<7 — 23k% — kyky)a0y?
2 4

+ (44 Tk? — 5kiko)zty® + S(B- 15k2 — 11k ko)23y* + S2+ 2k — 11k ko)2?yP

WIN W

4 .
(7 — llk% + 7k1k2)xy6 — §k1 (kl — k2>y7 + e Z bijlxzyj,
i+5=7

where |
where C%g is a polynomial in ky and ko, while Frq,
ki =cos¢ and kg =sing Gr71 and H7p are polynomials linearly in bsgq, bost,
big1 and bg7; with polynomial coefficient in k; and
with arbitrary ¢ € [0,27]. The result obtained in k2. Thus, we solve the equation F7; = 0 for bzs
[Gind, [20124] by using the independent linear parts ~ under which G7; and Hyy are reduced to
in Poincaré-Lyapunov constants implies that we
only need to use e-order perturbations. Gr = —2ki(1 — Kk} — k‘%)G%G;l’
We use the 12 parameters: a;i1 (1+7 = 7), bro1, 9 9 DN
be11, bso1 and byz; to linearly solvje tile first 12) focus Hry = 6ky(1 — ky — k3)H7y Hry,
value equations: V351 = 0, ¢ = 1,2,...,12. Then,

Vit Vs and Vie: become where G7, and H7, are rational functions in k1 and
391, V421 451

ko, while G7; and H7, are polynomials in bas1, bie1,
—kyko(3 — 12k2 + 12k} — 4Kk3K32) bo71, k1 and ks. Since

V391 = 715
10708022842413152256000C7 4 K2 — cos6 4 sino — 1,
v Fka(3 - 12k% + 12k — 4Kk2K2)
12T 353364753799634024448000C we have G71 = Hy1 = 0 and so Vig1 = Vis1 = 0.
Therefore, the best result we can obtain is the solu-
Vit — kika(3 — 12k3 + 12k] — 4k7K3) . tions such that Vsn = 0, i = 1,2....,13, but

14387599315705898939424768000C7¢ Visi # 0 by solving Fy; = 0, which may yield
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14 limit cycles. In order to find the solution, we let ko = /1 — k7 (the case ko = —+/1 — k7 can be similarly
proved) and then obtain

_234690534263309059093337518863688164000000000000000(1 — k%) (1 — 4k1)3(3 — 4k3)C%,

e 555165k% — 59808k + 232562k — 155256k2 + 17161
x [2k1 (1 — k3)(339k% + 13) — 1/1 — k2(309kT + 590k? — 131)] F%1,
(.. _ 368799410985199950003816101071509972000000000000000(1 — k2)(1 — 4k3)3(3 — 4k3)C%, o
o 555165k — 59808k§ + 232562k% — 155256k3 + 17161 w
where

o = (21087kY — 86679kS 4 13143k7 + 9179k2 + 262)bzy; + (103497k$ — 710kY — 36148k]
— 6378k% + 1179)bosy — (19383KT — 92759k + 34999k — 3845k% — 786)bi61

+ (555165k5 — 59808KS 4 232562k — 155256k% + 17161)bo7; — k14/1 — k3[(2241k5 4 33381k]

— 48333k% + 10663)b341 — (24069k5 — 72631k] — 9537k3 4 3827)bos
— (102999k5 + 20099k] — 6027k — 2383)by¢1 ]

and F*} is a 39th-degree polynomial in k7. It can be shown that the factor in the square bracket in Fr
does not yield solutions for the existence of 14 limit cycles. Thus, we only need to consider the solutions
from the polynomial F5]. It is noted that F%] and G%] have no common solutions. Thus, the solutions
solved from F%} = 0 do not render G%7 = 0. Solving F'%F = 0 yields 30 real solutions for k; € (—1,1):

k1 = £0.9964817201 ---, +0.9896671578---, £0.9558178228---, £0.9120186923- - -,
£0.9022317704 - --, £0.8245906156---, +£0.8112084855---, £0.7324854562---,
£0.6190075998 - - -, £0.5708227869 ---, +£0.4256589331---, £0.3706595580-- -,
+0.2233323665---, £0.1008102067 ---, +£0.0776411547---.

Again, due to ks = 1/1 — k}, we have a total of 60 sets of solutions. Moreover, we can show that
O(Vs1, Vi1, Voi, Vi1, Vist, Vist, Vait, Vaar, Vari, Vaor, Vast, Vaer, Vaor)

d(a701, a611, as21, @431, G341, 251, 4161, G071, U701, be11, bs21, basi, k1)

_ SR — K3)(1 — 442)°(3 — 4kD°
©36303150377217470712862090800048893545102932131025747207349260131661763283498176

X [Psa(kT) + kiy/1 — k3 Psy (K7)],

where Pso and Ps; are respectively 52nd- and 51st- T
degree polynomials in k2. It can be easily shown  Then, by Lemma Ml and a linear perturbation, we
that Dety; # 0 for the roots of Fij. For exam-  can conclude that system (HIl) can have 1341 = 14
ple, by taking k1 = —0.9558178228 - - -, and setting ~ small-amplitude limit cycles bifurcating from the

Det71 = det |:

b()71 = 1, b161 = b251 = b341 = 0, we obtain OI'igina Le. Mh<7> > 14.
Var =V =+ = V391 =0, Remark 3.1. 1t should be noted from the above dis-
cussed cases, n = 5 and n = 7, that the coeffi-
Viz1 = 0.00028790238 - - - # 0 cients k1 and ko in the unperturbed systems have a

nonlinear relation: k% + k% = 1. We will see in the
next section that this nonlinear relation makes a
Det7; = 0.1354103578 - - - x 10722 #£ 0. difference.

and
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3.3. Mp(4) > 8 for the case n =4

For the case n = 4, Giné studied two systems [@,

, ], one taken from a system for case
(i) in Theorem 9 of [Gind, 200d], and the other
from a system given in Sec. Blof |[Chavarriga et all,
]. We will show that the first system can have
seven small-amplitude limit cycles, while the second
system can have eight small-amplitude limit cycles,
bifurcating from the origin.

3.3.1. System A

The system is described by
&=~y — kia’y + kay? (22 — 1),
(42)
§ =z + koxy® + k12 (2? — 29°),
where k1 and ko are arbitrary real constants. Sys-

tem ([@2) is integrable with a center at the origin.
The integrating factor is given by

Mao(z,y) = [+ 2(k12® + koy®)
+ (k1a® — koy®)2 6. (43)

In [Gind, [2012d], the author used the indepen-
dent linear parts in Poincaré-Lyapunov constants

to show that Mj(4) > 5, and later in |[Gind, 20121
the same author used both independent linear and

1323k2k3 (k% — k3)

quadratic parts in Poincaré-Lyapunov constants to
prove that Mp(4) > 7. We add perturbations up
to e*-order to system (B2) to obtain the following
perturbed system:

i = —y — k12®y + kot (2% — y®) + epa(z, v, €),
g =+ kowy® + kya®(2® — 2¢°) + equ(z,y,¢),

(44)
where
Pa = pa1 + epag + €2paz + °pay
= Z aijla:iyj —|—5aijga:iyj
i+j=4
+ 52aij3$iyj + €3aij4ﬂfiyj,
(45)

Q4 = Qa1 + €qao + €2qu3 + 3qua

= Z bijix'y’ + ebijoa’y’!
i+j=4

2y ptad A |

+ &b’y + e%bijunty’.

For the e-order focus values, we obtain V3; 91 =
Vaic11 =0, Vg1 #£ 0, for i = 1,2,3,.... Using the
parameters: a401, 311, @221, 0131 to linearly solve
the focus value equations: V31 = Vi1 = Vo1 =

V121 = 0, we obtain the solution: Sya1 = (a401,a311,
a221, a131), and then

[k‘l (56]%‘% + k‘%)aozﬂ — 8k%k2b401

[kl (56]{% + k%)aou

[k (56kF + k3)aou

Vist = 11534336000(158816k% — 1034082k k2 — 1087243k k3 — 14889k9)

+ 2k (49K3 + k2)boa1 + 32k3b311 + k1 (56k2 + k2)bi31 — 4k3kobog1 | Fia1,
Vie — —147k2k3 (k2 — k3)

7843348480000(158816k6 — 1034082k k2 — 1087243k2 k3 — 14889k9)

— 8k3kobaor + 2k2(49KF + k3)boar + 32kTbs11 + k1 (56k7 + k3)b131 — 4kTkabao1]Gaan,
o TRk — k3)

7951272955084800000(158816k$ — 1034082k k2 — 1087243k2k5 — 14889k$)

— 8kTkobaor + 2k2(49K3 + k3)boar + 32kTbs11 + K1 (56k7 + k3)b131 — 4k haboor | Haat,

where

Fya1 = 90957k1 + 91570k3k3 + 90957k3,

Gia1 = 9420015381kS 4 18132723551k2k5 + 18138559311k k3 + 8554104741kS,

Hy 1 = 3413827166627549991k% + 11217196809430171012k$ k2 + 14217938640483374394k k3

+10721178041458206852k 2 k5 + 2924449724303431335k5.
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Obviously, except for (ki,k2) = (0,0), there are no real solutions such that Vis; = 0, but Vig; # 0.
Therefore, for the best result with an infinite number of solutions we can obtain V31 = Vg1 = Vg1 = V3o =0,
but Vi51 # 0. Moreover, for the solution Sja1,

9(Va1, Vo1, Vor, Viai)
d(aa01, azi1, azetr, a131) Saa1

_ 147 4712712 2\2 6 412 21.4 6
=~ S{0aLi0s cati5a000 k3 (kT — k3)2(158816KT — 1034082k1k3 — 1087243k1k3 — 14889kS)

0,

as long as ki and ko are taken to satisfy kiks # 0, k1 # tko and ko # £0.3667704 - - - k1. Hence, with
proper perturbations on the solution Sya1, we can obtain at least four small-amplitude limit cycles around
the origin. Finally, adding a linear perturbation yields one more limit cycle. Therefore, based on e-order
focus values, we obtain at least five small-amplitude limit cycles.

Next, we want to use e2-order focus values to consider the bifurcation of limit cycles from the origin of
system (f4)). So we solve the common factor in Vi51, Vig1 and Vayp for aps; to obtain the critical condition
Cya1, defined by

Det4A1 = det

ka[(14baa1 + 49bg41 + 28b4p1)k1 + 2b311 k2]
56k3 + k3 ’

a401 = —

(28b201 + 98bga1k? — 28bs11k1ka + (14bga12 + Thag1 + 4bao1 k2))
56k% + k3 ’

aszll =

(56b311 + 112b131)k? + (84bao1 + 14Tboar + 42bo91 )k1ka + (2b1312 + Tb311)k3

Caar : a99] =

56k% + k3 ’
diat _2850411/6% — 56b311k1ke + (14bao1 + 25boa1 + Thao1k3)
B 56k2 + k2 ’
dos = _8(7b131 + 4b311)]€% — 2(2b221 + 4bgo1 — 49[)041)]{?%]{?2 + blglk‘ll{?% + 2b041k‘§

56k3 + k3

Then, under the critical condition Cya1, we wish to use (B8]) to show that V3;; = 0 for any positive integer
1. To achieve this, we assume the e-order integrating factor is given in the form of

M41(x,y,5) = M40(33,y) + erﬂ(xvyv(s)a
where § = (b401, b311, bzg, b131, b041>. Then, by using (IEI) we obtain

2
m{b401k2[(k1x3 — k2y3)(k2x3 + 36k1x2y — 6k23:y2 + 8k1y3) + k2x3
1 2

M, =
— 48k 2%y + 6koxy® — 8k1y3] — bair [(k1a® — koy®) (41 koa® — 3(8k2 + k3)2’y
— 24k kpxy® + 32k30°%) + dk1kox® — 3(8KT — k2)ay + 24k koxy® — 32k3y°]
— bog1 [(k12® — koy®) (28k32® — 18k1 koay + 3kixy® — dkikoy®) + 28k3 23
+ 24k kox®y — 3k3xy® 4 4k koy®] + bi31y® (56kF 4 k3) (1 — k1a® + koy®)
— boar [(k123 — ko) (9833 — 63k koay + 12(7k? + k3)ay? — 14k kay®)
+ 98K 2> + 84k koa®y + 3(28k2 — 3k3)xy? + 14k1koy]},

for which ([38) holds for £ = 1. Thus, all the e-order focus values vanish under the critical condition Cya1.
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Now we assume that the critical condition Cysa; holds and proceed to e2-order focus values Vo,
1 = 1,2,.... First, we use the five parameters a4p2, as12, @222, @132, ags2 to linearly solve the five focus
value equations: V3o = Vo = Vigo = Vigg = Viso = 0. Then, Vigo, V512 and Voygs become

49ks (k3 + K3)

V == F ,
1% 7 136902082560k (56k2 + k2)2(90957k" + 91570k2k% + 90957kE)
Vo — Ths .
212 T T 3370579755008000k: (56%2 + k2)2(90957kT + 91570k2k3 + 90957k3) 4%
Ths
Vasr = 2 2)2 4 21.2 T Haaz,
1723720321783037952000000k; (56k2 + k2)2(90957kT + 91570k2k2 + 90957k3)

where Fya9, Gaao and Higo are quadratic polynomials in bgg1, b311, boo1 and bgs1, which do not con-
tain b402, b312, b222, b132, b042 and b131. SO]ViIlg b401 from the equation F4A2 = 0 we obtain b401 =
bffm <b401, b311, bgzl, b041> for which G4A2 and H4A2 are reduced to

—4320
92154426k 10 + 1248750173k5k3 + 1442811524k k3 + 1427786006k kS
+ 1157457906k3 kS + 46077213k 30

Gaa2

X ba g kaks (kT — k3)(56k% + k3)2(90957k] 4 91570k7k3 + 90957k3) G 42,
B —25920
92154426k 10 + 1248750173k5k3 + 1442811524k k3 + 1427786006k kS
+ 1157457906k3 kS + 46077213k 30

Hypo

X by k2 ks (kT — k3) (56K + k3)2(90957kT + 91570k k2 + 90957k3) H 4o,

where G 4, and H 4, are respectively 12th- and 14th-degree homogeneous polynomials in k1 and kg, given
by

G 4o = 6447886448367k1% — 42075685854722k 10k3 — 51682411730095k5 k3 — 29591854046844k kS
— 51682411730095k k5 — 42075685854722k 2 k10 4 6447886448367k 32,

H’ 4o = 1335162927440272831173k 14 — 7439160038438971610625k 12 k3
—19090977605930884606283k 193 — 16386375933202185058681% 5 kS
— 16613997039570403362681kS k5 — 18991989902511041214283k 1 k1°
— 6939173149427942554625k 2 k3% + 1268723905476299263173k 7.

Let ks = k.kq. Then, we obtain

0(Vs2, V2, Vo2, Viaa, Visa, Vige, Vai2)
0(a02, a312, a222, a132, @42, bao1, k1)

B 466948881k1° (k2 — 1) (K2 4+ 1)%k}2boa1 | k1 krbost |
1022599023261259909510611040000754128519168000000000

Detyg9 = det |:

o 92154426k 10 4 1248750173k8 + 1442811524k5 + 1427786006k + 1157457906k 2 + 46077213
46077213k 10 + 1157457906k8 + 1427786006k8 + 1442811524k} + 1248750173k2 + 92154426

X (6447886448367k 12 — 42075685854722k 10 — 51682411730095k5 — 29591854046844k5
— 51682411730095k4 — 42075685854722k2 + 6447886448367),
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which however equals zero when G} 4, = 0. There-
fore, by using e2-order focus values, we can only
obtain seven limit cycles. So we carry out the above
procedure to e3-order focus values and find that
based on e3-order focus, only five limit cycles can
be obtained, like the case in e-order analysis. Thus,
we continue to use e*-order focus values and can
show the existence of seven limit cycles, like the
case in e2-order analysis. Hence, we conclude that
seven limit cycles can be obtained around the ori-
gin of the fourth-degree homogeneous system (42)
by using up to e*-order analysis.

Remark 3.2. Here, it is noted from the above &2-

order analysis that the relation between the coeffi-
cients k1 and ko is linear: ko = k. k1. If we replace
k1 = k,k; and use the transform z — (kl)(l/S)x,
y — (k1)/3y in @), we obtain the following
system,

&= —y — 23y + k(227 — y?),

y =z + koay® + 2% (2 — 29?),
which now has only one independent parameter k.

This is why we cannot get eight limit cycles for this
system.

3.3.2. System B

The second fourth-degree homogeneous polynomial

system is described in [Gind, 2006, [2012a, 20121
i=—y+2(1 -z’ —25(3 - 5e)zy

—6(1 — ¢)(1 + 3¢)2%y? + 25(5 — Te)xy®
+4e(l - )y, (46)
=1z —2(1—c)ady — 6s(1 + c)z’y?

+2(3 — 4c — 3¢*)y® + 2s(1 + )y,

where ¢ = cos¢ and s = sin¢ with arbitrary
¢ € [0,2x]. This system is integrable with a poly-
nomial inverse integrating factor , . In
, ], the author used both independent
linear and quadratic parts in Poincaré-Lyapunov
constants to show that system (H@) can have at
least 2 x 4 — 1 = 7 small-amplitude limit cycles.
We will show the existence of 2 x 4 = 8 limit cycles7I

by adding the perturbations up to ?-order as that
used in (@), to the above system, yielding

b= —y+2(1 -t — 253 — 5c)2’y
—6(1 — ¢)(1 + 3¢)z*y* + 2s(5 — Tc)xy®

+4c(1 — )yt + ¢ Z a1 'y’
i+j=4

2 s

gy =2—2(1—c)ady —6s(1 + c)z*y?

+2(3 — 4c — 3¢)xy® + 2s(1 + )y

e > bty +€2 ) b’y
i+j=4 i+j=4

where the perturbations py and ¢4 are given in (48]
up to e2-order. Since ¢?+s? = 1, we let s = V1 — 2.
The case s = —v/1 — ¢2 can be similarly proved.

First, we consider the nonzero e-order focus
values V3;1, @ = 1,2,.... We use the five param-
eters: ajol, @311, a221, 4131 and ap41 to linearly
solve the first five focus value equations: V3;1 = 0,

1 = 1,2,...,5, one by one. Then, V181 and V211
become
9Cy
Vigi = ——L __ Fyp,
B 76160008, !
3Cu
Voi = G
11 8377600000CT, PN

where C’}m is a 20th-degree polynomial in ¢, and Cyy
is given by

Cu = (c—3)(c— D e+1)°{3(c® — 8
+Tc+ 20)b401 + 3(6 + 2)(1 — C)2b041
+(1—¢)(3c2 —c+6)bgay — 3V 1 — 2

x [(¢® — de + T)bz11 + (1 — A)biz]}

and Fyp1 and G4p; are respectively 21st- and 25th-
degree polynomials in ¢ without common roots, i.e.
for the roots of Fyp1, G4p1 # 0. Therefore, we may
have solutions such that V3;1 = 0, ¢ = 1,2,...,6,
but V11 # 0. In particular, Fypy is given by

Fip1 = 100363379916800000c%" — 3112274153562112000¢2° + 41431379576026316800¢”
— 333352857243200880400¢'® + 1916604623534681437840¢'7 — 8646436269034206627621¢'6
+31933019250792621374890¢'° — 97367961724957871770893¢!* + 243625782086550081525394¢'3
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— 496393737136710556415336¢'% 4 819448663784852696811140¢!
—1092805627130225500253566¢0 + 1174562152683209497685164¢”
— 1014287042613634469107845¢% + 700230335914727037229434¢" — 383497555454706423027497¢F
+ 164686243238473146879842¢° — 54476172037080149315910¢* + 13490309175299600125944¢°
— 2377881208916836341228¢% 4 269076756017059411248¢ — 14840305335028401912,
which has only three real solutions for ¢ € (—1,1):
c = 0.4839427334 - --, 0.7229504505---, 0.8227464856 - - - ,

satisfying Fyp1 = 0, namely Vg1 = 0 for which V517 # 0. Since the parameters are used one by one to
solve the focus value equations, perturbations can be taken to yield (including the linear perturbation)
seven small-amplitude limit cycles around the origin. Alternatively, we can show that for the solution
c = 0.4839427334 - - *y with b401 == 1, b311 == b221 == b131 == b041 == O,

9(Va1, Vi1, Vo1, Via1, Vist, Vist)
d(aso1,as11, azo1, a131, Goa1, €)

Detyp; = det = 0.1214996166 - - - #£ 0.

In order to find eight limit cycles around the origin of system (@), we need to consider e2-order
focus values. But first we have to find the condition under which all the e-order focus values vanish. This
condition can be obtained by solving F; = 0, giving solution for bs91, and thus we can, together with the
above solutions obtained from solving the focus values, define the critical condition Cyp; as

—1
a4 = 3(c+1)(c+2)(1 — ¢)®boa1 + (1 — ) (32 — ¢+ 6)b
0= S g +7C+20){ (c+1)(c+2)(1 = ¢)boar + (1 — ) )bz
— V1 —c2[(2¢3 — %+ 2¢ + 1)bzy1 + 3(1 — ¢)(1 + ¢)?b131]},
asil = —1 {3(1 — C)2<2263 -+ 19¢2 + 9¢c + 16)b041
3(1 — 2)(c3 — 8¢2 + Tc + 20)
+ (1 — ¢)(51c* + 52¢3 — 63c% — 12¢ + 28)baog; — 3V1 — c2[(11c* + ¢ — 29¢2
+19¢ + 6)b311 + (1 — ¢2)(19¢% + 5¢ — 22)by31]},
~1
= 3(1 — ¢)(14c¢® — 13¢® 4 T + 42)boar — (1 — ¢)(28¢3 + 37¢?
a1 (1+c)(c3—802+7c+20){ (1—c)(14c ¢+ Te+42)bogr — (1 —¢)(28¢” + 37¢
o —21c — 6)ba1 + 3V1 — c2[(6¢3 + 3¢ — 18¢ + 13)b311 + (1 — ¢)(11c? + 12¢ — 1)by31]},
4B1 *
~1
= 34ct —49¢% — 1062 + 165¢ + 80)boar — (19¢* + 40¢% — 35¢2
a131 (1+c)(c3—802+7c+20){( ¢ c ¢ +165¢ + 80)boa1 — (19¢” + 40¢ c
— 64c — 20)baa1 — 61 — c2[(2¢® + 5¢2 — 6¢ — 5)b311 + (1 — ¢2)(4c + 5)b131]},
agu1 = ! {3(11¢"* — 38¢ + 31¢? + 66¢ — 30)boay
3V1 — (e — 82 + Te + 20)
— (3¢ —5)(5c® + 15¢2 + 2¢ — 2)bag — 3v/1 — 2[(3¢c — 5)(c? + 4c — 1)bayy
+ (1 — C)(7C2 + 4c — 5)b131]},
~1
bio1 = 3(c+2)(1—¢)%b 1—c)(3¢* —c+6)b
401 3(03—802+7c+20){ (c+2)(1 —¢)%boar + (1 — ¢)(3c” — ¢+ 6)bonn
—3V1 —c2[(? — 4+ T)bgi1 + (1 — )biz]}-
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Then, we can similarly show that there exists an e-order integrating factor My; such that (BS) is satisfied.
This implies that all the e-order focus values vanish under the condition Cyp1.
Now suppose the condition Cyp; holds and we consider the e2-order focus values Viio, i = 1,2,....
We use the six parameters aqg2, asia, 4222, G132, aose and by to linearly solve the first six focus value
equations: Va0 = 0,7 =1,2,...,6, one by one, and then V515 and V549 become
(C — 3)(1 + 0)5042
5744640071 — c2(c3 — 8¢2 + Te + 20)2C%,

B (c—3)(1 4 ¢)°Cuo
1321267200000y 1 — ¢2(c® — 8¢2 + Tc + 20)2C%,

where 04210 is a 21st-degree polynomial in ¢, and '

Vai2 = Fiypa,

Vaa2 G2,

focus values. Further, a linear perturbation can
Caz2 = 4[3(1 + ¢)(4c — 9boa1 — (2¢° — 6 yield one more limit cycle, leading a total of eight
limit cycles. If we proceed further to e3-order focus

2 2\7( 2
+Te+ Do ]” +9(1 = 7)[(¢” — de+ T)ban values under the condition Cyo = 0, we can show

that the e3-order analysis can yield eight limit
+ (1= A big1]? — 1271 — 2[(2 —de+T)b Y y g
( Jbizi] I Jbau1 cycles. So we know that system (@7)) can have at

+ (1 — A)by31][3(1 + ¢)(4¢ — 9)boay least eight small limit cycles bifurcating from the
3 ) nondegenerate center (the origin) by using the focus
—(2¢” = 6¢” + Te + T)baan |- values up to e2-order, i.e. Mj(4) > 8.

Fypo and G4po are respectively 30th- and 34th-

degree polynomials in ¢, and they do not have com- g 4 My(6) > 12 for the case n = 6

mon roots. Thus, we may obtain solutions such that ' ) ' )
V3o = 0,1 =1,2 7, but Voyo # 0. In fact, we In this section, we consider two sixth-degree homo-
Y Pyt B ° Y

geneous polynomial systems. We have a similar sit-
uation as that which occurs in the case n = 4: for
c=—0.6322034214---,  0.1611981508- - -, the first system we can only get 11 limit cycles due
to the linear relation between the two coefficients
0.6367798200-- -,  0.8325994702---, k1 and ko: ki = k.k1; while for the second system,
for which Va10 = 0, but Vago # 0. Therefore, we obtain 12 limit cycles since the two coefficients
together with s = +v/1 — ¢2, we have eight sets ¢ and s have a nonlinear relation: ¢? + s% = 1.
of solutions. To verify the existence of eight limit
cycles, we choose ¢ = 0.1611981508 - - -, and, with-
out of loss of generality, set

find four real roots of Fyps for ¢ € (—1,1), given by

3.5. System A
The first system was studied in [Ginﬁ, |2£)D_6L lZQlZEJ],

b312 = bag2 = b132 = boaz = 0,

given by
bao1 = big1 = boar =0, bz11 = 0.01, &= —y — k1ady + 2koax?yt — koyb,
to obtain ) 6 49 5 (48)
y=x+kix° —2kix"y* + koxy®,
Vg =Veo =+ =Va12 =0, .
where k1 and ko are arbitrary real constants. The
Vago = 0.0189982065 - - - # 0 system has an integrating factor,
and Meo(z,y) = [1+2(k12° + kay”)
0(Vzo, Viga, Voo, Viaa, Vise, Viga, V5 9
Detyps — det (Va2, Vi2, Voz, V22, Visz, Vise, Vo12) L (k1x5 B k2y5)2]_190. (49)

0(a402, a312, A222, @132, A042, bao2; €)
In m, M], the author used the independent
= 2.5111634224 --- #£ 0. . : . .

linear parts in the Poincaré-Lyapunov constants
The above results, by Lemma [4] clearly indicate  to prove Mp(6) > 9. Later in m, M]
that there exist seven limit cycles around the origin =~ the author constructed another sixth-degree homo-

of system ([@7) by applying c-order and e%-order  geneous polynomial system, derived from the
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fourth-degree system ({6, to show that M (6) >
11. In this section, we first consider system (48]
and then discuss the second system, and show that
system (@8) can only have 11 limit cycles even
by using analysis up to e3-order; while for the
second system we obtain 12 limit cycles and so
M (6) > 12.

Adding perturbations to system we have
the following perturbed system:

i = —y — k12°y + 2kox?y? — koyS + eps(x, ),

g =+ k1a® = 2k 2"y + kawy® + eqs (2, y),
(50)

where

—135

D6 = Z aig1w'y’ + eagjor'y’ +52aij3xzy]7
it+j=6
(51)
q6 = Z bij1x'y’ + ebija’y’ + e?bijza’y’.
i+j=6
In the following, we will show that by using e- and
e2-order focus values, only nine small-amplitude
limit cycles can be obtained, but with the e3-order
focus values, we obtain 11 limit cycles.

Note that the nonzero focus values are given
in the form of Vs;, i = 1,2,.... First, we use the
eight parameters a;;1 (i+j = 6) and bgo1 to linearly
solve the first eight focus value equations: V5;1 = 0,
i=1,2,...,8. Under these solutions, V451 and V501
become

Vis1 =

549152820451446089450487021568Cs01

27
Vso1 =

boe1 k3 (k3 — k3)F1,

bo1 ks (kT — k3) G,

1541111547028090479990088925899380490240C 01

where Cgo1 is a 16th-degree homogeneous polynomial in k% and k3. Fg; and Ggp are respectively 22nd-
and 23rd-degree homogeneous polynomials in k2 and k3, and have no common roots. So letting ko = k;.k1

yields Fg; = k{*F7,, where

Fg = 4807800518252648145901562613431974571943408711071567141707kfﬁ4

+4607482877416594508061892 144965818366340208865391227282322771{ff2

— 16330024025568974715773446990569917638496163414440867950370703kfﬁO

—71313757210868332188985485487913909571796439772964306591 762586k§8

— 175584122310412659658986103623461085538732479617683520767325051]{7336

+882131146292877903598123035840296547939739427192174 14446328419371{7334

+16355593246610643143603783048116793728973825611059997831351890567k 7?32

+ 1083917279604081607533800420243052759362234930746589019196038792]{7330

—52049207012853216646397059993126012544532582335831 193730906230914k38

— 1229172961290550987888009063914272111399864777212599560137822031 74k 36

— 168327522991085900749252946415776269493792204250034677721983461958% 34

— 155510396256193384480161983216249494616018424658205602897498381788k 22

— 168327522991085900749252946415776269493792204250034677721983461958k 2

— 122917296129055098788800906391427211139986477721259956013782203174k 12

— 52049207012853216646397059993126012544532582335831193730906230914k 1°

4 1083917279604081607533800420243052759362234930746589019196038792k 1

+ 1635559324661064314360378304811679372897382561105999783135189056 7k 12

4 8821311462928779035981230358402965479397394271921741444632841937k 1°
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— 175584122310412659658986103623461085538732479617683520767325051 %>
— 71313757210868332188985485487913909571796439772964306591762586k°
— 16330024025568974715773446990569917638496163414440867950370703k
+ 460748287741659450806189214496581836634020886539122728232277k 2
+4807800518252648145901562613431974571943408711071567141707.

Moreover, we can show that

I(Vs1, Vior, Vist, Vaor, Vasi, Vsor, Vast, Vaor, Vasi)
0(ae01, as11, @421, A331, G241, 4151, A061, D601, K1)

Det6A1 = det = C6Qb061k§0k‘71n3(1 — k‘g)5 El?

where Cpg is a positive integer. Thus, F'5; = 0 results in Detg; = 0, implying that we cannot get ten limit
cycles, but only nine limit cycles around the origin of system (@8] by using the e-order focus values.

Next, we let bpg1 = 0 (which can be seen from the expressions of V51 and V501 ), which yields V1 = 0,
1=1,2,...,10. So define the critical condition:

1
ago1 =0, bos1 =0, asi1 = m[/ﬁ(?bzm + 3b2a1) + k2bs11],  aa21 = 6bs31 + 5bs11,
1 ko
ass) = @(lﬁbzu — Bkabsi1), @241 = 20151 — 9b3z1 — 8bs11, a1 = k_1b511’
Cﬁl . 1
ape1 = *9?(919151 k2 + 6bogy k1ko + 2b511k3),
1
boor = — 57— [16(9b331 + 8bs11)k3 + 9(3boay + 2ba21 k1 ks + bs11 k3],
\ 1~2

under which we can show that there exists an e-order integrating factor Mg, such that Eq. (B8) holds for
k =1, and thus all the e-order focus values vanish when the critical condition Cg; is satisfied. In fact, we
solve (B38) for k = 1 to obtain

1
Mg = Mgy + My, Mg = *E(Slbml + saboar + s3b331 + Sabao1 + ss5bis1),

s1 = a:[(kla:5 — kgy5)(9k2 w2t — 20k 23y + 10kyzy? 4+ 160k xy> — 20k2y4)

4 Okt — 20k 2%y + 10k0a2y? — 160k 21> + 20kay"], (52)
s9 = 18k (1 + kya® — k2y5)x5, s3 = —180k1 (1 — kiz® + k2y5)x2y3,
sq=3k1(1+ kyx® — k2y5)x3(9x2 + 10y2), s5 = —36k1(1 — kix® + k2y5)y5.

Now suppose the critical condition Cg; is valid, we process to e?-order values. Similar to the analysis
for the e-order focus values, we may use the eight parameters a;j2 (i +j = 6) and bgo2 to linearly solve the

first eight focus value equations: Viio = 0, i = 1,2,...,8. Under these solutions, Viss and Ve are reduced
to
—5C6s A
Visa = K02 — 12 F.
127 6580833845417353073405844258816k3 Co1 2(k1 = k) Fin
Cé2

Vs02 k3 (k3 — k3)Ger,

- 18493338564337085759881067110792565882880k 3 C01
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where Cgo1, Fg1 and Ggp are the same as that used in the e-order analysis, and Cgs is given by

Ceo = 324k3boga + (3k1boar + kabsi1)(9k1b2a1 + 11kobs11). (53)

Thus, from the analysis for the e-order focus values we know that using the e2-order focus values can also
only yield nine limit cycles for system ({8) around its origin.

Thus, in order to find more limit cycles, we need to use e3-order focus values. To achieve this, we solve
boge from the equation Cgo = 0 and then use the solutions to define the critical condition as follows:

a602 =

a512

@422

332

242 =

CGQ :

a152 =

ape2 =

bos2 =

beo2 =

SThy ———(27b331 + 28b511) (90331 + 8b511),

1

S6115 %y {216k ko[kobs1z + ki1 (2bazz + b)) — ka(9k3 + 352k3 )21, + 972k kb3
1
— 27/{?%(96]431&331 + 13]432[)241)[)241 — 36k, [641)241/{7% — (16b331 + 6b151)k1k2

- (35421 — 4boyg1)Kk3)bs11 ],

27k2 s {27k3 ko (5bs12 + 6bszz) + 5(9k3 — 128K%)b3,, — 1215kTb3s,

— 45k (40k1b331 — 3k1bog1)bs11},

1296k3 —— {216k (5kabs12 — k1boaz) — 5(256kF — 39k§)b§11 + 180k1b511[2k1 (8b331 + 3b151)

27k2k {27k3ko(2b159 — 8bs12 — 9b33e) + (256k% — 123k3)b2,; + 972k3b3,,

+ 97431(1285331 — 39b241 )bs11 — H4ka(k2bs11 + 3k1b241)b331 },

{216k2kobsio + (896kT + 65k32)b2,, 4+ 27k2(36b35, + b3yy)

216k3
+ 12k [6k1 (26b331 + 3b151) + k2(9ba21 + 17b241)]bs11 },

97%4 {108k2(9K3by159 + 6k kobogs 4 2k3bs10) + ko(848Kk? + 45k2)b2,,

+ 27k2k2 (36[)%31 + 5b241) + 72k1k2(26k1b331 + 3k2b421>b511 — 324k%(8k1b331 — k2b421)b241
— 180k (14k2 — k3)bs11b241 + 216k3 (3k1b241 + 2kabs11)bis1 ),

1
W{_m%%[(l%k% + 9k%>b512 + 144k2b330 + 27k kabogo + 18k1 kabaoa]
1h2

+ (32768k] — 13344k3k3 + 81k3)b2,, + 243k3[4(128k2 — 9k3)b34, + 13k3b3,]
+ 36[3k1 ko (128k3 — 9Kk3)bao1 — 12k1ko(4k3 — 3Kk3)boyr + 8k2(512k% — 51k2)bs3;
+ 6k:2(128k2 — 9k3)bis1]bs11 + 5184k ko (3bao1 4 5baa1 )bss1 + 31104k 1bs31b151},

= kg [27k2b3,1 + 42k  kobogibsiy + 11k3b%,,].
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Then, when the critical conditions Cg; and Cga hold, we can show that there exists an e?-order integrating
factor Mgso to satisfy (BS), and then all the e- and e?-order focus values vanish under these conditions. To
prove this, we actually find

Mgz = Mgy + eMey + €° M,
where Mgy and Mg are given in ([@9) and (G2), respectively, and M, is given by

*

1
Mgy = T —( [SGbgn + 37542121 + 38b12’>31 + 895541

1
s1b512 + S2ba22 + s3b33a + sabaao + s5b152) + 38883 ks
172

+ 5100751 + bs11 (5116331 + S12b241 + S13b151 + S14b421) + b151 (5150331 + S16b241 + S17b421)
+ b331(s18b241 + 519b421) + S20b421b241],
where s;, i = 1,2,...,5, are given in (52)), and
= —20480k Tz y(x? — 2%) — 16k3 kox? (59425 + 2452%y2 + 80z1y* — 608022y° + 25604°)
— 8k2k3xy (1352 + 450202 — 31922%9* + 176022y 4 2240y°) + 6k k3 (54210 + 1052542
—200x1y5 4 204022%® — 672y1°) — 3kidzy® (2721 + 3022y% + 260y?) + 10240k3 22y (T2* — 4y%)
— 32k2kox (2972 + 880222 + 560y") + 192k1 k3y® (5022 — 2192) + 3k3x (272 + 30222 — 140y%),
57 = 972k} kox!"
= —972k2x[—80k1xy(2? — 2u°) + ko (921 + 10y%2? + 20y*) + 40k320y(2? — 49°)
+ kykox (928 + 1025y% — 202ty — 140225 + 160y%) — k39> (921 4 102%y> — 20y)],
59 = 27k kox[2k 2° (992 + 15522y% + 80y?) — koy®(1172* + 1302292 + 60y*) + 1172 + 1302242 + 60y],
510 = 3888k3 koy”
511 = — 72k [—160k22%y (1322 — 16y2) + 8k1koz(33z* + 702%y% + 65y) + 48k3y° + 16032y (522 — 16y?)
+ 4k2 kpa? (6625 + 5025y% — 5521yt — 800220 + 640y®) — ki k3xy> (13525 + 46221y
—100z%y* — 520y°) + 48k3y™),
512 = 18k1[640k3 25 + 32k1 koy® (5022 — 19y%) + 8k3x (92 + 1022y* — 5y?) + 640k3 210
— 4k ko ady (452t 4 1502%y? — 392y) 4 k1k2(153210 + 26028y% 4 8025y* — 20021y0
+1840z2y® — 608y10) — 8k3xy° (92* + 102242 + 20y)],
513 = —216k2koax[k12 (925 + 1025y% — 202ty* + 2022y — 160y°) — 2koy° (92 + 10y%2% — 20y%)
+ 92 + 1022y% + 20y1],
514 = —108k1 kox[y(20k325 (2% — 8y?) — K3yt (92 + 1022y? — 20y)) + ko (92 4 10222 + 20y)],
515 = 38880k koxy®, 516 = 648k kox®yS (922 + 10y°),  s17 = 3888k3koayd
s18 = 648k3[20k12° — 16koy® + 20k3 210 4 kykoa® (452%y> 4 46y°) — 16k3y™7],
519 = 19440k3koa Ty, 599 = 324k3 ko892 + 10y?).
With the above conditions, (B8] holds for k = 2.
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We now assume that the critical conditions Cg; and Cga hold and proceed to e3-order focus values.
We may use the nine parameters a;j3 (i + j = 6), bsoz and bpg3 to linearly solve the first nine focus value

equations: Vg3 =0,1=1,2,..

., 9. Under these solutions, V5u3, V553 and Vo3 become

13
Vsoz = E
%08 7 92418455320849446819121130334307722723328k k2 C03
~1
Vass = =>——G63,
48208646321954650439838078670895326944244531200%5 k2 Cls03
1
Veos =

where Cgps is a 22nd-degree homogeneous polyno-
mial in k‘% and k‘%, and Fg3, Gg3 and Hgsg are 3rd-
degree homogeneous polynomials with respect to
bs11, b331 and bogi. Therefore, we let

bs11 = Bs11b331, b2a1 = Baa1b331,

under which Vsg3, V553 and Vo3 are reduced to

13 13
V503 = b331 V5034, Vs53 = b3g1 Vasaa,

13
Veos = 0331 V6034,

where V5034, Vss34 and Vs, are third-degree homo-
geneous polynomials in Bs11 and Beygy with the coef-
ficients in terms of k? and k3. Now, eliminating Bs11
from the two polynomial equations, Vso3q, = Vs534 =
0, we obtain a solution

1
Bsi1 = *Ekz(%z + 24k1 Bagy)

and a resultant:
Ry = kiko(k? — k2%)(8k; Boy — 3ks)
X Rig(ki1, k2)Riq(k1, k2),

where R1o and Ry, are respectively 22nd- and 38th-
degree homogeneous polynomials in k% and k3. Sim-
ilarly, eliminating Bs1; from the two polynomial
equations, V5034 = Vsoza = 0, yields the same solu-
tion Bs11 given above, and another resultant:

Ry = kyko(k? — k2%)(8k1 Boyy — 3ks)
X Ryg(ky, ko) Roa(k1, k2),

where Ro, is a 39th-degree homogeneous polyno-
mial in k2 and k3. Since the two polynomials Ry,
and Ry, do not have common roots, in order to
have more than 12 limit cycles, we must have solu-
tions such that R = Ry = 0, which comes from the
common factors:

H,
4319494710447136679409491848912221294204309995520000k5 k2Ce03

I
kyko(k? — k2%)(8k1 Boy1 — 3ko)Ria(ky, ko).

However, it can be shown that kiko(k? — k3) = 0
does not give feasible solutions, and that letting
(8k1Baq1r — 3ko)Ri2(k1,k2) = 0 yields Vi3 = 0,
i =1,2,.... This indicates that there do not exist
solutions such that Vsg3 = Vss3 = Vo3 = 0, but
Vess # 0, implying that system (48] cannot have 13
limit cycles bifurcating from the origin. Thus, the
best result we can obtain is V593 = Vi53 = 0 but
Veos # 0, meaning that system (4R) can have at
most 12 limit cycles around the origin. To find the
solutions for 12 limit cycles, we only need to solve
the 38th-degree homogeneous polynomial equation
Ri, = 0. However, R;, = 0 yields a zero divisor
for the solution of bygs. If we change to use other
parameters, for example bs1o, the same situation
appears. Therefore, we cannot let R1, = 0 and so
12 limit cycles are not possible to be obtained via
the e3-order analysis. Even continuing to e*-order
analysis, the best result we can obtain is 11 limit
cycles.

Remark 3.3. The above results show a similar situ-
ation as that for System A in case n = 4, due to the
linear relation between the coefficients ko = k. k1.

3.6. System B

Now we discuss another sixth-degree homogeneous

olynomial system, which was introduced in m,
EEE] in which the author used the fourth-degree
system (46l) and take ¢ = cos¢ = % and so s =

sing = ¥ Then taking the polar coordinates
x =rcosf, y = rsinf into system (AB) yields the
system

1

i = —1r1f,(0),

. 1 3
S 0=1+ —rg4(0), (54)

18
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where
f1(0) = 12v/2sin 0 — 18/2sin(30)
+ 2v/25in(50) + 6 cos(6)
+ 9cos(30) + 17 cos(56),
94(0) = 6sin 0 + 5sin(36) — 17sin(50)
—12v/2cos(f) + 12v/2 cos(36)
+ 2v/2 cos(50).

(55)

Next, using the change R = r3/% in (54) yields
. 1 6 . 1 5
R=—R — 14+ —R
SBO0), =1+ Rg.(0),  (50)

which corresponds to a sixth-degree homogeneous
polynomial system in polar coordinates. Finally,
taking the Cartesian coordinates z = Rcosf, y =
Rsin@ gives the following sixth-degree homoge-
neous polynomial system with a linear center at the
origin:

16 16+/2 104
6 \fxs) 2

S T S TR A
12v2 5 5 128 5, 128V2 . 8 ¢
I R TR AR TR R

112 5 208vV2 , 5 24 5 4
- > —T

R ST A
128v/2 56 16v/2
45 45 15

(57)

In [Gind, 2012H], the author obtained the Poincaré-
Lyapunov constants of system (&) and applied
independent linear and quadratic parts in the
Poincaré-Lyapunov constants to prove the exis-
tence of 11 small limit cycles around the origin, i.e.
M, (6) > 11.

Here, we want to find 12 limit cycles and thus
need one more parameter. To achieve this, we do not
choose particular values for ¢ and s, but let them
be free with the restriction ¢? + s?> = 1. Following
the above procedure, we can deduce the following
general system from ([@G) with up to e2-order per-
turbations added:

6 6
T=-y+ 552336 - 58(3 — 5¢)x’y

4 4
— 5(1 —¢)(1 — 10c)zty?* + 58(3 + 5¢)ay’

2 2
— 5(21 + 16¢ — 45c%)2%y* + 33(23 — 37¢)xy’

+4e(1 — c)y6 +e Z (aijlxiyj + 6aij2$i1/j),

i+j=6
14 2
y=1x— —s2°y — Z5(9 + 25¢)xy>
5 )
é _ _ 2\,.3,,3 _é _ 2.4
+ 5(9 4c — 15¢%)z°y 58(7 5e)xy
2 2y 5 0 6
+ 5(9 — 16¢ — 5¢%)zy” + gs(l + )y

+eé Z (bijlxiyj + 6aij2xiyj).
i+j=6
(58)

The nonzero focus values of system ([B8) are Vs,
i = 1,2,.... We use the nine parameters: a;;
(1t +j = 6), beor and bs11 to linearly solve the
first nine nonzero e-order focus value equations:
‘/57;1 = 0, 1 = 1,2,...,9, and then ‘/501 and ‘/551
become

3
Ve = Ce1 Fg1,
U1 9023485408136192000000000C o+ %
v 3
551 = 146014707051107614720000000000000C 0
x Ce1Ge1,
(59)

where Cygy, Fg1 and Gg1 are respectively 85th-,
100th- and 104th-degree polynomials in ¢, and Cg;
is given by

Ce1 = 9(1 — ¢)(405¢* + 41¢3 — 1703¢3
+1331c + 2310)bya1 + 6(2565¢° + 572"
— 8598¢3 + 3718¢% + 6473¢ — 4570)bayy
— 5(6855¢° — 6436¢* — 4512¢° 4 13126¢2
— 2623¢ — 6538)bog1 + 9v/1 — 2
x [(935¢* + 472¢3 — 35862
+1672¢ + 795)bsz; — 2(1225¢* 4 872¢3
—3520¢? — 952¢ + 2615)by51].

It is noted that Fg; and Gg; have no common
roots. Thus, the solutions solved from Fg; = 0 may
give at most 11 limit cycles. As a matter of fact,
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Fg1 = 0 yields eight real solutions for ¢ € (—1,1):

c = —0.4256471772- - -,

0.7190150115 - --, 0.7427713930- - - ,
Taking ¢ = 0.4384943994 - - -
Vs =0, i=1,2,...,10,

and

Detgp; = det

0.0092200993 - - -,

9(Vs1, Vior, Vist, Vaor, Vast, Vaor, Vast, Vaor, Vast, Vsor)

0.4384943994 - - -, 0.6611352222- - -,

0.7661298173---, 0.9184750287 - - - .

and letting b331 = b241 = b151 = b061 =0 and b421 = 1, we obtain

Vss1 = —0.0291358324 - - - # 0

= —0.1211756888 - -- x 1079 £ 0.

Thus, based on the e-order focus values, by
Lemma [ and a linear perturbation we have shown
that system (6) can have 11 limit cycles around
the origin.

In order to obtain 12 limit cycles around the
origin of system (H6), we proceed to e2-order focus
values. But we first need all e-order focus values to
vanish, which can be reached under the condition
solved from Cg; = 0, yielding the following critical

condition (with the above obtained solutions):
|

0(a01, as11, @421, a331, @241, A151, G061, D601, b511, €)

Ce1 : (aiji(i+j = 6), beo1, bs11, baz1),

for which we can similarly prove that there exists
an e-order integrating factor such that ([B8) holds,
and thus all e-order focus values vanish under the
critical condition Cg1. We then use the ten param-
eters: a;j;1 (Z +7= 6), beo2, bs12 and byoo to linearly
solve the first ten e2-order focus value equations:
‘/'51‘2 = 0, 1= 1,2,...,10, and then ‘/})52 and ‘/602
become

(60)

—V1—¢2 9
Vsso = —C62F62,
336552506048171212800000000(1 — C>CGO
V1—c2
Veo2 =

2
062 G62;

2272923335840361573777408000000000000(1 — ¢)C§,

where C§, Fs2 and Ggy are respectively 97th-, 112nd- and 116th-degree polynomials in ¢, and Cpgg is given

by

Coz = 6(1 + ¢)(85¢% — 109¢ + 150)baygy + 4(450¢* — 935¢ — 60¢? + 881c — 84)bps1

+9v1 — 2[(15¢® — 7c + 13¢ + 75)bsgz1 + 2(15¢% — 47¢* — 57¢ + 9)b1s1].

It is noted that Fgo and Ggo have no common roots, and Fgo = 0 yields eight real solutions for ¢ € (—1,1):

c = —0.7920476237 - - -,

0.7268420405---, 0.7410753485 - - -,

0.3305253257 - - -,

0.5898851253---, 0.6991452236- - -,

0.7640594569 - - -, 0.9137473453 - - - .

Taking c = 0.3305253257 - - - and letting b332 = b242 = b152 = bo@z == b241 == b151 == b061 =0 and b331 = 001,

we obtain
Vaio =0, i=1,2,...,11, Vg = 0.2153861925--- # 0
and
Detgpy = det 90(Vsa, Vioz, Visa, Vaoz, Vasa, Va2, Vasz, Vioz, Vis2, Vo2, Vssa)

0(a02, a512, @422, a332, 4242, 4152, A062, D602, b512, ba22, €)

= —0.0001010852 - - - # 0,
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which, by Lemma @] plus a linear perturbation, 128v2 5 5 88 , , 16vV2 4 -
implies that system (@) can have 12 limit cycles + 63 TV T gtV + —3 Y
around the origin by using up to 2-order analysis.

Summarizing the results obtained in this sec- - @xg 6 160\/§x 7 8 g
tion for n = 6 shows My (6) > 12. 63" Y T 63 M T9Y

_ 176 272V/2 232
4. Proof of Theorem [1] for n = 8,9 y=x— aﬂy - TxGyZ + axf’y?’
In this section, we prove Theorem [I] for the cases
n=8,09. ’ _ABV2 40 64 55 16V2 5
A R R A R
4.1. n=28 40 -  16v2 4
. . + vy +—

In m, M], with the same idea and proce- 63 21
dure presented in the previous section for the sec- (61)

ond sixth-degree homogeneous polynomial system,
Giné used system (@8) with ¢ = % and ¥ to obtain
the following eighth-degree homogeneous polyno-
mial system:

and used linear parts and quadratic parts in
Poincaré-Lyapunov constants to show M}, (8) > 13.

We want to prove M}, (8) > 14 for this example.
In order to do this, we follow the same procedure
. 16 1612 - 8 & o to obtain the following eighth-degree homogeneous
T=-y T ot T o Y ™ 63" Y polynomial system with up to £?-order perturba-
tions (and with free ¢ and s satisfying ¢® + s? = 1):

6 6 2 2
T=-y+ ?SQCES - ?5(3 —5e)xy + ?(5 — 18c + 13¢%)a5y% — ?5(3 — 41c)2by3

2 2 2
— = (314 38c — 85¢?)ztyt + =s(37 27¢) a5 — = (33 4 6c - 55¢2)%y"
2 . .
+ 53(31 —53c)zy” +4c(1 — )y + ¢ Z (aij1x'y’ + caijoz'y’),
i+j=8
(62)
g — _227_2 622 _ _ 253_2 4 4
y=z——saly 78(9+416>:L‘ Y-+ 7(19 4e — 43¢’y 73(31 + 15¢)xy
2 2y 35 2 26, 2 oy 7 0 8
+ ?(39 — 24c¢ — 55¢”)x Y’ — 53(19 —29¢)x%y® + ?(9 —120c — ¢)xy" + ?S(l + o)y
+e Z (bij1x'y’ + ebgjoa'y?).
i+j=8
Let s = v/1 —¢? (the case s = —v/1 — ¢? can be similarly proved). We obtain the nonzero focus values
Vzi, 1 =1,2,.... We first consider e-order focus values Vz;1, ¢ = 1,2,..., and use the 11 parameters: a;j;
(147 = 8), bgo1 and b71; to linearly solve the first 11 e-order focus value equations: V7;; = 0,7 =1,2,...,11,
and then Vg41 and Vo117 become
—9(3 —¢)(1 — A)4(5 — 4c)?Cgy
Vaar = Fgi,
1860872906535968539934720000000000 g (63)
—3(3 —¢)(1 — )45 — 4c)*Cxy
Vo =

9008857915121930895531966464000000000000Cs0 G,
where Cgg is a 130th-degree polynomial in ¢, and Cyg; is given by
Cs1 = —3(14164920c® — 8591219¢7 + 54727190c° — 210314419¢° — 126007094¢* + 526970143¢°
— 37635382¢% — 310524921c + 94902686)bag1 + 18(944328¢® + 4443467c” — 9011665 — 42094535¢°
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+28491844c¢* 4 51660973¢> — 37212734¢% — 12778801¢ + 7296096)bag1 — 9(314776¢® + 40831217
—1510642c% — 36141035¢° + 40085982¢* + 28447139¢% — 42582342¢ 4 1500695¢ + 5501250)bgay
+ 4(19830888¢% — 124064521c” + 476916874c¢° — 592201589¢° — 636274384c* + 1402757237¢3

—19513262¢ — 657824727c + 127939948)bos; + /1 — c2[7(19272¢7 + 170875¢5 — 120984¢°
— 1247329¢* + 1500664¢> + 456081¢% — 975400¢ + 173013)bsz; — 2(224840¢” + 511763¢° — 291192¢°
—5101977¢" + 3504136¢ + 5249929¢? — 4689048¢ + 459837 )b3s1 + (944328¢" — 2034725¢5
+3153016¢° — 2173361c¢* — 8966536¢° + 6888881¢? + 6124488¢ — 4425307)b171] (64)

and Fg; and Gg; are respectively 136th- and 140th-degree polynomials in ¢. Note that Fg; and Gg; have no
common roots. Therefore, we may have solutions for ¢ such that Vgq1 = 0 but Vo1 # 0, implying that 13
limit cycles may exist in system (62 around the origin. Actually, solving Vg4 = 0 gives 11 real solutions

for c € (—1,1):
c = —0.6216821257 - - -,
0.7003068466 - - - ,
0.8037660909 - - -,

under which

—0.1893161285 - - - |
0.7272898514 - - -, 0.7447074714 - - -,

0.9435242040 - - - ,

O(Var, Viar, Vair, Vasi, Vasi, Vaor, Vaor, Vser, Vest, Vror, Vo)

0.1143053953 - - -, 0.6425455377 - - -,

0.7734471745 - - - |

0.9844282851 - - -,

Det81 =

where Di12(c) is a 112nd-degree polynomial in c.
This implies that based on the e-order analysis, sys-
tem (B4) can have 13 limit cycles bifurcating from
the origin.

To find more limit cycles, we continue to use
e2-order focus values. But we first need to find the
conditions under which all the e-order focus values
vanish. To achieve this, solving Cg; = 0 for bga1 and
then simplifying the solutions yields the following
critical condition:

Cs1 @ (aiji(t+j = 8),bsor, bri1, be21),
with which we can similarly show that all e-order

focus values vanish.
|

0(ago1, a711, ae21, G531, @441, A351, G261, @171, 081, D801, b711)

(3—0)(1—¢)*(1+¢)" Dia(e) # 0,

Now, assume the critical condition Cg; holds,
we proceed to e2-order focus values. Similarly, we
can use the 12 parameters: a;jo (i +j = 8), bgoo,
b712, bgoo to linearly solve the first 12 focus value
equations: Vo = 0,7 =1,2,...,12, and then

CiFy
Vor2 = Fyo,
Fyo
CoFy
Voga = Fog,
Fyo

where C7 and Cy are two integers, Fyg, Fyo and
Fyg are respectively 8th-, 164th- and 168th-degree
polynomials in ¢, and Fyo and Fyg have no common
roots. Fj is given by

Fi = —9(1 — ¢?)(79282¢" — 56973¢5 — 397957¢° + 876294c* — 791674¢ + 4641¢ + 267157¢ + 58542)bay;

+3(1 — ¢?)(1009890¢” — 386981c° — 3388217¢ + 2854944¢* + 2294752¢% — 4533117¢? + 1078471¢

+1035986)bag1 — 2(1 — ¢)(3965766¢° — 454937¢" + 4602836¢° — 21585266¢° + 2287846¢

+11452183¢® — 12059516¢% + 11032044¢ 4 5566196)bos1 + 9v/1 — 2[(19943¢® 4 5880¢” — 181538¢5

+351518¢% — 450722¢* + 55508¢> + 516230¢% — 207274¢ — 133737)bs3; — (176400¢ — 24717¢7
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—1021062¢° + 1292737¢° — 118080¢* — 1225091¢3 + 1330410¢2 — 184049¢ — 266868)b3s51
+ (536795¢% + 36001¢” — 1944936¢° + 19569¢° + 2010630¢* + 142787¢* — 8280242
—116373¢ + 65599)b171].

It can be shown that FygFog # 0 for the solutions of Fyo = 0, and F; # 0 for almost all real values of
bs31, baat, bss1, bog1, bi71 and bog1. Therefore, there exist solutions such that Vz7;o = 0, i = 13, but Voge # 0,
implying the existence of at most 14 limit cycles. In fact, solving Fygo = 0 yields 12 real solutions for
ce(—1,1):

c=—0.8417985399 - - -,  0.2413684054 ---, 0.4438551874---, 0.5610726865- - -,
0.7086336549 - - -,  0.7250049804 ---, 0.7311867037---, 0.7415580800- - -,
0.7758984507 - - -, 0.7979656089 - - -,  0.9443072033---, 0.9788036986 - - - .

For example, taking c = —0.8417985399 - - - and letting b53j = b44j = b35j = bg@j = b17j = 0, ] = 1,2,
b(]gg =0 and bogl = 000001, we obtain

aso1 = —0.00000879 -, az; = —0.00001434- -, agy = —0.00000347 - - - |
asz1 = —0.00001627---, aqq; = 0.00002299 - - -, ass; = 0.00012434 - - -,
asg1 = 0.00004539 - - -, ar71 = 0.00006857 - - -, apg1 = 0.00001161 - - -,
bso1 = —0.00005500- - -, b1y = —0.00001611---, bgar = 0.00001268- - - ,
agoe = 1248715.66 - - -, ario = 4998544.13 - - - | agaa = —7548790.03 - - -,
as3g = —13180993.2---, ag40 = —11839536.6 - - -, agse = —4325747.70 - - -,
aogy = 4681194.52 - - - | a7 = 3868980.88 - - -, apge = 993219.036 - - -,
bgo2 = 1080390.20 - - -, br1a = —3989523.50 - - -,  bgoo = —7365171.82-- -
under which
Vein=0, i=1,2,..., V=0, i=1,2,...,13, Vygo = —0.0094576211--- #0

and
0(Vaa, Viaa, Vaia, Vaga, Vase, Viaa, Viga, Vaee, Viasz, Vioz, Virz, Vg, Voi2)

0(ago2, ar12, G622, 4532, G442, 4352, 4262, A172, G082, bso2, b712, be22, €)

= —0.8048954611 x 10™ £ 0,

Detgg =

which, by Lemma [ and plus a linear perturbation, implies that system (54]) indeed can have 14 small-
amplitude limit cycles bifurcating from the origin, i.e. M(8) > 14.

4.2. n=9

In m, m, based on system (ER) with k1 = cos¢ = % and ko = sing = %, Giné used the similar
procedure described in the precious section to derive the following ninth-degree homogeneous polynomial
system (with € = 0):

14 2v2 2(15 — 4v/2 2(1+12v2
L WS4, 2012V

2Ty 2(11 —910\/5) 2048
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A7+ 3v2) 2(5 + 2v/2)

_ AT OV s ZOT V) s

3

67 + 18y/2
T3 fxyg 3

3
4(4 4+ 2)

_ 4(4-V2) ¢ 67T—18V2 4
T R T

2(5 — 24/2
(5 3\/_)x5y4

2(15 + 4v/2)

_ 7

3 y 3

4(7 - 3V/2)
3

s 1—-2V2 4

and applied the independent linear and quadratic
parts in Poincaré—Lyapunov constants to prove the
existence of 16 limit cycles around the origin. How-
ever, using our approach we can show that when kq
and ko are fixed, system (63]) can only yield 15 limit
cycles around the origin.

In fact, we have applied perturbations up to
g3-order, as shown in system (GH) to prove that
for each order perturbations, only 15 limit cycles
can be obtained. That is, using higher-order per-
turbations does not increase the number of limit
cycles, which agrees with that observed in cases
n = 5 and n = 7, where the independent linear
parts in Poincaré-Lyapunov constants (equivalently
only e-order focus values need to be considered)
are enough to prove the existence of limit cycles.
For system (G3), the nonzero focus values are Vj;,
1=1,2,.... For the e-order analysis, we use the 14
parameters: Ajj51 (Z+] = 9), b901, bgll, b721 and b631
to linearly solve the first 14 focus value equations:
Vi1 =0,79=1,2,...,14, and then obtain

Veor = Ceo1 91,  Vear = Cear Fon,
Ves1 = Ces1Fo1,

where Cy;1, ¢ = 15,16, 17, are constants, and

Fy1 = 553643615793b541 + 5625067284633b451
— 4809393630279b361 + 522442832983 1ba71
+11720753736114b1g1 + 76817108218558bgg1
— 21/2(396008410537b5.41
—1240822332696b451 + 1398861695777b361
—947945405697ba71 — 1192716284987b1g1 ).

x4y5

2(11 +10v2) By 2(1 — 12v/2)

2(7 — 4V/2) 2(3 — 2v/2)

_ AT VA 36 20 T AVE) 2T

9 9

+ "yt e Z (aij1$iyj + 5aij2$iyj + 62aij393iyj),
i+5=9

2(3 +2v/2)

$7y2

2(7 + 4V2)

$6y3

9 9

2 7
9 9 vy

y' +e Z (bij1z"y’ + ebijoa’y’ + 2b;j3x'y?)
i+j=9

(65)

This clearly shows that the best result we can obtain
is the solution such that Vg1 = 0,1 =1,2,...,14,
but Vgo1 # 0, implying that system (B5]) can have
only 15 small limit cycles around the origin.

Next, solving Fy; = 0 for bs41, with the above
obtained solutions, yields the critical condition:

Cor ¢ (aij1(i+ 7 =9),bgo1, bs11, br21, be31, bsa1),

in terms of b451, b361, b271, b181 and b(]gl. Under the
critical condition Cgs, we can show that all the e-
order focus values vanish. Now, with the condition
Co1, we use the 14 parameters: a;j2, i + j = 9, and
boo2, bg12, b2, bgsz, to linearly solve the first 14
focus value equations: Vyo = 0, ¢ = 1,2,...,14,
and then obtain

Veo2 = Ce02F02,  Veaz = CeaaFyo,

Vs = Ces2F92,

where Cy;o, 7 = 15,16, 17, are constants, and Fyo is a
polynomial, linearly in bs42, bas2, b3e2, ba72, b1s2, bogz,
and quadratically n b451, b361, b271, blgl, b()gl .

Similarly, we may solve Fgo = 0 for bsgs to
define the critical condition:

Co2 1 (ajj2,i+J =9,bgo2, bs12, b722, be32, bs42),

in terms of b45jab36j7b27j7b18j;b09ja ] = 1,2. We
can also show that under the critical conditions Cgy
and Cgg, all the e- and e2-order focus values vanish.
This indicates that in using e2-order focus values,
no quadratic terms can be used to get more limit
cycles, and so only 15 limit cycles can be obtained
from the e2-order analysis.
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Finally, we proceed to e3-order focus values,
and use the 14 parameters: a;;3 (i +j = 9), bgos,
bs13, bras and bgss to linearly solve the first 14 focus
value equations: Vg3 =0, ¢ =1,2,...,14, and then
obtain

Veos = Ce03F93,  Vbuz = CeuzFog,

Vess = Ces3F3,

where Cy;3, 7 = 15,16, 17, are constants, and Fy3 is a
polynomial, linearly in bs3, bss3, b3g3, ba7s, b183, boos,
and cubically in b45j,bgﬁj,b27j,b18j,b09j, ] = 1,2.
Similarly, we can show that even by using <€3—01“derI

focus values, no quadratic or cubic terms can be
used to get more limit cycles, and so only 15 limit
cycles can be obtained from the e3-order analysis.

The above analysis has shown that for n =
9, using independent linear parts in Poincaré—
Lyapunov constants is enough to prove the exis-
tence of limit cycles around the origin, that is,
equivalently using the e-order focus values is
enough. In order to obtain 16 limit cycles for
this case, similarly we let k1 and ko be free and
apply the similar procedure used in the fifth-
degree system (B4]) to obtain the following ninth-
degree homogeneous polynomial system with e-
order perturbation:

i = —y + ki (k1 + k2)z® + 2(2 — 3k? — 2k1ko)aBy — 2k (ky + 6k2)z"y? 4+ 2(1 4 2k3 — Skyko) %3

— 2(4 4 6k% + ki ko)x®yt — 6(1 — 4k? + kyko)aty® — 2k1 (Thy — 2ko)x3y®

— 2(1 — 6]43% — k1k2)$2y7 + (8 — 5]{?% + gklkg)iﬂys + 2(1 — k‘% + klkg)yg + e Z aijliﬂiyj,

i+j=9
(66)

g=x—2(1 — k3 — kiko)z® — (8 — 5k? — Okyko) xSy 4+ 2(1 — 6k? + kiko)x y? + 2k1 (Tky 4 2ko) 25>

4+ 6(1 — 4k? — kiko)z®yt + 2(4 4 6k3 — 9k1 ko) y® — 2(1 + Skiko + 2k3)23y°

+ 2k (k}l — 6]€2)$2y7 — 2(2 — 3l€% + lekg)a:yS — kl(kl — kz)yg + e Z biﬂa:iyj,

i+j=9

where k1 = cos ¢ and kg = sin ¢ with arbitrary ¢ € [0, 27].
Let ko = /1 — k7 (the case ko = —y/1 — k7 can be similarly proved). We similarly use the 14 param-

eters: a;j1 (1 +j = 9), boo1, bsi1, bro1 and bgs; to linearly solve the first 14 focus value equations: Vi1 = 0,

1 =1,2,...,14, and then obtain
—5k1(1 — k2)(3 — 4k3)(1 — 4k?)3Cyy
Veor = Fo1a F
601 411844608Cq 9laT91bs
—5k1(1 — k2)(3 — 4k3)(1 — 4k?)3Cyy
Va1 = Gor,
54363488256Cq

where Cg(] is a 119th—degree polynomial in k%, and 091 is a linear function in b541, b451, b361, b271, b181
and bgg; with coefficients involving k1. Fyi4 is a function involving /1 — k%, while Fyy; is a 54th-degree
polynomial in k? and Go; is a 243rd-degree polynomial in k;. It can be shown that there exist 24 real
solutions solved from Fyy;, = 0 for ki € (—1,1) as

k1 = £0.0476828554 - - -,  £0.0812093313---, +£0.1696914143---, £0.2957590710-- -,

+0.6794021147---, £0.7686199440---, +£0.8225603147---, +0.8411988944 -,

+0.8888817498 ---, +£0.9037696460---, £0.9383113584---, £0.9751611858---.

ChOOSiDg kl = 0.6794021147 - - - and taking b451 = b361 = b271 = b181 = b091 =0 and b541 == 1, we
obtain

Vir =0, i=1,2,...,15, Vg = —0.0000108665 - - = 0
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and

Det91 =

O(Via1, Ve, Viar, Vier, Vaor, Vaar, Vasi, Vaar, Vaer, Vaor, Vaar, Vasir, Vsai, Vset, Veor )

= (0.1849908882 - - - x 1072° £ 0,

which, by Lemma 4 and a linear perturbation,
clearly indicates that system (G0 indeed has 16
small-amplitude limit cycles bifurcating from the
origin, i.e. Mp(9) > 16.

The above procedure can continue to e2-order
focus values and it can be shown that no more limit
cycles can be obtained, that is, by using even -
order focus values, we can still use the parame-
ters a;jo and part of b;jo to linearly solve the focus
value equations to obtain 16 limit cycles around the
origin.

5. Conclusion

In this paper, we have applied the method of nor-
mal forms to show that nth-degree homogeneous
polynomial systems with an isolated, nondegener-
ate center can have small-amplitude limit cycles
M(n) > 2n for n = 4,5,6,7 and M(n) > 2(n — 1)
for n = 8,9, which improve the conjecture proposed

in |Giné, 2012al, 2012h). Moreover, for such systems,

the following has been observed.

(1) When n is odd, the coefficients in the unper-
turbed systems can be used to increase the
number of limit cycles. It may need only the
e-order focus values, as shown for cases n = 5,
n=T7and n=29.

(2) When n is even, maximal number of limit cycles
cannot be obtained by using only e-order focus
values. e2-order or even e3-order focus values
may be needed. Whether quadratic or even
cubic terms, in addition to linear terms, focus
values are required to get more limit cycles
depending upon the system equations. More-
over, it has been observed that if the two coef-
ficients in the unperturbed system have linear
relation, it cannot be used to increase the num-
ber of limit cycles, as indicated by System A
in cases n = 4 and n = 6; but can be used to
increase the number of limit cycles if the rela-
tion is nonlinear, as we have seen from System B
in cases n = 4 and n = 6, as well as the system
given in case n = 8.

(3) For n = 8,9, new systems need to be con-
structed to prove Mpy(n) > 2n. The problem
is far from completely solved for n > 10.

0(ago1, agi1, 21, @631, G541, G451, 361, A271, G181, 091, boo1, D11, bra1, bes1, k1)

We propose a new conjecture as given below.

Conjecture 5.1. For system (3), the number of
small limit cycles bifurcating from a nondegenerate
center (the origin) is given by Mp(n) > 2n.
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