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Abstract

In this paper, we present a cubic planar switching polynomial system with Z2-symmetry, and prove that 
such a system can exhibit at least 9 small-amplitude limit cycles around each of two symmetric foci, giving a 
total 18 limit cycles. This is a new lower bound for the number of limit cycles bifurcating in cubic switching 
polynomial systems around foci, simultaneously obtained around the same time when more limit cycles are 
achieved by perturbing a cubic switching integral system.
© 2020 Elsevier Inc. All rights reserved.
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1. Introduction

The well-known self-sustained oscillation, leading to limit cycles, can often exist in almost 
all fields of science and engineering. Thus, developing limit cycle theory is not only theoretically 
significant, but also practically important. This phenomenon is closely related to bifurcation the-
ory, and was studied by Poincaré one hundred years ago with his developed qualitative theory 
for differential equations. Nowadays, limit cycle theory has been extensively studied in planar 
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vector fields, (e.g. see [18,20,25]), stimulated by the Hilbert’s 16th problem [24]. In particular, 
the second part of Hilbert’s 16th problem is to find an upper bound on the number of limit cy-
cles that planar polynomial differential systems can have. This number is called Hilbert number, 
denoted by H(n), where n is the degree of the polynomials. So far, the best result obtained for 
quadratic systems is four limit cycles, i.e. H(2) ≥ 4 [7,33,34]. For cubic systems, many results 
have been obtained on the lower bound of the number and the best result is H(3) ≥ 13 [26,27]. 
Although Ilyashenko [22,23] and Écalle [12] independently proved in 1990’s that the number of 
limit cycles is finite for given planar polynomial vector fields, the problem is not even completely 
solved for general quadratic systems, i.e. H(2) = 4 is still open.

Recently, increasing interest has been attracted to discontinuous or non-smooth systems, 
which often arise in modeling physical and engineering problems. Practical examples include 
impact and dry frictions in mechanical engineering [4,10], switching circuits in power electron-
ics [2], and feedback systems in control theory [1,3], etc. One type of the discontinuous systems, 
so-called switching system, is defined by different continuous vector fields in at least two differ-
ent regions divided by switching lines or curves. The simple switching system can be described 
by the following equations:

(dx

dt
,

dy

dt

)
=

{ (
F+(x, y,μ), G+(x, y,μ)

)
, for y > 0,(

F−(x, y,μ), G−(x, y,μ)
)
, for y < 0,

(1.1)

where F±(x, y, μ) and G±(x, y, μ) are analytic functions in x and y. It is seen that system (1.1)
actually includes two systems: the first equation is called the upper system, defined for y > 0, 
and the second is called the lower system, defined for y < 0. Note that y = 0 (i.e., the x-axis) is 
a switching line.

The investigation of limit cycle bifurcations for switching systems started 50 years ago 
(e.g. see [13,31,32]). In particular, Filippov [13] established some basic qualitative theory for 
switching equations and defined three types of pseudo-focus singular points: focus-focus (FF), 
parabolic-focus (PF) and parabolic-parabolic (PP). Coll et al. [9] derived the formulas for com-
puting the first three Lyapunov quantities associated with the three types of singularities, and 
proved that at least 4 limit cycles can bifurcate from the weak focus in the FF-type case. Later, 
Gasull and Torregrosa [15] obtained 5 limit cycles in a quadratic switching system, two more 
than that of general smooth quadratic systems. It is well known that smooth linear systems can-
not have limit cycles. However, for piecewise linear systems, Han and Zhang [21] proved that 2
limit cycles can bifurcate from a focus of either FF, FP or PP type. Chen and Du [5] constructed 
a switching Bautin system (i.e., both the upper and the lower systems are in the Bautin form) and 
proved that 9 limit cycles can bifurcate from a center of the system. Chen et al. [8] constructed a 
class of discontinuous quadratic Bautin system and showed that at least 5 and 8 limit cycles can 
bifurcate from weak foci and centers, respectively. Recently, Tian and Yu [36] also considered 
the switching Bautin system and gave a complete classification on the conditions of a singular 
point to be a center, and constructed an example to prove the existence of 10 limit cycles bifurcat-
ing from the center, which is much larger than 3 limit cycles obtained from an isolated center of 
smooth quadratic systems. Recently, a planar quadratic switching system has been constructed to 
obtain more limit cycles [11] by using the averaging approach up to ε2 order, which is equivalent 
to second-order Melnikov function method. It is shown in [11] that 8 limit cycles are obtained 
from the ε-order perturbation, while 16 limit cycles are obtained from the ε2-order perturbation, 
which is surprisingly high with a jump of 8 limit cycles from the ε-order.
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However, very fewer results have been obtained for cubic switching systems. Llibre et al. [29]
obtained 12 limit cycles in a family of isochronous cubic polynomial systems, bifurcating from 
periodic orbits. Li et al. [28] constructed a switching Z2 cubic system to show the existence 
of 15 limit cycles. Recently, Tian and Han studied bifurcation of periodic orbits by perturbing 
high-dimensional piecewise smooth integrable systems [35]. Also, Han et al. [19] developed a 
more general bifurcation theory for finitely smooth planar systems. Very recently, the method 
presented in [14] and the “normal form” of switching linear systems have been used by Gouveia 
and Torregrosa [16] to find 24 limit cycles in a cubic switching polynomial system, which is 
associated with a rational first integral, by perturbing a single Darboux center. The authors first 
obtain two limit cycles by using two parameters in the linear switching system: one by breaking 
the trace and the other by sliding. The sliding feature corresponds to the so-called “Pseudo-Hopf 
bifurcation”. Then, they proved that the linear terms of the 23 Lyapunov quantities are linearly 
independent, but only 22 hyperbolic crossing limit cycles are obtained, yielding a total 2 +22 =24
limit cycles. We have used the method presented in this paper as well as our Maple program to 
confirm the existence of the 24 limit cycles by computing the ε-order and ε2-order Lyapunov 
quantities.

The above results show that perturbing centers can generate more limit cycles than perturbing 
foci does, like what was done in [17] in which perturbing two foci yields 16 limit cycles while 
perturbing bi-centers gives 18 limit cycles. As a matter of fact, perturbing foci to find limit cycles 
is much harder than perturbing center to find limit cycles, since the former solves nonlinear 
algebraic equations while the later solves linear equations. So far, for continuous planar cubic 
polynomial systems, the best result for the limit cycles around a singular focus is 9 [6,37,30], 
while around a center such a cubic system can have 12 limit cycles [38].

The purpose of this paper is to find maximal number of limit cycles by perturbing foci, rather 
than perturbing centers. Moreover, using symmetry may make it easy to generate more limit 
cycles. Therefore, in this paper, we consider bifurcation of limit cycles in a cubic switching 
Z2-equivariant system and show that the system can have 18 limit cycles bifurcating from two 
symmetric singular foci. It should be noted that those 18 limit cycles given in [17] were obtained 
by perturbing two symmetric centers using a center condition for the unperturbed system, while 
our 18 limit cycles obtained in this paper are around two symmetric fine foci. In fact, the authors 
of [17] proved the existence of only 16 limit cycles around two symmetric foci.

For the general dynamical system:

dx

dt
= P(x, y),

dy

dt
= Q(x,y), (1.2)

it is Z2-equivariant if and only if

P(−x,−y) = −P(x, y), and Q(−x,−y) = −Q(x,y), (1.3)

regardless whether the system is smooth or discontinuous. Therefore, the switching system (1.1)
is Z2-equivariant if and only if

F+(−x,−y,μ) = −F−(x, y,μ) and G+(−x,−y,μ) = −G−(x, y,μ). (1.4)

Hence, without loss of generality, a piecewise cubic Z2-equivariant system can be written in the 
form of
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⎛
⎜⎜⎝

dx

dt

dy

dt

⎞
⎟⎟⎠ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

a00 + a10x + a01y + a20x
2 + a11xy + a02y

2

+a30x
3 + a21x

2y + a12xy2 + a03y
3

b00 + b10x + b01y + b20x
2 + b11xy + b02y

2

+b30x
3 + b21x

2y + b12xy2 + b03y
3

⎞
⎟⎟⎟⎠, for y>0,

⎛
⎜⎜⎜⎝

−a00 + a10x + a01y − a20x
2 − a11xy − a02y

2

+a30x
3 + a21x

2y + a12xy2 + a03y
3

−b00 + b10x + b01y − b20x
2 − b11xy − b02y

2

+b30x
3 + b21x

2y + b12xy2 + b03y
3

⎞
⎟⎟⎟⎠, for y<0,

(1.5)

where aij and bij are real coefficients. Further, assume that the system (1.5) has two symmetric 
Hopf-type singular points at (±1, 0), which yields

a00 = −a20 = 1

2
b11, a10 = −a30 = 1

2
(b01 + b21), b20 = −b00, b30 = −b10. (1.6)

In order to overcome the difficulty in the computation of the Lyapunov constants of system (1.5), 
we simplify the system by setting

a00 = 0, a10 = − 1

2
δ, (1.7)

and in addition, let

b00 = −4b02, b10 = 2(a01 + a21), a11 = −2b02. (1.8)

It should be noted that the sliding feature described in [14] for switching linear system, associated 
with Pseudo-Hopf bifurcation, can generate one more limit cycle besides the crossing limit cycle 
due to breaking trace. For system (1.5) to have sliding feature, the condition a00 �= 0 must hold. 
However, for a00 �= 0, we found that computing the Lyapunov quantities and solving the multi-
variate polynomials become extremely difficult and it is not possible to obtain 18 limit cycles. 
Thus, in this paper we do not consider Pseudo-Hopf bifurcation due to sliding, which requires 
a00 �= 0.

Now, under the conditions given in (1.6), (1.7) and (1.8), and using b01 + 1

2
δ for b01, system 

(1.5) becomes

⎛
⎜⎜⎝

dx

dt

dy

dt

⎞
⎟⎟⎠ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎝

δ

2
(−x + x3) + a01y − 2b02xy + a02y

2

+a21x
2y + a12xy2 + a03y

3

δ

2
y − 4b02 + 2(a01 + a21)x + b01y + 4b02x

2 + b02y
2

−2(a01 + a21)x
3 − b01x

2y + b12xy2 + b03y
3

⎞
⎟⎟⎟⎟⎟⎠, for y>0,

⎛
⎜⎜⎜⎜⎜⎝

δ

2
(−x + x3) + a01y + 2b02xy − a02y

2

+a21x
2y + a12xy2 + a03y

3

δ

2
y + 4b02 + 2(a01 + a21)x + b01y − 4b02x

2 − b02y
2

−2(a + a )x3 − b x2y + b xy2 + b y3

⎞
⎟⎟⎟⎟⎟⎠, for y<0,

(1.9)
01 21 01 12 03
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where the small perturbation parameter δ is added in order to yield one more small-amplitude 
limit cycle from a linear perturbation (i.e., breaking the trace). Then, the critical eigenvalues of 
the upper and lower systems of (1.9), evaluated at the symmetric singular points (±1, 0) when 
δ = 0, are given by ±i ωc+ and ±i ωc−, respectively, where

ωc+ = 2|a01 + a21 + 2b02|, ωc− = 2|a01 + a21 − 2b02|. (1.10)

However, in order to have a closed orbit which consists of an upper plane orbit and a lower plane 
orbit, it requires that the upper plane orbit and the lower plane orbit must rotate in the same 
direction. Therefore, the following condition must hold:

(a01 + a21 + 2b02)(a01 + a21 − 2b02) > 0, (1.11)

where the subscript “c” indicates the critical value of ω± at δ = 0. Note that in general ωc+ �= ωc−
unless b02 ≡ 0. In almost all published articles related to the topic discussed in this paper, authors 
usually, for convenience, made choices on parameters such that ωc+ = ωc−, which guarantees 
that the upper and lower systems have a same frequency for the bifurcating limit cycles. However, 
this is not necessary, and choosing ωc+ �= ωc− may increase the possibility of having bifurcation 
of more limit cycles. It should be noted that due to the condition (1.11), we are not allowed to 
choose

a01 + a21 = 0, b02 �= 0, (1.12)

since this would yield

(a01 + a21 + 2b02)(a01 + a21 − 2b02) = −4b2
02 < 0,

violating the condition (1.11).
In addition, we can show that when a21 = 0, only 16 limit cycles can bifurcate from (±1, 0). 

Therefore, we assume a21 �= 0 and show that system (1.9) can have 9 small-amplitude limit cycles 
around each of the two singular points, giving a total 18 limit cycles, a new lower bound for cubic 
switching systems around fine foci, rather than the 18 limit cycles obtained from perturbing the 
bi-centers under a center condition [17].

The rest of this paper is organized as follows. In the next section, we present some results 
and formulas which are needed to prove the main result in Section 3. Then, in Section 3, we 
investigate bifurcation of limit cycles in system (1.9) and show the existence of 18 limit cycles. 
The conditions under which the two singular points of (1.9) become bi-centers are also discussed. 
Finally, conclusion is drawn in Section 4.

2. Preliminary

In this section, for the convenience of the readers, we present some results and formulas which 
will be used for computing the Lyapunov constants of the switching system (1.1). The results and 
formulas are mainly taken from [28]. We omit the detailed proofs, which can be found in [28]. 
We start from the following switching system:
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(dx

dt
,

dy

dt

)
=

{ ( − y + F+(x, y,μ), x + G+(x, y,μ)
)
, for y > 0,( − y + F−(x, y,μ), x + G−(x, y,μ)

)
, for y < 0,

(2.1)

which has a fixed point at the origin.
First, we introduce the classical method to compute the Lyapunov constants and period con-

stants of the following general differential system,

dx

dt
= δx − y +

n∑
k=2

Xk(x, y,μ) ≡ X(x,y,μ),

dy

dt
= x + δy +

n∑
k=2

Yk(x, y,μ) ≡ Y(x, y,μ).

(2.2)

With the polar coordinates transformation, x = r cos θ, y = r sin θ , system (2.2) can be rewritten 
as

dr

dt
= r

(
δ +

n∑
k=2

ϕk+2(θ)rk
)
,

dθ

dt
= 1 +

n∑
k=2

ψk+2(θ)rk, (2.3)

where ϕk(θ), ψk(θ) are polynomials of cos θ and sin θ . From equation (2.3) we have

dr

dθ
= r(δ + ∑n

k=2 ϕk+2(θ)rk)

1 + ∑n
k=2 ψk+2(θ)rk

, (2.4)

whose expansion around r = 0 can be expressed in the form of

dr

dθ
= r

∞∑
k=1

Rk(θ)rk. (2.5)

By the Poincaré–Lindstedt method, the general solution of (2.5) can be obtained as

r = r̃(θ, h) =
∞∑

k=1

vk(θ)hk,

where v1(0) = 1, vk(0) = 0 form all k ≥ 2. Now, submitting the above solution r = r̃(θ, h) into 
(2.5) results in a set of differential equations, which are then solved for finding the solutions 
v1(θ), v2(θ), . . . Then, we define the difference map (or successive function) as

�(h) = r̃(2π,h) − h, (2.6)

which in turn gives the condition to define a center as r(2π, h) = h.
Now we consider the computation of Lyapunov constants for system (2.1). Since the above 

classical procedure cannot be directly applied to a switching system due to discontinuity, we 
may slightly modify the condition to define the Poincaré map. To achieve this, note that the polar 
coordinates expression for (2.1) can be written as
944
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Fig. 1. The Poincaré map: (a) for (2.1); and (b) for (2.8).

(R+(r, θ),1 + 
+(r, θ)), θ ∈ [0,π],
(R−(r, θ),1 + 
−(r, θ)), θ ∈ [π,2π]. (2.7)

Also note that although a return map cannot be simply defined for (2.1) like that for continuous 
systems, we may follow the approach presented in [15] to define half-return maps for the upper 
and lower systems of (2.1). Equivalently, we may introduce the transformation y → −y and with 
a time reversing t → −t to change the lower half system into upper system, and thus compute 
two positive half-return maps for

(dx

dt
,

dy

dt

)
=

{ ( − y + F+(x, y,μ), x + G+(x, y,μ)
)
, for y > 0,( − y − F−(x,−y,μ), x + G−(x,−y,μ)

)
, for y < 0.

(2.8)

The idea discussed above is illustrated in Fig. 1.
Now suppose the solutions for the two systems in (2.8) are respectively given by

r1 = r̃1(θ,h) =
∞∑

k=1

uk(θ)hk and r2 = r̃2(θ,h) =
∞∑

k=1

vk(θ)hk,

satisfying u1(0) = v1(0) = 1, uk(0) = vk(0) = 0 for all k ≥ 2. Then we can thus define the 
following Poincaré maps:

�1(h) = r̃1(π,h) − h and �2(h) = r̃2(π,h) − h,
945
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for the two systems in (2.8), respectively. Finally, the Poincaré map for the switching system 
(2.1) can be defined as

�(h) = �1(h) − �2(h) = r̃1(π,h) − r̃2(π,h)

=
n∑

k=1

(
uk(π) − vk(π)

)
hk =

n∑
k=1

Lkh
k,

(2.9)

where Lk is called the kth-order Lyapunov constant (or focal value) of the switching system 
(2.1).

Obviously, the symmetry principle for continuous systems cannot be used to prove the center 
conditions of switching systems. The following lemmas give the sufficient conditions for the 
origin of system (2.1) to be a center.

Lemma 2.1. [28] If the upper and lower systems of (2.1) have the first integrals H+(x, y) and 
H−(x, y) near the origin, respectively, and either both H+(x, y) and H−(x, y) are even func-
tions in x or H+(x, 0) ≡ H−(x, 0), then the origin of system (2.1) is a center.

Lemma 2.2. [28] Assuming that δ = 0, if system (2.1) is symmetric with respect to the x-axis, i.e. 
the functions on the right-hand side of system (2.1) satisfy

F+(x, y,μ) = −F−(x,−y,μ), G+(x, y,μ) = G−(x,−y,μ), y > 0, (2.10)

or if system (2.1) is symmetric with respect to the y-axis, i.e. the functions on the right-hand side 
of system (2.1) satisfy

F+(x, y,μ) = F+(−x, y,μ), y > 0; F−(x, y,μ) = F−(−x, y,μ), y < 0;
G+(x, y,μ) = −G+(−x, y,μ), y > 0; G−(x, y,μ) = −G−(−x, y,μ), y < 0,

(2.11)

then the origin of system (2.1) is a center.

The following lemma gives sufficient conditions for the number of limit cycles bifurcating 
from a singular point of system (1.1).

Lemma 2.3. [36] Suppose that there exists a sequence of Lyapunov constants of system (1.1), 
Vi0(ε), Vi1(ε), . . . , Vik (ε), at a singular point with 1 = i0 < i1 < · · · < ik−1 < ik , such that 
Vj = O(|(Vi0 , . . . , Vil )|) for any il < j < il+1. Further, at the singular point, if Vi0(0) = Vi1(0) =
· · · = Vik−1(0) = 0, Vik (0) �= 0, and

det

[
∂(Vi0 ,Vi1, · · · ,Vik−1)

∂(ε1, ε2, · · · , εk)
(0, · · · ,0)

]
�= 0,

then system (1.1) has exactly k limit cycles in a δ-ball with its center at the singular point.
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3. 18 limit cycles in the cubic-order switching system (1.9)

In this section, we consider bifurcation of limit cycles around the two symmetric singular 
points (±1, 0) of the Z2-equivariant system (1.9), and prove that there exist 18 small-amplitude 
limit cycles around (±1, 0). In the next section, we will derive the conditions under which 
(±1, 0) may become centers. It has been shown in the introduction section that the Lyapunov 
constants may belong to one of the four categories, given in (1.11). In the following analysis, we 
present the details for the first category, i.e., we assume

(a01 + a21 + 2b02)(a01 + a21 − 2b02) > 0. (3.1)

The Lyapunov constants for the other three categories can be similarly obtained.
Since the vector field is symmetric with the origin, we only need to study the singular point 

(1, 0). To achieve this, we first shift (1, 0) of system (1.9) to the origin. Introducing x = 1 +
x1, y = x2 into system (1.9), we obtain

⎛
⎜⎜⎝

dx1

dt

dx2

dt

⎞
⎟⎟⎠=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ

2
x1(1 + x1)(2 + x1) + (a01 + a21 − 2b02)x2

+2(a21 − b02) x1x2 + (a02 + a12)x
2
2

+a21x
2
1x2 + 2a12x1x

2
2 + a03x

3
2

δx2 − 4(a01 + a21 − 2b02)x1

−2(3a01 + 3a21 − 2b02)x
2
1

−2b01x1x2 + (b02 + b12)x
2
2 − 2(a01 + a21)x

3
1

−b01x
2
1x2 + 2b12x1x

2
2 + b03x

3
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (x2>0),

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ

2
x1(1 + x1)(2 + x1) + (a01 + a21 + 2b02)x2

+2(a21 + b02) x1x2 − (a02 − a12)x
2
2

+a21x
2
1x2 + 2a12x1x

2
2 + a03x

3
2

δx2 − 4(a01 + a21 + 2b02)x1

−2(3a01 + 3a21 + 2b02)x
2
1

−2b01x1x2 − (b02 − b12)x
2
2 − 2(a01 + a21)x

3
1

−b01x
2
1x2 + 2b12x1x

2
2 + b03x

3
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (x2<0).

(3.2)

Thus, the origin of system (3.2) corresponds to the singular point (1, 0) of system (1.9).
We have the following result.

Theorem 3.1. There exist 9 small-amplitude limit cycles bifurcating from the origin of system 
(3.2), and thus system (1.9) has at least 18 small-amplitude limit cycles with 9 enclosing each of 
the two symmetric singular points (±1, 0).

Proof. In order to apply the method and formula (2.9) presented in the previous section to com-
pute the Lyapunov constants Lk (k ≥ 1) associated with the origin of system (3.2), we first need 
to transform the linear part of system (3.2) into the Jordan canonical form. To achieve this, intro-
ducing the following transformations:
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x1 = −X, x2 = 2Y

into (3.2) yields

⎛
⎜⎜⎝

dX

dt

dY

dt

⎞
⎟⎟⎠=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−ωc−Y + δ

2
X(1 − X)(2 − X)

+2
[
2(a21 − b02)XY − 2(a02 + a12)Y

2

−a21X
2Y + 4a12XY 2 − 4a03Y

3]
ωc−X + δY − (3a01 + 3a21 − 2b02)X

2

+2b01XY + 2(b02 + b12)Y
2 + (a01 + a21)X

3

−b01X
2Y − 4b12XY 2 + 4b03Y

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (Y >0),

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−ωc+Y + δ

2
X(1 − X)(2 − X)

+2
[
2(a21 + b02)XY + 2(a02 − a12)Y

2

−a21X
2Y + 4a12XY 2 − 4a03Y

3]
ωc+X + δY − (3a01 + 3a21 + 2b02)X

2

+2b01XY − 2(b02 − b12)Y
2 + (a01 + a21)X

3

−b01X
2Y − 4b12XY 2 + 4b03Y

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (Y <0).

(3.3)

Now, for system (3.3), the zero-order Lyapunov constant is L0 = 2πδ. So letting δ = 0 yields 
L0 = 0. It should be noted that when we compute the Lyapunov constants Li, i ≥ 2 for the upper 
and lower half vector fields under the condition δ = 0, we need to make a scaling such that 
ωc± → 1, and then after obtaining the Lyapunov constants for the scaled systems we multiply 
the Lyapunov constants by ωc±. Therefore,

L1 = − 32

3ωc+ωc−
b02(a01 − a21 − 2b12). (3.4)

So we set b02 = 0 under which the condition L1 = 0 and ωc+ = ωc− = 2(a01 + a21) �= 0. Then, 
we obtain

L2 = π
[
6(a01 + a21)b03 + 2(a01 − a21 − 2b12)a12 + (a01 + a21 − b12)b01

]
2(a01 + a21)

.

Since when b02 = 0, a01 + a21 �= 0 due to the restriction (1.11), we may solve b03 from the 
equation L2 = 0 to obtain

b03 = − a12(a01 − a21 − 2b12) + b01(a01 + a21 − b12)

6(a01 + a21)
, (3.5)

under which

L3 = 32a02
[
16a12(a21 + b12) + b01(3a01 + a21 − 2b12)

]
2 .
45(a01 + a21)
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Suppose a21 + b12 �= 0, we solve L3 = 0 for a12, yielding

a12 = − b01(3a01 + a21 − 2b12)

16(a21 + b12)
. (3.6)

Next, solving L4 = 0 for a03 we obtain

a03 = 1

96(a21 + b12)2(a01 + a21)(a01 + 3a21 + 2b12)

×{
6
[
24(a21 + b12)

2 − 5b2
01

]
a3

01

+[
16(14a21 − b12)(b12 + a21)

2 − (59a21 − 31b12)b
2
01

]
a2

01

+2
[
24(3a21 + 2b12)(a21 − b12)(b12 + a21)

2

−(16a2
21 − 47a21b12 − 18b2

12)b
2
01 + 240(a21 + b12)

2a2
02

]
a01

+3(a21 − b12)(a21 + 6b12)(3a21 + 2b12)b
2
01

+480a21(a21 + b12)
2a2

02

}
,

(3.7)

for which a01 + 3a21 + 2b12 �= 0 is assumed. Summarizing the above results shows that we can 
solve the first 5 Lyapunov constants equations Li = 0, i = 0, 1, 2, 3, 4 one by one using one 
parameter for each, namely, δ = 0 for L0, b02 = 0 for L1, b03 (given in (3.5)) for L2, a12 (given 
in (3.7)) for L3 and a03 (given in (3.7)) for L4, with the assumption:

(a01 + a21)(a21 + b12)(a01 + 3a21 + 2b12) �= 0.

Starting from L5, the Lyapunov constant equations cannot be linearly solved like that in the above 
process. However, it is noted that L5 is linear with respect to b2

01, and so we solve L5(b
2
01) = 0

to obtain b2
01 = B01n

B01d
, where

B01n = 8(a01 + a21)(a21 + b12)
2{645a3

01 + 2(713a21 + 68b12)a
2
01

+5
[
(3a21 + 2b12)(71a21 − 58b12) + 324a2

02

]
a01 + 1620a21a

2
02

}
,

B01d = 3
{
265a4

01 + 20(39a21 − 14b12)a
3
01 + 30(25a2

21 − 40a21b12 − 12b2
12)a

2
01

−4(a3
21 + 438a2

21b12 + 108a21b
2
12 − 64b3

12)a01

−5(3a21 + 2b12)(17a3
21 + 42a2

21b12 − 36a21b
2
12 − 8b3

12)
}
.

(3.8)

Thus, under the restriction:

(a01 + a21)(a21 + b12)(a01 + 3a21 + 2b12)B01d �= 0,
B01n

B01d
> 0, (3.9)

the higher Lyapunov constants are simplified as
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L6 = − 5πb01

2304(a01 + a21)4B2
01d

L6a,

L7 = b01

30481920(a01 + a21)5B2
01d

L7a,

L8 = b01

97542144(a01 + a21)6B3
01d

L8a,

L9 = − b01

32188907520(a01 + a21)7B3
01d

L9a,

(3.10)

where b01 �= 0, and L6a , L7a , L8a and L9a are respectively 12th, 13th, 18th and 34th-degree 
homogeneous polynomials in a01, a02, a21 and b12. Hence, in general it is not possible to have 
solutions for the four parameters such that L6a = L7a = L8a = L9a = 0 and so bifurcation of 
10 limit cycles from the origin of (3.2) is not possible. The next best result we can obtain is 9
limit cycles. Further, it can be shown that if a02 = 0, then the maximal number of limit cycles 
bifurcating from the origin of (3.2) is 8. Therefore, assuming a02 �= 0 and letting

a01 = A01a02, a21 = A21a02, b12 = B12a02, (3.11)

under which

L6 = − 5πb01a
12
02

2304(a01 + a21)4B2
01d

L6b,

L7 = b01a
13
02

30481920(a01 + a21)5B2
01d

L7b,

L8 = b01a
18
02

97542144(a01 + a21)6B3
01d

L8b,

where L6b, L7b and L8b are polynomials in A01, A21 and B12. Eliminating B12 from the equa-
tions L6b = L7b = L8b = 0 yields a solution B12 = B12(A01, A21), and two resultants:

R1 = (A01 + A21)R0 R1a,

R2 = A01(A01 + A21)R0 R2a R2b,

where

R0 = 158375A3
01(16A2

01 − 1125)A4
21

−50A2
01(571496A4

01 − 64311525A2
01 + 1447083225)A3

21

−30A01(1383992A6
01−127265400A4

01+4863651075A2
01+3424842000)A2

21

+2 (2001448A8
01 + 1399647555A6

01 − 47313284625A4
01

−85384854000A2
01 + 5978711250)A21

+A01(14413856A8
01 + 787844115A6

01 − 17103105450A4
01

−66536413200A2
01 + 11957422500),

R = (3A + 5A )(10125A3 + 22599A2 A + 14643A A2 + 2329A3 ),
2a 01 21 21 21 01 21 01 01
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and R1a and R2b are two lengthy polynomials in A01 and A21, with 470 and 9867 terms, respec-
tively.

Further, it can be verified that the roots of the polynomial R2a satisfy L6b = L7b = 0 but 
L8b �= 0. The procedure is as follows: since R2a is a homogeneous polynomial in A01 and A21, 
we first solve R2a for A21 in terms of A01, given in the form of A21 = CA01, and then substitute 
each of roots into equation R1a = 0 to obtain solutions for A01, and finally use these solutions 
to verify if they satisfy L6b = L7b = L8b = 0. Therefore, the roots of the polynomial R2a do not 
yield solutions for 9 limit cycles. So the only possible solutions for getting maximal number of 
limit cycles are from the equations R1a = R2b = 0. Eliminating A21 from these two equations we 
obtain the resultant

R12 = C1π
31A594

01 (8753A2
01 − 388800)R12a(A

2
01)R12b(A

2
01),

where R12a is a 54th-degree polynomial in A2
01, and R12b(A

2
01) is an extremely lengthy polyno-

mial. It can be shown that the roots of R12b(A
2
01) satisfy L6b = L7b = 0, but L8b �= 0, and thus 

these solutions are not what we want. Further, it is easy to check that A2
01 = 388800

8753
is not a 

solution satisfying R1a = R2b = 0.
Solving R12a = 0 for A2

01 yields 15 real positive solutions, and then it follows from R1a =
R2a = 0 to get 15 solutions for A21. Since A01 can take positive or negative values, we obtain 
a total of 30 sets of real solutions (A01, A21), which yields 30 corresponding solutions for B12. 
However, 10 of them yield b2

01 < 0 and so only 20 of them are feasible solutions. Further, we use 
the equations L6b = L7b = L8b = 0 to verify that these 20 solutions are indeed feasible solutions, 
given by

a02 �= 0, (A01,A21) = ( ±248.79821330 · · · , ∓233.57405054 · · · ),

= ( ±150.92502137 · · · , ∓65.91409014 · · · ),

= ( ±27.58838890 · · · ,±1267.58985568 · · · ),

= ( ∓15.21386288 · · · , ±15.92266649 · · · ),

= ( ∓3.94963193 · · · , ±16.82017893 · · · ),

= ( ±3.74421627 · · · , ∓1.55641859 · · · ),

= ( ±1.74784016 · · · , ±107.71189435 · · · ),

= ( ∓1.51708021 · · · , ±11.40541080 · · · ),

= ( ±0.62554539 · · · , ±2.27540356 · · · ),

= ( ∓0.42994608 · · · , ±0.43805436 · · · ).

It should be noted that all the computations and solutions obtained in this paper are symbolic, 
except, in the last step, for solving the roots of polynomial R12a, for which exact solutions have an 
infinite number of decimal points. The above numerical expression of these solutions are given 
in a form for a convenient presentation, which represent the exact solutions. One may use the 
so-called “interval computation” (a built-in package in Maple) to isolate each of the solutions 
in an interval as small as one wishes. For example, the solution A01 = 0.62554539 · · · can be 
expressed as
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A01 = 0.62554539 · · · ∈
(

25663

41025
− 10−100,

25663

41025
+ 10−100

)
.

It is now seen at the critical values under which b02 = 0 that

ωc± = 2|a01 + a21 ± 2b02| = 2|a01 + a21| = 2|(A01 + A21)a02|,
which satisfies the condition (3.1). For example, we choose the last second solution with a02 =
−1 for which the original parameters take the following critical values (besides a00 = a10 = 0):

b00 = a11 = 0, a02 = −1, b10 = 5.80189793 · · · ,

δ = 0, b02 = 0, b03 = 0.65924104 · · · ,

a12 = 0.25224850 · · · , a03 = −0.97925833 · · · ,

b01 = 6.89286156 · · · , a01 = 0.62554539 · · · ,

a21 = 2.27540356 · · · , b12 = 3.87732206 · · · ,

under which

Li = 0, i = 0,1, · · · ,8, L9 = −0.05995729 · · · , ωc± = 5.80189792 · · · .

Moreover, a direct computation shows that

det

[
∂(L1,L2,L3,L4,L5,L6,L7,L8)

∂(b02, b03, a12, a03, b01, a01, a21, b12)

]
= −0.06223110 · · · �= 0,

implying, by Lemma 2.3, that 8 small-amplitude limit cycles can bifurcate from the origin of 
system (3.2). Further, a linear perturbation on δ for L0 yields one more small-amplitude limit cy-
cle, and thus system (1.9) has 9 × 2 = 18 small-amplitude limit cycles around the two symmetric 
fine foci (±1, 0).

It should be noted that although ωc+ = ωc− at the critical values, ω+ �= ω− since b02 �= 0
under perturbation.

This finishes the proof for Theorem 3.1. �
4. Conditions for (±1, 0) of system (1.9) to be bi-centers

Having proved the existence of 18 limit cycles in the previous section, we now turn to consider 
the conditions under which the two symmetric singular points (±1, 0) become bi-centers. Based 
on the Lyapunov constants Lk , we obtain the following theorem.

Theorem 4.1. When one of the following four conditions is satisfied, the symmetric singular 
points (±1, 0) of system (1.9) are bi-center:

(1) δ = b02 = b03 = b01 = a12 = 0, (a01 + a21 �= 0),

(2) δ = b02 = 3b03 + a12 = b01 = a21 + b12 = 0, (a01 + a21 �= 0, a12 �= 0),

(3) δ = b02 = a01 = a02 = a03 = b01 − 2a12 = b03a21 − a12b12 = 0, (a21 �= 0)

(4) δ = b = a = a = a = b = b = a + 2b = 0, (a �= 0).

(4.1)
02 01 02 03 01 03 21 12 21

952



P. Yu, M. Han and X. Zhang Journal of Differential Equations 275 (2021) 939–959
Proof. To prove that the four conditions are necessary for (±1, 0) of system (3.9) to be bi-
centers, it is suffice to show that each condition satisfies Lk = 0, k = 1, 2, 3, . . . . First note that 
the condition given in (3.1):

(a01 + a21 − 2b02)(a01 + a21 + 2b02) > 0,

are needed to guarantee that the two singular points (±1, 0) are elementary centers, and that 
the trajectories in the upper half plane and the lower half plane move in the same direction of 
rotation. To find the four conditions, we consider the first Lyapunov constant L1, which is given 
in (3.4),

L1 = − 8b02(a01 − a21 − 2b12)

3(a01 + a21 − 2b02)(a01 + a21 + 2b02)
,

and the second Lyapnov constant L2, given by

L2 = 1

36(a01 + a21 − 2b02)2(a01 + a21 + 2b02)2

×{− 64b02(a01 − a21 − 2b12)
[
(a01 − a21 − 2b12)

2

−4(a01 − b12 − b02)(a01 − b12 + b02)
]

+9π
[ − 16b02(a21 + b12)(a01 + a21)a02

+6(a01 + a21)(a01 + a21 + 2b02)(a01 + a21 − 2b02)b03

+2
(
(a01 − a21 − 2b12)(a01 + a21)

2 − 4b2
02(a01 + 3a21 + 2b12)

)
a12

+ (− 4b2
02b12 + (a01 − a21 − 2b12)

2(5a01 + a21 − 5b12)

−4(a01 − a21 − 2b12)(a01 − b12)(3a01 − 4b12)

+4(a01 − b12)
2(2a01 − 3b12)

)
b01

]}
.

(4.2)

It is seen from L1 that L1 = 0 has the solution, either b02 = 0 (a01 + a21 �= 0) or a01 − a21 −
2b12 = 0 (b02 �= 0). Actually, the first solution generates four conditions given in (4.1), while the 
second solution yields the following three conditions:

(1)′ δ = a01 − b12 = a21 + b12 = b01 = a12 + 3b03 = 0, (b02 �= 0),

(2)′ δ = a01 = a21 = b12 = a02 = a03 = 0, (b02 �= 0),

(3)′ δ = a01 = a21 = b12 = b01 + 4b03 = a12 + 2b03 = 0, (b02 �= 0).

First consider the case b02 = 0 (a01 + a21 �= 0). It is obvious that L2 = 0 if in addition 
b03 = a12 = b01 = 0 under which Lk = 0, k = 2, 3, . . . , 9, yielding the condition (1). Now 
suppose b03 = a01 = 0 and b01 = 0 (a12 �= 0), then L2 = 0 yields a21 + 2b12 = 0 for which 

L3 = 32a02a12

45b2
12

and so a02 = 0. Then L4 = 5πa03a12

12b2
12

and L5 = − 
35πa03a12

72b2
12

, yielding a03 = 0, 

under which Lk = 0, k = 6, 7, 8, 9. This gives the condition (4).
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If b03 = a01 = 0 but b01 �= 0, then

L2 = π

4a2
21

[
(b01 − 2a12)(a21 − b12) + 6(b03a21 − a12b12).

]
.

Letting b01 − 2a12 = 0 and b03a21 − a12b12 = 0, we have (with b12 = b03a21

a12
)

L3 = 32a02(2b03 + 3a12)

15a2
21

.

Setting L3 = 0 yields a02 = 0 or 2b03 + 3a12 = 0. If a02 = 0 we have

L4 = πa03(2b03 + 3a12)

a2
21

.

Thus setting a03 = 0 leads to Lk = 0, k = 4, 5, . . . , 9, which is the condition (3). If 2b03 +3a12 =
0 (a02 �= 0), we then obtain L4 = 5πa2

02a12

4a2
21

and so setting L4 = 0 gives a12 = 0, which leads to 

a subcase of (2).
Now assume b01 = 0. Then

L2 = π

2(a01 + a21)2

[
(3b03 + a12)(a01 + a21) − 2a12(a21 + b12)

]
,

L3 = −1

180(a01 + a21)3

{
(3b03 + a12)

[
75π(3a01 − a21 − 4b12)(a01 − a21 − 2b12)

+512a02(a01 − 3a21 − 4b12)
]

+6b03(a21 + b12)
[
75π(3a01 − a21 − 4b12) + 1024a02

]}
.

Hence, setting 3b03 + a12 = 0 and a21 + b12 = 0 we obtain Lk = 0, k = 2, 3, . . . , 9. This proves 
the condition (2).

Next, consider the case a01 − a21 − 2b12 = 0 (b02 �= 0). First, it is easy to see that L2 = 0 if 
b01 = 0 and a21 + b12 = 0 under which we have

L3 = − 32a02(a12 + 3b03)

45b2
02

,

L4 = − (a12 + 3b03)
{
25π

[
28a02a12 + 9b02(2a03 + b12)

] − 1024a02b02
}

1440b3
02

,

which indicates that a12 + 3b03 = 0 should be chosen for L3 = L4 = 0, and then we indeed have 
all Lk = 0, k = 3, 4, . . . , 9. This leads to condition (1)′.

Note that in the condition (1)′, b01 = 0 but a01 is free. Now suppose a01 = 0 and b01 is free. 
Thus, a21 + 2b12 = 0 under which we obtain

L2 = −πb12

16(b2 − b2 )2

{
8b02

[
a02b12 − b02(a12 + 2b03)

] + (b2
02 + 3b2

12)(b01 + 4b03)
}
.

02 12
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Choosing b12 = 0, and so a21 = 0, we further have

L3 = −8a02

45b2
02

[
4(a12 + 2b03) + (b01 + 4b03)

]
,

L4 = −1

11520b3
02

{
(b01+4b03)

[
3a02(1400πa12−75πb01−2048b02)+2700πa03b02

]
+2(2a12 − b01)

[
a02(1400πa12 − 175πb01 − 2048b02) + 900πa03b02

]}
.

It is easy to see from L3 and L4 that there exist two solutions such that L3 = L4 = 0: one is 
a02 = a03 = 0, and the other is a12 + 2b03 = b01 + 4b03 = 0, which is equivalent to 2a12 − b01 =
b01 + 4b03 = 0. Further it can be shown that under these two solutions, Lk = 0, k = 5, 6, . . . , 9. 
This gives the conditions (2)′ and (3)′.

However, it is easy to see from the conditions (1)′, (2)′ and (3)′ that

(a01 + a21 + 2b02)(a01 + a21 − 2b02) = −4b2
02 < 0,

violating the condition given in (3.1), implying that the trajectories in the upper half plane and 
the lower half plane of system (1.9) move in the opposite direction of rotation. Thus, the three 
conditions (1)′, (2)′ and (3)′ are not conditions for (±1, 0) of system (1.9) to be bi-center. Note 
that we compute the Lyapunov constants under the condition (3.1). Now if the condition is not 
satisfied, the Lyapunov constants are actually not equal to zero.

Finally, we prove that the four conditions given in (4.1) are also sufficient. First note that 
besides the four conditions, the following conditions hold for all cases:

a00 = a10 = b00 − 2a11 = b10 − 2(a01 + a21) = a11 + 2b02 = δ = 0. (4.3)

First, consider the condition (1) under which system (1.9) becomes

⎛
⎜⎜⎝

dx

dt

dy

dt

⎞
⎟⎟⎠ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
a01y + a02y

2 + a21x
2y + a03y

3

2(a01 + a21)x − 2(a01 + a21)x
3 + b12xy2

)
, for y>0,

(
a01y − a02y

2 + a21x
2y + a03y

3

2(a01 + a21)x − 2(a01 + a21)x
3 + b12xy2

)
, for y<0.

(4.4)

It is easy to see that system (4.4) is symmetric with respect to the line y = 0 (the x-axis). In-
troducing the transformation x = 1 + X, y = Y into (4.4), we have a new system which is 
still symmetric with respect to the line Y = 0 (the X-axis). Thus, by Lemma 2.2, the origin 
(X, Y) = (0, 0) of the new system is a center. This shows that the condition (1) is sufficient for 
(±1, 0) of system (1.9) to be bi-center.

Next, consider the condition (2) under which system (1.9) can be rewritten as

⎛
⎜⎜⎝

dx

dt

dy

dt

⎞
⎟⎟⎠ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎝a01y + a02y

2 − b12x
2y + a12xy2 + a03y

3

2(a01 − b12)x + b12xy2 − 2(a01 − b12)x
3 − a12

3
y3

⎞
⎠, for y>0,

⎛
⎝a01y − a02y

2 − b12x
2y + a12xy2 + a03y

3

2(a01 − b12)x + b12xy2 − 2(a01 − b12)x
3 − a12

y3

⎞
⎠, for y<0.

(4.5)
3
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It can be shown that both upper and lower systems are Hamiltonian systems, with the first inte-
grals given by

H±
2 (x, y) = − (a01 − b12)x

2 + 1

2
a01y

2 ± 1

3
a02y

3 + 1

2
(a01 − b12)x

4

− 1

2
b12x

2y2 + 1

3
a12xy3 + 1

4
a03y

4.

Similarly by using the transformation x = 1 + X, y = Y we obtain

H̃±
2 (X,Y ) = − 1

2
(a01 − b12) + 2(a01 − b12X

2 + 1

2
(a01 − b12)Y

2

+2(a01 − b12X
3 − b12XY 2 + 1

3
(a12 ± a02)Y

3

+1

2
(a01 − b12X

4 − 1

2
b12X

2Y 2 + 1

3
a12XY 3 + 1

4
a03Y

4,

which satisfies H̃+
2 (X, 0) ≡ H̃−

2 (X, 0). Thus, by Lemma 2.1, we know that the origin of the 
transformed system of (4.5) (under x = 1 + X, y = Y ) is a center and so the condition (2) is 
sufficient for (±1, 0) of system (1.9) to be bi-center.

Now we consider the conditions (3) and (4), for which system (1.9) becomes smooth. Under 
the condition (3), system (1.9) is described by the following equations:

dx

dt
= a21x

2y + a12xy2,

dy

dt
= 2a21x + 2a12y − 2a21x

3 − 2a12x
2y + b12xy2 + a12b12

a21
y3,

(4.6)

which has elementary centers at (±1, 0). The system is integrable with the first integral, given 
by

H3 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x
− 2b12

a21

(
a21

b12
+ a21

a21 − b12
x2 + 1

2
y2

)
, for a21b12 �= 0, b12 �= a21,

x2 + 1

2
y2 − lnx2, for a21 �= 0, b12 = 0,

1

x2 + y2

2x2 + lnx2, for b12 = a21 �= 0,

with the integrating factors:

1

x
1+ 2b12

a21 (a21x + a12y)

, for a21 �= 0, b12 �= a21,

1

x3(a12x + a21y)
, for b12 = a21 �= 0.

So (±1, 0 are centers of system (4.6), implying that the two singular points (±1, 0) of system 
(1.9) are centers under the condition (3).
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With the condition (4), system (1.9) becomes

dx

dt
= −2b12x

2y + a12xy2,

dy

dt
= −4b12x + 4b12x

3 + b12xy2,

(4.7)

which has two elementary centers at (±1, 0). It can be shown that with the integrating factor 

μ = 1

x
, one can find the first integral of system (4.7), given by

H4 = 1

3

(
12b12x − 4b12x

3 − 3b12xy2 + a12y
3). (4.8)

This shows that the two elementary centers (±1, 0) of (4.7) are indeed centers, indicating that 
the condition (4) is sufficient for the two singular points (±1, 0) of system (1.9) to be bi-center.

This completes the proof of Theorem 4.1. �
Remark 4.1. The two bi-center conditions given in (4.1) are obtained under the restrictions listed 
in (1.7) and (1.8). These restrictions are made for simplifying the Lyapunov constant computation 
in order to find 18 limit cycles. If these restrictions are removed, the Lyapunov constant com-
putation becomes much more difficult and 18 limit cycles cannot be obtained, but more center 
conditions might be found. But in this general case, the linear transformation yielding the Jordan 
canonical form will introduce coordinates rotations. In order to keep the upper half vector field 
and the lower half vector field to rotate in the same direction with a same angle, the following 
conditions must be satisfied:

b11(a01 + a21) + 2b02(b01 + b21) = 0,[
(b01 + b21 − b11)

2 + 2(b00 + b10)(a01 + a21 − a11)
]

× [
(b01 + b21 + b11)

2 − 2(b00 + b10)(a01 + a21 + a11)
]
> 0.

(4.9)

However, it can be shown that for the general case, the Lyapunov computation becomes ex-
tremely involved and even L5 is hard to be obtained, which makes it almost impossible to 
determine more center conditions.

5. Conclusion

In this paper, we have shown that cubic planar switching polynomial systems can have at least 
18 limit cycles around two symmetric singular points of focus type. This is a new lower bound 
on the number of limit cycles bifurcating in such systems. In addition, we have identified four 
necessary and sufficient conditions for the two symmetric singular points to be centers.
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