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Abstract

This paper considers the limit cycles in the Liénard equation, described by €xþ f ðxÞ _xþ gðxÞ ¼ 0, with Z2 symmetry
(i.e., the vector filed is symmetric with the y-axis). Particular attention is given to the existence of small-amplitude (local)
limit cycles around fine focus points when g(x) is a third-degree, odd polynomial function and f(x) is an even function.
Such a system has three fixed points on the x-axis, with one saddle point at the origin and two linear centres which are
symmetric with the origin. Based on normal form computation, it is shown that such a system can generate more limit
cycles than the existing results for which only the origin is considered. In general, such a Liénard equation can have 2m

small limit cycles, i.e., H(2m, 3) P 2m, where H denotes the Hilbert number of the system, 2m and 3 are the degrees of f

and g, respectively.
� 2005 Published by Elsevier Ltd.
1. Introduction

Hilbert�s 16th problem is still an open problem since Hilbert presented the well-known 23 mathematical problems to
the Second International Congress of Mathematicians in Paris in 1900 [1]. This problem contains two parts. The second
part of the problem is, roughly speaking, to find a uniform upper bound H(n) for the number of limit cycles of planar
polynomial systems, where n is the degree of polynomial vector field [2]. This problem is not only important in theo-
retical studies, but also important in applications. In fact, limit cycles are common solutions for all types of dynamical
systems. They model systems that exhibit self-sustained oscillations. In other words, these systems oscillate even in the
absence of external periodic forcing. For example, the Holling–Tanner predator–prey model [3] shows that all trajec-
tories lying in the first quadrant of the phase plane are drawn to a closed periodic cycle. Therefore, no matter what the
initial values are, the populations of predator and prey event usually rise and fall periodically. The isolated periodic
trajectory is a stable limit cycle. This model appears to match very well with what happens for many predator–prey
species in the natural world. Other examples of self-excited oscillation are: beating of a heart; rhythms in body temper-
ature; hormone secretion; chemical reactions that oscillate spontaneously, vibrations in bridges and airplane wings, etc.
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Due to the wide occurrence of limit cycles in science and technology, limit cycle theory has also been extensively studied
by physicists, and more recently by chemists, biologists and economists. Although it has not been possible to obtain the
uniform upper bound for the Hilbert number H(n), various efforts have been made in finding the maximal number of
limit cycles and raising the lower bound of Hilbert number H(n) for general planar polynomial systems or for individual
degree of systems. This way people hope to get a close estimation of the upper bound of H(n). Nevertheless, even esti-
mating the lower bound of H(n) is generally very difficult, in particular, for determining large (global) limit cycles. For
recent progress on the research of Hilbert�s 16th problem, readers are referred to [4,5] and references therein.

If the study on the second part of Hilbert�s 16th problem is restricted to the neighborhood of isolated fixed points,
the problem is reduced to considering degenerate Hopf bifurcations. Many research results have been obtained in the
past 50 years on the local problem (e.g., see [6–12]). In the last two decades, much progress on finite cyclicity near a fine
focus point or a homoclinic loop has been achieved. For a quadratic system, Bautin [6] proved that the maximal number
of small limit cycles was three. For cubic order systems, recently ten [13], eleven [5,14] and twelve [15–19] limit cycles
were obtained. The main idea in the study of local (small) limit cycles is to compute the focus values of the system asso-
ciated with Hopf-type singular points, and then to take appropriate perturbations to prove the existence of the limit
cycles. Calculating focus values is equivalent to computing the normal form of Hopf bifurcation. Thus, symbolic com-
putations with the aid of Maple or Mathematica can be efficiently applied.

Another type of Hilbert�s 16th problem is called weakened problem, or infinitesimal, or tangential problem. For the
weakened problem, the general idea is to perturb a Hamiltonian vector field or integral system so that the problem can
be transferred to considering the zeros of Abelian integrals. A Hamiltonian system or an integral system has only saddle
points and centres. Thus, under perturbations, the centres may become fine focus points and local small limit cycles may
bifurcate. On the other hand, under perturbations, homoclinic orbits near saddle points may bifurcate into global limit
cycles, and the number of the limit cycles is determined by the zeros of the corresponding Abelian integral, which is the
first order Melnikov integral [20]. A recently developed technique called detection function [5] has been successfully
applied to investigate higher-order Hamiltonian systems and new results have been obtained [21,22].

A simplified version of Hilbert�s 16th problem—the Liénard equation has attracted many researchers. The Liénard
equation is described by [23]
€xþ f ðxÞ _xþ gðxÞ ¼ 0; ð1Þ
where the dot denotes differentiation with respect to time t, and f(x) and g(x) are polynomial functions of x. Smale [2]
chose the Liénard equation with g(x) = x as a simplified version of Hilbert�s 16th problem in his book ‘‘Mathematical
Problems for the Next Century’’. Hilbert�s 16th problem for the Liénerd equation is to find an upper bound on the num-
ber of limit cycles through the degree of polynomial f(x). It should be clarified that until now, no upper bound has ever
been found even for the simplified Liénard equation.

Small limit cycles in the Liénard system have been extensively studied by many researchers and many results have
been obtained (e.g., see [24–26]). In this paper, we will consider a class of Liénard equations with g(x) being a third-
degree, odd polynomial function and f(x) an even function of x. Such a system has three fixed points with one saddle
point at the origin, and two linear centres on the x-axis which are symmetric with the origin. We shall investigate the
small limit cycles bifurcating from these two linear centres by appropriately choosing focus values. Suppose that the
degree of f(x) is 2m. Then we have found that �Hð2m; 3Þ ¼ 2m for m = 1,2, . . . , 10, where �H denotes the number of small
limit cycles.

In the next section, we shall briefly discuss the Liénard equation, and present our main results in Section 3. Conclu-
sion is given in Section 4.
2. The Liénard equation

In this section, for completeness we briefly discuss the Liénard equation (1). Most of the early history in the theory of
limit cycles was stimulated by practical problems displaying periodic behaviour. For example, in 1877 Rayleigh derived
a differential equation to describe the oscillation of a violin string [27] in the phase space
_x ¼ y; _y ¼ �x� � 1

3
y2 � 1

� �
y; ð2Þ
where � is a small perturbation parameter. Following the invention of the triode vacuum tube, which was able to pro-
duce stable self-excited oscillations of constant amplitude, van der Pol [28] used the following differential equation to
describe this phenomenon
_x ¼ y; _y ¼ �x� �ðx2 � 1Þy. ð3Þ
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A generalization of Eq. (3) represents a famous class of differential equations given by Eq. (1), which was first inves-
tigated by Liénard [23] in 1928, can be rewritten in the phase space as
_x ¼ y; _y ¼ �gðxÞ � f ðxÞy. ð4Þ
Further, let y ¼ ~y � F ðxÞ, where F ðxÞ ¼
R x

0
f ðsÞds. Then we have the following equivalent system:
_x ¼ y ¼ ~y � F ðxÞ;

_~y ¼ _y þ dF
dx

_x ¼ �gðxÞ � f ðxÞy þ f ðxÞy ¼ �gðxÞ.
ð5Þ
The system considered by Smale [2] is a special case of system (5) when g(x) = x.
For definiteness, let
F ðxÞ ¼ a1xþ a2x2 þ a3x3 þ � � � ;
gðxÞ ¼ b1xþ b2x2 þ b3x3 þ b4x4 þ � � � ;

ð6Þ
where b1 > 0. If the attention is focused on the dynamic behaviour of the system in the vicinity of the origin, then one
may introduce a local coordinate transformation [24] into Eq. (5) to obtain
_u ¼ y � ðA1uþ A2u2 þ A3u3 þ A4u4 þ A5u5 þ � � �Þ;
_y ¼ �u;

�
ð7Þ
where A1 = a1, A2 = a2, and other Ai�s are given explicitly in terms of ai�s and bi�s.
It is easy to see from Eq. (7) that the origin (u,y) = (0,0) is a unique fixed point—a linear centre. Further, one can

apply the Maple program developed in [29] to system (7) to obtain the following focus values:
v0 ¼ �A1;

v1 ¼ �
3

8
A3;

v2 ¼ �
5

16
A5 �

5

24
A2

2A3;

v3 ¼ �
35

128
A7 �

205

1152
A2

4A5 �
1885

13824
A2

4 þ
2

3
A2A4 þ

999

8192
A2

3

� �
A3;

v4 ¼ �
63

256
A9 �

413

2304
A2

2A7 �
47

96
A2A4 þ

2115

4096
A2

3 þ
4297

41472
A4

2

� �
A5

� 141

160
A2A6 þ

149

240
A2

4 þ
1093

1152
A3

2A4 þ
20599

49152
A2

2A2
3 þ

109483

1244160
A6

2

� �
A3;

..

.

ð8Þ
It follows from Eq. (8) that
v0 ¼ v1 ¼ v2 ¼ v3 ¼ 0; v4 6¼ 0 () A1 ¼ A3 ¼ A5 ¼ A7 ¼ 0; A9 6¼ 0.
In general, one can show that
v0 ¼ v1 ¼ v2 ¼ � � � ¼ vm�1 ¼ 0; vm 6¼ 0 () A1 ¼ A3 ¼ A5 ¼ � � � ¼ A2m�1 ¼ 0; A2mþ1 6¼ 0.
Therefore, in order for system (7) or (1) to have m small limit cycles around the origin, it requires that
v0 = v1 = v2 = � � � = vm�1 = 0, but vm 5 0, or A1 = A3 = A5 = � � � = A2m�1 = 0, but A2m+1 5 0. For example, when
A1 = 0, but A3 5 0, then system (7) or (1) has at most one limit cycle around the origin; when A1 = A3 = 0, A5 5 0,
the system (7) or (1) has at most two limit cycles in the neighborhood of the origin; etc. Since the coefficients Ai�s
are given in terms of ai�s and bi�s, one needs to determine the values of ai�s and bi�s to satisfy the necessary conditions.
Further, based on the sufficient conditions for the existence of small-amplitude limit cycles [13,17,18], we can apply
appropriate perturbations to obtain exactly m limit cycles.

Let Ĥði; jÞ be the maximal number of small-amplitude limit cycles of system (1) in the vicinity of the origin, where i

and j are the degrees of f and g, respectively. Then the existing results for the Liénard system (1) are summarized in
Table 1 [25]. Note that the numbers given in this table are symmetric with respect to f and g [26], i.e.,
Ĥði; jÞ ¼ Ĥðj; iÞ. Thus, one only needs to prove the cases i P j. It should be pointed out that the notation Ĥði; jÞ denotes
the maximal number of small limit cycles which may exist in the vicinity of the origin. It does not include global (large)



Table 1
The values of Ĥðm; nÞ for the generalized Liénard systems associated with the origin when f and g are of varying degrees

deg(f)

50 " " 38
49 24 33 38
48 24 32 36
..
. ..

. ..
. ..

.

13 6 9 10
12 6 8 10
11 5 7 8
10 5 7 8
9 4 6 8 9
8 4 5 6 9
7 3 5 6 8
6 3 4 6 7
5 2 3 4 6 6
4 2 3 4 4 6 7 8 9 9
3 1 2 2 4 4 6 6 6 8 8 8 10 10 � � � 36 38 38
2 1 1 2 3 3 4 5 5 6 7 7 8 9 � � � 32 33 !
1 0 1 1 2 2 3 3 4 4 5 5 6 6 � � � 24 24 !

1 2 3 4 5 6 7 8 9 10 11 12 13 � � � 48 49 50
deg(g)
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limit cycles, nor contain other local (small) limit cycles which may appear in the neighborhood of other non-zero focus
points.
3. Limit cycles of the Liénard equation when deg(g) = 3

In this section, we will consider a particular class of Liénard equations in which g(x) is a third-degree, odd polyno-
mial while f(x) is an even function of x. To be more specific, consider the following system:
_x ¼ y;

_y ¼ � 1

2
b2xðx2 � 1Þ � y

Xm

i¼0

aix
2i;

ð9Þ
where b 5 0 and ai�s are real coefficients. Eq. (9) has three fixed points: (0,0) and (±1,0). It is easy to use a linear anal-

ysis to show that the origin (0,0) is a saddle point (with eigenvalues 1
2
ð�a0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

0 þ 2b2
q

Þ). In order to have the two fixed

points (±1,0) being linear centres, the following condition:
Xm

i¼0

ai ¼ 0; or a�0 ¼ �
Xm

i¼1

ai; ð10Þ
must be satisfied, where * denotes the critical value of the coefficient. Then the eigenvalues of the Jacobian of system (9)
evaluated at (±1,0) are ±jbji. What we want to do is, for a given positive integer m, to choose appropriate values of ai�s
such that system (9) has maximal limit cycles in the neighborhood of the two fixed points (±1,0). This local analysis is
based on the calculation of focus values or the normal forms associated with Hopf singularity.

Since we do not intend to discuss normal form computation in this paper, we assume that the normal form for the
general system (9) has been obtained in the polar coordinates as follows (interested readers can find the details of nor-
mal form computation in [29]):
_r ¼ rðv0 þ v1r2 þ v2r4 þ � � � þ vkr2mÞ; ð11Þ
_h ¼ xþ t1r2 þ t2r4 þ � � � þ tkr2m; ð12Þ
up to the (2m + 1)th-order term, where both vi and ti are expressed in terms of the original system�s coefficients. vi is
called the ith-order focus value of the Hopf-type critical point.

The basic idea of finding k small limit cycles around a Hopf-type critical point is as follows: First, find the conditions
such that v1 = v2 = � � � = vm�1 = 0 (v0 = 0 is automatically satisfied at the critical point), but vm 5 0, and then perform
appropriate small perturbations to prove the existence of m limit cycles. This indicates that the procedure for finding
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multiple small limit cycles involves two steps: computing the focus values (i.e., computing the normal form) and solving
the coupled non-linear polynomial equations: v1 = v2 = � � � = vm�1 = 0. The sufficient conditions for the existence of
small-amplitude limit cycles can be found in [13,17–19].

It should be noted that the coefficient b does not affect the results. In other words, different values of b (as long as
they are not equal to zero) do not change the number of limit cycles. To show this, first introduce the following scalings:
ai ) bai; i ¼ 0; 1; . . . ;m. ð13Þ
Then, apply the transformation, given by
x ¼ �ð1þ uÞ; y ¼ �bv; ð14Þ
and, in addition, the time scaling
s ¼ bt; ð15Þ
into system (9) to obtain
du
ds
¼ v;

dv
ds
¼ �u� 3

2
u2 � 1

2
u3 � v

Xm

i¼0

aið1þ uÞ2i.
ð16Þ
The Jacobian matrix of system (16) evaluated at the origin (u,v) = (0,0) (i.e., at (x,y) = (±1,0)) is now in Jordan
canonical form. The above procedure shows that the coefficient b can be chosen as any non-zero real values, which does
not affect the qualitative behaviour of the system. In particular, it does not change the number of limit cycles. Thus,
without loss of generality, one may assume b = 1, and so s = t. Thus, Eq. (16) can be written as
_u ¼ v;

_v ¼ �u� 3

2
u2 � 1

2
u3

� a0 þ a1

2

0

� �
þ

2

1

� �
uþ

2

2

� �
u2

� ��
þ a2

4

0

� �
þ

4

1

� �
uþ

4

2

� �
u2 þ

4

3

� �
u3 þ

4

4

� �
u4

� �

þ � � �

þ am�1

2m� 2

0

� �
þ

2m� 2

1

� �
uþ � � �

2m� 2

2m� 2

� �
u2m�2

� �

þam

2m

0

� �
þ

2m

1

� �
uþ � � �

2m

2m

� �
u2m

� ��
v

¼ �u� 3

2
u2 � 1

2
u3 �

Xm

i¼1

2i

1

� �
ai

 !
uþ

Xm

i¼1

2i

2

� �
ai

 !
u2

(

þ
Xm

i¼2

2i

3

� �
ai

 !
u3 þ

Xm

i¼2

2i

4

� �
ai

 !
u4

þ � � �

þ
Xm

i¼m�1

2i

2m� 3

� �
ai

 !
u2m�3 þ

Xm

i¼m�1

2i

2m� 2

� �
ai

 !
u2m�2

þ
Xm

i¼m

2i

2m� 1

� �
ai

 !
u2m�1 þ

Xm

i¼m

2i

2m

� �
ai

 !
u2m

)
v;

ð17Þ
where condition (10) has been used. Based on Eq. (17) we have the following observations.

(i) All the coefficients in Eq. (17) are linear combinations of the original coefficients ai, i = 1,2, . . . ,m.
(ii) If all the coefficients ai�s are equal to zero, then the original system (9) is integrable. Thus, without ai�s present, the

two terms � 3
2
u2 � 1

2
u3 have no contribution to focus values.

(iii) Starting from the 4th-order term, each order has exactly one term in the form of ukv. The highest term is
�amu2mv.
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In the following, we use the early developed Maple program [29] to compute the focus values vi (i P 1) of system
(17), starting from m = 1. Note that the zeroth-order focus value of system (9) associated with the fixed points
(±1,0) is given by
v0 ¼ �
Xm

i¼0

ai; ð18Þ
and v0 = 0 at the critical point a0 ¼ a�0, which is given in Eq. (10).

3.1. m = 1

For this case, only a1 5 0. When a0 ¼ a�0, the first order focus value is given by
v1 ¼
1

4
a1 6¼ 0. ð19Þ
Hence, system (17) can have at most one small limit cycle in the vicinity of the origin (u,v) = (0,0). In this case,
a�0 ¼ �a1. Thus, we may properly perturb a0 from the critical value a�0 to obtain exactly one small limit cycle. For exam-
ple, suppose 0 < �a1� 1. We then let a0 ¼ a�0 � �1, where 0 < �1� ja1j. Therefore, v0 = �1 and 0 < v0��v1� 1 which
satisfy the sufficient conditions for the existence of small limit cycles [13,17,18]. The origin (u,v) = (0,0) is unstable and
the bifurcating limit cycle is stable since v1 < 0. Hence, the original system (9) has two small limit cycles, one around
each of the two focus points, that is, �Hð2; 3Þ ¼ 2.
3.2. m = 2

For m = 2, both a1 and a2 are non-zero, and a�0 ¼ �ða1 þ a2Þ. It is easy to show that v1 is again given by Eq. (19).
Thus, in order to have v1 = 0, it is required that a1 = 0. Then executing the Maple program [29] yields v2, given by
v2 ¼
1

4
a2. ð20Þ
Therefore, system (17) can have at most two limit cycles near the origin. Similarly, we can perturb the coefficients a1 and
a0 to obtain exactly two limit cycles. For example, let 0 < �a2� 1. Then we choose a1 = �1 and a0 = �a2 � �1 + �2 in
which 0 < �2� �1� ja2j � 1, implying that
0 < �v0 � v1 � �v2 � 1.
Hence, the origin (u,v) = (0,0) is stable, the inner limit cycle is unstable while the outer limit cycle is stable. This shows
that �Hð4; 3Þ ¼ 4 for system (9).

3.3. m = 3

Now, ai 5 0, i = 1, 2, 3, and a�0 ¼ �ða1 þ a2 þ a3Þ. Executing the Maple program results in
v1 ¼
1

4
ða1 � 3a3Þ. ð21Þ
Setting v1 = 0 yields
a�1 ¼ 3a3. ð22Þ
Then v2 can be found as
v2 ¼
1

4
ða2 þ 5a3Þ. ð23Þ
In order to have v2 = 0, we need to choose
a�2 ¼ �5a3. ð24Þ
With the above chosen parameters, executing the Maple program gives
v3 ¼ �
5

16
a3; ð25Þ
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which implies that system (17) can have at most three limit cycles around the origin. Similarly, suppose 0 < a3� 1.
Then we find the following perturbations:
Table
The co

Focus

v0 ¼ �

v1 ¼
1

4

v2 ¼
1

4

v3 ¼ �

v4 ¼ �
a2 ¼ �5a3 þ �1; a1 ¼ 3a3 � �2; a0 ¼ a3 � �1 þ �2 � �3;
where 0 < �3� �2� �1� a3. Thus, the following inequalities hold:
0 < v0 ¼ �3 � �v1 ¼
1

4
�2 � v2 ¼

1

4
�1 � �v3 ¼

5

16
a3 � 1;
which indicate that the sufficient conditions for the existence of small limit cycles are satisfied. Hence, system (17) has
exactly three small limit cycles in the neighborhood of the origin, i.e., the original system (9) has six small limit cycles,
�Hð6; 3Þ ¼ 6. The stability of the bifurcating limit cycles can be easily obtained from the signs of the focus values. For the
above chosen parameters, we know that the focus points are unstable, then the smallest limit is stable, the second one is
unstable, and the largest one (the third one) is stable.

The above procedure can be processed for integers m P 4 to obtain the conditions under which the focus values
equal zero and appropriate perturbations which show the existence of exact number of limit cycles. The procedure is
similar to that used in this subsection and previous subsection. We shall omit the details but list the results in tables.

3.4. m = 4

For this case, ai 5 0, i = 1,2, . . . , 4, and a0 = �(a1 + a2 + a3 + a4). It can be shown that �Hð8; 3Þ ¼ 8. The focus val-
ues, critical parameter values and the perturbed parameter values are listed in Table 2.

For the perturbed parameter values given in Table 2, we have
0 < �v0 ¼ �4 � v1 ¼
1

4
�3 � �v2 ¼

1

4
�2 � v3 ¼

5

16
�3 � �v4 ¼

7

16
a4 � 1;
indicating that the sufficient conditions for the existence of small limit cycles are satisfied.

3.5. m = 5, 6, 7

In this subsection, we list the results for the cases m = 5, 6, 7 in Tables 3–5, respectively. The results show that
�Hð2m; 3Þ ¼ 2m for m = 5, 6, 7.

When m = 5, the results given in Table 3 show that
0 < �v0 ¼ �5 � v1 ¼
1

4
�4 � �v2 ¼

1

4
�3 � v3 ¼

5

16
�2 � �v4 ¼

7

16
�1 � v5 ¼

21

32
a10 � 1;
where 0 < �5� �4� �3� �2� �1� a5� 1. Therefore, the sufficient conditions for the existence of small limit cycles
are satisfied and so system (9) can have exactly ten small limit cycles, five around each of the two symmetric focus
points.
2
nditions for the limit cycles of system (9) for m = 4

values Critical parameter values Perturbed parameter values

ða0 þ a1 þ a2 þ a3 þ a4Þ a0 = �(a1 + a2 + a3 + a4) a0 = a4 � �1 + �2 � �3 + �4

ða1 � 3a3 � 8a4Þ a1 = 3a3 + 8a4 a1 = 8a4 � 3�1 + �3

ða2 þ 5a3 þ 10a4Þ a2 = �5a3 � 10 a4 a2 = �10a4 + 5�1 � �2

5

16
a3 a3 = 0 a3 = ��1

7

16
a4 0 < a4� 1 0 < �4� �3� �2� �1� a4



Table 3
The conditions for the limit cycles of system (9) for m = 5

Focus values Critical parameter values Perturbed parameter values

v0 ¼ �
X5

i¼0
ai a0 ¼ �

X5

i¼1
ai a0 = �a5 + �1 � �2 + �3 � �4 + �5

v1 ¼
1

4
ða1 � 3a3 � 8a4 � 15a5Þ a1 = 3a3 + 8a4 + 15a5 a1 = �15a5 + 8�1 � 3�2 + �4

v2 ¼
1

4
ða2 þ 5a3 þ 10a4 þ 10a5Þ a2 = �(5a3 + 10a4 + 10a5) a2 = 10a5 � 10�1 + 5 �2 � �3

v3 ¼ �
5

16
ða3 � 14a5Þ a3 = 14a5 a3 = 10a5 � �2

v4 ¼ �
7

16
ða4 þ 9a5Þ a4 = �9a5 a4 = �9a5 + �1

v5 ¼
21

32
a5 0 < a5� 1 0 < �5� �4� �3� �2� �1� a5

Table 4
The conditions for the limit cycles of system (9) for m = 6

Focus values Critical parameter values Perturbed parameter values

v0 ¼ �
X6

i¼0
ai a0 ¼ �

X6

i¼1
ai a0 = �a6 + �1 � �2 + �3 � �4 + �5 � �6

v1 ¼
1

4
ða1 � 3a3 � 8a4 � 15a5 � 24a6Þ a1 = 3a3 + 8a4 + 15a5 + 24a6 a1 = �24a6 + 15�1 � 8�2 + 3�3 � �5

v2 ¼
1

4
ða2 þ 5a3 þ 10a4 þ 10a5 � 5a6Þ a2 = �5a3 � 10a4 � 10a5 + 5a6 a2 = �5a6 � 10�1 + 10�2 � 5�3 + �4

v3 ¼ �
5

16
ða3 � 14a5 � 56a6Þ a3 = 14a5 + 56a6 a3 = 56a6 � 14�1 + �3

v4 ¼ �
7

16
ða4 þ 9a5 þ 27a6Þ a4 = �9a5�27a6 a4 = �27a6 + 9�1 � �2

v5 ¼
21

32
a5 a5 = 0 a5 = ��1

v6 ¼
33

32
a6 0 < a6� 1
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Similarly, for m = 6 (see Table 4), we have
v0 ¼ �6; v1 ¼ �
1

4
�5; v2 ¼

1

4
�4; v3 ¼ �

5

16
�3; v4 ¼

7

16
�2; v5 ¼ �

21

32
�1; v6 ¼

33

32
a6;
where 0 < �6�< �5� �4� �3� �2� �1� a6� 1. Hence, the sufficient conditions are again satisfied and the conclu-
sion is true.

It follows from Table 5 that for m = 7,
v0 ¼ �7; v1 ¼ �
1

4
�6; v2 ¼

1

4
�5; v3 ¼ �

5

16
�4; v4 ¼

7

16
�3; v5 ¼ �

21

32
�2; v6 ¼

33

32
�1; v7 ¼ �

429

256
a7;



Table 5
The conditions for the limit cycles of system (9) for m = 7

Focus values Critical parameter values Perturbed parameter values

v0 ¼ �
X7

i¼0
ai a0 ¼ �

X7

i¼1
ai a0 = a7 � �1 + �2 � �3

+ �4 � �5 + �6 � �7

v1 ¼
1

4
ða1 � 3a3 � 8a4 � 15a5 � 24a6 � 35a7Þ a1 = 3a3 + 8a4 + 15a5

+ 24a6 + 35a7

a1 = 35a7 � 24�1 + 15�2

� 8�3 + 3�4 � �6

v2 ¼
1

4
ða2 þ 5a3 þ 10a4 þ 10a5 � 5a6 � 49a7Þ a2 = �5a3 � 10a4 � 10a5

+ 5a6 + 49a7

a2 = 49a7 � 5�1 � 10�2

+ 10�3 � 5�4 + �5

v3 ¼ �
5

16
ða3 � 14a5 � 56a6 � 133a7Þ a3 = 14a5 + 56a6 + 133a7 a3 = �133a7 + 56�1 � 14

�2 + �4

v4 ¼ �
7

16
ða4 þ 9a5 þ 27a6 þ 27a7Þ a4 = �9a5 � 27a6 � 27a7 a4 = 27a7 � 27�1 + 9 �2 � �3

v5 ¼
21

32
ða5 � 33a7Þ a5 = 33a7 a5 = 33a7 � �2

v6 ¼
33

32
ða6 þ 13a7Þ a6 = �13a7 a6 = �13a7 + �1

v7 ¼ �
429

256
a7 0 < a7� 1
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where 0 < �7�< �6�< �5� �4� �3� �2� �1� a7� 1. This implies that the sufficient conditions for the existence of
small limit cycles are satisfied, which proves that �Hð14; 3Þ ¼ 14.

It is noted from the above results that although the perturbations given for different cases are different (see Tables 2–
5), the expressions for the perturbed focus values with a smaller integer m are identical to that in the focus values with a
larger integer m. In other words, having obtained the perturbed focus values for m = k, one can directly use these values
for the case m = k + 1, and only needs to find one more higher focus value.

3.6. m = 8

In this subsection, we consider the case m = 8, and will present a numerical example for this case to show that exact
sixteen limit cycles can be obtained using appropriate perturbations. For this case, a�0 ¼ �

P8
i¼1ai under which v0 = 0.

Then executing the Maple program [29] yields
v1 ¼
1

4
ða1 � 3a3 � 8a4 � 15a5 � 24a6 � 35a7 � 48a8Þ. ð26Þ
Setting v1 = 0 results in
a�1 ¼ 3a3 þ 8a4 þ 15a5 þ 24a6 þ 35a7 þ 48a8. ð27Þ
Then, v2 can be found as
v2 ¼
1

4
ða2 þ 5a3 þ 10a4 þ 10a5 � 5a6 � 49a7 � 140a8Þ. ð28Þ
Hence, letting v2 = 0 leads to
a�2 ¼ �ð5a3 þ 10a4 þ 10a5 � 5a6 � 49a7 � 140a8Þ. ð29Þ
Then, under the conditions (10), (27) and (29), one similarly obtains
v3 ¼ �
5

16
ða3 � 14a5 � 56a6 � 133a7 � 224a8Þ; ð30Þ
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which, in turn, yields
a�3 ¼ 14a5 þ 56a6 þ 133a7 þ 224a8 ð31Þ
in order to have v3 = 0. Similarly, one may find
v4 ¼ �
7

16
ða4 þ 9a5 þ 27a6 þ 27a7 � 90a8Þ; ð32Þ
and thus
a�4 ¼ �ð9a5 þ 27a6 þ 27a7 � 90a8Þ ð33Þ
under which v4 = 0.
Processing the above procedure further yields the following results:
v5 ¼
21

32
ða5 � 33a7 � 176a8Þ with a�5 ¼ 33a7 þ 176a8;

v6 ¼
33

32
ða6 þ 13a7 þ 52a8Þ with a�6 ¼ �ð13a7 þ 52a8Þ;

v7 ¼ �
429

256
a7 with a�7 ¼ 0;
and
v8 ¼ �
715

256
a8.
For convenience, we rewrite the critical values of the coefficients in a reverse order as follows:
a�7 ¼ 0;

a�6 ¼ �ð13a7 þ 52a8Þ;

a�5 ¼ 33a7 þ 176a8;

a�4 ¼ �ð9a5 þ 27a6 þ 27a7 � 90a8Þ;

a�3 ¼ 14a5 þ 56a6 þ 133a7 þ 224a8;

a�2 ¼ �ð5a3 þ 10a4 þ 10a5 � 5a6 � 49a7 � 140a8Þ;

a�1 ¼ 3a3 þ 8a4 þ 15a5 þ 24a6 þ 35a7 þ 48a8;

a�0 ¼ �ða1 þ a2 þ a3 þ a4 þ a5 þ a6 þ a7 þ a8Þ;

ð34Þ
under which vi = 0, i = 0,1, . . . , 7.
Next, we want to perform appropriate perturbations to the critical parameter values to obtain exactly eight limit

cycles around each of the two fine focus points (±1,0). Without loss of generality, assume 0 < a8� 1. Then we need
to find perturbations to a7, a6, a5, a4, a3, a2, a1 and a0 such that
0 < �v0 � v1 � �v2 � v3 � �v4 � v5 � �v6 � v7 � �v8 � 1.
Note that all the focus values vi, i = 0,1, . . . , 8 are given in linear forms of the coefficients ai. Further, consider back
order perturbations one by one: First on a7 for v7, then on a6 for v6, and so on until on a0 for v0. Therefore, the per-
turbation procedure is straightforward. Since a�7 ¼ 0, one may choose a7 ¼ a�7 � �1 ¼ ��1 (0 < �1� a8) so that
0 < v7 ¼ 429

256
�1 � �v8 ¼ 715

256
a8.

Next consider perturbing v6. Noticing that ov6

oa6
¼ 33

32
> 0, one may perturb a6 = �(13a7 + 52a8) to

a6 = �(13a7 + 52a8) � �2 (0 < �2� �1), and thus v6 ¼ � 33
32
�2 < 0, and 0 < �v6� v7. This procedure can be systemati-

cally carried out until reaching the last parameter a0 for v0. The results for this case are summarized in the following
theorem.

Theorem 1. Given the Liénard equation (9) for m = 8, which has a saddle point at the origin and a pair of symmetric fine

focus points at (x,y) = (±1,0), under the condition b 5 0 and a0 ¼ �
P8

i¼1ai. Further, without loss of generality, take

b = 1, and perturb a7, a6, a5, a4, a3, a2, a1 and a0 as
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a7 ¼ a�7 � �1 ¼ ��1;

a6 ¼ a�6 � �2 ¼ �52a8 þ 13�1 � �2;

a5 ¼ a�5 þ �3 ¼ 176a8 � 33�1 þ �3;

a4 ¼ a�4 þ �4 ¼ �90a8 � 27�1 þ 27�2 � 9�3 þ �4;

a3 ¼ a�4 � �5 ¼ �224a8 þ 133�1 � 56�2 þ 14�3 � �5;

a2 ¼ a�2 � �6 ¼ 140a8 � 49�1 þ 5�2 þ 10�3 � 10�4 þ �5 � �6;

a1 ¼ a�1 þ �7 ¼ 48a8 � 35�1 þ 24�2 � 15�3 þ 8�4 � 3�5 þ �7;

a0 ¼ a�0 þ �8 ¼ a8 � �1 þ �2 � �3 þ �4 � �5 þ �6 � �7 þ �8;

ð35Þ
where 0 < �8� �7� �6� �5� �4� �3� �2� �1� a8� 1, then system (9) has exactly sixteen small limit cycles.

Proof. First note that
0 < �v8 ¼
715

256
a8 � 1
since 0 < a8� 1. Then for the given perturbation a7 = ��1, we have
0 < v7 ¼
429

256
�1 � �v8 ¼

715

256
a8;
where �1 is chosen such that 0 < �1� a8. Similarly, for a6 = �52a8 + 13�1 � �2, we obtain
v6 ¼ �
33

32
�2;
where 0 < �2� �1� 1, and so 0 < �v6� v7.
Next, for the perturbed parameter values given in Eq. (35), we have
v5 ¼
21

32
ða5 � 33a7 � 176a8Þ ¼

21

32
�3.
Hence, by choosing 0 < �3� �2, one obtains 0 < v5��v6.
For v4, we find
v4 ¼ �
7

16
ða4 þ 9a5 þ 27a6 þ 27a7 � 90a8Þ ¼ �

7

16
�4.
Then one may select 0 < �4� �3 so that 0 < �v4� v5. Next, similarly, we obtain
v3 ¼ �
5

16
ða3 � 14a5 � 56a6 � 133a7 � 224a8Þ ¼

5

16
�5 � �v4;
by choosing 0 < �5� �4. And
v2 ¼
1

4
ða2 þ 5a3 þ 10a4 þ 10a5 � 5a6 � 49a7 � 140a8Þ ¼ �

1

4
�6;
which gives 0 < �v2� v3 if �6� �5. Further, for v1, one obtains
v1 ¼
1

4
ða1 � 3a3 � 8a4 � 15a5 � 24a6 � 35a7 � 48a8Þ ¼

1

4
�7 � �v2;
provided 0 < �7� �6.
Finally, substituting the parameter values given in Eq. (35) into v0 yields
v0 ¼ �ða0 þ a1 þ a2 þ a3 þ a4 þ a5 þ a6 þ a7 þ a8Þ ¼ ��8.
Thus, 0 < �v0� v1 when 0 < �8� �7.
Summarizing the above perturbation results gives
0 < �v0 ¼ �8 � v1 ¼
1

4
�7 � �v2 ¼

1

4
�6 � v3 ¼

5

16
�5 � �v4 ¼

7

16
�4 � v5 ¼

21

32
�3 � �v6 ¼

33

32
�2

� v7 ¼
429

256
�1 � �v8 ¼

715

256
a8 � 1;
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where 0 < �8� �7� �6� �5� �4� �3� �2� �1� a8� 1. Therefore, the sufficient conditions for the existence of
small limit cycles [13,17,18] are satisfied and so system (9) can have eight small-amplitude limit cycles near each of
the two fine focus points (±1,0). h

To end this section, we present a numerical example of choosing proper perturbations to have sixteen small limit
cycles. Let b = 1 and
a8 ¼ 0:02 ) v8 ¼ �0:055859375; ð36Þ
and further choose the following perturbations:
�1 ¼ 0:1� 10�2 ) v7 ¼ 0:167578125� 10�2;

�2 ¼ 0:1� 10�4 ) v6 ¼ �0:103125� 10�4;

�3 ¼ 0:1� 10�7 ) v5 ¼ 0:65625� 10�8;

�4 ¼ 0:2� 10�11 ) v4 ¼ �0:875� 10�12;

�5 ¼ 0:1� 10�15 ) v3 ¼ 0:3125� 10�16;

�6 ¼ 0:1� 10�20 ) v2 ¼ �0:25� 10�21;

�7 ¼ 0:1� 10�26 ) v1 ¼ 0:25� 10�27;

�8 ¼ 0:1� 10�34 ) v0 ¼ �0:1� 10�34.

ð37Þ
Then, the normal form (11) associated with the fine focus points (±1,0) up to term r17 becomes
_r ¼ rð�0:1� 10�34 þ 0:25� 10�27r2 � 0:25� 10�21r4 þ 0:3125� 10�16r6 � 0:875� 10�12r8 þ 0:65625

� 10�8r10 � 0:103125� 10�4r12 þ 0:167578125� 10�2r14 � 0:055859375r16Þ. ð38Þ
Numerically solving the polynomial equation _r ¼ 0 yields the following eight positive roots for r:
r1 ¼ 0:20428541169921635282582009364207759574193326249016� 10�3;

r2 ¼ 0:10557450404492965285350949490871952069267135033321� 10�2;

r3 ¼ 0:30863297664155462969625931143584766431552752527455� 10�2;

r4 ¼ 0:63246745671122582379747204119182923242615141366736� 10�2;

r5 ¼ 0:10748050029906136301169392775166208250728875477932� 10�1;

r6 ¼ 0:23087718506626126654947264909323427140614083498976� 10�1;

r7 ¼ 0:86815345019225265714510542942016780037491378781084� 10�1;

r8 ¼ 0:14752575800171135311165842026036596278036792799907;

ð39Þ
which are the approximate solutions for the amplitudes of periodic solutions (limit cycles) including both stable and
unstable motions. The above solutions are solved using Maple up to 50 decimal places.

Under the perturbations given in Eq. (37), the perturbed parameter values are
a0 ¼ 0:01900999000199990000099999900000001;

a1 ¼ 0:925239850015999700000000001;

a2 ¼ 2:751050099980000499999;

a3 ¼ �4:3475598600000001;

a4 ¼ �1:826730089998;

a5 ¼ 3:48700001;

a6 ¼ �1:02701;

a7 ¼ �0:001;

a8 ¼ 0:02.

ð40Þ



.8 -1.2 -0.6  0  0.6  1.2
x

Fig. 1. The phase portrait of system (9) showing sixteen small limit cycles around the fine focus points (±1,0) under the perturbed
parameter values: b = 1, a0 = 0.01900999000199990000099999900000001, a1 = 0.925239850015999700000000001, a2 =
2.751050099980000499999, a3 = �4.3475598600000001, a4 = �1.826730089998, a5 = 3.48700001, a6 = �1.02701, a7 = �0.001,
a8 = 0.02.

Table 6
Comparison between the number of limit cycles in the vicinity of one focus point and two focus points

deg(f) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Focus point (0,0) 1 2 2 4 4 6 6 6 8 8 8 10 10 12 12 12 14 14 14 16
Focus points (±1 0) 2 4 6 8 10 12 14 16 18 20
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For the parameter values given in Eq. (40), the phase portrait for system (9) obtained from computer simulation is
shown in Fig. 1, where sixteen small limit cycles are depicted near the two fine focus points (±1,0). It should be pointed
out that the trajectories which are not near the two points (±1,0) can be obtained quite accurately using numerical sim-
ulations. However, one cannot obtain the computer simulation results for the small limit cycles since the accuracy of
some parameters is even higher than the machine precision. That is why one must employ certain theoretical approach
(like the one presented in this paper) to prove the existence of small limit cycles. In fact, in the neighborhood of a highly
degenerate focus point, trajectories behave like centres, as shown in Fig. 1. The stabilities of these small limit cycles can
be easily determined by the signs of the focus values. For convenience, let these small limit cycles be named, from the
smallest to the largest, as l1, l2, . . . , l8. Since v0 < 0, the focus points (±1,0) are stable. Then the smallest limit cycle l1 is
unstable, and thus l2 is table, and so on. The largest one is stable.

Remark. We have also considered the cases m = 9 and m = 10, and showed that both the two cases have the same
results. That is, �Hð2m; 3Þ ¼ 2m. A comparison between the results presented in this paper with the existing results
obtained with the restriction to the origin is given in Table 6.

Finally, we present a conjecture for this problem as follows.
Conjecture. For any integer m P 1, the maximal number of small limit cycles that system (9) can have is 2m, i.e.,
�Hð2m; 3Þ ¼ 2m, and therefore, H(2m, 3) P 2m.
4. Conclusion

In this paper, we have investigated a class of Liénard equations with Z2 symmetry. The system has a saddle point at
the origin and two linear centres on the x-axis which are symmetric with the origin. Ten cases are considered and exact
limit cycles are obtained using appropriate perturbations. It has been shown that �Hð2m; 3Þ ¼ 2m for m = 1,2, . . . , 10. It
is conjectured that �Hð2m; 3Þ ¼ 2m for all integers m P 1.
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