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1. Introduction

Limit cycle theory has been extensively studied for many years and many methodologies have been developed. In partic-
ular, a well-known problem related to limit cycles is Hilbert’s 16th problem, which has not been solved since Hilbert pro-
posed the 23 mathematical problems in 1990 [5]. For a review of the problem, the reader is refereed to, for example, the
survey article [7]. To more precisely describe Hilbert’s 16th problem, consider the following planar system:

dx dy
E_Pn(xmy)a E_Qn(xvy)7 (1)

where P,(x,y), and Q,(x,y), represent nth-degree polynomials of x, and y. The second part of Hilbert’s 16th problem is to find
the upper bound on the number of limit cycles that the system can have, called Hilbert number H(n), which only depends on
the polynomial degree n.

In general, determining H(n), is a very difficult problem. In the past several decades, researchers have paid attention to
finding the lower bound of the limit cycles that system (1) with particular n and hope to gain information for finding
H(n). If the problem is restricted to the neighborhood of isolated singular points, then the question is reduced to studying
degenerate Hopf bifurcations, which gives rise to fine focus points, and many results have been obtained (e.g., see
[1,6,8,12]). Moreover, in the last two decades, much progress on finite cyclicity near a fine focus point or a homoclinic loop
has been achieved.
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Another important and interesting problem, called weak Hilbert's 16th problem, is to find the maximal number of
isolated zeros of the Abelian integral or Melnikov function

M(h,s) = / Qe Py 2)
Xy)=

where H(x,y),P,, and Q,, are all real polynomials of x, and y, with degH = n+ 1, and max{degP,,degQ,} < n. The weak
Hilbert’s 16th problem is closely related to the maximal number of limit cycles of the following so-called near-Hamiltonian
system [2]:

dx d
a:HJ’(X’y)+8p(x7y)' 4

dr = Hxy) +eqx.y), 3)
where H(x,y), is a Hamiltonian function with degH = n + 1, and the perturbation functions p,(x,y), and q,(x,y), are nth-
degree polynomials.

It has been shown that a cubic system (1) with Z, symmetry can have at least 12 limit cycles [13,14]. These 12 limit cycles
are distributed in the neighborhood of two symmetric fine focus points. Recently, an additional limit cycle has been found at
infinity of this Z, symmetric vector field [9]. Another example of 13 limit cycles has been obtained by perturbing a cubic
Hamiltonian system with five centers [10]. In this paper, we prove that a Z,-equivariant third-order Hamiltonian planar vec-
tor field with symmetric third-order perturbations can have at least 10 limit cycles, which surround two symmetric centers.
The Melnikov function method is used to prove the existence of the 10 limit cycles. In particular, in addition to the param-
eters in the perturbation functions p and q, the parameters involved in the Hamiltonian H are also used in finding the limit
cycles.

The rest of the paper is organized as follows. In the next section, we present a recently developed method for computing
Melnikov function near a center. In Section 3, a general Hamiltonian function for cubic-order Z,-equivalent vector fields is
derived, which is used in Section 4, together with the calculation of Melnikov function to prove the existence of 10 small
limit cycles. Section 5 is devoted to study existence of possible large limit cycles that such a Hamiltonian system may have.
Finally, conclusion is drawn in Section 6.

2. General mathematical formulas

In this section, we briefly describe the method of computing the Melnikov function near a center of vector fields. More
details can be found in [3]. We study a C*, system of the form:

dx d
E:Hy(x7y7hij)+8p(x7yvaij)s d_};: _HX(X7y7hij) +SQ(X7y7bij)7 (4)

where H(x,y, hy), p(x,y,a;), and q(x,y, b;) are C* system functions, € > 0, is small, and h;, a;, b; € R, are parameters. For
e =0, (4) becomes
dx dy
de 7 dt
which is a Hamiltonian system. Hence, (4) is called a near-Hamiltonian system.

Suppose that (4) has an elementary center at the origin, namely, the Hamiltonian function H, satisfies H, (0,0, h;) =
H,(0,0, hj) =0, and

d(Hy, —Hy)
detyi
ax,y)

Therefore, without loss of generality, we may assume that

H,,(0,0,hy) =1, Hy(0,0,hy) >0 and H, (0,0, hy) = 0.

—H,, (5)

(0,0) > 0.

It then follows that in the vicinity of the origin, H can be expanded as
1 o
H(x,y, hy) = iyz + haoX* + Z hix'y’  (hyo > 0). (6)
i+j=>3

Here, note that the coefficients h;;, are usually fixed real values. If they allow to be perturbed, then the perturbations on the
coefficients can be considered the parameter vector A For example, h; = h; + 4;, where hy, is a fixed value while /, is a per-
turbation on h;. For our purpose, it is required that

O<e< A <1, (7)

In the following we present a result which is a generalization of [3] and will be used in Section 4 to prove the existence of 10
small limit cycles. Without loss of generality, we may assume that the parameters h; in the Hamiltonian function H depend
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on a parameter vector ¢ € R", and the perturbation parameters a;, and by, linearly depend on a parameter vector { € R™. Then
by formulas in [3] we have the expansion of the Melnikov function around the origin in the form of

M(h,( &) = Y (¢, o). 8)

>0

For simplicity, suppose the functions p and q in system (4) are linear in ¢, and thus the coefficients g((, ¢), are linear in ¢.
Further, suppose there exist an integer k > 0, and vectors {, € R™, &, € R", such that

: a 2 LA —
(60, 20) =0, j= 0.1, k-1, but obrbin) o g ©)
01,855 G0)
Then, the linear equations g; = 0,j =0,1,...,k — 1, of {, have a unique solution in the form of
(QvCZ:"':(k) = K((k#»]’ .. 'sCms&:)
for &, near &,. It is obvious that «, is linear in (i1, ..., {n.
Further, let
:uk+j‘(;1 ..... G0=K (s reenlmyd) Lj(ék+17 (KRR} ém)Rj(é)v ] =01,..., L (10)

Then, we have the following result [4].

Theorem 1. Consider the near-Hamiltonian system (4), where H(x,y, h;;) satisfies (6) and the coefficients h;;, linearly depend on
¢ eR" and the coefficients a;, in p and by, in q are linear in { € R™. Suppose there exist integer k>0 and (o = ({10, .-,
{mo) € R™, & € R" such that (9) and (10) hold with

L]’(é’(lH»])O" . '7Cm0) # 05 ]: 07" '7la

. 11
Ri(&)=0,j=0,....1-1, R(&) #0, (1)
and
I(Ro,...,Ri_1)

Then, for all (¢,{, &) near (0,{, &), System (4) has at most k + I limit cycles near the origin, and for some (¢, (, ¢) near (0, (o, &)
system (4) can have k + | limit cycles near the origin.
The proof can be found in [4], and thus omitted here for brevity.

3. A 3rd-order Z,-equivariant Hamiltonian vector field with symmetric 3rd-order perturbation

Now consider the following cubic Hamiltonian system with cubic perturbations:

dx ~ -
(Tx =Hy +ep(x.y),
t
& (13)
g~ Hxrealxy),
where
- 1 - - - . - - . - . -
H(x,y) = jyz — haoX? 4 h30X® + h21X%y + h1oXy? + hosy?® + haox* + ha1x3y + hypx?y? + hisxy? + hoay®,
P(X.Y) = G10X + Gory + 20X + QXY + Goay? + 30X + A XY + QXY + Gzy, (14)

4(%,y) = b1oX + bory + baoX? + b11Xy + bo2y? + b3oX® + by1x2y + biaxy? + bosy?,

with flzo # 0, and ¢ > 0, is a small perturbation parameter.
It is obvious that the non-perturbed system

is a Hamiltonian system, and the origin (x,y) = (0,0), is a saddle point when h5 > 0, but a center when f59 < 0. Suppose
system (13) is Z, equivariant, then

Fl30 = ’~721 = ’~712 = ilo3 =0, Gyp=0a =0 =0 and 520 = Bn = Boz =0. (15)

Further, assume that besides the origin, the unperturbed Z, equivalent vector filed has two fixed points at (&1, 0) (otherwise,
using a rotation around the origin to achieve this), which, in turn, requires that
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- 1- .
h40 = §h207 h3l =0. (16)
Hence, system (13) becomes
d
?X =y+ 2h22X y+ 3h13xy + 4ho4y + 8[(1]0)( -+ a()]y -+ (130)( -+ GQ]X y+ auxy + a03y ]
(17)

dy
a = 2h20X — 2h20X3 - 2h22Xy2 — h13y3 + & [b10X + b()]_y + b30X3 + b21X2y + b]zxyz + b03y3]

Since hyg # 0, we apply the following scaling
h~04 s and flzz — h22

, hos —
\/2lh20 «/Zlhzo 2|hao
into Eq. (17) to obtain

—dx - h .
v 2lhaol 57 = 2|haoly + 2hax? 1/ 2|ha0ly + 3 ——2=x(2|h20|)y* + 4

2|y
a10X + Ao \/ Zlflzob/ + G30X% + 621X2\/ zlflzob/ + (N112X(2|f~120|)y2 + Qo3 (zlflzol) Zlflzob’3

- d ~ ~ ~ h ~ -
2|h20| d—}; = 2h20X — 2h20X3 — 2h22X(2‘h20|)y2 — ﬁ (2|h20|) \/ 2|h20|y3

—+& B]()X + B()l A/ 2”320‘}/ -+ B30X3 + lexz 2|/~120|y + 512X(2U~120|)y2 + 503 (2‘;120“ 2”320‘}/3

which, after renaming the coefficients, can be rewritten as

d
dfl: =y+ thzxzy + 3h]3Xy2 + 4h()4y3 + e[awx + Ap1y + (130)(3 + a21x2y + a12Xy2 + a03y3]

= Hy + gp(xayvaij)a

2|h20 y, - —— hl3 -

04 T 1. 3
= (2|h20])1/ 2|20y
2|hyo|

+&

™

(18)

dy (19)
dt
= —H, + &q(x,y, by),

= i(x - X3) — 2hpoxy? — hisy® + S[blox + bory + b3oX® + by X%y + biaxy? + b03y3l

where

H(x,y,hy) = %yz + (%xz - %X“) + hpoX2y? + hi3Xy® + hoay*. (20)

Thus,
ho =H(0,0,h;) =0, hy =H(+1,0,h;) = i%, and h; = H(x",y*, hy), (21)

where (x*,y"), is any of other fixed points of system (19). Here, in (20) and (21), the “+” and “—" signs correspond to the cases
of the origin being a center and a saddle point, respectively.
Further, we define the Melnikov function of (19) as

Mhuhy,agby) § gy, bydx - plry.ady. (22)
H(xy,hij)=h
where p(x,y,a;), and q(x,y, b;), are given in (19) and H(x,y, h;), is given in (20).
It is easy to show that the two fixed points (+1,0), of the unperturbed Hamiltonian system (19).-¢ are centers when
1+ 2hy, > 0. (23)

It should be noted that the unperturbed system (19).-o, with three free coefficients hy,, h13 and hy4, can be considered as a
“normal form” of the 3rd-order Hamiltonian system with two centers at (+1,0). A different “normal form” of such Hamil-
tonian system is given in [11], where several phase portraits of the system for different values of the free coefficients are
presented. These phase portraits given in [11] show, besides the origin (which is either a center or a saddle point), additional
four saddle points. In this paper, we will consider the cases which give maximal number of limit cycles around the two cen-
ters (+1,0), with the origin being a saddle point, and then investigate possible existence of large limit cycles.

4. Ten Small limit cycles bifurcating from the centers (+1,0)

We can apply the method of computing the focus values or the method of computing the Melnikov function, developed by
Han [2].
First, we shift the system to one of the center, say, (1,0), by introducing
x=1+X
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to obtain
dx . 2 52 21,2 3
E = (1 + 2h22 )y + 4h22Xy + 3h13y + 2h22X Y+ 3h13Xy —+ 4h04y

+ 8[((110 + aso) + (A10 + 3a30)X + (o1 + G21)y + 3(13022 + 2a,1Xy + (112y2 + (130)73 + 0217(2}/ + (112@2 + aO3y3}

dy

Gf = 2K 3% = 2hpy’ — X — 2hpxy” — hizy?

+ &[(b1o + b30) + (b1o + 3b30)X + (bor + b21)y + 3b30X* + 2bx1XY + b12y* + b3oX® + b1 X%y + b1Xy? + bosy®].

By a time scaling
T=pt, where p=1+2hy >0,
the above system (24) can be written as
dx
dt
g{ —Hg + €g(x,y),

= ﬁy +8ﬁ(x7y)7

where
_ 1., = o L
H(X,y) = jyz + haoX? + h3oR® + h12XY? + ho3y® + haoX* + hyp®?y? + hisXy? + hoay?,
P(X,y) = G10X + Uo1Y20X> + A11XY + Goay*T30X° + U X°Y + A12XY* + Tos)?,
G(X,y) = b10X + bo1yb2oX* + b11Xy + bo2y*b30%® + by1 X%y + b12Xy? + bosy?,

with
oo = Tisg = Al1g — h s = Lo, Tigs = iy = Lhys, Tiog = 10
20 30 40 0 12 =N P 22, Moz = M3 P 13, foa = 0
_ Q1o + a3 — a0 + 3a _ o1 +0a 1_ _ a
aoo=¥ 010=¥7 Ao =¥, §azo=aao=%7
_ _ a _ _ a _
5(111:(121:%7 (102:(112:%7 (103:5(1037
- bio+b bio +3b boi +by 1+ = b
boo %b] _% b1_¥, §b20:b30=%,

1+ + by + - 1
Zbll :b2] :%’ b02 :b12:77 b03:5b03-

Now, let H(X,y) = h (or H(x,y) = h — h;), then by (22) we have
M (h, hy, ag, by) = Y (hy, ay, by)R*,  for 0 < h <1,

k=0
where h = h — hy, and the coefficient Uy, can be found as

V2n 21
Uy = hl/z (@10 + bo1) = —(Zp)l/z (3aso + aio + bo1 + ba1).
Letting u, = 0, yields

1
3o = — = (@10 + bo1 + b21),

3
under which we have
= % —6(1 + h12)(b11 + 2Tz0) — 36hoshao (11 + 2bg2)
= (Zf’% [3pbos — 6h13a21 + paiz — 6hisbiz + p(2p — 1)(a10 + bo1)]-
Thus, we set

b03 =

1 2hi3 1
3zt ) ((121+b12)**(20*1)(010+b01)

under which pg, = 0, and then letting u, = 0, results in

(24)

(25)

(26)

(27)

(29)

(30)

31)
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p[p(2p ~1) + 4phos — 20h3,]

ay = —by - 2M15(6p — 5 + 20h0) (@10 + bo1),  (h13(6p — 5+ 20hos) # 0). (33)
Further calculating p;, yields
57(a10 + bo) 2
= 28phog +42h7; + p(8p — 7)|(4hog + 4hy3 +2p — 1)(4dhog — 4h13 +2p — 1). 34
s (2p)5/2(6p75+20h04)[ phos 13 +P(@8p )]( 04 + 4hi3 + 2p — 1)(4hos — 4h13 +2p — 1) (34)
Letting u, = O, results in
hyy = ~ 3% [42}1?3 +p@8p - 7)]
h&) =-hi3 —32p - 1), (35)
h04 =hs3-12p-1).
Taking (a;o + bo1) = 0, or hog = h', or hoy = h(}), leads to p, = tts = g = - - - = 0. In order to obtain maximal number of small
limit cycles bifurcating from the two centers, we choose hoy = h“) Then we obtain
3V2n
My = 49p1f, (a10 + bor)fofa,
12v27
(@10 + bo1)fofs, (36)

Hs = 3431572,

where

fi = p* — 10512,
fo = (21h3, + 14phys — 3p2)(21h%; — 14phys — 3p?),

4 2 (37)
fa =1617h]; — 210p?h3; + p?,
fs =294294h%, + 539p%(63p — 104)h}; — 14p*(315p — 209)h3; + 3p5(7p — 4).
Choosing f; # 0 (i.e, p # £V 105hy3), then when (aio + bo1)f2 =0, we have p, = u; =--- =0, leading to two centers at
(£1,0). Thus, letting fy(h%;) = 0 (and so u, = 0), we have
2 2
e (15+8v3)p ~0, K = (15 — 8v3)p? P (38)
231 231 7(1518v3)
both of which are positive. For these two values, we obtain the following two sets of solutions:
agozfl(a1o+bo1+b21) = u0=0
bég—_la +M(aw+bm) = :u1:0
(+4V3-9)v231p
St = | a3 =—br +W(alo +bo) = =0 (39)
hyy =1—5L(59+8V3)p = U;=0
hi; = b (15 + 8v/3)p? = u,=0
for which us, becomes
_32768(90 +37v3)/2pm
+

Noticing 90 — 37+/3 > 0 we know that both e, and pz, have the same sign as that of (a0 + boy). It should be pointed out that
the above two sets of solutions are the critical values of the parameters for the focus values. However, for system (19), there
are actually four sets of solutions, since the four different values of +h;,, +h;;, give four different Hamiltonian functions (20).
The above results show that one can choose the five parameters as, a1, @12, hos, and hyg, such that p, = pu, =, =
U3 = 1y =0, but us # 0. Thus, there exist at most 5 small limit cycles bifurcating from the center (1,0). Furthermore, by
backwards small perturbations, 21, on hy, for p,, 22, on hos, for us, &s, on ayy, for ,, €, on ay, for p;, and &, on as, for
Wo, we can obtain 5 small limit cycles in the vicinity of (1,0). Here,

O<ex | < |es] <€ &3] < [ < 4] < 1.

By symmetry, system (17) can thus have 10 small limit cycles near the two symmetric points (+1,0).
Summarizing the above results gives the following theorem.
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Theorem 2. The Z,-equivariant 3rd-order Hamiltonian system (17) can have maximal 10 small limit cycles, with 5 bifurcating
from each of the two symmetric centers.

In the next section, we consider possible limit cycles bifurcating from homoclinic or heteroclinic orbits.

5. Bifurcation of large limit cycles inside homoclinic and heteroclinic orbits

In the previous section, we have shown that under the conditions given in (39) system (19) can have 10 small limit cycles
bifurcating from the two symmetric centers (+1,0). Now suppose the conditions given in (39) still hold, we want to inves-
tigate the limit cycles which may bifurcate from homoclinic or heteroclinic loops.

First note that we have four sets of solutions:

(hoshia)” = (1= g (594 8V3)(1 -+ 2hn), £/ I555 (14 2ha)).

(1)
(hos i)™ = (5= ke (59— BV3)(1+ 2hm), 1585 (14 2hs)).

Except for the three fixed points (0,0), (£1,0), other possible fixed points can be found from Eq. (19) in which ¢ = 0, yielding

|2(8h5 — 8hosh3, + 3hT5ha2)x2 + (317, — 16hG, — 8hoshaz) | xe
h13 {(32#[04}122 — 9hf3)x§ + 4h04}

Ve =

)

where x,, is determined from the following equation:
0= [64h04(h04 —h2,)? - h2,27h% + 16h§2)]x§
- [64h04(2ho4 + h2)(hoa — h3,)? + 3h3,(4h3, — Oh’; + 48hoshyy — 12ho4 | X2 + 4hos(3h13 + 4hos + 2ha2) (4hos
+ 2h22 — 3h13)X? + h?3

This equation is a cubic polynomial of x2, and has at least one real solution. For the first two sets of parameter values
(hos, hy3)™, this solution is always positive for h,; € (—1,00), while for the second two sets of parameter values (hos, h13)~,
this solution is positive only for h,, € (h3,, 00), where

1/3
My, = — &+ 457 — 531 [793071 - 4574103 + 396/164406 — 949193]

-1/3
_ (2263-12923) {793071 — 4574103 + 3961/164406 — 94919\/§]
~ —0.17337533355610033812

Thus, choosing a value of h,;, from these two intervals, we obtain two additional fixed points which are symmetric about the
origin. It can be shown that these two fixed points are saddle points.

In order to compute the Melnikov function near a homoclinic loop, we choose a fixed value of h,;, to determine (hos, h13)",
and (hoa, h13)". For convenience, let hy; = 1, and so p = 3. Then we obtain two sets of parameter values and the associated
fixed points, listed as follows (approximated to 10 decimal points):

hy, =1, hy;3 =+1.0603186202, hos = —1.1692806453, as = fl(am + bo1 + b21), bos

3
=- %alz —3.7384634364(a10 + bo1), @31 = —byy — 2.9309068947(a10 + b1 ), (X1, FY;)
= (£0.8236724666, +0.4830363744), i = 28.3690534323 (119 + boy), (42)

and

hy, =1, hy;3 =+02110819567, hos = —0.6294206534, asz = fl(am + bo1 + b21), bos

3
= —%alz — 17.5948698969 (110 + bo1), a1 = —byy — 113.1897070620(at10 + boy ), (X2, F,)
— (£0.4469955744, +0.6914971979), iz = 4.7710994603 (ayo + bo;). (43)

The unperturbed Hamiltonian systems for the two sets of parameter values with positive hy3, are shown in Figs. 1 and 2,
respectively.
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5.1. Inside the homoclinic orbits passing through (£x;,Fy,)

First, we consider the two symmetric saddle points (£x;, Fy,). Note that at the two fixed points (+x1, Fy,),

hy = H(£x1,5y;) = —0.1112780483 > h; = H(£1,0) = —0.25 (see Eq. (21)).

By introducing
X=X1+X Y=y +y
into system (19), we obtain

dx__ 0.8492612604x — 3.44815826367 — 0.9660727498%* + 0.2216550944%y + 9.3977267624y* + 2%*y

dr
+3.1809558607x7% — 4.67712258137° + £{1.5978885074a;0 — 0.4830363744ay, + 0.1921826691a;,
—~0.1127040461ag; + 0.7742160408by; — 0.1862697757hy; + 0.3277094262b1, + [2.6537669538 (30 + br)
+0.2333241390a;, + 1.6537669538bg; — 0.6784363322by; + 0.7957275239b1,]% + [agr — 1.9884337237 (a0 + bor)
~0.7957275239a;; + 0.6999724169ay5 — 0.6784363322b1,]7 + [0.5920621735(ayo + bor ) — 0.8236724666by,
+0.4830363744b,,)x> — 4.8282146226(a10 + bor ) — 0.9660727488a,, — 1.6473449332b,, %7

+(0.8236724666a;, — 1.4491091231ag3)7> — %(010 + boy + byt )X + [b12 — 2.9309068947 (a1 + bo1 )|X*
+ &P + a4 = Hy(R,3) + 6p(%,7, a5, by),

dy

T 1.50195727454738633489% 4 0.84926126042998520430y — 2.47101739974075548014%>

+1.93214549750312157554%y — 0.11082754717800281508y — x> — 2xy* — 1.06031862021993399065y>
+£{0.4213399556a;, + 0.3756801538a;, + 0.8236724666b;; — 0.0616964187by; + 0.5588093272b,
—0.3277094262b,; +0.1921826691b1, + (h1g — 0.7957275239b,; + 0.2333241390b;, + 2.0353089966b30)%
— (2.6168212871a;o + 1.6168212871bg; + 0.2333241390a;, + 0.7957275239b,, — 0.6784363322b,,)y

— (0.4830363744b,; — 2.4710173997b30)X* + (1.6473449332by;, — 0.9660727488b1,)Xy

+ [+5.4174414722(a10 + bor) + 0.4830363744a,, + 0.8236724666b13])y* + b3ok® + by X2y + b12xy?

[gan + 3738463436400+ bo) |3y | = - Fix3) + sty b). (45)

n -

-2-

Fig. 1. Phase portrait of unperturbed system (19).-o for hy, = 1, hy3 = 1.0603186202, hoy = —1.1692806453.
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-2
Fig. 2. Phase portrait of unperturbed system (19).-o for hy, = 1, hy3 = 0.2110819567, hoy = —0.6294206534.

where

H(x,y) = 0.75097863727369316744%* — 0.84926126042998520430xy — 1.724079131776968465537>
+0.82367246658025182671%> — 0.96607274875156078777%*y + 0.11082754717800281508%5>
+3.13257558747987804952)° + 0.25x* + x>y + 1.06031862021993399065xy°
—1.16928064533540944834* (46)

Now, based on system (45) with H(&, 7) = h (or H(x,y) = h — h,), using the formulas given by Han [3] and (22), we obtain the
expansion of the Melnikov function near the homoclinic orbit:

My (h, hy,ay.by) =3 vaeh + > vy B In b, 0 < —h <1, (47)
k=0 k=0
where h = h, — h, and
Vo = Q(?}Jﬂ aljﬂblj)dicfﬁ(k75/7alj7b1j)dy: - p*(i7y7alf7bij)dya (48)
J1, Ly

where
~ o~ ~ o~ o~ ~ ~ )2 ~ ~
p*(xvy7 aij7 blj) = p(xvyv aij7 bl]) - p(07Y7 aij7 blj) + /O q)’f(”v% aij7 bij)du7
and the closed curve L,, is the homoclinic loop passing through the saddle point (x;, —y,) which is now the origin in the x-y

coordinate system, defined by H(%,7) = 0.
With the above formulas and parameter values given in (42), we obtain

vo = 0.0001477405(a10 + bo1). (49)
It can be shown that when ayo + b1 =0, 45 = tg = tt; = --- = 0,and vo = v; = v, = v3 = 0, indicating that the perturbed sys-
tem (19) is an integral system with the two centers at (+1,0). When ajo + bo; # 0, without loss of generality, we may assume
a10 + ber > 0. Thus, under the conditions p, = y; = --- = u, = 0, we have

M; (h, hy,a3,bj) = p (h—hy)® +ho.t.
= 28.3690534323(ao + bo1 ) (h — hy)®
+h.ot. >0, forO<h-h; <1,
M,(h, hy,a;3,bj) =vo+ho.t.
= 0.0001477405(ao + bo1) + h.o.t. > 0,
forO<h, —h«1.

M(h,h,j,aij,b,-j) = (50)

Since MM, > 0, it does not lead to conclusion on the existence of large limit cycles near the homoclinic loops passing
through the two saddle points (£x1, Fy;).
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In order to investigate the possibility of large limit cycles which may exist inside the two homoclinic loops passing
through the two saddle points (+x;, Fy,), we have used (22) to numerically compute the Melnikov function as h gradually
decreases from h, = —0.1112780483, to h; = —0.25 and found that it remains positive when a;q + bg; > 0. This clearly indi-
cates that no large limit cycles exist between the homoclinic loop and the 5 small limit cycles. By symmetry, we have shown
that there do not exist additional (large) limit cycles around the two elementary centers at (+1,0).

5.2. Inside the homoclinic orbits passing through the origin (0, 0)

Now, we consider possible (large) limit cycles bifurcating from the symmetric double homoclinic loops passing through
the origin (see Fig. 2). First, note that

ho = H(0,0) = 0 > h; = H(+1,0) = —0.25 (see Eq. (21)).

For this case, due to symmetry, we use (22) to simply calculate vq, along one loop of the symmetric double homoclinic loops
(say, the right loop), yielding

vgf’R = Mg(ho, hyj, a;, by) (the R denotes the right loop) = f q(x,y, bij)dx — p(x,y, az)dy

Hg(x.y hyj)=0

= ?4 q’(x,y, by)dx (the R denotes the right loop)
HR (x.y,h;j)=0
y
_ 74 {q(x, ¥.by) — q(x,0.by) + / (%, 2, av)du] dx ~ 0.00952505(aro + boy). (51)
JHr (x.y,h;)=0 0

Thus, under the conditions p, = u; = 1, = 3 = l,, we obtain

M (h, hy, a5, b)) = us (h—hy)® + ho.t.
= 4.7710994603 (a10 + bo1 ) (h — hy)®
+hot. >0, forO<h-h; <1,

M, (fh h,‘j, ajj, bl_,) = Vg'?R +ho.t.
= 0.00952505(a1q + bo1 ) + h.o.t. > 0,
for0<-h«1.

M(h, hy, aj, by) =

Hence, due to M; M, > 0, for this case, we can not make any conclusion on the existence of large limit cycles bifurcating from
the homoclinic orbits passing through the origin. Moreover, numerically computing the Melnikov function for h € (hy, hy),
shows that the sign of the Melnikov function does not change. This implies that no additional (large) limit cycles exist be-
tween the right homoclinic loop and the 5 small limit cycles. Due to symmetry, we have proved that except for the 10 small
limit cycles, no more limit cycles exist inside the symmetric double homoclinic loops passing through the origin.

-0.4 1

-0.6 =

Fig. 3. Phase portrait of the perturbed system (19) with the critical parameter values given in (42).
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5.3. Between the homoclinic orbits passing through the origin (0, 0), and the heteroclinic orbit passing through the saddle points
(£X2, FY2)

Finally, we investigate possible existence of large limit cycles between the double homoclinic orbits passing through the
origin (0, 0), and the double heteroclinic orbit passing through the saddle points (+x,, Fy,) (see Fig. 2). For this case, we have

hy = H(X2, F,) = 0.0695908328 > hy = H(0,0) = 0.

In the previous section we have obtained US?R. Thus, due to symmetry, the vy, along the symmetric double homoclinic loops is
equal to o = 20f°. = 0.0190501(ajo + bo1), and so here we only need to compute /2. Using formula (51) yields

Ve2 = M(hy, hy, ay, by) :f

y
{q(x,y, by) — q(x,0,by) + / (X, v, aij)dv} dx ~ 0.718807(a1o + bo1). (53)
H(xy,hij)=hy 0

Since vg‘) vgz > 0, we are not able to claim the existence of large limit cycles bifurcating from the annuluses between the sym-

metric double homoclinic loops and the symmetric double hetroclinic loops. In fact, numerical computation of the Melnikov
function for h € (0, h,), shows that it remains positive for a;o + bo; > 0, implying that no limit cycles exist between the sym-
metric double homoclinic loops and the symmetric double hetroclinic loops.

Summarizing the above results gives the following theorem.

Theorem 3. Z,-equivariant third-order Hamiltonian vector fields with symmetric third-order perturbations can have at least 10
limit cycles, all of which are small limit cycles bifurcating from two symmetric centers.
One example showing the 10 small limit cycles is depicted in Fig. 3.

6. Conclusion

In this paper, we have shown that Z,-equivariant 3rd-order Hamiltonian planar vector fields with 3rd-order symmetric
perturbations can have at least 10 limit cycles, all of which are small limit cycles bifurcating from two symmetric centers.
The methods presented in this paper can be extended to consider bifurcation of limit cycles in integral systems.
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