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This paper considers the critical periods of third-order planar Hamiltonian systems. It is assumed
that the origin of the system is a center. With the aid of symbolic and numerical computations,
we show the existence of seven local critical periods. This is the maximal number of local critical
periods that a cubic Hamiltonian system can have.
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1. Introduction

Periodic motion or oscillation is a common phe-
nomenon which exists in almost all disciplines of
physical and engineering systems. Limit cycle is
one of the source generating periodic motion, and
its study plays an important role in the research
of nonlinear dynamical systems. A related well-
known problem to limit cycle is Hilbert’s 16th
problem [Hilbert, 1902], which has attracted many
mathematicians and scientists. Though the prob-
lem is far away from being completely solved, some
progress has been recently achieved (e.g. see the
review articles [Han, 2002; Li, 2003; Yu, 2006]). To
be more specific, consider the following differential
equations: {

ẋ = Pn(x, y,α),

ẏ = Qn(x, y,α),
(1)

where the dot denotes differentiation with respect
to time, t, Pn(x, y) and Qn(x, y) represent the

nth-degree polynomials of x and y, and α ∈ Rk

is a k-dimensional parameter vector. One direction
in this research is to study small-amplitude limit
cycles bifurcating from Hopf critical point, based on
the computation of the normal form of Hopf bifur-
cation (or focus value or Lyapunov constant). Sup-
pose the origin of system (1) is a fixed point with
Hopf singularity. Then, we wish to ask what is the
maximal number of limit cycles which can bifurcate
from the origin. Bautin [1954] proved that a gen-
eral quadratic system can at most have three small-
amplitude limit cycles bifurcating from an isolated
Hopf critical point. Recently, with the aid of com-
puter algebra system Maple, the method of normal
forms was employed to obtain 12 small-amplitude
limit cycles in cubic polynomial planar systems [Yu
& Han, 2004, 2005a, 2005b].

Another interesting problem is the bifurcation
of limit cycles from equilibria of center type, since
the monotonicity of periods of closed orbit sur-
rounding a center is a nondegeneracy condition
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of subharmonic bifurcation for periodically forced
Hamiltonian systems [Chow & Hale, 1982]. Suppose
the origin of system (1) is a fixed point and further
it is a nondegenerate center. (If the Jacobian of the
system does not have a double zero eigenvalue at
the origin, then the origin is called a nondegenerate
center.)

Let T (h,α) be the minimum period of closed
orbit of system (1) surrounding the origin for 0 <
h � 1. Then the origin is said to be a weak center of
finite order k of the system for the parameter value
α = αc if

∂T (0,αc)
∂h

=
∂2T (0,αc)

∂h2
= · · · =

∂kT (0,αc)
∂hk

= 0,

but
∂k+1T (0,αc)

∂hk+1
�= 0.

(2)

The origin is called an isochronous center if
(∂kT (0,αc))/(∂hk) = 0 ∀ k ≥ 1, i.e. T (h,α) =
constant. A local critical period is defined as a
period corresponding to a critical point of the
period function T (h,α) which bifurcates from a
weak center.

For the quadratic system:


ẋ = −y +
∑

i+j=2

aijx
iyj,

ẏ = x +
∑

i+j=2

bijx
iyj .

(3)

Chicone and Jacobs [1989] discussed weak cen-
ters and critical periods which may bifurcate
from weak centers. They showed that a general
quadratic system can have maximal two local crit-
ical periods as well as other possibilities such as
one critical period and isochronous center. In the
same paper [Chicone & Jacobs, 1989], the authors
also studied the following special Hamiltonian
system:

ẅ + V (w) = 0, (4)

where V is a 2n-degree polynomial of w. Let w = x
and ẇ = y. Then the Hamiltonian of system (4) is
given by

H(x, y) =
1
2
y2 +

∫ x

0
V (s)ds. (5)

Chicone and Jacobs [1989] have shown that system
(4) can have at most n− 2 critical periods bifurcat-
ing from the origin.

Later, Rousseau and Toni [1993] studied a spe-
cial cubic system with third-degree homogeneous
polynomials only, given by



ẋ = −y +
∑

i+j=3

aijx
iyj,

ẏ = x +
∑

i+j=3

bijx
iyj .

(6)

They similarly discussed weak centers and bifurca-
tion of critical periods from weak centers.

Recently, Zhang et al. [2000] obtained some
results on cubic revertible polynomial systems. A
system is said to be revertible if it is symmetric
with respect to a line. Up to translation and rota-
tion of coordinates, any revertible cubic differential
systems can be written in the form (e.g. see [Zhang
et al., 2000]):{

ẋ = −y + a20x
2 + a02y

2 + a21x
2y + a03y

3,

ẏ = x + b11xy + b30x
3 + b12xy2,

(7)

where aij and bij are constant parameters. Note
that although system (7) has only seven parameters
(coefficients), one can further reduce one parameter
by a proper scaling. It was shown [Zhang et al.,
2000] that system (7) can have at most four local
critical periods. However, for system (7) we have
recently obtained six local critical periods, which is
the maximal number of local critical periods that
any cubic revertible system may have [Yu & Han,
2007].

Maosas and Villadelprat [2006] recently con-
sidered a Hamiltonian system with the following
Hamiltonian function:

H(x, y) =
1
2
(x2 + y2) +

1
4
ax4 +

1
6
bx6, (8)

where a and b are constants, and b �= 0. It is shown
[Maosas & Villadelprat, 2006] that system (8) can
at most have one critical period. It should be noted
that system (8) is not a special case of system (5),
since the term g(x) =

∫ x
0 V (s)ds in H(x, y) of (5) is

a (2n + 1)-degree polynomial.
In this paper, we will particularly consider

the bifurcation of local critical periods from weak
center of cubic-order Hamiltonian system with the
following Hamiltonian function:

H(x, y) =
1
2
(x2 + y2) +

4∑
i+j=2

hijx
iyj , (9)
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which contains nine coefficients hij . We will show
that a system with Hamiltonian (9) can have max-
imal seven local critical periods. Also, we will give
some conditions under which the Hamiltonian sys-
tem has isochronous centers. The method used in
this paper is based on normal form theory, with the
aid of both symbolic and numerical computations.
However, a complete solution for identifying all pos-
sibilities, in particular for isochronous center, is still
open.

In the next section, the general formulas are
presented. The main results for the local criti-
cal periods of cubic-order Hamiltonian systems are
given in Sec. 3. A numerical example is presented in
Sec. 4, and finally, the conclusion is drawn in Sec. 5.

2. General Formulation

The Hamiltonian system considered in this paper is
described as

dx

dt′
=

∂H

∂y
,

dy

dt′
= −∂H

∂x
, (10)

where the Hamiltonian H(x, y) is given in Eq. (9). It
is noted that the Hamiltonian has nine coefficients.
But in fact, one can reduce them to seven coeffi-
cients. To show this, we start from a general cubic
system with a fixed point at the origin, which can
be written as



dx

dt′
= a10x + a01y + a20x

2 + a11xy + a02y
2

+ a30x
3 + a21x

2y + a12xy2 + a03y
3,

dy

dt′
= b10x + b01y + b20x

2 + b11xy + b02y
2

+ b30x
3 + b21x

2y + b12xy2 + b03y
3,

(11)

where aij’s and bij’s are real constant coeffi-
cients (parameters). The system has a total of
18 parameters, however not all of them are inde-
pendent. First, note that we may use a lin-
ear transformation such that system (11) can be
rewritten as


dx

dt′
= βx + νy + a20x

2 + a11xy + a02y
2

+ a30x
3 + a21x

2y + a12xy2 + a03y
3,

dy

dt′
= ±νx + βy + b20x

2 + b11xy + b02y
2

+ b30x
3 + b21x

2y + b12xy2 + b03y
3,

(12)

which has 16 parameters, where β and ν (> 0) are
used to represent the eigenvalues of the linearized
system of (11). Note that the other coefficients in
(12) should be different from that of system (11),
but we use the same notation for convenience. Here,
when the negative sign is taken, the origin is a focus
point or a center (if β = 0); otherwise, it is a saddle
point or node.

Suppose the origin of system (12) is a center
(i.e. β = 0). Then we can apply a time scale, t = νt′,
into system (12) to obtain



ẋ = y + a20x
2 + a11xy + a02y

2 + a30x
3

+ a21x
2y + a12xy2 + a03y

3,

ẏ = −x + b20x
2 + b11xy + b02y

2 + b30x
3

+ b21x
2y + b12xy2 + b03y

3,

(13)

where again the same notations for the new param-
eters are used. Now, system (13) has only 14
parameters. Further, by a rotation we can further
eliminate one more parameter [Bautin, 1952; Lloyd
et al., 1988] from system (13), which can be written
in the general form:



ẋ = y + ax2 + (b + 2d)xy + cy2

+ fx3 + gx2y + (h − 3p)xy2 + ky3,

ẏ = −x + dx2 + (e − 2a)xy − dy2 + lx3

+ (m − h − 3f)x2y + (n − g)xy2 + py3.

(14)

This form (14), with 13 parameters, is perhaps the
simplest form in the literature for cubic systems
having a linear center at the origin [Lloyd et al.,
1988].

Now, assume that system (14) is a Hamiltonian
system. Then, it is easy to find that the Hamiltonian
of the system is given by

H(x, y) =
1
2
(x2 + y2) − 1

3
dx3 +

(
a − 1

2
e

)
x2y

+ dxy2 +
1
3
cy3 − 1

4
lx4

− 1
3
(m − h − 3f)x3y

+
1
2
(g − n)x2y2 − pxy3 +

1
4
ky4. (15)

It is clear to see that the Hamiltonian function given
in (15) has only eight parameters, because the coef-
ficients of the terms x3 and xy2 are not independent.
Comparing the Hamiltonian (15) with the original
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Hamiltonian (9) shows that h12 = −3h30. This one
more parameter reduction is due to rotation (since
no rotation is considered in the Hamiltonian given
by Eq. (9)). In other words, one can directly apply a
rotation to system (10) to reduce one more param-
eter. Thus, for convenience we still use Eq. (9) in
the following analysis, but assume

h12 = −3h30. (16)

In this paper, we apply normal form theory to
study local critical periods of system (10). There
are many methods for computing normal forms (e.g.
see [Marsden & McCracken, 1976; Guckenheimer &
Homes, 1992; Ye, 1986; Nayfeh, 1993; Chow et al.
1994]). Here, we use a perturbation technique based
on multiple time scales [Nayfeh, 1993; Yu, 1998],
which has been proved to be an efficient compu-
tational method [Yu & Han, 2004, 2005a, 2005b].
We will not discuss the details of the approach here
(interested readers may find more details in [Yu,
1998]).

Suppose the normal form of system (10) with
the Hamiltonian given by Eq. (9) is obtained in
polar coordinates as follows:

ṙ = r(v0 + v1r
2 + v2r

4 + · · · + vkr
2k), (17)

θ̇ = 1 + φ̇ = 1 + b0 + b1r
2 + b2r

4 + · · ·
+ bkr

2k, (18)

where vk is usually called the kth-order focus value
or Lyapunov constant; r and θ represent the ampli-
tude and phase of motion, respectively; v0 and b0

correspond to the linear part of system (10) when
it contains perturbation parameters. For our study
in this paper, v0 = b0 = 0.

Equation (17) (or the focus values) can be
used to determine the existence and number of
small-amplitude limit cycles that system (9) can
have, as what is employed in finding the small
limit cycles of Hilbert’s 16th problem (e.g. [Yu &
Han, 2005b]). Equation (18), on the other hand,
can be applied to find the period of the periodic
solutions and to determine the critical periods of
the solutions.

In the following, we describe how to use Eq. (18)
to express the period of periodic motion and how
to determine the local critical periods. For conve-
nience, let

h = r2 > 0 and

p(h) = b1h + b2h
2 + · · · + bk+1h

k+1.
(19)

Then Eq. (18) can be written as

dθ = (1 + p(h))dt (b0 = 0 for system (10))

Let the period of motion be T (h). Then integrat-
ing the above equation on both sides from 0 to 2π
yields

2π = (1 + p(h))T (h),

which gives

T (h) =
2π

1 + p(h)
for 0 < h � 1

(and so 1 + p(h) ≈ 1). (20)

Now, the local critical periods are determined by
T ′(h) ≡ (dT )/(dh) = 0, or

T ′(h) =
−2πp′(h)

(1 + p(h))2
= 0. (21)

Thus, for 0 < h � 1 (meaning that we consider
small-amplitude limit cycles), the local critical peri-
ods are determined by

p′(h) = b1 + 2b2h + · · · + kbkh
k−1 + (k + 1)bk+1h

k

= 0. (22)

Similar to the discussion in determining the
number of small-amplitude limit cycles, we can find
the sufficient conditions for the polynomial p′(h) to
have maximal number of zeros. If b1 = b2 = · · · =
bk = 0, but bk+1 �= 0, then p′(h) = 0 can have
at most k real roots. Then b1, b2, . . . , bk, (remem-
ber that they are expressed in terms of the coef-
ficients of the Hamiltonian (9)) can be perturbed
appropriately to have k real roots. We give a theo-
rem below without proof (see references [Yu & Han,
2004, 2005a, 2005b]). This theorem can be used
to determine the maximal number of real roots of
p′(h) = 0. Assume that bi depends on k independent
system parameters:

bi = bi(α1, α2, . . . , αk), i = 1, 2, . . . , k, (23)

where α1, α2, . . . , αk represent the parameters of the
original system (10).

Theorem 1. Suppose that

bi(α1c, α2c, . . . , αkc) = 0, i = 1, 2, . . . , k,

bk+1(α1c, α2c, . . . , αkc) �= 0, and

det
[

∂(b1, b2, . . . , bk)
∂(α1, α2, . . . , αk)

(α1c, α2c, . . . , αkc)
]
�= 0,

(24)
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where α1c, α2c, . . . , αkc represent critical values.
Then small appropriate perturbations can be applied
to the critical values such that the equation p′(h) =
0 has k real roots.

3. Critical Periods of Cubic
Hamiltonian System

In this section, we consider the local critical peri-
ods of general cubic Hamiltonian system, described
by system (10) with the Hamiltonian function
given by Eq. (9) satisfying h12 = −3h30. More
specifically, we consider the following Hamiltonian
system:




ẋ = y + h21x
2 − 6h30xy + 3h03y

2 + h31x
3

+ 2h22x
2y + 3h13xy2 + 4h04y

3,

ẏ = −x − 3h30x
2 − 2h21xy + 3h30y

2

− 4h40x
3 − 3h31x

2y − 2h22xy2 − h13y
3,

(25)

which has eight parameters (coefficients). However,
in general, we can further reduce one more param-
eter. To achieve this, assume that h21 �= 0 (in case
h21 = 0, the system has only seven parameters),
then we can use the following scaling:

x → x

h21
, y → y

h21
, h30 → a1h21,

h03 → a2h21, h40 → a3h
2
21, h31 → a4h

2
21,

h22 → a5h
2
21, h13 → a6h

2
21, h04 → a7h

2
21,

(26)

to obtain the following new system (when h21 �= 0):




ẋ = y + x2 − 6a1xy + 3a2y
2 + a4x

3

+ 2a5x
2y + 3a6xy2 + 4a7y

3,

ẏ = −x − 3a1x
2 − 2xy + 3a1y

2

− 4a3x
3 − 3a4x

2y − 2a5xy2 − a6y
3.

(27)

System (27) has only seven independent parame-
ters. In other words, h21 can be chosen arbitrarily
(except h21 = 0) if we use the original Hamilto-
nian system (10). This implies that for the cubic
Hamiltonian polynomial system (27) (or for the
original Hamiltonian (10)), in general, the maximal
number of local critical periods that the system can
have is seven.

Note that the advantage of the above scaling
reduces the number of system parameters by one,
making computation simpler. However, we then
need to consider one more possibility h21 = 0. When
h21 = 0, there are only seven parameters. We may
assume h30 �= 0, and apply a similar scaling to
obtain a system like (27) with only six independent
parameters. This clearly show that such a “degen-
erate” system has less independent parameters and
so in general has less number of local critical peri-
ods. By doing this, we may have four different
cases:

Case (i). h21 = h30 = h03 = 0 the corresponding
system is given by (no scaling){

ẋ = y + a4x
3 + 2a5x

2y + 3a6xy2 + 4a7y
3,

ẏ = −x − 4a3x
3 − 3a4x

2y − 2a5xy2 − a6y
3,

(28)

where a3 = h40, a4 = h31, a5 = h22, a6 = h13, a7 =
h04. This system is actually a special Hamiltonian
system with only cubic homogeneous polynomials.
Note that the advantage of not using scaling in (28)
is that one does not necessarily specify one of the
five parameters to be nonzero, and five parameters
can be handled by computation.

Case (ii). h21 = h30 = 0, h03 �= 0: the system is
described by{

ẋ = y + 3y2 + a4x
3 + 2a5x

2y + 3a6xy2 + 4a7y
3,

ẏ = −x − 4a3x
3 − 3a4x

2y − 2a5xy2 − a6y
3.

(29)

Case (iii). h21 = 0, h30 �= 0: the system is given by


ẋ = y − 6xy + 3a2y
2 + a4x

3 + 2a5x
2y

+ 3a6xy2 + 4a7y
3,

ẏ = −x − 3x2 + 3y2 − 4a3x
3 − 3a4x

2y

− 2a5xy2 − a6y
3.

(30)

Case (iv). h21 �= 0: the system is given by Eq. (27).
In order to compare with Case (i) which has only
cubic terms, we consider one more special case
which has only quadratic terms.

Case (v). hij = 0, i + j = 3: quadratic Hamil-
tonian system, described by the following general
form (a simpler system can be directly obtained
from (25) by neglecting the cubic terms):
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{
ẋ = y + h21x

2 + 2h12xy + 3h03y
2,

ẏ = −x − 3h30x
2 − 2h21xy − h12y

2.
(31)

In the following, we consider the above five cases
one by one.

3.1. Case (i): h21 = h30 = h03 = 0
(no scaling)

The system describing this case is given by (28)
which has five parameters. Employing the Maple
program [Yu, 1998] we easily obtain the exact
expressions of the coefficients bi. In particular,

b1 =
1
2
(3a7 + 3a3 + a5). (32)

Setting b1 = 0 yields

a7 = −a3 − 1
3
a5, (33)

and further computation gives

b2 = − 1
240

[1440a2
3 + 144a2

4 + 160(a5 + 3a3)2

+ 9(5a6 + 3a4)2] ≤ 0. (34)

This clearly shows that the only solution satisfying
b2 = 0 is a3 = a4 = a5 = a6 = 0, and thus a7 = 0,
leading to a linear system. There exist infinite num-
ber of nontrivial solutions such that b1 = 0, but
b2 �= 0. For example, let a3 = a4 = a6 = 0, a5 �= 0
and choose a7 = −(1/3)a5, then b1 = 0, and
b2 = −(2/3)a2

5 < 0. Then, giving a small pertur-
bation to a5 such that a5 ⇒ a5 − ε (0 < ε � 1), we
obtain

b1 =
1
2
ε, b2 = −2

3
(a5 − ε)2.

Thus, we may choose a5 and ε > 0 such that
b1b2 < 0 and 0 < b1 � −b2. In summary, we have
the following theorem for Case (i).

Theorem 2. For the Hamiltonian system (28 ),
with only cubic homogeneous polynomials, there
exists maximal 1 local critical period bifurcating
from the weak center (the origin).

3.2. Case (ii): h21 = h30 = 0, h03 �= 0

The system for this case is described by (29), which,
like Case (i), has only five independent parameters.
However, comparing Eq. (29) with Eq. (28), there
is an extra term 3y2 in the first equation, and thus
system (29) may exhibit more critical periods. In
fact, applying the Maple program results in

b1 =
1
4
(6a7 + 6a3 + 2a5 − 15). (35)

Setting b1 = 0 we obtain

a7 = −a3 − 1
3
a5 +

5
2
, (36)

and then,

b2 = − 1
48

[45a2
6 + 54a4a6 + 45a2

4 + 576a2
3 + 32a2

5

+ 192a5a3 + 1260a3 + 330a5 + 2520]. (37)

Letting b2 = 0 yields

a6 = − 1
15

(3a4 ±
√

Q),

Q = 12600 − 144a2
4 − 2880a2

3 − 160a2
5 − 960a5a3

− 6300a3 − 1650a5. (38)

Having determined a7 and a6, b3, b4 and b5 are
expressed in terms of a3, a4, a5 and Q:

b3 = b3(a3, a4, a5, Q), b4 = b4(a3, a4, a5, Q),

b5 = b5(a3, a4, a5, Q).

Eliminating Q from equations: b3 = b4 = b5 = 0,
results in F1 = F2 = F3 = 0, where

F1:= 4722*a5*a3^2*a4^2+863*a5^2*a3*a4^2+132573/8*a5*a3*a4^2+48*a5*a3*a4^4
+1344*a5*a3^3*a4^2+144*a3^2*a4^4+136/3*a5^3*a3*a4^2+328*a5^2*a3^2*a4^2
+2880*a3^4*a4^2-166005/2*a5^2*a3+849009/128*a5*a4^2-242655/8*a5*a3^2
-526617/64*a3*a4^2-64860075/32*a5-390913425/64*a3+104056155/64*a5*a3
+368757585/256*a3^2-2735271/32*a4^2+18832905/64*a5^2+91035*a3^3-45115/4*a5^3
+8145/16*a4^4+309204*a3^4-37177/24*a5^3*a3+223797/2*a5*a3^3+1407*a5^2*a4^2
+183267/4*a3^2*a4^2+10899/2*a5^2*a3^2+826/9*a5^4*a3-4312*a5^2*a3^3+491/6*a5^3*a4^2
-5376*a5*a3^4-392*a5^3*a3^2+99*a5*a4^4+522*a3*a4^4+13284*a3^3*a4^2-4123/12*a5^4
+140/9*a5^5+32256*a3^5+9216*a3^6+5*a5^2*a4^4-104/9*a5^4*a3^2-112*a5^2*a3^4
+10/3*a5^4*a4^2-416/3*a5^3*a3^3+40/27*a5^5*a3+2304*a5*a3^5+25/81*a5^6+278723025/64:

F2:= ...
F3:= ...
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Next, eliminating a4 from the three equations Fi = 0, i = 1, 2, 3, we obtain the equation:

(1 05 55 920 + 995 328a5a3 + 103 680a2
5 + 2052 864a5 + 108 24 192a3 + 2985 984a2

3)a
4
4

+ (69 120a4
5 + 940 032a3

5a3 + 6801 408a2
5a

2
3 + 278 69 184a5a3

3 + 597 19 680a4
3 + 1696 896a3

5

+ 178 95 168a2
5a3 + 979 15 392a5a2

3 + 2754 57 024a3
3 + 291 75 552a2

5 + 3436 29 216a5a3

+ 9500 56 128a2
3 + 1375 39 458a5 − 17 06 23 908a3 − 1 77 24 55 608)a2

4

+ 6400a6
5 + 30720a5

5a3 − 2 39 616a4
5a

2
3 − 28 75 392a3

5a
3
3 − 23 22 432a2

5a
4
3 + 477 75 744a5a5

3

+ 1911 02 976a6
3 + 322 560a5

5 + 1903 104a4
5a3 − 81 28 512a3

5a
2
3 − 8 94 13 632a2

5a3
3

− 11 14 76 736a5a4
3 + 6688 60 416a5

3 − 71 24 544a4
5 − 3 21 20 928a3

5a3 + 1130 00 832a2
5a2

3

+ 232 03 27 296a5a3
3 + 641 16 54 144a4

3 − 23 38 76 160a3
5 − 1 72 11 39 840a2

5a3

− 62 89 61 760a5a2
3 + 188 77 01 760a3

3 + 610 18 61 220a2
5 + 3371 41 94 220a5a3

+ 2986 93 64 385a2
3 − 42 02 93 28 600a5 − 1 26 65 59 49 700a3 + 9030 62 60 100 = 0 (39)

for determining a4, as well as two resultant equations:

F4(a3, a5) = 0, F5(a3, a5) = 0.

Further, eliminating a5 from the above two equations yields solution

a5 = a5(a3),

and the final resultant equation

F6(a3) = 0

from which we obtain four real solutions, satisfying

bi = 0, i = 1, 2, 3, 4, 5, but b6 �= 0.

These four solutions are (numerical computation using Maple command fsolve is up to 100 digit points):

S1,2 =




a3 = −0.54661247824289067707907678468082353298508287936145 . . .

a4 = ±4.20374135849385342436693435438961952407387319936658 . . .

a5 = 6.00564660833476047493659993345483363613137207845867 . . .

a6 = ∓1.82381133671814562881757388912123684061481533432877 . . .

a7 = 1.04473027546463718543354347352921232094129218654189 . . .

(40)

and

S3,4 =




a3 = 0.74628402190433633862153786736666691360178359116002 . . .

a4 = ±0.95494883586067837884491074985604391682330401843334 . . .

a5 = 1.77677679276518287286832995496947484184665887640751 . . .

a6 = ∓1.96857356633865127739656172962377003142054778517880 . . .

a7 = 1.16145704717393603708901881431017480578266345003747 . . .

(41)

Further calculating the Jacobian given in Eq. (24) at the above four critical points shows that

det
[

∂(b1, b2, b3, b4, b5)
∂(n1, n2,m3,m2, n3)

]
S1,2

= −94787249180.045873206760892686384617023428 . . . �= 0,

det
[

∂(b1, b2, b3, b4, b5)
∂(n1, n2,m3,m2, n3)

]
S3,4

= 26168947720.9520091522758703334418095977636 . . . �= 0.
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Therefore, there exist four solutions for Case (ii),
described by system (29), to have five local criti-
cal periods. Moreover, through the above solution
procedure, we did not find solutions such that the
origin is an isochronous center (except for the linear
center under the conditions: ai = 0, i = 3, 4, 5, 6, 7).
The above results are summarized in the following
theorem.

Theorem 3. For the Hamiltonian system (29 ),
there are four solutions Si, i = 1, 2, 3, 4 for the crit-
ical point (a3c, a4c, a5c, a6c, a7c) which can be per-
turbed to generate five local critical periods. There
are no solutions for the origin to be an isochronous
center.

Remark 1. It should be pointed out that although
Theorem 3 states that there are only four solu-
tions which give five local critical periods, there are

actually infinite number of solutions since h03 (�= 0)
can be chosen arbitrarily.

3.3. Case (iii): h21 = 0, h30 �= 0

The system for this case is described by Eq. (30),
which has six independent parameters. So it is pos-
sible to have six local critical periods. Computation
here is more involved. So after determining a7 from
the equation:

b1 =
1
4
(6a7 + 6a3 + 2a5 − 15a2

2 − 24), (42)

as

a7 = −a3 − 1
3
a5 +

5
2
a2

2 + 4, (43)

we apply a numerical computation scheme, built in
Maple, to find a solution (a2, a3, a4, a5, a6) such that
bi = 0, i = 2, 3, . . . , 6, but b7 �= 0. Hence, this case
may have maximal six local critical periods.

With the built-in Maple command fsolve:

with(linalg):
Mysolution := fsolve({b2,b3,b4,b5,b6}, {a2,a3,a4,a5,a6}):

we obtain the following solution (up to 100 digit points):

a2 = −1.953016704254611993929219309805688908960395532914812755572698449146 . . .

a3 = 7.440091798907870165606165883718052959356860875434211290942555634540 . . .

a4 = 25.650810451661680121160529031392015050419844748260657241662966138370 . . .

a5 = −15.116103907142304956838024968336208374161199894167826672719928308559 . . .

a6 = −4.8231644116499007349385547526299334038450962109238948871399111384056 . . .

and thus

a7 = 11.1342951212167645794144701363415223591766536339678646872000705696192 . . .

for which it can be shown that

b1 = 0.2 × 10−97, b2 = 0.7 × 10−96, b4 = 0.6 × 10−92,

b5 = −0.2061606 × 10−88, b6 = −0.2903 × 10−86

b7 = −455046268530.81389809176336853383701088213129130085103861042788492220 . . .

Theoretically speaking, the above bi, i = 1, 2, . . . , 6 should be exactly equal to zero. However, due to
numerical computation error, they are only very close to zero, which does not affect the conclusion. The
above result indicates that we can have at most six local critical periods.

Further, substituting the above critical values into the Jacobian results in

det
[

∂(b1, b2, b3, b4, b5, b6)
∂(a2, a3, a4, a5, a6, a7)

]
C

= 33043073114209747379855592786.5122561239884 . . . �= 0,

showing that Case (iii) can indeed have six local critical periods bifurcating from the weak center (the
origin). Thus, we have the following theorem.
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Theorem 4. For the Hamiltonian system (30 ),
there exists solution (a2, a3, a4, a5, a6, a7) for the
critical point such that six local critical periods
bifurcate from the weak center.

3.4. Case (iv): h21 �= 0

Now, we consider the most general case h21 �= 0,
described by Eq. (27). Since the system has seven
independent parameters, we thus expect to have
seven possible local critical periods bifurcating from
the weak center (the origin). If all the parameters

are chosen free, then pure symbolic computation
becomes intractable.

First, a7 can be easily determined from b1 = 0,
where

b1 =
1
4
(6a7 + 6a3 + 2a5 − 24a2

1 − 15a2
2 − 6a2 − 3),

(44)

as

a7 = −a3 − 1
3
a5 + 4a2

1 +
5
2
a2

2 + a2 +
2
3
. (45)

Then, we employ the built-in Maple command
fsolve:

with(linalg):
Mysolution := fsolve({b2,b3,b4,b5,b6,b7}, {a1,a2,a3,a4,a5,a6}):

to obtain (up to 100 digit points):

a1 = −1.2364246734877587802632498227026198925887280270878860885964592791724 . . .

a2 = 0.9806009250733097538626967208010986463455088004095078858532564189845 . . .

a3 = 1.1674913994464002559419182097394352630922889053812148773764288999199 . . .

a4 = −1.9994919410393907175319848617740528548845338962332524879138556074393 . . .

a5 = −2.4868197428231993132153458653932486422437698219378708298475027836364 . . .

a6 = 1.5753469339547874695849429306415571718668005296383079840768578508091 . . .

and so

a7 = 9.66097876837513003382298454179612068868309548959605525211223317988458 . . .

With the above solution, we have

b1 = −0.13 × 10−97, b2 = −0.4 × 10−98, b3 = 0.1719 × 10−93, b4 = −0.1419 × 10−91,

b5 = 0.1787 × 10−89, b6 = −0.26853633 × 10−87, b7 = 0.9740407672794 × 10−85

b8 = 1816997149.144298248099069135695421976861447292133534156239377928664414 . . .

Further, substituting the above critical values into the Jacobian results in

det
[

∂(b1, b2, b3, b4, b5, b6, b7)
∂(a1, a2, a3, a4, a5, a6, a7)

]
= −4719712417491357521263116666368803.2562879 . . . �= 0,

implying that Case (iv) can indeed have seven
local critical periods bifurcating from the weak cen-
ter (the origin). Therefore, we have the following
result.

Theorem 5. For the Hamiltonian system (27 ),
there exists a solution for the critical point such that
seven local critical periods bifurcate from the weak
center. This is the maximal number of local critical
periods which can be obtained from cubic Hamilto-
nian systems.

3.5. Case (v): Quadratic
Hamiltonian system

Finally, we consider the quadratic system, given
by (31). For this case, it is easy to show
that

b1 = −3
4
[4(h2

30 + h2
03) + (h21 + h03)2

+ (h12 + h30)2]. (46)
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This clearly indicates that b1 ≤ 0, and b1 = 0 only if
all the second order terms equal zero. This implies
that the period T (h) monotonically increases for
0 < h � 1 and

∑
i+j=2 h2

ij �= 0. Thus, we have
the following result.

Theorem 6. For the quadratic Hamiltonian sys-
tem (31 ), there is no critical period near the ori-
gin. More specifically, the period T (h) monotoni-
cally increases for 0 < h � 1.

Note that the result given in the above theorem
is only a partial result of the general conclusion: A
quadratic Hamiltonian system does not have crit-
ical period and the period function monotonically
increases for h > 0 (e.g. see [Li, 1989]).

4. A Numerical Example

In the previous sections, we have established several
theorems for the properties of local critical periods
and isochronous center of cubic Hamiltonian sys-
tems. In this section, we present a numerical exam-
ple to demonstrate how to perturb the parameters
from the critical point to obtain the exact number
of local critical periods as given in the theorems.

Although Theorem 1 guarantees the existence
of k local critical periods if the conditions given in
the theorem are satisfied, it is not easy in prac-
tice to find a set of appropriate perturbations to
obtain a numerical realization. If the parameters
can be perturbed one by one separately for each of
bi’s, the process is straightforward. However, when
the perturbation parameters are coupled in solving
equations bi = 0, such as those cases considered in
Secs. 3.2–3.4, it is very difficult to find such pertur-
bations. In particular, when more parameters are
coupled, like the case of seven local critical periods
(Theorem 5), it is extremely difficult to obtain a
numerical set of perturbations.

In the following, for an illustration, we present
an example chosen from Case (ii) which has five
local critical periods (see Theorem 8 given in
Sec. 3.2). For this case, h21 = h30 = 0, while
h03 �= 0. The period T ′(h) for this example is
given by

T ′(h) =
−2πp′(h)

(1 + p(h))2
,

where

p′6(h) = b1 + 2b2h + 3b3h
2 + 4b4h

3

+ 5b5h
4 + 6b6h

5, (47)

in which the subscript 6 denotes that p(h) is a sixth-
degree polynomial of h.

Note that for this example the parameters
a3, a4 and a5 are coupled in the three equations:

F1(a3, a4, a5) = F2(a3, a4, a5) = F3(a3, a4, a5) = 0.

Although we obtain the exact expressions:
a4(a3, a5) and a5 = a5(a3), we cannot treat these
three parameters independently. Thus, we have to
find the perturbations simultaneously for b3, b4 and
b5, by using a3, a4 and a5. Having determined per-
turbations on a3, a4 and a5, we can determine the
perturbations on a6 and a7 one by one since they
are separated.

It has been shown in Sec. 3.2 that we have
four real solutions of a3 for the four local criti-
cal periods. The complete set of critical values of
(a3c, a4c, a5c, a6c, a7c) are given in Eqs. (40) and
(41). We choose the solution S3 for this example,
under which

b1 = b2 = b3 = b4 = b5 = 0,

b6 = 4911.53706927343857864650347019049 . . . > 0.

Thus, we need perturbations such that

b5 < 0, b4 > 0, b3 < 0, b2 > 0, b1 < 0 and

|bi| � |bi+1| � 1 (i = 1, 2, . . . , 5).

First, consider perturbations simultaneously on
a3c, a4c and a5c for b5, b4 and b3. Following the pro-
cedure given in [Yu & Han, 2005b], we obtain (com-
puted with up to 100 digit points, but here only list
the first 30 digits for brevity):

a3 = a3c + ε1

= a3c − 0.00070804685

= 0.745575975054336338621537867367,

a4 = a4c + ε2

= a4c + 0.013925185

= 0.968874020860678378844910749856,

a5 = a5c + ε3

= a5c − 0.0019420513

= 1.774834741465182872868329954969,

for which Eq. (47) has three real solutions for h.
Then take

ε4 = −0.1 × 10−13 and ε5 = −0.5 × 10−20,

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

0.
20

:2
21

3-
22

24
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
W

E
ST

E
R

N
 O

N
T

A
R

IO
 W

E
ST

E
R

N
 L

IB
R

A
R

IE
S 

on
 0

7/
25

/1
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



August 7, 2010 10:25 WSPC/S0218-1274 02704

Critical Periods of Third-Order Planar Hamiltonian Systems 2223

respectively for a6 and a7 to obtain

a6 = a6c + ε4

= 1.969427032656687745526560799043,

a7 = a7c + ε5

= 1.162812444457269370417352147643.

Under the above perturbed parameter values, we
have

b1 = −0.75 × 10−20,

b2 = 0.4782636049591312994866 × 10−13,

b3 = −0.414034863217113562531141862 × 10−7,

b4 = 0.431225297164478379336812583104 × 10−2,

b5 = −42.344161874069191402765521051235,

b6 = 4269.680505038880075940579579767262,

for which Eq. (47) has five real roots:

h1 = 0.884411214584643525127070247109 × 10−7,

h2 = 0.774693568619074505662887534605 × 10−6,

h3 = 0.702594897056724901706856611930 × 10−5,

h4 = 0.743276851222342138462605536023 × 10−4,

h5 = 0.818228956139345852151025074597 × 10−2,

(48)

as expected.
In terms of the amplitude of periodic solution,

r =
√

h (see Eq. (19)), the amplitudes correspond-
ing to the five critical points (see Eq. (48)) are

r1 = 0.0002973905201221,

r2 = 0.0008801667845466,

r3 = 0.0026506506692824,

r4 = 0.0086213505393433,

r5 = 0.0904560089844420.

In order to show that higher order terms added
to p′6(h) does not affect the number of real roots
of p′6(h) for 0 < h � 1, we expand p′(h) up to
b9 using the above perturbed parameter values to
obtain

p′9(h) = −0.75 × 10−20

+ 0.47826360495913129949 × 10−13 h

− 0.41403486321711356253 × 10−7 h2

+ 0.43122529716447837934 × 10−2 h3

− 42.34416187406919140277 h4

+ 4269.68050503888007594058 h5

+ 79515.61266347462865146140 h6

+ 776520.33802945848451878955h7

+ 3929787.82501761055435369607 h8

which has the following six real roots:

h1 =− 0.969522811633577890491593174158× 10−1,

h2 = 0.884411214584643475676036826470× 10−7,

h3 = 0.774693568620893797729787202195× 10−6,

h4 = 0.702594886102818326969901055429× 10−5,

h5 = 0.743289157216282124224161510335× 10−4,

h6 = 0.701301976377158797547865388357× 10−2.

(49)

Compared to the roots of p′6(h), the positive five
roots of p′9(h) are almost the same as that of p′6(h)
(see Eq. (48)). The extra real root of p′9(h) is nega-
tive, which obviously does not belong to the interval
0 < h � 1. This clearly shows that adding higher-
order terms to p′6(h) does not change the number of
local critical periods for small values of h.

5. Conclusion

In this paper we have shown that general planar
cubic Hamiltonian systems can have maximal seven
local critical periods which bifurcate from weak cen-
ter. The methodology used in this paper is based
on a perturbation technique for computing normal
forms. Also some solutions are found for which the
center of the system becomes an isochronous cen-
ter. The approach developed in this paper can be
extended to consider other dynamical systems. A
complete solution for identifying all possibilities is
still open.
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