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a b s t r a c t

In this paper, we show that perturbing a simple 3-d quadratic system with a center-type
singular point can yield at least 10 small-amplitude limit cycles around a singular point.
This result improves the 7 limit cycles obtained recently in a simple 3-d quadratic system
around a Hopf singular point. Compared with Bautin’s result for quadratic planar vector
fields, which can only have 3 small-amplitude limit cycles around an elementary center or
focus, this result of 10 limit cycles is surprisingly high. The theory andmethodology devel-
oped in this paper can be used to consider bifurcation of limit cycles in higher-dimensional
systems.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The phenomenon of limit cycles can arise in almost all areas of science and engineering, from physics, biology, ecology,
economy, mechanics, electronics, and even from financial and social systems. Limit cycle theory has been playing a
very important role in the study of dynamical behavior of nonlinear systems. The study of limit cycles was initiated by
Poincaré [1], and its further development was perhaps motivated by the well-known Hilbert’s 16th problem [2], which was
posed by Hilbert in 1900. The second part of this problem is to find the upper bound, called the Hilbert number H(n), on the
number of limit cycles that planar polynomial systems of degree n can have. Many results have been obtained in study of the
Hilbert number; see for example [3–7]. However, the finiteness problem remains unsolved even for quadratic polynomial
systems, that is, whether H(2) = 4 is still open. For cubic polynomial systems, many results have been obtained on the
lower bound of the Hilbert number. So far, the best result for cubic systems is H(3) ≥ 13 [8,9].

When we consider the limit cycles bifurcating from isolated fixed points, Hilbert’s 16th problem becomes studying de-
generate Hopf bifurcations. This local problem has been completely solved only for generic quadratic systems [10], showing
existence of 3 limit cycles in the vicinity of a singular point which may be a focus or center. For cubic systems, regarding
the case of focus, the best result obtained so far is 9 limit cycles; see for example [11] and references therein. In the case
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of center, on the other hand, it has been shown that more limit cycles can bifurcate from a singular point. The best result
obtained recently is 12 limit cycles; see more details in [12] where a literate review is given.

Higher-dimensional vector fields may not only more likely exhibit limit cycles, but also may co-exist complex dynamical
behaviors such as chaos. But not many results have been obtained on limit cycles for higher-dimensional vector fields since
the analysis for such systems is much more complex than planar systems. A very natural extension from the study of limit
cycles in 2-d systems is to study 3-d systems with a Hopf singular point. A similar problem is to investigate the maximal
number of limit cycles which may exist in the vicinity of such a singular point under proper perturbations. This is a very
challenging problem. There are very few results in the literature. However, unlike 2-d systems, an interesting finding has
revealed that even a quadratic 3-d system can exhibit infinitely many small limit cycles, which appear on an infinite family
of algebraic invariant surfaces [13,14]. In this paper, we want to ask: What is an upper bound for the cyclicity of a singular
point of a quadratic 3-d system restricted to a single center manifold? Although we cannot answer this open problem, we
will try to provide a better lower bound in this paper and hope that this will help promote research in this direction.

Restricted to a single center manifold, a well-known 3-d competitive Lotka–Volterra model has been studied extensively
over the last twenty years. The model is described by a 3-d differential system:

ẋi = xi

bi −

3
j=1

aijxj

, i = 1, 2, 3, (1)

where the dot indicates differentiation with respect to time, t , xi represents the population of the ith species, and the
coefficients take positive real values, bi > 0, aij > 0, i, j = 1, 2, 3. This is a special case of general 3-d quadratic systems. This
system has 8 equilibria and only one of them is a positive equilibrium (i.e., all components of the equilibrium take positive
values). An interesting problem is to consider the limit cycles around the positive equilibrium. In the past two decades,
several researchers have paid attention to this model and particularly studied bifurcation of limit cycles around the positive
equilibrium (e.g., see [15–19]). So far, the best result is 4 limit cycles, obtained by Gyllenberg & Yan [19], using appropriate
parameter values. These 4 limit cycles include 3 small-amplitude limit cycles, proved by using focus value computation,
and one large limit cycle, shown by constructing a heteroclinic loop. Recently, Tian and Yu revisited this problem [20] and
showed that this system, which may not be a competitive system, might have maximal 8 limit cycles, but it is very difficult
to prove this using the existing methodology.

For general 3-d quadratic systems with a Hopf singular point, the best result obtained so far is 7 small-amplitude limit
cycles bifurcating from the origin of a simple 3-d system [21]. In this paper, we shall consider a quadratic system similar to
the one in [21] but with a center-type critical point at the origin. Then, by adding quadratic polynomial perturbations in the
form of ε pi(x1, x2, x3) to each equation of the system, we obtain 10 small-amplitude limit cycles around the origin. In the
next section, we formulate the 3-d quadratic system, and then in Section 3 we prove existence of 10 limit cycles.

2. Formulation of 3-d system

In this section, we present a 3-d quadratic system which may yield 10 limit cycles. To achieve this, we start from the
following generic 3-d quadratic polynomial system:

ẋ1 = α x1 + x2 + a11 x21 + (2b11 + a12)x1x2 + a22 x22 + a33 x23 + a13 x1x3 + a23 x2x3,

ẋ2 = −x1 + α x2 + b11 x21 + (2a11 + b12)x1x2 + b22 x22 + b33 x23 + b13 x1x3 + b23 x2x3,

ẋ3 = −β x3 + c11 x21 + c12 x1x2 + c22 x22 + c33 x23 + c13 x1x3 + c23 x2x3,

(2)

where α, β > 0, aij, bij and cij are parameters. Note that the first two equations have taken Bautin’s system format, which
can be obtained by a rotating transformation. System (2) has a Hopf singularity at the origin when α = 0. To simplify the
generic system (2), first note that without loss of generality, suppose b11 ≠ 0, c12 ≠ 0, and then we can introduce proper
scaling into system (2) so that b11 = c12 = 1. Then, we want that the focus values of the resulting system around the origin
are all zero, i.e. the origin becomes a center-type point. There aremany possibilities, but a complete classification is difficult.
Here, we set α = a33 = a13 = a23 = b33 = b13 = b23 = c11 = c22 = c13 = c23 = 0, and β = c33 = 1. According to Bautin’s
theory, setting a22 = −a11 in the resulting system yields all focus values to vanish, i.e. the origin becomes a center restricted
to a center manifold under this condition. Finally, we add quadratic perturbations to system (2) under above conditions to
obtain the following perturbed system:

ẋ1 = x2 + a11 x21 + (2 + a12)x1x2 − a11 x22 + ε(a100 x1 + a020 x2
+ a110 x21 + a120 x1x2 + a220 x22 + a330 x23 + a130 x1x3 + a230 x2x3),

ẋ2 = −x1 + x21 + 2 a11 x1x2 − x22 + ε(b100 x1 + b020 x2 + b110 x21
+ b120 x1x2 + b220 x22 + b330 x23 + b130 x1x3 + b230 x2x3),

ẋ3 = −x3 + x1x2 + x23 + ε(c100 x1 + c020 x2 + c110 x21 + c120 x1x2
+ c220 x22 + c330 x23 + c130 x1x3 + c230 x2x3),

(3)

where 0 < ε ≪ 1 is a perturbation parameter.
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Recently, a sub-family of system (3) has been studied for bifurcation of small limit cycles and a method different from
that of this paper is given to show that restricted to a single center manifold, at most 3 small limit cycles can bifurcate from
the origin [22].

3. Main result

Now, based on the perturbed system (3), we prove the following theorem.

Theorem 1. The perturbed system (3) can have at least 10 small-amplitude limit cycles bifurcating from the origin by properly
choosing the perturbation coefficients, aij0, bij0 and cij0, as well as the system coefficients a11 and a12.

In order to prove Theorem 1, we need the following lemma which is based on Theorem 1 in [23] and Theorem 1 in [24].

Lemma 1. Suppose the ε-order focus values, obtained from the general n –d dynamical system, ẋ = f1(x, pk1) + ε f2(x, pk2)
(which is an integrable system when ε = 0) associated with a Hopf bifurcation, are functions of k = k1 + k2 parameters
p1, p2, . . . , pk1 , pk1+1, . . . , pk, in which p1, p2, . . . , pk1 are system parameters, while pk1+1, pk1+2, pk are perturbation param-
eters. Further, assume that at a critical point, pc defined by (p1, p2, . . . , pk) = (p1c, p2c, . . . , pkc), the focus values satisfy vj(pc) =

0, j = 0, 1, . . . , k − 1, vk(pc) ≠ 0, and det


∂(v0,v1,...,vk−1)
∂(p1,p2,...,pk)


pc

≠ 0. Then, proper perturbations can be made to the parameters

p1, p2, . . . , pk around the critical point pc to generate k small-amplitude limit cycles in the vicinity of the Hopf singular point.

Proof. The approach to prove Theorem 1 is to compute the focus values and show that they satisfy the conditions in
Lemma 1. First note that when ε = 0, the origin of system (3) is a center restricted to a center manifold. When ε ≠ 0,
the origin becomes a Hopf singular point. Therefore, we can use themethod of normal forms to find the ε-order focus values
vi, i = 0, 1, 2, . . .. Since v0 =

1
2 (a100 + b020), in order to compute higher-order focus values, we let v0 = 0, and for con-

venience we further let the third eigenvalue of the perturbed system be unchanged, i.e. make it equal 1 after perturbation.
Thus, b020 = −a100, c030 =

1
2 (b100 − a020), under which the linearized system of (3) has eigenvalues ±i and −1.

Now, we apply the Maple program developed in [20] for computing the normal form of general n–d systems associated
with the Hopf bifurcation to find the focus values vi, i = 1, 2, . . . . It is shown from the computations that the following
perturbation parameters can be set zero: a110 = a100 = a020 = a120 = b100 = b110 = b120 = c110 = c120 = c220 = c330 =

c130 = c230 = 0. Now system (3) only contains 8 perturbation parameters and two system parameters. Further, we notice
that one perturbation parameter, say, b230 ≠ 0 can be treated as a free parameter. Hence, the focus values of system (3) are
obtained as follows:

v1 =
1
10

(20a11b220 − 5a12a220 + a230 + b130 + 2a130 − 2b230), v2 = · · · .

Then, solve v1 = v2 = · · · = v7 = 0 for the seven parameters, a220, b220, a330, b330, a130, b130 and a230 to obtain the solu-
tions, given in the form of aij0 = Aij0(a11, a12) b230 and bij0 = Bij0(a11, a12) b230, where Aij0 and Bij0 are polynomial functions
in a11 and a12. Then, the focus values v8, v9 and v10 become

v8 = −
b230

131281402809375000 F0(a11, a12)
F8(a11, a12),

v9 = −
b230

2000391270942566732343750000 F0(a11, a12)
F9(a11, a12),

v10 = −
b230

163621059280361404809312293881312500000000 F0(a11, a12)
F10(a11, a12),

where F0, F8, F9 and F10 are all polynomial functions in the two system parameters, a11 and a12, with respect to a11 in 37th,
49th, 51th and 53th degree, respectively. Therefore, the best choice for obtaining maximal number of limit cycles is to find
the solutions of a11 and a12 such that F8 = F9 = 0, but F0 F10 ≠ 0, which results in at most 10 small-amplitude limit cycles.

To find the solutions of F8 = F9 = 0, we use the Maple built-in command resultant to eliminate a12, yielding

F89 = resultant(F8, F9, a12) = C89(3a11 + 1) F1(a11) F89a(a11),
F810 = resultant(F8, F10, a12) = C810 (3a11 + 1) F1(a11) F810a(a11),

where C89 and C810 are nonzero integers, and F1, F89a and F810a are respectively 825th, 1762th and 1862th degree polynomials
in a11. Further, we can use the same command to find

F8910 = resultant(F89a, F810a, a11) = −0.7644995585 · · · × 1014824452
≠ 0,

which indicates that if F89a = 0 has solutions, then these solutions guarantee F810a ≠ 0.
Finally, we need to solve F89a = 0 to find the solutions of a11. It has been shown that this 1762th-degree polynomial

equation has 104 real solutions, which in turn yield corresponding 104 solutions for a12 (the solution a12 is obtained from
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the computation of F89). However, by checking the original equations F8 = F9 = 0, we found that only 87 sets of them
satisfy the original functions. We take one set of the solutions:

a11 = − 0.1668823226 · · · a12 = 0.5173132565 · · · .

In addition, we choose b230 = 0.0000001. Then, the other seven perturbation parameters are equal to

a220 = −0.4254505775 · · · × 10−6, b220 = − 0.2249632036 · · · × 10−8,

a330 = 0.2794082093 · · · × 10−6, b330 = 0.1151307669 · · · × 10−7,

a130 = −0.1783412978 · · · × 10−6, b130 = −0.1855085690 · · · × 10−6,

a230 = −0.3657734304 · · · × 10−6.

The above critical values can be used to define a critical point, called pc , for which the ε-order focus values become

vi = 0, i = 1, 2, . . . , 9, v10 = −0.5978563575 · · · × 10−5
≠ 0.

Moreover, a direct calculation shows that the Jacobin evaluated at the critical point pc is given by

det
 ∂(v1, v2, v3, v4, v5, v6, v7, v8, v9)

∂(a220, b220, a330, b330, a130, b130, a230, a11, a12)


pc

= 0.8938528113 · · · × 10−6
≠ 0,

implying that system (3) can have 10 small-amplitude limit cycles bifurcating from the center-type singular point (the ori-
gin).

The proof of Theorem 1 is complete. �
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